1
|
Quintes T, Weber S, Richert S. Teacups, a Python Package for the Simulation of Time-Resolved EPR Spectra of Spin-Polarized Multi-Spin Systems. J Phys Chem A 2025; 129:3375-3388. [PMID: 40152748 PMCID: PMC11995384 DOI: 10.1021/acs.jpca.5c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Spin-polarized magnetic systems, generated by the interaction of photoactive molecules with light, play a key role in a wide range of scientific applications. Representative examples are OLEDs, organic photovoltaics, and singlet fission. Further, they are important intermediates in certain biological processes including photosynthesis and, possibly, avian magnetoreception. Transient continuous-wave electron paramagnetic resonance (trEPR) spectroscopy is a powerful tool to reveal the temporal evolution of nonequilibrium spin states, which contains valuable information on any photoinduced dynamic processes occurring in these systems. For the analysis of the recorded trEPR data, simulations are essential. While the simulation of static trEPR spectra is supported well by tools like EasySpin, the simulation of time-resolved trEPR data is less developed. Here, we introduce teacups, a new freely available and well-documented Python-based routine for the simulation of the temporal evolution of trEPR spectra. The internal dynamics of different spin-polarized systems can be analyzed, thereby enhancing our mechanistic understanding. In this manuscript, we explain the theoretical background and provide a description of the features and setup of teacups. Further, a step-by-step example for data analysis is provided.
Collapse
Affiliation(s)
- Theresia Quintes
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Lee A, Teferi M, Hernandez FS, Jain A, Tran T, Wang K, Mani T, Schwartzberg AM, Tang ML, Niklas J, Poluektov OG, Olshansky JH. Tunable Spin Qubit Pairs in Quantum Dot-Molecule Conjugates. ACS NANO 2025; 19:12194-12207. [PMID: 40106502 PMCID: PMC11966761 DOI: 10.1021/acsnano.5c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Organic molecules and quantum dots (QDs) have both shown promise as materials that can host quantum bits (qubits). This is in part because of their synthetic tunability. The current work employs a combination of both materials to demonstrate a series of tunable quantum dot-organic molecule conjugates that can both host photogenerated spin-based qubit pairs (SQPs) and sensitize molecular triplet states. The photogenerated qubit pairs, composed of a spin-correlated radical pair (SCRP), are particularly intriguing since they can be initialized in well-defined, nonthermally populated, quantum states. Additionally, the radical pair enables charge recombination to a polarized molecular triplet state, also in a well-defined quantum state. The materials underlying this system are an organic molecular chromophore and electron donor, 9,10-bis(phenylethynyl)anthracene, and a quantum dot acceptor composed of ZnO. We prepare a series of quantum dot-molecule conjugates that possess variable quantum dot size and two different linker lengths connecting the two moieties. Optical spectroscopy revealed that the QD-molecule conjugates undergo photoexcited charge separation to generate long-lived charge-separated radical pairs. The resulting spin states are probed using light-induced time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy, revealing the presence of singlet-generated SCRPs and molecular triplet states. Notably, the EPR spectra of the radical pairs are dependent on the geometry of this highly tunable system. The g value of the ZnO QD anion is size tunable, and the line widths are influenced by radical pair separation. Overall, this work demonstrates the power of synthetic tunability in adjusting the spin specific addressability, satisfying a key requirement of functional qubit systems.
Collapse
Affiliation(s)
- Autumn
Y. Lee
- Department
of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Mandefro Teferi
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Frida S. Hernandez
- Department
of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Amisha Jain
- Department
of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Tiffany Tran
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kefu Wang
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Tomoyasu Mani
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United
States
| | - Adam M. Schwartzberg
- The
Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ming Lee Tang
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jens Niklas
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Jacob H. Olshansky
- Department
of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| |
Collapse
|
3
|
Agostini A, Calcinoni A, Petrova AA, Bortolus M, Casazza AP, Carbonera D, Santabarbara S. An unusual triplet population pathway in the Reaction Centre of the Chlorophyll-d binding Photosystem I of A. marina, as revealed by a combination of TR-EPR and ODMR spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149515. [PMID: 39349288 DOI: 10.1016/j.bbabio.2024.149515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Photo-induced Chlorophyll (Chl) triplet states in the isolated Photosystem I (PSI) of Acaryochloris marina, that harbours Chl d as its main pigment, were investigated by Optically Detected Magnetic Resonance (ODMR) and Time-Resolved Electron Paramagnetic Resonance (TR-EPR), and as a function of pre-illumination of the sample under reducing redox poising. Fluorescence Detected Magnetic Resonance (FDMR) allowed resolving four Chl d triplet (3Chl d) populations (T1-T4) both in untreated and illuminated samples in the presence of ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The FDMR signals increased following the pre-illumination treatment, particularly for the T3 and T4 populations, which are therefore sensitive to the redox state of PSI cofactors. Microwave-induced Triplet minus Singlet (TmS) spectra were detected in the |D|-|E| resonance window of the T3 and T4 triplets. These showed a broad singlet bleaching centred at 740 nm and also displayed complex spectral structure with several derivative-like features, indicating that both the T3 and T43Chl d populations are associated with the PSI reaction centre (RC) triplet, P3740. Parallel measurements by TR-EPR demonstrated that triplet signals observed under all conditions investigated are dominated by an electron spin polarisation (esp), which is typical of intersystem crossing, differently from what expected for recombination triplet states formed from a radical pair precursor. Moreover, stronger reductant conditions obtained by pre-illumination of the samples in the presence of dithionite and 5-methylphenazinium methyl sulfate (PMS) did not lead to a recombination triplet state esp, but rather to a decrease of the whole signal intensity. The energetics of A. marina PSI and the possible occurrence of distributions of cofactors redox properties are discussed in order to address the unexpected P3740 esp.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Calcinoni
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy; A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Leninskye Gory 1 building, 40 Moscow, Russia
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy; Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy.
| |
Collapse
|
4
|
Fufina TY, Vasilieva LG, Klenina IB, Proskuryakov II. Anomalous Temperature Dependence of the Triplet-Triplet Energy Transfer in Cereibacter sphaeroides I(L177)H Mutant Reaction Centers. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1573-1581. [PMID: 39418516 DOI: 10.1134/s0006297924090049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024]
Abstract
In photosynthetic reaction centers, quenching of the primary donor triplet state by energy transfer to the carotenoid molecule provides efficient suppression of generation of singlet-excited oxygen, potent chemical oxidant. This process in the Cereibacter sphaeroides reaction centers is thermoactivated, and discontinues at temperatures below 40 K. In these reaction centers, substitution of amino acid residue isoleucine at the 177 position of the L-subunit with histidine results in the sharp decrease of activation energy, so that the carotenoid triplets are populated even at 10 K. Activation energy of the T-T energy transfer was estimated as 7.5 cm-1, which is more than 10-fold lower than activation energy in the wild type reaction centers. At certain temperatures, the energy transfer in the mutant is decelerated, which is related to the increase of effective distance of the triplet-triplet transfer. To the best of our knowledge, the described mutation presents the first reaction center modification leading to the significant decrease in activation energy of the T-T energy transfer to carotenoid molecule. The I(L177)H mutant reaction centers present a considerable interest for further studies of the triplet state quenching mechanisms, and of other photophysical and photochemical processes in the reaction centers of bacterial photosynthesis.
Collapse
Affiliation(s)
- Tatiana Yu Fufina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyudmila G Vasilieva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Irina B Klenina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ivan I Proskuryakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
5
|
Santabarbara S, Agostini A, Petrova AA, Bortolus M, Casazza AP, Carbonera D. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. PHOTOSYNTHESIS RESEARCH 2024; 159:133-152. [PMID: 37191762 DOI: 10.1007/s11120-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm-1, |E|= 0.0042 cm-1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm-1, |E|= 0.0040 cm-1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|-|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre,3 P 740 [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400-1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy.
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy
- A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1 Building 40, Moscow, Russia, 119992
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy.
| |
Collapse
|
6
|
Medagedara H, Teferi MY, Wanasinghe ST, Burson W, Kizi S, Zaslona B, Mardis KL, Niklas J, Poluektov OG, Rury AS. Decorrelated singlet and triplet exciton delocalization in acetylene-bridged Zn-porphyrin dimers. Chem Sci 2024; 15:1736-1751. [PMID: 38303928 PMCID: PMC10829018 DOI: 10.1039/d3sc03327a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
The controlled delocalization of molecular excitons remains an important goal towards the application of organic chromophores in processes ranging from light-initiated chemical transformations to classical and quantum information processing. In this study, we present a methodology to couple optical and magnetic spectroscopic techniques and assess the delocalization of singlet and triplet excitons in model molecular chromophores. By comparing the steady-state and time-resolved optical spectra of Zn-porphyrin monomers and weakly coupled dimers, we show that we can use the identity of substituents bound at specific positions of the macromolecules' rings to control the inter-ring delocalization of singlet excitons stemming from their B states through acetylene bridges. While broadened steady-state absorption spectra suggest the presence of delocalized B state excitons in mesityl-substituted Zn-tetraphenyl porphyrin dimers (Zn2U-D), we confirm this conclusion by measuring an enhanced ultrafast non-radiative relaxation from these inter-ring excitonic states to lower lying electronic states relative to their monomer. In contrast to the delocalized nature of singlet excitons, we use time-resolved EPR and ENDOR spectroscopies to show that the triplet states of the Zn-porphyrin dimers remain localized on one of the two macrocyclic sub-units. We use the analysis of EPR and ENDOR measurements on unmetallated model porphyrin monomers and dimers to support this conclusion. The results of DFT calculations also support the interpretation of localized triplet states. These results demonstrate researchers cannot conclude triplet excitons delocalize in macromolecular based on the presence of spatially extended singlet excitons, which can help in the design of chromophores for application in spin conversion and information processing technologies.
Collapse
Affiliation(s)
- Hasini Medagedara
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Mandefro Y Teferi
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | | | - Wade Burson
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Shahad Kizi
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Bradly Zaslona
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Kristy L Mardis
- Department of Chemistry, Physics, and Engineering Sciences, Chicago State University Chicago IL 60628 USA
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Aaron S Rury
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| |
Collapse
|
7
|
Agostini A, Shen G, Bryant DA, Golbeck JH, van der Est A, Carbonera D. Optically detected magnetic resonance and mutational analysis reveal significant differences in the photochemistry and structure of chlorophyll f synthase and photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149002. [PMID: 37562512 DOI: 10.1016/j.bbabio.2023.149002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
In cyanobacteria that undergo far red light photoacclimation (FaRLiP), chlorophyll (Chl) f is produced by the ChlF synthase enzyme, probably by photo-oxidation of Chl a. The enzyme forms homodimeric complexes and the primary amino acid sequence of ChlF shows a high degree of homology with the D1 subunit of photosystem II (PSII). However, few details of the photochemistry of ChlF are known. The results of a mutational analysis and optically detected magnetic resonance (ODMR) data from ChlF are presented. Both sets of data show that there are significant differences in the photochemistry of ChlF and PSII. Mutation of residues that would disrupt the donor side primary electron transfer pathway in PSII do not inhibit the production of Chl f, while alteration of the putative ChlZ, P680 and QA binding sites rendered ChlF non-functional. Together with previously published transient EPR and flash photolysis data, the ODMR data show that in untreated ChlF samples, the triplet state of P680 formed by intersystem crossing is the primary species generated by light excitation. This is in contrast to PSII, in which 3P680 is only formed by charge recombination when the quinone acceptors are removed or chemically reduced. The triplet states of a carotenoid (3Car) and a small amount of 3Chl f are also observed by ODMR. The polarization pattern of 3Car is consistent with its formation by triplet energy transfer from ChlZ if the carotenoid molecule is rotated by 15° about its long axis compared to the orientation in PSII. It is proposed that the singlet oxygen formed by the interaction between molecular oxygen and 3P680 might be involved in the oxidation of Chl a to Chl f.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy; Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 370 05 Ceske Budejovice, Czech Republic
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, 16802, USA
| | - Art van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock, Way, St. Catharines, ON L2S 3A1, Canada.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy.
| |
Collapse
|
8
|
Bhattacharjee S, Neese F, Pantazis DA. Triplet states in the reaction center of Photosystem II. Chem Sci 2023; 14:9503-9516. [PMID: 37712047 PMCID: PMC10498673 DOI: 10.1039/d3sc02985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
In oxygenic photosynthesis sunlight is harvested and funneled as excitation energy into the reaction center (RC) of Photosystem II (PSII), the site of primary charge separation that initiates the photosynthetic electron transfer chain. The chlorophyll ChlD1 pigment of the RC is the primary electron donor, forming a charge-separated radical pair with the vicinal pheophytin PheoD1 (ChlD1+PheoD1-). To avert charge recombination, the electron is further transferred to plastoquinone QA, whereas the hole relaxes to a central pair of chlorophylls (PD1PD2), subsequently driving water oxidation. Spin-triplet states can form within the RC when forward electron transfer is inhibited or back reactions are favored. This can lead to formation of singlet dioxygen, with potential deleterious effects. Here we investigate the nature and properties of triplet states within the PSII RC using a multiscale quantum-mechanics/molecular-mechanics (QM/MM) approach. The low-energy spectrum of excited singlet and triplet states, of both local and charge-transfer nature, is compared using range-separated time-dependent density functional theory (TD-DFT). We further compute electron paramagnetic resonance properties (zero-field splitting parameters and hyperfine coupling constants) of relaxed triplet states and compare them with available experimental data. Moreover, the electrostatic modulation of excited state energetics and redox properties of RC pigments by the semiquinone QA- is described. The results provide a detailed electronic-level understanding of triplet states within the PSII RC and form a refined basis for discussing primary and secondary electron transfer, charge recombination pathways, and possible photoprotection mechanisms in PSII.
Collapse
Affiliation(s)
- Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
9
|
Zheng X, Drummer MC, He H, Rayder TM, Niklas J, Weingartz NP, Bolotin IL, Singh V, Kramar BV, Chen LX, Hupp JT, Poluektov OG, Farha OK, Zapol P, Glusac KD. Photoreactive Carbon Dioxide Capture by a Zirconium-Nanographene Metal-Organic Framework. J Phys Chem Lett 2023; 14:4334-4341. [PMID: 37133894 DOI: 10.1021/acs.jpclett.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mechanism of photochemical CO2 reduction to formate by PCN-136, a Zr-based metal-organic framework (MOF) that incorporates light-harvesting nanographene ligands, has been investigated using steady-state and time-resolved spectroscopy and density functional theory (DFT) calculations. The catalysis was found to proceed via a "photoreactive capture" mechanism, where Zr-based nodes serve to capture CO2 in the form of Zr-bicarbonates, while the nanographene ligands have a dual role of absorbing light and storing one-electron equivalents for catalysis. We also find that the process occurs via a "two-for-one" route, where a single photon initiates a cascade of electron/hydrogen atom transfers from the sacrificial donor to the CO2-bound MOF. The mechanistic findings obtained here illustrate several advantages of MOF-based architectures in molecular photocatalyst engineering and provide insights on ways to achieve high formate selectivity.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Matthew C Drummer
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haiying He
- Department of Physics and Astronomy, Valparaiso University, Valparaiso, Indiana 46383, United States
| | - Thomas M Rayder
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicholas P Weingartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Igor L Bolotin
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Varun Singh
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Boris V Kramar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter Zapol
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
10
|
Tait CE, Krzyaniak MD, Stoll S. Computational tools for the simulation and analysis of spin-polarized EPR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107410. [PMID: 36870248 DOI: 10.1016/j.jmr.2023.107410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The EPR spectra of paramagnetic species induced by photoexcitation typically exhibit enhanced absorptive and emissive features resulting from sublevel populations that differ from thermal equilibrium. The populations and the resulting spin polarization of the spectra are dictated by the selectivity of the photophysical process generating the observed state. Simulation of the spin-polarized EPR spectra is crucial in the characterization of both the dynamics of formation of the photoexcited state as well as its electronic and structural properties. EasySpin, the simulation toolbox for EPR spectroscopy, now includes extended support for the simulation of the EPR spectra of spin-polarized states of arbitrary spin multiplicity and formed by a variety of different mechanisms, including photoexcited triplet states populated by intersystem crossing, charge recombination or spin polarization transfer, spin-correlated radical pairs created by photoinduced electron transfer, triplet pairs formed by singlet fission and multiplet states arising from photoexcitation in systems containing chromophores and stable radicals. In this paper, we highlight EasySpin's capabilities for the simulation of spin-polarized EPR spectra on the basis of illustrative examples from the literature in a variety of fields ranging across chemistry, biology, material science and quantum information science.
Collapse
Affiliation(s)
- Claudia E Tait
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston 60208, IL, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, 98195, WA, United States
| |
Collapse
|
11
|
Klenina IB, Makhneva ZK, Moskalenko AA, Proskuryakov II. Selective Excitation of Carotenoids of the Allochromatium vinosum Light-Harvesting LH2 Complexes Leads to Oxidation of Bacteriochlorophyll. BIOCHEMISTRY (MOSCOW) 2022; 87:1130-1137. [DOI: 10.1134/s0006297922100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Mayländer M, Nolden O, Franz M, Chen S, Bancroft L, Qiu Y, Wasielewski MR, Gilch P, Richert S. Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing. Chem Sci 2022; 13:6732-6743. [PMID: 35756510 PMCID: PMC9172295 DOI: 10.1039/d2sc01899c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Owing to their exceptional photophysical properties and high photostability, perylene diimide (PDI) chromophores have found various applications as building blocks of materials for organic electronics. In many light-induced processes in PDI derivatives, chromophore excited states with high spin multiplicities, such as triplet or quintet states, have been revealed as key intermediates. The exploration of their properties and formation conditions is thus expected to provide invaluable insight into their underlying photophysics and promises to reveal strategies for increasing the performance of optoelectronic devices. However, accessing these high-multiplicity excited states of PDI to increase our mechanistic understanding remains a difficult task, due to the fact that the lowest excited singlet state of PDI decays with near-unity quantum yield to its ground state. Here we make use of radical-enhanced intersystem crossing (EISC) to generate the PDI triplet state in high yield. One or two 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) stable radicals were covalently attached to the imide position of PDI chromophores with and without p-tert-butylphenoxy core substituents. By combining femtosecond UV-vis transient absorption and transient electron paramagnetic resonance spectroscopies, we demonstrate strong magnetic exchange coupling between the PDI triplet state and TEMPO, resulting in the formation of excited quartet or quintet states. Important differences in the S1 state deactivation rate constants and triplet yields are observed for compounds bearing PDI moieties with different core substitution patterns. We show that these differences can be rationalized by considering the varying importance of competitive excited state decay processes, such as electron and excitation energy transfer. The comparison of the results obtained for different PDI–TEMPO derivatives leads us to propose design guidelines for optimizing the efficiency of triplet sensitization in molecular assemblies by EISC. The triplet state of PDI can be sensitized efficiently by radical-enhanced intersystem crossing. A detailed study of several related structures allows us to propose new strategies to optimize triplet formation in materials for optoelectronic devices.![]()
Collapse
Affiliation(s)
- Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - Oliver Nolden
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 40225 Düsseldorf Germany
| | - Michael Franz
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - Su Chen
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Laura Bancroft
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Peter Gilch
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 40225 Düsseldorf Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
13
|
Niklas J, Agostini A, Carbonera D, Di Valentin M, Lubitz W. Primary donor triplet states of Photosystem I and II studied by Q-band pulse ENDOR spectroscopy. PHOTOSYNTHESIS RESEARCH 2022; 152:213-234. [PMID: 35290567 PMCID: PMC9424170 DOI: 10.1007/s11120-022-00905-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
The photoexcited triplet state of the "primary donors" in the two photosystems of oxygenic photosynthesis has been investigated by means of electron-nuclear double resonance (ENDOR) at Q-band (34 GHz). The data obtained represent the first set of 1H hyperfine coupling tensors of the 3P700 triplet state in PSI and expand the existing data set for 3P680. We achieved an extensive assignment of the observed electron-nuclear hyperfine coupling constants (hfcs) corresponding to the methine α-protons and the methyl group β-protons of the chlorophyll (Chl) macrocycle. The data clearly confirm that in both photosystems the primary donor triplet is located on one specific monomeric Chl at cryogenic temperature. In comparison to previous transient ENDOR and pulse ENDOR experiments at standard X-band (9-10 GHz), the pulse Q-band ENDOR spectra demonstrate both improved signal-to-noise ratio and increased resolution. The observed ENDOR spectra for 3P700 and 3P680 differ in terms of the intensity loss of lines from specific methyl group protons, which is explained by hindered methyl group rotation produced by binding site effects. Contact analysis of the methyl groups in the PSI crystal structure in combination with the ENDOR analysis of 3P700 suggests that the triplet is located on the Chl a' (PA) in PSI. The results also provide additional evidence for the localization of 3P680 on the accessory ChlD1 in PSII.
Collapse
Affiliation(s)
- Jens Niklas
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA.
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
14
|
Drummond BH, Aizawa N, Zhang Y, Myers WK, Xiong Y, Cooper MW, Barlow S, Gu Q, Weiss LR, Gillett AJ, Credgington D, Pu YJ, Marder SR, Evans EW. Electron spin resonance resolves intermediate triplet states in delayed fluorescence. Nat Commun 2021; 12:4532. [PMID: 34312394 PMCID: PMC8313702 DOI: 10.1038/s41467-021-24612-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Molecular organic fluorophores are currently used in organic light-emitting diodes, though non-emissive triplet excitons generated in devices incorporating conventional fluorophores limit the efficiency. This limit can be overcome in materials that have intramolecular charge-transfer excitonic states and associated small singlet-triplet energy separations; triplets can then be converted to emissive singlet excitons resulting in efficient delayed fluorescence. However, the mechanistic details of the spin interconversion have not yet been fully resolved. We report transient electron spin resonance studies that allow direct probing of the spin conversion in a series of delayed fluorescence fluorophores with varying energy gaps between local excitation and charge-transfer triplet states. The observation of distinct triplet signals, unusual in transient electron spin resonance, suggests that multiple triplet states mediate the photophysics for efficient light emission in delayed fluorescence emitters. We reveal that as the energy separation between local excitation and charge-transfer triplet states decreases, spin interconversion changes from a direct, singlet-triplet mechanism to an indirect mechanism involving intermediate states.
Collapse
Affiliation(s)
- Bluebell H Drummond
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK
- Centre for Advanced Electron Spin Resonance (CAESR), Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford, UK
| | - Naoya Aizawa
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan
| | - Yadong Zhang
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - William K Myers
- Centre for Advanced Electron Spin Resonance (CAESR), Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford, UK
| | - Yao Xiong
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew W Cooper
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephen Barlow
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Qinying Gu
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK
| | - Leah R Weiss
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Alexander J Gillett
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK
| | - Dan Credgington
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan
| | - Seth R Marder
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emrys W Evans
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK.
- Department of Chemistry, Swansea University, Swansea, UK.
| |
Collapse
|
15
|
Chestnut MM, Milikisiyants S, Chatterjee R, Kern J, Smirnov AI. Electronic Structure of the Primary Electron Donor P700+• in Photosystem I Studied by Multifrequency HYSCORE Spectroscopy at X- and Q-Band. J Phys Chem B 2021; 125:36-48. [PMID: 33356277 DOI: 10.1021/acs.jpcb.0c09000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary electron donor P700 of the photosystem I (PSI) is a heterodimer consisting of two chlorophyll molecules. A series of electron-transfer events immediately following the initial light excitation leads to a stabilization of the positive charge by its cation radical form, P700+•. The electronic structure of P700+• and, in particular, its asymmetry with respect to the two chlorophyll monomers is of fundamental interest and is not fully understood up to this date. Here, we apply multifrequency X- (9 GHz) and Q-band (35 GHz) hyperfine sublevel correlation (HYSCORE) spectroscopy to investigate the electron spin density distribution in the cation radical P700+• of PSI from a thermophilic cyanobacterium Thermosynechococcus elongatus. Six 14N and two 1H distinct nuclei have been resolved in the HYSCORE spectra and parameters of the corresponding nuclear hyperfine and quadrupolar hyperfine interactions were obtained by combining the analysis of HYSCORE spectral features with direct numerical simulations. Based on a close similarity of the nuclear quadrupole tensor parameters, all of the resolved 14N nuclei were assigned to six out of total eight available pyrrole ring nitrogen atoms (i.e., four in each of the chlorophylls), providing direct evidence of spin density delocalization over the both monomers in the heterodimer. Using the obtained experimental values of the 14N electron-nuclear hyperfine interaction parameters, the upper limit of the electron spin density asymmetry parameter is estimated as RA/Bupper = 7.7 ± 0.5, while a tentative assignment of 14N observed in the HYSCORE spectra yields RB/A = 3.1 ± 0.5.
Collapse
Affiliation(s)
- Melanie M Chestnut
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
16
|
Saloner A, Bernstein N. Response of Medical Cannabis ( Cannabis sativa L.) to Nitrogen Supply Under Long Photoperiod. FRONTIERS IN PLANT SCIENCE 2020; 11:572293. [PMID: 33312185 PMCID: PMC7704455 DOI: 10.3389/fpls.2020.572293] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/15/2020] [Indexed: 05/25/2023]
Abstract
The development progression of medical cannabis plants includes a vegetative growth phase under long photoperiod, followed by a reproductive phase under short photoperiod. Establishment of plant architecture at the vegetative phase affects its reproduction potential under short photoperiod. Nitrogen (N) is a main component of many metabolites that are involved in central processes in plants, and is therefore a major factor governing plant development and structure. We lack information about the influence of N nutrition on medical cannabis functional-physiology and development, and plant N requirements are yet unknown. The present study therefore investigated the developmental, physiological, and chemical responses of medical cannabis plants to N supply (30, 80, 160, 240, and 320 mgL-1 N) under long photoperiod. The plants were cultivated in an environmentally controlled growing room, in pots filled with soilless media. We report that the morpho-physiological function under long photoperiod in medical cannabis is optimal at 160 mgL-1 N supply, and significantly lower under 30 mgL-1 N, with visual deficiency symptoms, and 75 and 25% reduction in plant biomass and photosynthesis rate, respectively. Nitrogen use efficiency (NUE) decreased with increasing N supply, while osmotic potential, water use efficiency, photosynthetic pigments, and total N and N-NO3 concentrations in plant tissues increased with N supply. The plant ionome was considerably affected by N supply. Concentrations of K, P, Ca, Mg, and Fe in the plant were highest under the optimal N level of 160 mgL-1 N, with differences between organs in the extent of nutrient accumulation. The majority of the nutrients tested, including P, Zn, Mn, Fe, and Cu, tended to accumulate in the roots > leaves > stem, while K and Na tended to accumulate in the stem > leaves > roots, and total N, Ca, and Mg accumulated in leaves > roots > stem. Taken together, the results demonstrate that the optimal N level for plant development and function at the vegetative growth phase is 160 mgL-1 N. Growth retardation under lower N supply (30-80 mgL-1) results from restricted availability of photosynthetic pigments, carbon fixation, and impaired water relations. Excess uptake of N under supply higher than 160 mgL-1 N, promoted physiological and developmental restrictions, by ion-specific toxicity or indirect induced restrictions of carbon fixation and energy availability.
Collapse
Affiliation(s)
- Avia Saloner
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Rishon LeZion, Israel
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
17
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
Richert S, Anderson HL, Peeks MD, Timmel CR. Probing the orientation of porphyrin oligomers in a liquid crystal solvent – a triplet state electron paramagnetic resonance study. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1511868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sabine Richert
- Centre for Advanced Electron Spin Resonance (CÆSR), University of Oxford, Oxford, UK
| | | | - Martin D. Peeks
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Christiane R. Timmel
- Centre for Advanced Electron Spin Resonance (CÆSR), University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Biskup T. Structure-Function Relationship of Organic Semiconductors: Detailed Insights From Time-Resolved EPR Spectroscopy. Front Chem 2019; 7:10. [PMID: 30775359 PMCID: PMC6367236 DOI: 10.3389/fchem.2019.00010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022] Open
Abstract
Organic photovoltaics (OPV) is a promising technology to account for the increasing demand for energy in form of electricity. Whereas the last decades have seen tremendous progress in the field witnessed by the steady increase in efficiency of OPV devices, we still lack proper understanding of fundamental aspects of light-energy conversion, demanding for systematic investigation on a fundamental level. A detailed understanding of the electronic structure of semiconducting polymers and their building blocks is essential to develop efficient materials for organic electronics. Illuminating conjugated polymers not only leads to excited states, but sheds light on some of the most important aspects of device efficiency in organic electronics as well. The interplay between electronic structure, morphology, flexibility, and local ordering, while at the heart of structure-function relationship of organic electronic materials, is still barely understood. (Time-resolved) electron paramagnetic resonance (EPR) spectroscopy is particularly suited to address these questions, allowing one to directly detect paramagnetic states and to reveal their spin-multiplicity, besides its clearly superior spectral resolution compared to optical methods. This article aims at giving a non-specialist audience an overview of what EPR spectroscopy and particularly its time-resolved variant (TREPR) can contribute to unraveling aspects of structure-function relationship in organic semiconductors.
Collapse
Affiliation(s)
- Till Biskup
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Evans EW, Olivier Y, Puttisong Y, Myers WK, Hele TJH, Menke SM, Thomas TH, Credgington D, Beljonne D, Friend RH, Greenham NC. Vibrationally Assisted Intersystem Crossing in Benchmark Thermally Activated Delayed Fluorescence Molecules. J Phys Chem Lett 2018; 9:4053-4058. [PMID: 29957961 DOI: 10.1021/acs.jpclett.8b01556] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electrically injected charge carriers in organic light-emitting devices (OLEDs) undergo recombination events to form singlet and triplet states in a 1:3 ratio, representing a fundamental hurdle for achieving high quantum efficiency. Dopants based on thermally activated delayed fluorescence (TADF) have emerged as promising candidates for addressing the spin statistics issue in OLEDs. In these materials, reverse singlet-triplet intersystem crossing (rISC) becomes efficient, thereby activating luminescence pathways for weakly emissive triplet states. However, despite a growing consensus that torsional vibrations facilitate spin-orbit-coupling- (SOC-) driven ISC in these molecules, there is a shortage of experimental evidence. We use transient electron spin resonance and theory to show unambiguously that SOC interactions drive spin conversion and that ISC is a dynamic process gated by conformational fluctuations for benchmark carbazolyl-dicyanobenzene TADF emitters.
Collapse
Affiliation(s)
- Emrys W Evans
- Cavendish Laboratory , University of Cambridge , J. J. Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Yoann Olivier
- Laboratory for Chemistry of Novel Materials , University of Mons , Place du Parc 20 , B-7000 Mons , Belgium
| | - Yuttapoom Puttisong
- Cavendish Laboratory , University of Cambridge , J. J. Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - William K Myers
- Centre for Advanced Electron Spin Resonance (CAESR) , University of Oxford , South Parks Road , Oxford OX1 3QR , United Kingdom
| | - Timothy J H Hele
- Cavendish Laboratory , University of Cambridge , J. J. Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - S Matthew Menke
- Cavendish Laboratory , University of Cambridge , J. J. Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Tudor H Thomas
- Cavendish Laboratory , University of Cambridge , J. J. Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Dan Credgington
- Cavendish Laboratory , University of Cambridge , J. J. Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials , University of Mons , Place du Parc 20 , B-7000 Mons , Belgium
| | - Richard H Friend
- Cavendish Laboratory , University of Cambridge , J. J. Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Neil C Greenham
- Cavendish Laboratory , University of Cambridge , J. J. Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
21
|
The wavelength of the incident light determines the primary charge separation pathway in Photosystem II. Sci Rep 2018; 8:2837. [PMID: 29434283 PMCID: PMC5809461 DOI: 10.1038/s41598-018-21101-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 01/12/2023] Open
Abstract
Charge separation is a key component of the reactions cascade of photosynthesis, by which solar energy is converted to chemical energy. From this photochemical reaction, two radicals of opposite charge are formed, a highly reducing anion and a highly oxidising cation. We have previously proposed that the cation after far-red light excitation is located on a component different from PD1, which is the location of the primary electron hole after visible light excitation. Here, we attempt to provide further insight into the location of the primary charge separation upon far-red light excitation of PS II, using the EPR signal of the spin polarized 3P680 as a probe. We demonstrate that, under far-red light illumination, the spin polarized 3P680 is not formed, despite the primary charge separation still occurring at these conditions. We propose that this is because under far-red light excitation, the primary electron hole is localized on ChlD1, rather than on PD1. The fact that identical samples have demonstrated charge separation upon both far-red and visible light excitation supports our hypothesis that two pathways for primary charge separation exist in parallel in PS II reaction centres. These pathways are excited and activated dependent of the wavelength applied.
Collapse
|
22
|
Thomson SAJ, Niklas J, Mardis KL, Mallares C, Samuel IDW, Poluektov OG. Charge Separation and Triplet Exciton Formation Pathways in Small Molecule Solar Cells as Studied by Time-resolved EPR Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:22707-22719. [PMID: 29606993 PMCID: PMC5875436 DOI: 10.1021/acs.jpcc.7b08217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh2)2, DTS(F2BTTh2)2, DTS(PTTh2)2, DTG(FBTTh2)2 and DTG(F2BTTh2)2) with the fullerene derivative PC61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh2)2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh2)2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh2)2 blend is in accordance with the slower charge separation dynamics observed in this blend.
Collapse
Affiliation(s)
- Stuart A. J Thomson
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Kristy L. Mardis
- Department of Chemistry and Physics, Chicago State University, Chicago, Illinois 60628, USA
| | - Christopher Mallares
- Department of Chemistry and Physics, Chicago State University, Chicago, Illinois 60628, USA
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
- Phone: +44 1334 463114
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Phone: +1 630 2523546
| |
Collapse
|
23
|
Richert S, Limburg B, Anderson HL, Timmel CR. On the Influence of the Bridge on Triplet State Delocalization in Linear Porphyrin Oligomers. J Am Chem Soc 2017; 139:12003-12008. [PMID: 28809559 PMCID: PMC5579581 DOI: 10.1021/jacs.7b06518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extent of triplet state delocalization is investigated in rigid linear zinc porphyrin oligomers as a function of interporphyrin bonding characteristics, specifically in meso-meso singly linked and β,meso,β fused structures, using electron paramagnetic resonance techniques. The results are compared with those of earlier measurements on porphyrin oligomers with alkyne linkers exhibiting different preferred conformations. It is shown that dihedral angles near 90° between the porphyrin planes in directly meso-to-meso linked porphyrin oligomers lead to localization of the photoexcited triplet state on a single porphyrin unit, whereas previous work demonstrated even delocalization over two units in meso-to-meso ethyne or butadiyne-bridged oligomers, where the preferred dihedral angles amount to roughly 30° and 0°, respectively. The triplet states of fused porphyrin oligomers (i.e., porphyrin tapes) exhibit extended conjugation and even delocalization over more than two porphyrin macrocycles, in contrast to meso-to-meso ethyne or butadiyne-bridged oligomers, where the spin density distribution in molecules composed of more than two porphyrin units is not evenly spread across the oligomer chain.
Collapse
Affiliation(s)
- Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR), University of Oxford , South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bart Limburg
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Harry L Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance (CAESR), University of Oxford , South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
24
|
Kraffert F, Behrends J. Spin-correlated doublet pairs as intermediate states in charge separation processes. Mol Phys 2017. [DOI: 10.1080/00268976.2016.1278479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Felix Kraffert
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Jan Behrends
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Hintze C, Steiner UE, Drescher M. Photoexcited Triplet State Kinetics Studied by Electron Paramagnetic Resonance Spectroscopy. Chemphyschem 2016; 18:6-16. [DOI: 10.1002/cphc.201600868] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/07/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Malte Drescher
- Fachbereich Chemie Universität Konstanz 78457 Konstanz Germany
| |
Collapse
|
26
|
Shelaev I, Gorka M, Savitsky A, Kurashov V, Mamedov M, Gostev F, Möbius K, Nadtochenko V, Golbeck J, Semenov A. Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/zpch-2016-0860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The effect of dehydration on the kinetics of forward electron transfer (ET) has been studied in cyanobacterial photosystem I (PS I) complexes in a trehalose glassy matrix by time-resolved optical and EPR spectroscopies in the 100 fs to 1 ms time domain. The kinetics of the flash-induced absorption changes in the subnanosecond time domain due to primary and secondary charge separation steps were monitored by pump–probe laser spectroscopy with 20-fs low-energy pump pulses centered at 720 nm. The back-reaction kinetics of P700 were measured by high-field time-resolved EPR spectroscopy and the forward kinetics of
A
1A
•
−
/
A
1
B
•
−
→
F
X
${\rm{A}}_{{\rm{1A}}}^{ \bullet - }/{\rm{A}}_{1{\rm{B}}}^{ \bullet - } \to {{\rm{F}}_{\rm{X}}}$
by time-resolved optical spectroscopy at 480 nm. The kinetics of the primary ET reactions to form the primary
P
700
•
+
A
0
•
−
${\rm{P}}_{700}^{ \bullet + }{\rm{A}}_0^{ \bullet - }$
and the secondary
P
700
•
+
A
1
•
−
${\rm{P}}_{700}^{ \bullet + }{\rm{A}}_1^{ \bullet - }$
ion radical pairs were not affected by dehydration in the trehalose matrix, while the yield of the
P
700
•
+
A
1
•
−
${\rm{P}}_{700}^{ \bullet + }{\rm{A}}_1^{ \bullet - }$
was decreased by ~20%. Forward ET from the phylloquinone molecules in the
A
1
A
•
−
${\rm{A}}_{1{\rm{A}}}^{ \bullet - }$
and
A
1
B
•
−
${\rm{A}}_{1{\rm{B}}}^{ \bullet - }$
sites to the iron–sulfur cluster FX slowed from ~220 ns and ~20 ns in solution to ~13 μs and ~80 ns, respectively. However, as shown by EPR spectroscopy, the ~15 μs kinetic phase also contains a small contribution from the recombination between
A
1
B
•
−
${\rm{A}}_{1{\rm{B}}}^{ \bullet - }$
and
P
700
•
+
.
${\rm{P}}_{700}^{ \bullet + }.$
These data reveal that the initial ET reactions from P700 to secondary phylloquinone acceptors in the A- and B-branches of cofactors (A1A and A1B) remain unaffected whereas ET beyond A1A and A1B is slowed or prevented by constrained protein dynamics due to the dry trehalose glass matrix.
Collapse
Affiliation(s)
- Ivan Shelaev
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
| | - Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany , Phone: 0049-208-3063555, Fax: 0049-208-3063955
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Mahir Mamedov
- A.N. Belozersky Institute of Physical–Chemical Biology, Moscow State University, Moscow, Leninskie Gory, Moscow 119992, Russian Federation
| | - Fedor Gostev
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
| | - Klaus Möbius
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Victor Nadtochenko
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
| | - John Golbeck
- Department of Biochemistry and Molecular Biology, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Alexey Semenov
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
- A.N. Belozersky Institute of Physical–Chemical Biology, Moscow State University, Moscow, Leninskie Gory, Moscow 119992, Russian Federation
| |
Collapse
|
27
|
Ferlez B, Agostini A, Carbonera D, Golbeck JH, van der Est A. Triplet Charge Recombination in Heliobacterial Reaction Centers Does Not Produce a Spin-Polarized EPR Spectrum. Z PHYS CHEM 2016. [DOI: 10.1515/zpch-2016-0825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In photosynthetic reaction centers, reduction of the secondary acceptors leads to triplet charge recombination of the primary radical pair (RP). This process is spin selective and in a magnetic field it populates only the T0 state of the donor triplet state. As a result, the triplet state of the donor has a distinctive spin polarization pattern that can be measured by transient electron paramagnetic resonance (TREPR) spectroscopy. In heliobacterial reaction centers (HbRCs), the primary donor, P800, is composed of two bacteriochlorophyll g′ molecules and its triplet state has not been studied as extensively as those of other reaction centers. Here, we present TREPR and optically detected magnetic resonance (ODMR) data of 3P800 and show that although it can be detected by ODMR it is not observed in the TREPR data. We demonstrate that the absence of the TREPR spectrum is a result of the fact that the zero-field splitting (ZFS) tensor of 3P800 is maximally rhombic, which results in complete cancelation of the absorptive and emissive polarization in randomly oriented samples.
Collapse
Affiliation(s)
- Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Alessandro Agostini
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Donatella Carbonera
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
- Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr.19, 79104 Freiburg, Germany
| | - Art van der Est
- Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr.19, 79104 Freiburg, Germany
- Departments of Chemistry and Physics, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada L2S 3A1
| |
Collapse
|
28
|
Etinski M, Petković M, Ristić M. A quantum-chemical study of the chlorophyll phosphorescence spectrum: Electron-vibrational coupling and coordination effects. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Richert S, Peeks MD, Tait CE, Anderson HL, Timmel CR. Photogenerated triplet states in supramolecular porphyrin ladder assemblies: an EPR study. Phys Chem Chem Phys 2016; 18:24171-5. [DOI: 10.1039/c6cp04444a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ladder formation and planarisation do not enhance delocalisation in the triplet excited states of linear porphyrin oligomers.
Collapse
Affiliation(s)
- Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR)
- University of Oxford
- Oxford
- UK
| | | | - Claudia E. Tait
- Centre for Advanced Electron Spin Resonance (CAESR)
- University of Oxford
- Oxford
- UK
| | | | | |
Collapse
|
30
|
Biskup T, Sommer M, Rein S, Meyer DL, Kohlstädt M, Würfel U, Weber S. Zeitaufgelöste Elektronenspinresonanz-Spektroskopie an Triplett-Exzitonen deckt Ordnung von PCDTBT auf. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Tait CE, Neuhaus P, Anderson HL, Timmel CR. Triplet state delocalization in a conjugated porphyrin dimer probed by transient electron paramagnetic resonance techniques. J Am Chem Soc 2015; 137:6670-9. [PMID: 25914154 PMCID: PMC4569061 DOI: 10.1021/jacs.5b03249] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
delocalization of the photoexcited triplet state in a linear
butadiyne-linked porphyrin dimer is investigated by time-resolved
and pulse electron paramagnetic resonance (EPR) with laser excitation.
The transient EPR spectra of the photoexcited triplet states of the
porphyrin monomer and dimer are characterized by significantly different
spin polarizations and an increase of the zero-field splitting parameter D from monomer to dimer. The proton and nitrogen hyperfine
couplings, determined using electron nuclear double resonance (ENDOR)
and X- and Q-band HYSCORE, are reduced to about half in the porphyrin
dimer. These data unequivocally prove the delocalization of the triplet
state over both porphyrin units, in contrast to the conclusions from
previous studies on the triplet states of closely related porphyrin
dimers. The results presented here demonstrate that the most accurate
estimate of the extent of triplet state delocalization can be obtained
from the hyperfine couplings, while interpretation of the zero-field
splitting parameter D can lead to underestimation
of the delocalization length, unless combined with quantum chemical
calculations. Furthermore, orientation-selective ENDOR and HYSCORE
results, in combination with the results of density functional theory
(DFT) calculations, allowed determination of the orientations of the
zero-field splitting tensors with respect to the molecular frame in
both porphyrin monomer and dimer. The results provide evidence for
a reorientation of the zero-field splitting tensor and a change in
the sign of the zero-field splitting D value. The
direction of maximum dipolar coupling shifts from the out-of-plane
direction in the porphyrin monomer to the vector connecting the two
porphyrin units in the dimer. This reorientation, leading to an alignment
of the principal optical transition moment and the axis of maximum
dipolar coupling, is also confirmed by magnetophotoselection experiments.
Collapse
Affiliation(s)
- Claudia E Tait
- †Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Patrik Neuhaus
- ‡Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Harry L Anderson
- ‡Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christiane R Timmel
- †Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
32
|
Biskup T, Sommer M, Rein S, Meyer DL, Kohlstädt M, Würfel U, Weber S. Ordering of PCDTBT Revealed by Time-Resolved Electron Paramagnetic Resonance Spectroscopy of Its Triplet Excitons. Angew Chem Int Ed Engl 2015; 54:7707-10. [DOI: 10.1002/anie.201502241] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 01/17/2023]
|
33
|
Ogiwara T, Wakikawa Y, Ikoma T. Mechanism of intersystem crossing of thermally activated delayed fluorescence molecules. J Phys Chem A 2015; 119:3415-8. [PMID: 25774790 DOI: 10.1021/acs.jpca.5b02253] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spin sublevel dynamics of the excited triplet state in thermally activated delayed fluorescence (TADF) molecules have not been investigated for high-intensity organic light-emitting diode materials. Understanding the mechanism for intersystem crossing (ISC) is thus important for designing novel TADF materials. We report the first study on the ISC dynamics of the lowest excited triplet state from the lowest excited singlet state with charge-transfer (CT) character of TADF molecules with different external quantum efficiencies (EQEs) using time-resolved electron paramagnetic resonance methods. Analysis of the observed spin polarization indicates a strong correlation of the EQE with the population rate due to ISC induced by hyperfine coupling with the magnetic nuclei. It is concluded that molecules with high EQE have an extremely small energy gap between the (1)CT and (3)CT states, which allows an additional ISC channel due to the hyperfine interactions.
Collapse
Affiliation(s)
- Toshinari Ogiwara
- ‡The Electronic Materials Department, Idemitsu Kosan Co., Ltd., 1280 Kami-izumi, Sodegaura, Chiba 299-0293, Japan
| | | | - Tadaaki Ikoma
- ∥Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| |
Collapse
|
34
|
Carbonera D, Di Valentin M, Spezia R, Mezzetti A. The unique photophysical properties of the Peridinin-Chlorophyll-α-Protein. Curr Protein Pept Sci 2015; 15:332-50. [PMID: 24678668 PMCID: PMC4030626 DOI: 10.2174/1389203715666140327111139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 11/22/2022]
Abstract
Peridinin-Chlorophyll-a-Proteins (PCPs) are water-soluble light harvesting complexes from dinoflagellates.
They have unique light-harvesting and energy transfer properties which have been studied in details in the last 15 years.
This review aims to give an overview on all the main aspects of PCPs photophysics, with an emphasis on some aspects
which have not been reviewed in details so far, such as vibrational spectroscopy studies, theoretical calculations, and
magnetic resonance studies. A paragraph on the present development of PCPs towards technological applications is also
included.
Collapse
Affiliation(s)
| | | | | | - Alberto Mezzetti
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
35
|
Niklas J, Beaupré S, Leclerc M, Xu T, Yu L, Sperlich A, Dyakonov V, Poluektov OG. Photoinduced Dynamics of Charge Separation: From Photosynthesis to Polymer–Fullerene Bulk Heterojunctions. J Phys Chem B 2015; 119:7407-16. [DOI: 10.1021/jp511021v] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jens Niklas
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Serge Beaupré
- Department
of Chemistry, Laval University, Quebec City, Quebec G1V 0A6, Canada
| | - Mario Leclerc
- Department
of Chemistry, Laval University, Quebec City, Quebec G1V 0A6, Canada
| | - Tao Xu
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Luping Yu
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Andreas Sperlich
- University of Würzburg and Bavarian Centre for Applied Energy
Research (ZAE Bayern), D-97074 Würzburg, Germany
| | - Vladimir Dyakonov
- University of Würzburg and Bavarian Centre for Applied Energy
Research (ZAE Bayern), D-97074 Würzburg, Germany
| | - Oleg G. Poluektov
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
36
|
Niklas J, Holt JM, Mistry K, Rumbles G, Blackburn JL, Poluektov OG. Charge Separation in P3HT:SWCNT Blends Studied by EPR: Spin Signature of the Photoinduced Charged State in SWCNT. J Phys Chem Lett 2014; 5:601-606. [PMID: 26276616 DOI: 10.1021/jz402668h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-wall carbon nanotubes (SWCNTs) could be employed in organic photovoltaic (OPV) devices as a replacement or additive for currently used fullerene derivatives, but significant research remains to explain fundamental aspects of charge generation. Electron paramagnetic resonance (EPR) spectroscopy, which is sensitive only to unpaired electrons, was applied to explore charge separation in P3HT:SWCNT blends. The EPR signal of the P3HT positive polaron increases as the concentration of SWCNT acceptors in a photoexcited P3HT:SWCNT blend is increased, demonstrating long-lived charge separation induced by electron transfer from P3HT to SWCNTs. An EPR signal from reduced SWCNTs was not identified in blends due to the free and fast-relaxing nature of unpaired SWCNT electrons as well as spectral overlap of this EPR signal with the signal from positive P3HT polarons. However, a weak EPR signal was observed in chemically reduced SWNTs, and the g values of this signal are close to those of C70-PCBM anion radical. The anisotropic line shape indicates that these unpaired electrons are not free but instead localized.
Collapse
Affiliation(s)
- Jens Niklas
- †Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Josh M Holt
- ‡Chemical and Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Kevin Mistry
- ‡Chemical and Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Garry Rumbles
- ‡Chemical and Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Jeffrey L Blackburn
- ‡Chemical and Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Oleg G Poluektov
- †Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| |
Collapse
|
37
|
Kammler L, van Gastel M. Electronic structure of the lowest triplet state of flavin mononucleotide. J Phys Chem A 2012; 116:10090-8. [PMID: 22998491 DOI: 10.1021/jp305778v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structure of flavin mononucleotide (FMN), an organic cofactor that plays a role in many important enzymatic reactions, has been investigated by electron paramagnetic resonance (EPR) spectroscopy, optical spectroscopy, and quantum chemistry. In particular, the triplet state of FMN, which is paramagnetic (total spin S = 1), allows an investigation of the zero field splitting parameters D and E, which are directly related to the two singly occupied molecular orbitals. Triplet EPR spectra and optical absorption spectra at different pH values in combination with time dependent density functional theory (TDDFT) reveal that the highest occupied orbital (HOMO) and lowest unoccupied orbital (LUMO) of FMN are largely unaffected by changes in the protonation state of FMN. Rather, the orbital structure of the lower lying doubly occupied orbitals changes dramatically. Additional EPR experiments have been carried out in the presence of AgNO(3), which allows the formation of an Ag-FMN triplet state with different zero field splitting parameters and population and depopulation rates. Addition of AgNO(3) only induces small changes in the optical spectrum, indicating that the Ag(+) ion only contributes to the zero field splitting by second order spin-orbit coupling and leaves the orbital structure unaffected. By a combination of the three employed methods, the observed bands in the UV/vis spectra of FMN at different pH values are assigned to electronic transitions.
Collapse
Affiliation(s)
- Lydia Kammler
- Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstrasse 12, 53115, Bonn, Germany
| | | |
Collapse
|
38
|
Absorption Detected Magnetic Resonance of D1/D2-Complexes fromPisum sativum*. Z PHYS CHEM 2011. [DOI: 10.1524/zpch.1992.1.part_2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Klenina IB, Kuzmin AN, Fufina TY, Gudkov ND, Proskuryakov II. Triplet state of the primary donor in reaction centers of the phototrophic bacterium Rhodobacter sphaeroides R26 with active photoinduced electron transfer. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911030110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Di Valentin M, Ceola S, Agostini G, Telfer A, Barber J, Böhles F, Santabarbara S, Carbonera D. The photo-excited triplet state of chlorophylldin methyl-tetrahydrofuran studied by optically detected magnetic resonance and time-resolved EPR. Mol Phys 2010. [DOI: 10.1080/00268970701627797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Niedzwiedzki DM, Blankenship RE. Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. PHOTOSYNTHESIS RESEARCH 2010; 106:227-238. [PMID: 21086044 DOI: 10.1007/s11120-010-9598-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/02/2010] [Indexed: 05/28/2023]
Abstract
Ten naturally occurring chlorophylls (a, b, c (2), d) and bacteriochlorophylls (a, b, c, d, e, g) were purified and studied using the optical spectroscopic techniques of both steady state and time-resolved absorption and fluorescence. The studies were carried out at room temperature in nucleophilic solvents in which the central Mg is hexacoordinated. The comprehensive studies of singlet excited state lifetimes show a clear dependency on the structural features of the macrocycle and terminal substituents. The wide-ranging studies of triplet state lifetime demonstrate the existence of an energy gap law for these molecules. The knowledge of the dynamics and the energies of the triplet state that were obtained in other studies allowed us to construct an energy gap law expression that can be used to estimate the triplet state energies of any (B)chlorophyll molecule from its triplet lifetime obtained in a liquid environment.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130-4899, USA
| | | |
Collapse
|
42
|
Electronic structure of the primary electron donor of Blastochloris viridis heterodimer mutants: High-field EPR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1617-26. [DOI: 10.1016/j.bbabio.2010.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 05/18/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022]
|
43
|
Kamlowski A, Frankemöller L, van der Est A, Stehlik D, Holzwart AR. Evidence for delocalization of the triplet state 3P680 in the D1D2cytb559-complex of photosystem II. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19961001221] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Marchanka A, Lubitz W, van Gastel M. Spin Density Distribution of the Excited Triplet State of Bacteriochlorophylls. Pulsed ENDOR and DFT Studies. J Phys Chem B 2009; 113:6917-27. [DOI: 10.1021/jp8111364] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aliaksandr Marchanka
- Max Planck Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Maurice van Gastel
- Max Planck Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
45
|
Marchanka A, Paddock M, Lubitz W, van Gastel M. Low-temperature pulsed EPR study at 34 GHz of the triplet states of the primary electron Donor P865 and the carotenoid in native and mutant bacterial reaction centers of Rhodobacter sphaeroides. Biochemistry 2007; 46:14782-94. [PMID: 18052205 DOI: 10.1021/bi701593r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photosynthetic charge separation in bacterial reaction centers occurs predominantly along one of two nearly symmetric branches of cofactors. Low-temperature EPR spectra of the triplet states of the chlorophyll and carotenoid pigments in the reaction center of Rhodobacter sphaeroides R-26.1, 2.4.1 and two double-mutants GD(M203)/AW(M260) and LH(M214)/AW(M260) have been recorded at 34 GHz to investigate the relative activities of the "A" and "B" branches. The triplet states are found to derive from radical pair and intersystem crossing mechanisms, and the rates of formation are anisotropic. The former mechanism is operative for Rb. sphaeroides R-26.1, 2.4.1, and mutant GD(M203)/AW(M260) and indicates that A-branch charge separation proceeds at temperatures down to 10 K. The latter mechanism, derived from the spin polarization and operative for mutant LH(M214)/AW(M260), indicates that no long-lived radical pairs are formed upon direct excitation of the primary donor and that virtually no charge separation at the B-branch occurs at low temperatures. When the temperature is raised above 30 K, B-branch charge separation is observed, which is at most 1% of A-branch charge separation. B-branch radical pair formation can be induced at 10 K with low yield by direct excitation of the bacteriopheophytin of the B-branch at 590 nm. The formation of a carotenoid triplet state is observed. The rate of formation depends on the orientation of the reaction center in the magnetic field and is caused by a magnetic field dependence of the oscillation frequency by which the singlet and triplet radical pair precursor states interchange. Combination of these findings with literature data provides strong evidence that the thermally activated transfer step on the B-branch occurs between the primary donor, P865, and the accessory bacteriochlorophyll, whereas this step is barrierless down to 10 K along the A-branch.
Collapse
Affiliation(s)
- Aliaksandr Marchanka
- Max-Planck-Institut für Bioanorganische Chemie, P.O. Box 101365, D-45413 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
46
|
Laible PD, Morris ZS, Thurnauer MC, Schiffer M, Hanson DK. Inter- and Intraspecific Variation in Excited-state Triplet Energy Transfer Rates in Reaction Centers of Photosynthetic Bacteria¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780114iaivie2.0.co2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Santabarbara S, Agostini G, Casazza AP, Syme CD, Heathcote P, Böhles F, Evans MC, Jennings RC, Carbonera D. Chlorophyll triplet states associated with Photosystem I and Photosystem II in thylakoids of the green alga Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:88-105. [DOI: 10.1016/j.bbabio.2006.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 12/01/2022]
|
48
|
Drzewiecka-Matuszek A, Skalna A, Karocki A, Stochel G, Fiedor L. Effects of heavy central metal on the ground and excited states of chlorophyll. J Biol Inorg Chem 2005; 10:453-62. [PMID: 15918033 DOI: 10.1007/s00775-005-0652-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Chlorophylls, owing to their adjustable pi-electron system and intense, well-separated electronic transitions, can serve as convenient intrinsic spectroscopic probes of ligand-metal center interactions. They are also interesting for their photosensitizing properties. In order to examine the heavy-atom effects on the chlorophyll triplet state, a key intermediate in chlorophyll-photosensitized reactions, the synthesis of a novel Pt(II)-substituted chlorophyll a was carried out, and the effects of the substitution on steady-state and transient photophysical properties of chlorophyll were studied by absorption and fluorescence spectroscopies, and by laser flash photolysis. The presence of highly electronegative platinum as the central ion increases the energies of the chlorophyll main absorption transitions. As laser flash photolysis experiments show, in air-equilibrated solutions, chlorophyll triplets are efficiently quenched by molecular oxygen. Interestingly, this quenching by oxygen is more effective with metal-containing pigments, in spite of the increased spin-orbit coupling, introduced with the central metals. This points to occurrence of nonspecific interactions of molecular oxygen with metallochlorophylls. The differences in the effects exerted on the pigment triplet by the central metal become distinct after the removal of oxygen. The lifetime of a Pt-chlorophyll triplet remains very short, in the range of only a few microseconds, unlike in the free-base and Mg- and Zn-substituted chlorophylls. Such drastic shortening of the triplet lifetime can be attributed to a large heavy-atom effect, implying that strong interactions must occur between the central Pt(II) ion and the chlorophyll macrocycle, which lead to a more efficient spin-orbit coupling in Pt-chlorophyll than in Pt-porphyrins.
Collapse
|
49
|
Santabarbara S, Heathcote P, Evans MCW. Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: The phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron–sulfur cluster FX. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:283-310. [PMID: 15975545 DOI: 10.1016/j.bbabio.2005.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 04/12/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A(1), the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre F(X) and the phylloquinone bound to either the PsaA (A(1A)) or the PsaB (A(1B)) subunit of the reaction centre and the equilibrium between the iron-sulfur centres F(A) and F(B). The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A(1)) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre F(X). A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A(1B) quinone and slightly endergonic, in the case of the A(1A) quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A(0) on both electron transfer branches and the reduction of F(A) by F(X).
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
50
|
Sakuragi Y, Zybailov B, Shen G, Bryant DA, Golbeck JH, Diner BA, Karygina I, Pushkar Y, Stehlik D. Recruitment of a Foreign Quinone into the A1 Site of Photosystem I. J Biol Chem 2005; 280:12371-81. [PMID: 15681848 DOI: 10.1074/jbc.m412943200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A photosystem I (PS I) complex containing plastoquinone-9 (PQ-9) but devoid of F(X), F(B), and F(A) was isolated and characterized from a mutant strain of Synechococcus sp. PCC 7002 in which the menB and rubA genes were insertionally inactivated. In isolated PS I trimers, the decay of P700+ measured in the near-IR and the decay of A1- measured in the near-UV were found to be biphasic, with (averaged) room temperature lifetimes of 12 and 350 micros. The decay-associated spectra of both kinetic phases are characteristic of the oxidized minus reduced difference spectrum of a semiquinone, consistent with charge recombination between P700+ and PQ-9-. The amplitude of the flash-induced absorbance changes in both the near-IR and the near-UV show that approximately one-half of the A1 binding sites are either empty or nonfunctional. A spin-polarized chlorophyll triplet is observed by time-resolved EPR, and it is attributed to the 3P700 product of P700+A0- charge recombination via the T0 spin level in those PS I complexes that do not contain a functional quinone. In those A1 sites that are occupied, the P700+Q- polarization pattern indicates that PQ-9 is oriented in a similar manner to that in the menB mutant. When excess 9,10-anthraquinone is added in vitro, it displaces PQ-9 and occupies the A1 binding site more readily than in the menB mutant. This can be explained by a greater accessibility to the A1 site in the menB rubA mutant due to the absence of F(X) and the stromal ridge polypeptides. The relatively low binding affinity of 9,10-anthraquinone allows it to be readily removed from the A1 site by washing. However, all A1 sites are shown to bind napthoquinones with high affinity and thus are proven to be functionally competent in quinone binding. The ability to readily displace PQ-9 from the A1 site makes the menB rubA mutant ideal for introducing novel quinones, particularly anthraquinones, into PS I.
Collapse
Affiliation(s)
- Yumiko Sakuragi
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|