1
|
Rubina M, Strazdina I, Rutkis R, Kalnenieks U. The promoter of Zymomonas mobilis respiratory NADH dehydrogenase (ndh) is induced by oxygen. J Biotechnol 2025; 402:5-8. [PMID: 40058650 DOI: 10.1016/j.jbiotec.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Expression of the genes of engineered green fluorescent protein and the Zymomonas mobilis native malic enzyme from plasmid vectors under the Z. mobilis respiratory NADH dehydrogenase promoter (Pndh) was strongly enhanced by aeration, both in the wild type Zm6 and its respiratory-deficient mutant derivative Zm6-ndh backgrounds. Pndh in aerobically growing cultures was activated by about an order of magnitude relative to non-aerated control. Its induction approached the maximum level already at moderate aeration (1-5 % oxygen saturation in the medium). The strength of Pndh under aerobic conditions was comparable to, or even surpassed that of the strong Z. mobilis native promoter of glyceraldehyde-3-phosphate dehydrogenase. Although the mechanism of its oxygen-dependent induction is not known, Pndh might serve as a versatile inducible promoter for Z. mobilis metabolic engineering.
Collapse
Affiliation(s)
- Marta Rubina
- Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas street 1, Riga LV-1004, Latvia
| | - Inese Strazdina
- Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas street 1, Riga LV-1004, Latvia
| | - Reinis Rutkis
- Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas street 1, Riga LV-1004, Latvia
| | - Uldis Kalnenieks
- Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas street 1, Riga LV-1004, Latvia.
| |
Collapse
|
2
|
Kannan H, Sun H, Warren M, Çağlar T, Yao P, Taylor BR, Sahu K, Ge D, Mori M, Kleinfeld D, Dong J, Li B, Hwa T. Spatiotemporal development of expanding bacterial colonies driven by emergent mechanical constraints and nutrient gradients. Nat Commun 2025; 16:4878. [PMID: 40419492 PMCID: PMC12106844 DOI: 10.1038/s41467-025-60004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
Bacterial colonies growing on solid surfaces can exhibit robust expansion kinetics, with constant radial growth and saturating vertical expansion, suggesting a common developmental program. Here, we study this process for Escherichia coli cells using a combination of modeling and experiments. We show that linear radial colony expansion is set by the verticalization of interior cells due to mechanical constraints rather than radial nutrient gradients as commonly assumed. In contrast, vertical expansion slows down from an initial linear regime even while radial expansion continues linearly. This vertical slowdown is due to limitation of cell growth caused by vertical nutrient gradients, exacerbated by concurrent oxygen depletion. Starvation in the colony interior results in a distinct death zone which sets in as vertical expansion slows down, with the death zone increasing in size along with the expanding colony. Thus, our study reveals complex heterogeneity within simple monoclonal bacterial colonies, especially along the vertical dimension. The intricate dynamics of such emergent behavior can be understood quantitatively from an interplay of mechanical constraints and nutrient gradients arising from obligatory metabolic processes.
Collapse
Affiliation(s)
- Harish Kannan
- Department of Mathematics, University of California, San Diego, La Jolla, CA, USA
| | - Hui Sun
- Department of Mathematics and Statistics, California State University, Long Beach, CA, USA.
| | - Mya Warren
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Tolga Çağlar
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Pantong Yao
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Brian R Taylor
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA and Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA
| | - Kinshuk Sahu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Daotong Ge
- Department of Mathematics, University of California, San Diego, La Jolla, CA, USA
| | - Matteo Mori
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, USA
| | - JiaJia Dong
- Department of Physics & Astronomy, Bucknell University, Lewisburg, PA, USA.
| | - Bo Li
- Department of Mathematics and Ph.D. Program in Quantitative Biology, University of California, San Diego, La Jolla, CA, USA.
| | - Terence Hwa
- Department of Physics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Zhang J, Fang H, Du G, Zhang D. Metabolic Regulation and Engineering Strategies of Carbon and Nitrogen Metabolism in Escherichia coli. ACS Synth Biol 2025; 14:1367-1380. [PMID: 40243912 DOI: 10.1021/acssynbio.5c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The intricacies of carbon and nitrogen metabolism in Escherichia coli indeed present both challenges and opportunities for metabolic engineering aimed at optimizing microbial production processes. Carbon is the primary energy source and building block for biomolecules at the cellular level, while nitrogen is vital for synthesizing amino acids, nucleotides, and other nitrogen-containing compounds. This review provides a comprehensive summary of the metabolic regulation of central metabolism and outlines engineering strategies for carbon and nitrogen metabolism in E. coli. This perspective enhances our understanding of the molecular mechanisms involved and enables the development of rational metabolic engineering strategies. One key aspect of metabolic engineering consists of understanding the regulatory networks that govern these processes. Both carbon and nitrogen metabolisms are tightly regulated to ensure cellular homeostasis. By elucidating the interconnected nature of carbon and nitrogen metabolism, this review serves not just to better inform the academic community but also to stimulate advancements in biotechnological applications. Metabolic engineering in E. coli, targeting these complex networks, holds immense promise for the sustainable production of chemicals, biofuels, and pharmaceuticals.
Collapse
Affiliation(s)
- Jijiao Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Food Science, Dalian University of Technology, Dalian 116034, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Food Science, Dalian University of Technology, Dalian 116034, China
| |
Collapse
|
4
|
Ellis E, Fulte S, Boylan S, Flory A, Paine K, Lopez S, Allen G, Warya K, Ortiz-Merino J, Blacketer S, Thompson S, Sanchez S, Burdette K, Duchscherer A, Pinkham N, Shih JD, Rahn-Lee L. Community living causes changes in metabolic behavior and is permitted by specific growth conditions in two bacterial co-culture systems. J Bacteriol 2025:e0007525. [PMID: 40366143 DOI: 10.1128/jb.00075-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Although bacteria exist in complex microbial communities in the environment, their features and behavior are most often studied in monoculture. While environmental enrichments or complex co-cultures with tens or hundreds of members might more accurately represent the natural communities of bacteria, we sought to create simple pairs of organisms to learn what conditions create successful co-culture and how bacteria change transcriptionally when a partner species is present. We grew two pairs of organisms in co-culture, Pseudomonas aeruginosa and Escherichia coli and Lacticaseibacillus rhamnosus and Bacteroides thetaiotaomicron. At first, both co-cultures failed, with one organism outcompeting the other. However, through manipulating media and environmental conditions, we created co-cultures with stable member ratios over many generations for each community. We then show that changes in the expression of metabolic genes are present in all studied species, with key catabolic and anabolic pathways often upregulated in the presence of another organism. These changes in gene expression fail to occur in conditions that will not lead to successful co-culture, suggesting they are essential for adapting to and surviving in the presence of others. IMPORTANCE In 1882, Robert Koch and Fanny Hesse developed the agar plate, which enabled microbiologists to separate individual microbial cells from each other and create monocultures of a single strain of bacteria. This powerful tool has been used in the almost 150 years since to develop a robust understanding of how bacterial cells are structured, how they manage and process their information, and how they respond to the environment to produce behaviors that match their circumstances. We were curious about how the behavior of bacteria, as measured by their gene expression, changes between well-studied monoculture conditions and co-culture. We found that only specific growth conditions permit co-culture and that bacteria change their metabolic strategies in the presence of a partner.
Collapse
Affiliation(s)
- Elizabeth Ellis
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Sam Fulte
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Skyler Boylan
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Alaina Flory
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Katherine Paine
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Sophia Lopez
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Grace Allen
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Kanwar Warya
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | | | - Sadie Blacketer
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Samantha Thompson
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Sierra Sanchez
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Kayla Burdette
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | | | - Nick Pinkham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Joseph D Shih
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Lilah Rahn-Lee
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| |
Collapse
|
5
|
Fletcher SJ, Ching C, Suprenant MP, Desai D, Zaman MH. Agent-based model of the human colon to investigate mechanisms of pathogen colonization resistance. Biophys J 2025; 124:1446-1461. [PMID: 40156186 DOI: 10.1016/j.bpj.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Recent global burden of disease studies have shown that bacterial infections are responsible for over 13 million deaths worldwide, or 1 in every 8 deaths, each year. Enteric diarrheal infections, in particular, pose a significant challenge and strain on healthcare systems as many are difficult to address pharmaceutically, and thus rely primarily on the patient's own immune system and gut microbiome to fight the infection. Nonetheless, the specific mechanisms behind gut microbiome colonization resistance of enteric pathogens are not well defined and microbiome diversity is difficult to represent and study experimentally. To address this gap, we have constructed an agent-based computational model of the colonic epithelium cross section to investigate the colonic invasion of enteric pathogens. The model focuses on three main regions: epithelial layer, mucosal bilayer, and adjacent lumen, and utilizes four main cell types as agents: anaerobic bacteria, facultative anaerobic bacteria, human goblet cells, and pathogens. Utilizing this model, we are able to describe the healthy microbiome cell localization and dynamics from our mucosal bilayer. In addition, we are also able to investigate the impact of host dietary fiber consumption and simulate pathogen invasion. The model exemplifies the possibility and potential to explore key gut microbiome colonization resistance mechanisms and environmental impacts on the gut microbiome using computational methods.
Collapse
Affiliation(s)
| | - Carly Ching
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Darash Desai
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Muhammad Hamid Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Howard Hughes Medical Institute, Boston University, Boston, Massachusetts; Center on Forced Displacement, Boston University, Boston, Massachusetts.
| |
Collapse
|
6
|
Blackburn BT, Alba RAC, Porokhin VO, Cai R, Hatch A, Hassoun S, Ajo‐Franklin CM, Mevers E. Identifying Key Properties That Drive Redox Mediator Activity in Lactiplantibacillus Plantarum. Angew Chem Int Ed Engl 2025; 64:e202424867. [PMID: 40019351 PMCID: PMC12051747 DOI: 10.1002/anie.202424867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Lactiplantibacillus plantarum is known to utilize exogenous small molecule quinone mediators to perform extracellular electron transfer (EET), allowing it to produce a detectable current in a bioelectrochemical system (BES). Utilization of quinone mediators by L. plantarum requires a type-II NADH dehydrogenase (Ndh2); however, structural variations in the core of 1,4-naphthoquinone EET mediators have shown to yield significantly different current outputs. Herein, we assembled a library of 40 quinone-based EET mediators to probe the important physicochemical properties and biochemical interactions responsible for Ndh2-dependent EET in L. plantarum. The library was designed with inspiration from naturally occurring metabolites, and assembly was focused on structural modifications that diversified polarity, reduction potential, and predicted free energy of binding to Ndh2 (ΔGcomp), as these properties are hypothesized to drive EET activity. In general, Ndh2-dependent EET activity in an iron(III) nanoparticle reduction assay significantly correlates to the mediator's polarity and ΔGcomp. Five mediators were analyzed in BESs with L. plantarum, and each generated Ndh2-dependent current over background signal. Importantly, an amine-containing mediator yielded incredibly stable current output over the course of the experiment (up to 5 days). These findings improve our understanding of structure-activity relationships for quinone-mediated EET and provide stable mediators for bioelectronic sensing applications.
Collapse
Affiliation(s)
| | - Robyn A. C. Alba
- Departments of BioScience and ChemicalBiomolecular EngineeringRice UniversityHoustonTexasUSA
| | | | - Rong Cai
- Departments of BioScience and ChemicalBiomolecular EngineeringRice UniversityHoustonTexasUSA
| | - Arden Hatch
- Department of ChemistryVirginia TechBlacksburgVirginiaUSA
| | - Soha Hassoun
- Department of Computer ScienceTufts UniversityMedfordMassachusettsUSA
| | | | - Emily Mevers
- Department of ChemistryVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
7
|
Qi B, Zhang J, Ma W, Wu Y, Lv X, Liu L, Li J, Du G, Liu Y. Biosensor-Assisted Multitarget Gene Fine-Tuning for N-Acetylneuraminic Acid Production in Escherichia coli with Sole Carbon Source Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9793-9806. [PMID: 40207619 DOI: 10.1021/acs.jafc.5c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
N-Acetylneuraminic acid (NeuAc) is widely used in the food and medical industries. Microbial fermentation has become one of the most important approaches for NeuAc production. However, current research on NeuAc is confronted with challenges, including high production costs, interference from competitive pathways, and low conversion efficiency, all of which impede its efficient production. In this study, an engineered Escherichia coli capable of utilizing glucose as the sole carbon source for NeuAc production was constructed by optimizing the glucose utilization pathway, competitive pathways, and redox balance of NADH/NAD+. Subsequently, pathway genes were systematically upregulated to identify key target genes for improving NeuAc biosynthesis. The gene cluster glmSA*-glmM-SeglmU was identified as the key engineering target. To achieve multitarget coordinated optimization of this gene cluster in vivo, a highly responsive biosensor for NeuAc was developed, exhibiting a maximum response ratio of 10.62-fold. By the construction of random mutation libraries and integration of the NeuAc-responsive biosensor with high-throughput screening using flow cytometry, the expression levels of three key genes were synergistically optimized. As a result, highly efficient NeuAc-producing strain A39 was successfully obtained. In a 3-L bioreactor, the strain achieved a NeuAc titer of 58.26 g·L-1 with a productivity of 0.83 g·L-1·h-1, representing the highest reported production of NeuAc using glucose as the sole carbon source.
Collapse
Affiliation(s)
- Bin Qi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Jianing Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Wenlong Ma
- Jiangsu Provincial Key Laboratory for Probiotics and Dairy Deep Processing, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| |
Collapse
|
8
|
Ornati E, Perrard J, Hoffmann TA, Bonon R, Bruns N. Bacteria-Mediated Intracellular Radical Polymerizations. J Am Chem Soc 2025; 147:9496-9504. [PMID: 40036043 PMCID: PMC11926860 DOI: 10.1021/jacs.4c17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Intracellular radical polymerizations allow for the direct bioorthogonal synthesis of various synthetic polymers within living cells, thereby providing a pathway to polymer-modified cells or the fermentative production of polymers. Here, we show that Escherichia coli cells can initiate the polymerization of various acrylamide, acrylic, and methacrylic monomers through an atom transfer radical reaction triggered by the activity of naturally occurring biomolecules within the bacterial cells. Intracellular radical polymerizations were confirmed by nuclear magnetic resonance spectroscopy, gel permeation chromatography of polymers extracted from the cells, and fluorescence labeling of the polymer directly inside the cells. The effect of polymerization on cell behavior and the response of the cells to polymerization was investigated through fluorescence microscopy and flow cytometry techniques, as well as metabolic and membrane integrity assays. The polymer synthesis and resulting products are cell-compatible, as indicated by the high viability of the polymerized cells. In cellulo synthesis of synthetic polymers containing fluorescent dyes was also achieved. These results not only enhance our understanding of the untapped potential of bacterial cells as living catalysts for polymer production but also reveal intracellular polymerization based on atom transfer radical polymerization initiators as a bioorthogonal tool for cell engineering and synthetic biology.
Collapse
Affiliation(s)
- Eleonora Ornati
- Department
of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham House, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Jules Perrard
- Department
of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Tobias A. Hoffmann
- Department
of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Raissa Bonon
- Department
of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Nico Bruns
- Department
of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham House, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| |
Collapse
|
9
|
van der Velden TT, Kayastha K, Waterham CYJ, Brünle S, Jeuken LJC. Menaquinone-specific turnover by Mycobacterium tuberculosis cytochrome bd is redox regulated by the Q-loop disulfide bond. J Biol Chem 2025; 301:108094. [PMID: 39706268 PMCID: PMC11786768 DOI: 10.1016/j.jbc.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Cytochrome bd from Mycobacterium tuberculosis (Mtbd) is a menaquinol oxidase that has gained interest as an antibiotic target because of its importance in survival under infectious conditions. Mtbd contains a characteristic disulfide bond that has been hypothesized to allow for Mtbd activity regulation at the enzymatic level, possibly helping M. tuberculosis to rapidly adapt to the hostile environment of the phagosome. Here, the role of the disulfide bond and quinone specificity have been determined by reconstitution of a minimal respiratory chain and the single-particle cryo-EM structure in the disulfide-reduced form. Mtbd was shown to be specific for menaquinone, while regulation by reduction of the Q-loop disulfide bond decreased oxidase activity up to 90%. Structural analysis shows that a salt bridge unique to Mtbd keeps the Q-loop partially structured in its disulfide-reduced form, which could facilitate the rapid activation of Mtbd upon exposure to reactive oxygen species. We signify Mtbd as the first redox sensory terminal oxidase and propose that this helps M. tuberculosis in the defense against reactive oxygen species encountered during infection.
Collapse
Affiliation(s)
| | - Kanwal Kayastha
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Steffen Brünle
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
10
|
Srivastav S, Biswas A, Anand A. Interplay of niche and respiratory network in shaping bacterial colonization. J Biol Chem 2025; 301:108052. [PMID: 39662826 PMCID: PMC11742581 DOI: 10.1016/j.jbc.2024.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024] Open
Abstract
The human body is an intricate ensemble of prokaryotic and eukaryotic cells, and this coexistence relies on the interplay of many biotic and abiotic factors. The inhabiting microbial population has to maintain its physiological homeostasis under highly dynamic and often hostile host environments. While bacterial colonization primarily relies on the metabolic suitability for the niche, there are reports of active remodeling of niche microenvironments to create favorable habitats, especially in the context of pathogenic settlement. Such physiological plasticity requires a robust metabolic system, often dependent on an adaptable energy metabolism. This review focuses on the respiratory electron transport system and its adaptive consequences within the host environment. We provide an overview of respiratory chain plasticity, which allows pathogenic bacteria to niche-specify, niche-diversify, mitigate inflammatory stress, and outcompete the resident microbiota. We have reviewed existing and emerging knowledge about the role of respiratory chain components responsible for the entry and exit of electrons in influencing the pathogenic outcomes.
Collapse
Affiliation(s)
- Stuti Srivastav
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Arpita Biswas
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Amitesh Anand
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India.
| |
Collapse
|
11
|
Patil AV, Shirsath AM, Anand A. Dioxygen reductase heterogeneity is crucial for robust aerobic growth physiology of Escherichia coli. iScience 2024; 27:111498. [PMID: 39759019 PMCID: PMC11697609 DOI: 10.1016/j.isci.2024.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
The development of a system to leverage molecular oxygen for energy-efficient pathways required several molecular adaptations. The enzymatic reduction of dioxygen to water is one such prominent evolutionary molecular trait. Microbes evolved several enzymes capable of reducing dioxygen and, interestingly, retained multiples of them in their genomes. While their structure and biochemical functions are well-studied, understanding their degeneracy and co-operativity in the system remains elusive. We used genetic engineering and evolutionary repair approaches to examine the impact of the high oxygen affinity cytochrome bd oxidase deficiency in Escherichia coli aerobic growth. We found a crucial role of cytochrome bd oxidases in the robustness of aerobic physiology. Evolutionary repair experiments alleviated growth defects in bd oxidase-deficient strains by ArcAB system dysregulation at the cost of impaired stress response pathways. Energy generation pathways are potential antimicrobial targets, and understanding collateral phenotypes is crucial in designing therapeutic approaches that reduce antimicrobial resistance development.
Collapse
Affiliation(s)
- Anjali V. Patil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Akshay M. Shirsath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Amitesh Anand
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
12
|
Dantanarayana A, Housseini WE, Beaver K, Brachi M, McFadden TP, Minteer SD. Boosting the Microbial Electrosynthesis of Formate by Shewanella oneidensis MR-1 with an Ionic Liquid Cosolvent. ACS APPLIED BIO MATERIALS 2024; 7:8434-8443. [PMID: 39565880 DOI: 10.1021/acsabm.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Microbial electrosynthesis (MES) is a rapidly growing technology at the forefront of sustainable chemistry, leveraging the ability of microorganisms to catalyze electrochemical reactions to synthesize valuable compounds from renewable energy sources. The reduction of CO2 is a major target application for MES, but research in this area has been stifled, especially with the use of direct electron transfer (DET)-based microbial systems. The major fundamental hurdle that needs to be overcome is the low efficiency of CO2 reduction largely attributed to minimal microbial access to CO2 owing to its low solubility in the electrolyte. With their tunable physical properties, ionic liquids present a potential solution to this challenge and have previously shown promise in facilitating efficient CO2 electroreduction by increasing the CO2 solubility. However, the use of ionic liquids in MES remains unexplored. In this study, we investigated the role of 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) using Shewanella oneidensis MR-1 as a model DET strain. Electrochemical investigations demonstrated the ability of S. oneidensis MR-1 biocathodes to directly convert CO2 to formate with a faradaic efficiency of 34.5 ± 26.1%. The addition of [EMIM][Ac] to the system significantly increased cathodic current density and enhanced the faradaic efficiency to 94.5 ± 4.3% while concurrently amplifying the product yield from 34 ± 23 μM to 366 ± 34 μM. These findings demonstrate that ionic liquids can serve as efficient, biocompatible cosolvents for microbial electrochemical reduction of CO2 to value-added products, holding promise for more robust applications of MES.
Collapse
Affiliation(s)
- Ashwini Dantanarayana
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Wassim El Housseini
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Monica Brachi
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Timothy P McFadden
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
13
|
Choi AJ, Bennison DJ, Kulkarni E, Azar H, Sun H, Li H, Bradshaw J, Yeap HW, Lim N, Mishra V, Crespo-Puig A, Mills EA, Davies F, Sriskandan S, Shenoy AR. Aminoglycoside heteroresistance in Enterobacter cloacae is driven by the cell envelope stress response. mBio 2024; 15:e0169924. [PMID: 39475244 PMCID: PMC11633387 DOI: 10.1128/mbio.01699-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Enterobacter cloacae is a Gram-negative nosocomial pathogen of the ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter spp.) priority group with increasing multi-drug resistance via the acquisition of resistance plasmids. However, E. cloacae can also display forms of antibiotic refractoriness, such as heteroresistance and tolerance. Here, we report that E. cloacae displays transient heteroresistance to aminoglycosides, which is accompanied with the formation of small colony variants (SCVs) with increased minimum inhibitor concentration (MIC) of gentamicin and other aminoglycosides used in the clinic, but not other antibiotic classes. To explore the underlying mechanisms, we performed RNA sequencing of heteroresistant bacteria, which revealed global gene expression changes and a signature of the CpxRA cell envelope stress response. Deletion of the cpxRA two-component system abrogated aminoglycoside heteroresistance and SCV formation, pointing to its indispensable role in these processes. The introduction of a constitutively active allele of cpxA led to high aminoglycoside MICs, consistent with cell envelope stress response driving these behaviors in E. cloacae. Cell envelope stress can be caused by environmental cues, including heavy metals. Indeed, bacterial exposure to copper increased gentamicin MIC in the wild-type but not in the ΔcpxRA mutant. Moreover, copper exposure also elevated the gentamicin MICs of clinical isolates from bloodstream infections, suggesting that CpxRA- and copper-dependent aminoglycoside resistance is broadly conserved in E. cloacae strains. Altogether, we establish that E. cloacae relies on transcriptional reprogramming via the envelope stress response pathway for transient resistance to a major class of frontline antibiotic.IMPORTANCEEnterobacter cloacae is a bacterium that belongs to the WHO high-priority group and an increasing threat worldwide due its multi-drug resistance. E. cloacae can also display heteroresistance, which has been linked to treatment failure. We report that E. cloacae shows heteroresistance to aminoglycoside antibiotics. These are important frontline microbicidal drugs used against Gram-negative bacterial infections; therefore, understanding how resistance develops among sensitive strains is important. We show that aminoglycoside resistance is driven by the activation of the cell envelope stress response and transcriptional reprogramming via the CpxRA two-component system. Furthermore, heterologous activation of envelope stress via copper, typically a heavy metal with antimicrobial actions, also increased aminoglycoside MICs of the E. cloacae type strain and clinical strains isolated from bloodstream infections. Our study suggests aminoglycoside recalcitrance in E. cloacae could be broadly conserved and cautions against the undesirable effects of copper.
Collapse
Affiliation(s)
- Ana J. Choi
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Daniel J. Bennison
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Esha Kulkarni
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hibah Azar
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Haoyu Sun
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hanqi Li
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Jonathan Bradshaw
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hui Wen Yeap
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Nicholas Lim
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Vishwas Mishra
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Anna Crespo-Puig
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ewurabena A. Mills
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Frances Davies
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Avinash R. Shenoy
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
14
|
Borisov VB, Giardina G, Pistoia G, Forte E. Cytochrome bd-type oxidases and environmental stressors in microbial physiology. Adv Microb Physiol 2024; 86:199-255. [PMID: 40404270 DOI: 10.1016/bs.ampbs.2024.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Cytochrome bd is a tri-haem copper-free terminal oxidase of many respiratory chains of prokaryotes with unique structural and functional characteristics. As the other membrane-bound terminal oxidases, this enzyme couples the four-electron reduction of oxygen to water with the generation of a proton motive force used for ATP synthesis but the molecular mechanism does not include proton pumping. Beyond its bioenergetic role, cytochrome bd is involved in resistance to several stressors and affords protection against oxidative and nitrosative stress. These features agree with its expression in many bacterial pathogens. The importance for bacterial virulence and the absence of eukaryotic homologues make this enzyme an ideal target for new antimicrobial drugs. This review aims to provide an update on the current knowledge about cytochrome bd in light of recent advances in the structural characterisation of this enzyme, focussing on its reactivity with environmental stressors.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianluca Pistoia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Zhao MX, Ding RF, Chen Q, Meng J, Li F, Fu S, Huang B, Liu Y, Ji ZL, Zhao Y. Nphos: Database and Predictor of Protein N-phosphorylation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae032. [PMID: 39380205 PMCID: PMC12016571 DOI: 10.1093/gpbjnl/qzae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 10/10/2024]
Abstract
Protein N-phosphorylation is widely present in nature and participates in various biological processes. However, current knowledge on N-phosphorylation is extremely limited compared to that on O-phosphorylation. In this study, we collected 11,710 experimentally verified N-phosphosites of 7344 proteins from 39 species and subsequently constructed the database Nphos to share up-to-date information on protein N-phosphorylation. Upon these substantial data, we characterized the sequential and structural features of protein N-phosphorylation. Moreover, after comparing hundreds of learning models, we chose and optimized gradient boosting decision tree (GBDT) models to predict three types of human N-phosphorylation, achieving mean area under the receiver operating characteristic curve (AUC) values of 90.56%, 91.24%, and 92.01% for pHis, pLys, and pArg, respectively. Meanwhile, we discovered 488,825 distinct N-phosphosites in the human proteome. The models were also deployed in Nphos for interactive N-phosphosite prediction. In summary, this work provides new insights and points for both flexible and focused investigations of N-phosphorylation. It will also facilitate a deeper and more systematic understanding of protein N-phosphorylation modification by providing a data and technical foundation. Nphos is freely available at http://www.bio-add.org/Nphos/ and http://ppodd.org.cn/Nphos/.
Collapse
Affiliation(s)
- Ming-Xiao Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruo-Fan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qiang Chen
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Junhua Meng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Fulai Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Yan Liu
- Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Kumar V, Tolosa M, Ge X, Rao G. Reinventing shake flask fermentation: The breathable flask. Biotechnol Bioeng 2024; 121:2706-2715. [PMID: 38698719 DOI: 10.1002/bit.28734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Cultivating cells in shake flasks is a routine operation that is largely unchanged since its inception. A glass or plastic Erlenmeyer vessel with the primary gas exchange taking place across various porous plugs is used with media volumes typically ranging from 100 mL to 2 L. Oxygen limitation and carbon dioxide accumulation in the vessel is a major concern for studies involving shake flask cultures. In this study, we enhance mass transfer in a conventional shake flask by replacing the body wall with a permeable membrane. Naturally occurring concentration gradient across the permeable membrane walls facilitates the movement of oxygen and carbon dioxide between the flask and the external environment. The modified flask called the breathable flask, has shown a 40% improvement in mass transfer coefficient (kLa) determined using the static diffusion method. The prokaryotic cell culture studies performed with Escherichia coli showed an improvement of 28%-66% in biomass and 41%-56% in recombinant product yield. The eukaryotic cell culture study performed with Pichia pastoris expressing proinsulin exhibited a 40% improvement in biomass and 115% improvement in protein yield. The study demonstrates a novel approach to addressing the mass transfer limitations in conventional shake flask cultures. The proposed flask amplifies its value by providing a membrane-diffusion-based sensing platform for the integration of low-cost, noninvasive sensing capabilities for real-time monitoring of critical cell culture parameters like dissolved oxygen and dissolved carbon dioxide.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, USA
- Center for Advanced Sensor Technology, University of Maryland, Baltimore County, Baltimore, USA
| | - Michael Tolosa
- Center for Advanced Sensor Technology, University of Maryland, Baltimore County, Baltimore, USA
| | - Xudong Ge
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, USA
- Center for Advanced Sensor Technology, University of Maryland, Baltimore County, Baltimore, USA
| | - Govind Rao
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, USA
- Center for Advanced Sensor Technology, University of Maryland, Baltimore County, Baltimore, USA
| |
Collapse
|
17
|
Noszka M, Strzałka A, Muraszko J, Hofreuter D, Abele M, Ludwig C, Stingl K, Zawilak-Pawlik A. CemR atypical response regulator impacts energy conversion in Campylobacteria. mSystems 2024; 9:e0078424. [PMID: 38980050 PMCID: PMC11334517 DOI: 10.1128/msystems.00784-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Campylobacter jejuni and Arcobacter butzleri are microaerobic food-borne human gastrointestinal pathogens that mainly cause diarrheal disease. These related species of the Campylobacteria class face variable atmospheric environments during infection and transmission, ranging from nearly anaerobic to aerobic conditions. Consequently, their lifestyles require that both pathogens need to adjust their metabolism and respiration to the changing oxygen concentrations of the colonization sites. Our transcriptomic and proteomic studies revealed that C. jejuni and A. butzleri, lacking a Campylobacteria-specific regulatory protein, C. jejuni Cj1608, or a homolog, A. butzleri Abu0127, are unable to reprogram tricarboxylic acid cycle or respiration pathways, respectively, to produce ATP efficiently and, in consequence, adjust growth to changing oxygen supply. We propose that these Campylobacteria energy and metabolism regulators (CemRs) are long-sought transcription factors controlling the metabolic shift related to oxygen availability, essential for these bacteria's survival and adaptation to the niches they inhabit. Besides their significant universal role in Campylobacteria, CemRs, as pleiotropic regulators, control the transcription of many genes, often specific to the species, under microaerophilic conditions and in response to oxidative stress. IMPORTANCE C. jejuni and A. butzleri are closely related pathogens that infect the human gastrointestinal tract. In order to infect humans successfully, they need to change their metabolism as nutrient and respiratory conditions change. A regulator called CemR has been identified, which helps them adapt their metabolism to changing conditions, particularly oxygen availability in the gastrointestinal tract so that they can produce enough energy for survival and spread. Without CemR, these bacteria, as well as a related species, Helicobacter pylori, produce less energy, grow more slowly, or, in the case of C. jejuni, do not grow at all. Furthermore, CemR is a global regulator that controls the synthesis of many genes in each species, potentially allowing them to adapt to their ecological niches as well as establish infection. Therefore, the identification of CemR opens new possibilities for studying the pathogenicity of C. jejuni and A. butzleri.
Collapse
Affiliation(s)
- Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jakub Muraszko
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dirk Hofreuter
- Department of Biological Safety, Unit of Product Hygiene and Disinfection Strategies, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
18
|
Jiang X, Chen D, Wang X, Wang C, Zheng H, Ye W, Zhou W, Liu G, Zhang K. Nitazoxanide synergizes polymyxin B against Escherichia coli by depleting cellular energy. Microbiol Spectr 2024; 12:e0019124. [PMID: 38904380 PMCID: PMC11302062 DOI: 10.1128/spectrum.00191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The rapid expansion of antibiotic-resistant bacterial diseases is a global burden on public health. It makes sense to repurpose and reposition already-approved medications for use as supplementary agents in synergistic combinations with existing antibiotics. Here, we demonstrate that the anthelmintic drug nitazoxanide (NTZ) synergistically enhances the effectiveness of the lipopeptide antibiotic polymyxin B in inhibiting gram-negative bacteria, including those resistant to polymyxin B. Mechanistic investigations revealed that nitazoxanide inhibited calcium influx and cell membrane depolarization, enhanced the affinity between polymyxin B and the extracellular membrane, and promoted intracellular ATP depletion and an increase in reactive oxygen species (ROS), thus enhancing the penetration and disruption of the Escherichia coli cell membrane by polymyxin B. The transcriptomic analysis revealed that the combination resulted in energy depletion by inhibiting both aerobic and anaerobic respiration patterns in bacterial cells. The increased bactericidal effect of polymyxin B on the E. coli ∆nuoC strain further indicates that NuoC could be a promising target for nitazoxanide. Furthermore, the combination of nitazoxanide and polymyxin B showed promising therapeutic effects in a mouse infection model infected with E. coli. Taken together, these results demonstrate the potential of nitazoxanide as a novel adjuvant to polymyxin B, to overcome antibiotic resistance and improve therapeutic outcomes in refractory infections.IMPORTANCEThe rapid spread of antibiotic-resistant bacteria poses a serious threat to public health. The search for potential compounds that can increase the antibacterial activity of existing antibiotics is a promising strategy for addressing this issue. Here, the synergistic activity of the FDA-approved agent nitazoxanide (NTZ) combined with polymyxin B was investigated in vitro using checkerboard assays and time-kill curves. The synergistic mechanisms of the combination of nitazoxanide and polymyxin B were explored by fluorescent dye, transmission electron microscopy (TEM), and transcriptomic analysis. The synergistic efficacy was evaluated in vivo by the Escherichia coli and mouse sepsis models. These results suggested that nitazoxanide, as a promising antibiotic adjuvant, can effectively enhance polymyxin B activity, providing a potential strategy for treating multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Xuejia Jiang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Dongliang Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haihong Zheng
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenchong Ye
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
19
|
Montgomery TL, Wang Q, Mirza A, Dwyer D, Wu Q, Dowling CA, Martens JWS, Yang J, Krementsov DN, Mao-Draayer Y. Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis. Sci Rep 2024; 14:15292. [PMID: 38961134 PMCID: PMC11222390 DOI: 10.1038/s41598-024-64369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. In a longitudinal study, disability status and associated clinical features in 58 MS patients were tracked over 4.2 ± 0.98 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 41 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia, Lachnospiraceae, and Oscillospiraceae, with an expansion of Alloprevotella, Prevotella-9, and Rhodospirillales. Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K2 production (linked to Akkermansia), and a depletion in SCFA metabolism (linked to Oscillospiraceae). Further, as a proof of principle, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. These results demonstrate a proof of principle for the utility of the gut microbiome for predicting disease progression in MS in a small well-defined cohort. Further, analysis of the inferred metagenome suggested that oxidative stress, vitamin K2, and SCFAs are associated with progression, warranting future functional validation and mechanistic study.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Qin Wang
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ali Mirza
- Pharmacoepidemiology in Multiple Sclerosis Research Group, The University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Deanna Dwyer
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qi Wu
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Catherine A Dowling
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jennifer Yang
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA.
| | - Yang Mao-Draayer
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Autoimmunity Center of Excellence, Multiple Sclerosis Center of Excellence, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
20
|
Mrnjavac N, Nagies FSP, Wimmer JLE, Kapust N, Knopp MR, Trost K, Modjewski L, Bremer N, Mentel M, Esposti MD, Mizrahi I, Allen JF, Martin WF. The radical impact of oxygen on prokaryotic evolution-enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third. FEBS Lett 2024; 598:1692-1714. [PMID: 38750628 PMCID: PMC7616280 DOI: 10.1002/1873-3468.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 07/15/2024]
Abstract
Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Michael R Knopp
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Katharina Trost
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Luca Modjewski
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nico Bremer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and The National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, UK
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
21
|
Martinez A, Dijkstra P, Megonigal P, Hungate BA. Microbial central carbon metabolism in a tidal freshwater marsh and an upland mixed conifer soil under oxic and anoxic conditions. Appl Environ Microbiol 2024; 90:e0072424. [PMID: 38771053 PMCID: PMC11218644 DOI: 10.1128/aem.00724-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
The central carbon (C) metabolic network is responsible for most of the production of energy and biosynthesis in microorganisms and is therefore key to a mechanistic understanding of microbial life in soil communities. Many upland soil communities have shown a relatively high C flux through the pentose phosphate (PP) or the Entner-Doudoroff (ED) pathway, thought to be related to oxidative damage control. We tested the hypothesis that the metabolic organization of the central C metabolic network differed between two ecosystems, an anoxic marsh soil and oxic upland soil, and would be affected by altering oxygen concentrations. We expected there to be high PP/ED pathway activity under high oxygen concentrations and in oxic soils and low PP/ED activity in reduced oxygen concentrations and in marsh soil. Although we found high PP/ED activity in the upland soil and low activity in the marsh soil, lowering the oxygen concentration for the upland soil did not reduce the relative PP/ED pathway activity as hypothesized, nor did increasing the oxygen concentration in the marsh soil increase the PP/ED pathway activity. We speculate that the high PP/ED activity in the upland soil, even when exposed to low oxygen concentrations, was related to a high demand for NADPH for biosynthesis, thus reflecting higher microbial growth rates in C-rich soils than in C-poor sediments. Further studies are needed to explain the observed metabolic diversity among soil ecosystems and determine whether it is related to microbial growth rates.IMPORTANCEWe observed that the organization of the central carbon (C) metabolic processes differed between oxic and anoxic soil. However, we also found that the pentose phosphate pathway/Entner-Doudoroff (PP/ED) pathway activity remained high after reducing the oxygen concentration for the upland soil and did not increase in response to an increase in oxygen concentration in the marsh soil. These observations contradicted the hypothesis that oxidative stress is a main driver for high PP/ED activity in soil communities. We suggest that the high PP/ED activity and NADPH production reflect higher anabolic activities and growth rates in the upland soil compared to the anaerobic marsh soil. A greater understanding of the molecular and biochemical processes in soil communities is needed to develop a mechanistic perspective on microbial activities and their relationship to soil C and nutrient cycling. Such an increased mechanistic perspective is ecologically relevant, given that the central carbon metabolic network is intimately tied to the energy metabolism of microbes, the efficiency of new microbial biomass production, and soil organic matter formation.
Collapse
Affiliation(s)
- Ayla Martinez
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Paul Dijkstra
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- Ecosystem Science and Society (ECOSS), Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Bruce A. Hungate
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- Ecosystem Science and Society (ECOSS), Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
22
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Haggai Bar-Yoseph
- Department of
Gastroenterology, Rambam Health Care
Campus, Haifa,
Israel
- Rappaport Faculty of
Medicine, Technion-Israel Institute of
Technology, Haifa,
Israel
| | - Tanya Marie Monaghan
- National Institute for
Health Research Nottingham Biomedical Research Centre, University of
Nottingham, Nottingham,
United Kingdom
- Nottingham Digestive
Diseases Centre, School of Medicine, University of
Nottingham, Nottingham,
United Kingdom
| | - Sepideh Pakpour
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Andrea Severino
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Ed J. Kuijper
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Wiep Klaas Smits
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Elisabeth M. Terveer
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Sukanya Neupane
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Javad Sadeghi
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Giovanni Cammarota
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Gianluca Ianiro
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Estello Nap-Hill
- Department of
Medicine, Division of Gastroenterology, St Paul’s Hospital,
University of British Columbia,
Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Karen Wong
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Dina Kao
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| |
Collapse
|
23
|
Pimenta AI, Bernardino RM, Pereira IAC. Role of sulfidogenic members of the gut microbiota in human disease. Adv Microb Physiol 2024; 85:145-200. [PMID: 39059820 DOI: 10.1016/bs.ampbs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The human gut flora comprises a dynamic network of bacterial species that coexist in a finely tuned equilibrium. The interaction with intestinal bacteria profoundly influences the host's development, metabolism, immunity, and overall health. Furthermore, dysbiosis, a disruption of the gut microbiota, can induce a variety of diseases, not exclusively associated with the intestinal tract. The increased consumption of animal protein, high-fat and high-sugar diets in Western countries has been implicated in the rise of chronic and inflammatory illnesses associated with dysbiosis. In particular, this diet leads to the overgrowth of sulfide-producing bacteria, known as sulfidogenic bacteria, which has been linked to inflammatory bowel diseases and colorectal cancer, among other disorders. Sulfidogenic bacteria include sulfate-reducing bacteria (Desulfovibrio spp.) and Bilophila wadsworthia among others, which convert organic and inorganic sulfur compounds to sulfide through the dissimilatory sulfite reduction pathway. At high concentrations, sulfide is cytotoxic and disrupts the integrity of the intestinal epithelium and mucus barrier, triggering inflammation. Besides producing sulfide, B. wadsworthia has revealed significant pathogenic potential, demonstrated in the ability to cause infection, adhere to intestinal cells, promote inflammation, and compromise the integrity of the colonic mucus layer. This review delves into the mechanisms by which taurine and sulfide-driven gut dysbiosis contribute to the pathogenesis of sulfidogenic bacteria, and discusses the role of these gut microbes, particularly B. wadsworthia, in human diseases.
Collapse
Affiliation(s)
- Andreia I Pimenta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Raquel M Bernardino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
24
|
Salem MA, Nour El-Din HT, Hashem AM, Aziz RK. Genome-Scale Investigation of the Regulation of azoR Expression in Escherichia coli Using Computational Analysis and Transposon Mutagenesis. MICROBIAL ECOLOGY 2024; 87:63. [PMID: 38691135 PMCID: PMC11062982 DOI: 10.1007/s00248-024-02380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Bacterial azoreductases are enzymes that catalyze the reduction of ingested or industrial azo dyes. Although azoreductase genes have been well identified and characterized, the regulation of their expression has not been systematically investigated. To determine how different factors affect the expression of azoR, we extracted and analyzed transcriptional data from the Gene Expression Omnibus (GEO) resource, then confirmed computational predictions by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results showed that azoR expression was lower with higher glucose concentration, agitation speed, and incubation temperature, but higher at higher culture densities. Co-expression and clustering analysis indicated ten genes with similar expression patterns to azoR: melA, tpx, yhbW, yciK, fdnG, fpr, nfsA, nfsB, rutF, and chrR (yieF). In parallel, constructing a random transposon library in E. coli K-12 and screening 4320 of its colonies for altered methyl red (MR)-decolorizing activity identified another set of seven genes potentially involved in azoR regulation. Among these genes, arsC, relA, plsY, and trmM were confirmed as potential azoR regulators based on the phenotypic decolorization activity of their transposon mutants, and the expression of arsC and relA was confirmed, by qRT-PCR, to significantly increase in E. coli K-12 in response to different MR concentrations. Finally, the significant decrease in azoR transcription upon transposon insertion in arsC and relA (as compared to its expression in wild-type E. coli) suggests their probable involvement in azoR regulation. In conclusion, combining in silico analysis and random transposon mutagenesis suggested a set of potential regulators of azoR in E. coli.
Collapse
Affiliation(s)
- Mona A Salem
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), 11837, El-Sherouk City, Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, 11562, Cairo, Egypt
| | - Abdelgawad M Hashem
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), 11837, El-Sherouk City, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, 11562, Cairo, Egypt.
- Center for Genome and Microbiome Research, Cairo University, 11562, Cairo, Egypt.
- Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt, 57357, 11617, Cairo, Egypt.
| |
Collapse
|
25
|
Tsypin LMZ, Saunders SH, Chen AW, Newman DK. Genetically dissecting the electron transport chain of a soil bacterium reveals a generalizable mechanism for biological phenazine-1-carboxylic acid oxidation. PLoS Genet 2024; 20:e1011064. [PMID: 38709821 PMCID: PMC11108179 DOI: 10.1371/journal.pgen.1011064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/21/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The capacity for bacterial extracellular electron transfer via secreted metabolites is widespread in natural, clinical, and industrial environments. Recently, we discovered the biological oxidation of phenazine-1-carboxylic acid (PCA), the first example of biological regeneration of a naturally produced extracellular electron shuttle. However, it remained unclear how PCA oxidation was catalyzed. Here, we report the mechanism, which we uncovered by genetically perturbing the branched electron transport chain (ETC) of the soil isolate Citrobacter portucalensis MBL. Biological PCA oxidation is coupled to anaerobic respiration with nitrate, fumarate, dimethyl sulfoxide, or trimethylamine-N-oxide as terminal electron acceptors. Genetically inactivating the catalytic subunits for all redundant complexes for a given terminal electron acceptor abolishes PCA oxidation. In the absence of quinones, PCA can still donate electrons to certain terminal reductases, albeit much less efficiently. In C. portucalensis MBL, PCA oxidation is largely driven by flux through the ETC, which suggests a generalizable mechanism that may be employed by any anaerobically respiring bacterium with an accessible cytoplasmic membrane. This model is supported by analogous genetic experiments during nitrate respiration by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Lev M. Z. Tsypin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Scott H. Saunders
- Green Center for Systems Biology—Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Allen W. Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
26
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
27
|
Song WS, Kim JH, Namgung B, Cho HY, Shin H, Oh HB, Ha NC, Yoon SI. Complementary hydrophobic interaction of the redox enzyme maturation protein NarJ with the signal peptide of the respiratory nitrate reductase NarG. Int J Biol Macromol 2024; 262:129620. [PMID: 38262549 DOI: 10.1016/j.ijbiomac.2024.129620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
In bacteria, NarJ plays an essential role as a redox enzyme maturation protein in the assembly of the nitrate reductase NarGHI by interacting with the N-terminal signal peptide of NarG to facilitate cofactor incorporation into NarG. The purpose of our research was to elucidate the exact mechanism of NarG signal peptide recognition by NarJ. We determined the structures of NarJ alone and in complex with the signal peptide of NarG via X-ray crystallography and verified the NarJ-NarG interaction through mutational, binding, and molecular dynamics simulation studies. NarJ adopts a curved α-helix bundle structure with a U-shaped hydrophobic groove on its concave side. This groove accommodates the signal peptide of NarG via a dual binding mode in which the left and right parts of the NarJ groove each interact with two consecutive hydrophobic residues from the N- and C-terminal regions of the NarG signal peptide, respectively, through shape and chemical complementarity. This binding is accompanied by unwinding of the helical structure of the NarG signal peptide and by stabilization of the NarG-binding loop of NarJ. We conclude that NarJ recognizes the NarG signal peptide through a complementary hydrophobic interaction mechanism that mediates a structural rearrangement.
Collapse
Affiliation(s)
- Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jee-Hyeon Kim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Byeol Namgung
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hye Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyunwoo Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Il Yoon
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea; Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
28
|
Ito A, Kuroda Y, Iwai K, Yokoyama S, Nishiwaki N. Highly electron-deficient 1-propyl-3,5-dinitropyridinium: evaluation of electron-accepting ability and application as an oxidative quencher for metal complexes. RSC Adv 2024; 14:5846-5850. [PMID: 38362075 PMCID: PMC10865184 DOI: 10.1039/d4ra00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
Impacts of the nitro groups on the electron-accepting and oxidizing abilities of N-propylpyridinium were evaluated quantitatively. A 3,5-dinitro derivative has efficiently quenched emission from photosensitizing Ru(ii) and Ir(iii) complexes owing to the thermodynamically-favored electron transfer to the pyridinium whose LUMO is greatly lowered by the presence of electron-withdrawing nitro groups.
Collapse
Affiliation(s)
- Akitaka Ito
- School of Engineering Science, Kochi University of Technology Tosayamada, Kami Kochi 782-8502 Japan ,
- Research Center for Molecular Design, Kochi University of Technology Tosayamada, Kami Kochi 782-8502 Japan
| | - Yasuyuki Kuroda
- School of Engineering Science, Kochi University of Technology Tosayamada, Kami Kochi 782-8502 Japan ,
| | - Kento Iwai
- School of Engineering Science, Kochi University of Technology Tosayamada, Kami Kochi 782-8502 Japan ,
- Research Center for Molecular Design, Kochi University of Technology Tosayamada, Kami Kochi 782-8502 Japan
| | - Soichi Yokoyama
- School of Engineering Science, Kochi University of Technology Tosayamada, Kami Kochi 782-8502 Japan ,
- Research Center for Molecular Design, Kochi University of Technology Tosayamada, Kami Kochi 782-8502 Japan
| | - Nagatoshi Nishiwaki
- School of Engineering Science, Kochi University of Technology Tosayamada, Kami Kochi 782-8502 Japan ,
- Research Center for Molecular Design, Kochi University of Technology Tosayamada, Kami Kochi 782-8502 Japan
| |
Collapse
|
29
|
Mock J, Schühle K, Linne U, Mock M, Heider J. A Synthetic Pathway for the Production of Benzylsuccinate in Escherichia coli. Molecules 2024; 29:415. [PMID: 38257328 PMCID: PMC10818641 DOI: 10.3390/molecules29020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
(R)-Benzylsuccinate is generated in anaerobic toluene degradation by the radical addition of toluene to fumarate and further degraded to benzoyl-CoA by a β-oxidation pathway. Using metabolic modules for benzoate transport and activation to benzoyl-CoA and the enzymes of benzylsuccinate β-oxidation, we established an artificial pathway for benzylsuccinate production in Escherichia coli, which is based on its degradation pathway running in reverse. Benzoate is supplied to the medium but needs to be converted to benzoyl-CoA by an uptake transporter and a benzoate-CoA ligase or CoA-transferase. In contrast, the second substrate succinate is endogenously produced from glucose under anaerobic conditions, and the constructed pathway includes a succinyl-CoA:benzylsuccinate CoA-transferase that activates it to the CoA-thioester. We present first evidence for the feasibility of this pathway and explore product yields under different growth conditions. Compared to aerobic cultures, the product yield increased more than 1000-fold in anaerobic glucose-fermenting cultures and showed further improvement under fumarate-respiring conditions. An important bottleneck to overcome appears to be product excretion, based on much higher recorded intracellular concentrations of benzylsuccinate, compared to those excreted. While no export system is known for benzylsuccinate, we observed an increased product yield after adding an unspecific mechanosensitive channel to the constructed pathway.
Collapse
Affiliation(s)
- Johanna Mock
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Karola Schühle
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Uwe Linne
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Fachbereich Chemie, Philipps-University Marburg, Hans-Meerwein-Str. 10, 35043 Marburg, Germany
| | - Marco Mock
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Johann Heider
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| |
Collapse
|
30
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
31
|
Xiang X, Bai J, Gu W, Peng S, Shih K. Mechanism and application of modified bioelectrochemical system anodes made of carbon nanomaterial for the removal of heavy metals from soil. CHEMOSPHERE 2023; 345:140431. [PMID: 37852385 DOI: 10.1016/j.chemosphere.2023.140431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Bioelectrochemical techniques are quick, efficient, and sustainable alternatives for treating heavy metal soils. The use of carbon nanomaterials in combination with electroactive microorganisms can create a conductive network that mediates long-distance electron transfer in an electrode system, thereby resolving the issue of low electron transfer efficiency in soil remediation. As a multifunctional soil heavy metal remediation technology, its application in organic remediation has matured, and numerous studies have demonstrated its potential for soil heavy metal remediation. This is a ground-breaking method for remediating soils polluted with high concentrations of heavy metals using soil microbial electrochemistry. This review summarizes the use of bioelectrochemical systems with modified anode materials for the remediation of soils with high heavy metal concentrations by discussing the mass-transfer mechanism of electrochemically active microorganisms in bioelectrochemical systems, focusing on the suitability of carbon nanomaterials and acidophilic bacteria. Finally, we discuss the emerging limitations of bioelectrochemical systems, and future research efforts to improve their performance and facilitate practical applications. The mass-transfer mechanism of electrochemically active microorganisms in bioelectrochemical systems emphasizes the suitability of carbon nanomaterials and acidophilic bacteria for remediating soils polluted with high concentrations of heavy metals. We conclude by discussing present and future research initiatives for bioelectrochemical systems to enhance their performance and facilitate practical applications. As a result, this study can close any gaps in the development of bioelectrochemical systems and guide their practical application in remediating heavy-metal-contaminated soils.
Collapse
Affiliation(s)
- Xue Xiang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jianfeng Bai
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Weihua Gu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Shengjuan Peng
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Kaimin Shih
- Department of Civil Engineering University of Hongkong, Pokfulam Road, Hongkong, China
| |
Collapse
|
32
|
Liu F, Han P, Li N, Zhang Y. Ahp deficiency-induced redox imbalance leads to metabolic alterations in E.coli. Redox Biol 2023; 67:102888. [PMID: 37725887 PMCID: PMC10507379 DOI: 10.1016/j.redox.2023.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
Alkyl hydroperoxide reductase (Ahp) is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli (E. coli). Ahp-deficient strains have been found to have high reactive oxygen species (ROS) levels, sufficient to cause cell damage. However, the exact role and underlying mechanisms of Ahp deficiency-induced cell damage remain largely unknown. Here, the E. coli MG1655 ΔAhp mutant strain was constructed as a model of deficiency to assess its role. The cells of the ΔAhp strain were found to be significantly longer than those of the wild strain, with elevated ROS and hydrogen peroxide (H2O2) levels. Proteome, redox proteome and metabolome analyses were performed to systematically present a global and quantitative profile and delineate the redox signaling and metabolic alterations at the proteome, metabolome, and cysteine oxidation site levels. The multiomics data revealed that Ahp deficiency disrupted the redox balance, activated the OxyR system, upregulated oxidative defense proteins and inhibited the TCA cycle to some extent. Surprisingly, the mutant strain shifted from aerobic respiration to anaerobic respiration and fermentation during the logarithmic phase in the presence of sufficient O2. The acid resistance system was activated to mitigate the effect of excessive acid produced by fermentation. Taken together, the results of this study demonstrated that Ahp deficiency triggered cellular redox imbalance and regulated metabolic pathways to confer resistance to submicromolar intracellular H2O2 levels in E. coli.
Collapse
Affiliation(s)
- Feng Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Nuomin Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongqian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
33
|
Pieper LM, Spanogiannopoulos P, Volk RF, Miller CJ, Wright AT, Turnbaugh PJ. The global anaerobic metabolism regulator fnr is necessary for the degradation of food dyes and drugs by Escherichia coli. mBio 2023; 14:e0157323. [PMID: 37642463 PMCID: PMC10653809 DOI: 10.1128/mbio.01573-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE This work has broad relevance due to the ubiquity of dyes containing azo bonds in food and drugs. We report that azo dyes can be degraded by human gut bacteria through both enzymatic and nonenzymatic mechanisms, even from a single gut bacterial species. Furthermore, we revealed that environmental factors, oxygen, and L-Cysteine control the ability of E. coli to degrade azo dyes due to their impacts on bacterial transcription and metabolism. These results open up new opportunities to manipulate the azoreductase activity of the gut microbiome through the manipulation of host diet, suggest that azoreductase potential may be altered in patients suffering from gastrointestinal disease, and highlight the importance of studying bacterial enzymes for drug metabolism in their natural cellular and ecological context.
Collapse
Affiliation(s)
- Lindsey M. Pieper
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Peter Spanogiannopoulos
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Regan F. Volk
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Carson J. Miller
- Biological Sciences Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aaron T. Wright
- Biological Sciences Group, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Biology, Baylor University, Waco, Texas, USA
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Peter J. Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, California, USA
| |
Collapse
|
34
|
Brown AN, Anderson MT, Smith SN, Bachman MA, Mobley HLT. Conserved metabolic regulator ArcA responds to oxygen availability, iron limitation, and cell envelope perturbations during bacteremia. mBio 2023; 14:e0144823. [PMID: 37681955 PMCID: PMC10653796 DOI: 10.1128/mbio.01448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023] Open
Abstract
IMPORTANCE Infections of the bloodstream are life-threatening and can result in sepsis. Gram-negative bacteria cause a significant portion of bloodstream infections, which is also referred to as bacteremia. The long-term goal of our work is to understand how such bacteria establish and maintain infection during bacteremia. We have previously identified the transcription factor ArcA, which promotes fermentation in bacteria, as a likely contributor to the growth and survival of bacteria in this environment. Here, we study ArcA in the Gram-negative species Citrobacter freundii, Klebsiella pneumoniae, and Serratia marcescens. Our findings aid in determining how these bacteria sense their environment, utilize nutrients, and generate energy while countering the host immune system. This information is critical for developing better models of infection to inform future therapeutic development.
Collapse
Affiliation(s)
- Aric N. Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mark T. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Volke DC, Gurdo N, Milanesi R, Nikel PI. Time-resolved, deuterium-based fluxomics uncovers the hierarchy and dynamics of sugar processing by Pseudomonas putida. Metab Eng 2023; 79:159-172. [PMID: 37454792 DOI: 10.1016/j.ymben.2023.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Pseudomonas putida, a microbial host widely adopted for metabolic engineering, processes glucose through convergent peripheral pathways that ultimately yield 6-phosphogluconate. The periplasmic gluconate shunt (PGS), composed by glucose and gluconate dehydrogenases, sequentially transforms glucose into gluconate and 2-ketogluconate. Although the secretion of these organic acids by P. putida has been extensively recognized, the mechanism and spatiotemporal regulation of the PGS remained elusive thus far. To address this challenge, we adopted a dynamic 13C- and 2H-metabolic flux analysis strategy, termed D-fluxomics. D-fluxomics demonstrated that the PGS underscores a highly dynamic metabolic architecture in glucose-dependent batch cultures of P. putida, characterized by hierarchical carbon uptake by the PGS throughout the cultivation. Additionally, we show that gluconate and 2-ketogluconate accumulation and consumption can be solely explained as a result of the interplay between growth rate-coupled and decoupled metabolic fluxes. As a consequence, the formation of these acids in the PGS is inversely correlated to the bacterial growth rate-unlike the widely studied overflow metabolism of Escherichia coli and yeast. Our findings, which underline survival strategies of soil bacteria thriving in their natural environments, open new avenues for engineering P. putida towards efficient, sugar-based bioprocesses.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Nicolas Gurdo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Riccardo Milanesi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
36
|
Mori M, Cheng C, Taylor BR, Okano H, Hwa T. Functional decomposition of metabolism allows a system-level quantification of fluxes and protein allocation towards specific metabolic functions. Nat Commun 2023; 14:4161. [PMID: 37443156 PMCID: PMC10345195 DOI: 10.1038/s41467-023-39724-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Quantifying the contribution of individual molecular components to complex cellular processes is a grand challenge in systems biology. Here we establish a general theoretical framework (Functional Decomposition of Metabolism, FDM) to quantify the contribution of every metabolic reaction to metabolic functions, e.g. the synthesis of biomass building blocks. FDM allowed for a detailed quantification of the energy and biosynthesis budget for growing Escherichia coli cells. Surprisingly, the ATP generated during the biosynthesis of building blocks from glucose almost balances the demand from protein synthesis, the largest energy expenditure known for growing cells. This leaves the bulk of the energy generated by fermentation and respiration unaccounted for, thus challenging the common notion that energy is a key growth-limiting resource. Moreover, FDM together with proteomics enables the quantification of enzymes contributing towards each metabolic function, allowing for a first-principle formulation of a coarse-grained model of global protein allocation based on the structure of the metabolic network.
Collapse
Affiliation(s)
- Matteo Mori
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093, USA.
| | - Chuankai Cheng
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brian R Taylor
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093, USA
| | - Hiroyuki Okano
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093, USA
| | - Terence Hwa
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093, USA
| |
Collapse
|
37
|
Montgomery TL, Wang Q, Mirza A, Dwyer D, Wu Q, Dowling CA, Martens JW, Yang J, Krementsov DN, Mao-Draayer Y. Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.26.23291875. [PMID: 37425956 PMCID: PMC10327224 DOI: 10.1101/2023.06.26.23291875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. Methods In a longitudinal study, disability status and associated clinical features in 60 MS patients were tracked over 4.2 ± 0.97 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. Results We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 45 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia , Lachnospiraceae, and Oscillospiraceae , with an expansion of Alloprevotella , Prevotella-9 , and Rhodospirillales . Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed a significant enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K 2 production (linked to Akkermansia ), and a depletion in SCFA metabolism (linked to Lachnospiraceae and Oscillospiraceae ). Further, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to robustly predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. Conclusions These results demonstrate the utility of the gut microbiome for predicting disease progression in MS. Further, analysis of the inferred metagenome revealed that oxidative stress, vitamin K 2 and SCFAs are associated with progression. Abstract Figure
Collapse
|
38
|
Wilkens D, Simon J. Biosynthesis and function of microbial methylmenaquinones. Adv Microb Physiol 2023; 83:1-58. [PMID: 37507157 DOI: 10.1016/bs.ampbs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The membranous quinone/quinol pool is essential for the majority of life forms and its composition has been widely used as a biomarker in microbial taxonomy. The most abundant quinone is menaquinone (MK), which serves as an essential redox mediator in various electron transport chains of aerobic and anaerobic respiration. Several methylated derivatives of MK, designated methylmenaquinones (MMKs), have been reported to be present in members of various microbial phyla possessing either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). Due to their low redox midpoint potentials, MMKs have been proposed to be specifically involved in appropriate electron transport chains of anaerobic respiration. The class C radical SAM methyltransferases MqnK, MenK and MenK2 have recently been shown to catalyse specific MK methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesise 8-MMK, 7-MMK and 7,8-dimethylmenaquinone (DMMK). MqnK, MenK and MenK2 from organisms such as Wolinella succinogenes, Adlercreutzia equolifaciens, Collinsella tanakaei, Ferrimonas marina and Syntrophus aciditrophicus have been functionally produced in Escherichia coli, enabling extensive quinone/quinol pool engineering of the native MK and 2-demethylmenaquinone (DMK). Cluster and phylogenetic analyses of available MK and MMK methyltransferase sequences revealed signature motifs that allowed the discrimination of MenK/MqnK/MenK2 family enzymes from other radical SAM enzymes and the identification of C-7-specific menaquinone methyltransferases of the MenK2 subfamily. It is envisaged that this knowledge will help to predict the methylation status of the menaquinone/menaquinol pool of any microbial species (or even a microbial community) from its (meta)genome.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
39
|
Feregrino-Mondragón RD, Santiago-Martínez MG, Silva-Flores M, Encalada R, Reyes-Prieto A, Rodríguez-Zavala JS, Peña-Ocaña BA, Moreno-Sánchez R, Saavedra E, Jasso-Chávez R. Lactate oxidation is linked to energy conservation and to oxygen detoxification via a putative terminal cytochrome oxidase in Methanosarcina acetivorans. Arch Biochem Biophys 2023:109667. [PMID: 37327962 DOI: 10.1016/j.abb.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.
Collapse
Affiliation(s)
| | - Michel Geovanni Santiago-Martínez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico; Department of Molecular and Cell Biology, The University of Connecticut, Storrs, 06269, Connecticut, USA
| | - Mayel Silva-Flores
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Adrián Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - José S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Betsy Anaid Peña-Ocaña
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico.
| |
Collapse
|
40
|
Yang Q, Zheng Z, Wang P, Wang L, Wang H, Zhang M, Zhao G. Insights into Regulating Mechanism of Mutagenesis Strains of Elizabethkingia meningoseptica sp. F2 by Omics Analysis. Curr Microbiol 2023; 80:183. [PMID: 37055590 DOI: 10.1007/s00284-023-03270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Vitamin K2 plays an important role in electron transport, blood coagulation, and calcium homeostasis, and researchers have been trying to use microbes to produce it. Although our previous studies have shown that gradient radiation, breeding, and culture acclimation can improve vitamin K2 production in Elizabethkingia meningoseptica, the mechanism is still unclear. This study is the first which performs genome sequencing of E. meningoseptica sp. F2 as a basis for subsequent experiments and further comparative analyses with other strains. Comparative metabolic pathway analysis of E. meningoseptica sp. F2, E. coli, Bacillus subtilis, and other vitamin K2 product strains revealed that the mevalonate pathway of E. meningoseptica sp. F2 is different in bacteria at the system level. The expressions of menA, menD, menH, and menI in the menaquinone pathway and idi, hmgR, and ggpps in the mevalonate pathway were higher than those in the original strain. A total of 67 differentially expressed proteins involved in the oxidative phosphorylation metabolic pathway and citric acid cycle (TCA cycle) were identified. Our results reveal that combined gradient radiation breeding and culture acclimation can promote vitamin K2 accumulation probably by regulating the vitamin K2 pathway, oxidative phosphorylation metabolism pathway, and the citrate cycle (TCA cycle).
Collapse
Affiliation(s)
- Qiang Yang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhiming Zheng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Peng Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Li Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Han Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Mengxue Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Genhai Zhao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
41
|
Murashko ON, Yeh KH, Yu CHA, Kaberdin VR, Lin-Chao S. Sodium Fluoride Exposure Leads to ATP Depletion and Altered RNA Decay in Escherichia coli under Anaerobic Conditions. Microbiol Spectr 2023; 11:e0415822. [PMID: 36939343 PMCID: PMC10100675 DOI: 10.1128/spectrum.04158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/11/2023] [Indexed: 03/21/2023] Open
Abstract
Although fluoride-containing compounds are widely used to inhibit bacterial growth, the reprogramming of gene expression underlying cellular responses to fluoride, especially under anaerobic conditions, is still poorly understood. Here, we compare the genome-wide transcriptomic profiles of E. coli grown in the absence (control) or presence (20 and 70 mM) of sodium fluoride (NaF) under anaerobic conditions and assess the impact of fluoride-dependent ATP depletion on RNA turnover. Tiling array analysis revealed transcripts displaying altered abundance in response to NaF treatments. Quantile-based K-means clustering uncovered a subset of genes that were highly upregulated and then downregulated in response to increased and subsequently decreased fluoride concentrations, many of which (~40%) contained repetitive extragenic palindromic (REP) sequences. Northern blot analysis of some of these highly upregulated REP-containing transcripts (i.e., osmC, proP, efeO and yghA) confirmed their considerably enhanced abundance in response to NaF treatment. An mRNA stability analysis of osmC and yghA transcripts demonstrated that fluoride treatment slows down RNA degradation, thereby enhancing RNA stability and steady-state mRNA levels. Moreover, we demonstrate that turnover of these transcripts depends on RNase E activity and RNA degradosome. Thus, we show that NaF exerts significant effects at the whole-transcriptome level under hypoxic growth (i.e., mimicking the host environment), and fluoride can impact gene expression posttranscriptionally by slowing down ATP-dependent degradation of structured RNAs. IMPORTANCE Gram-negative Escherichia coli is a rod-shaped facultative anaerobic bacterium commonly found in microaerobic/anaerobic environments, including the dental plaques of warm-blooded organisms. These latter can be treated efficiently with fluoride-rich compounds that act as anticaries agents to prevent tooth decay. Although fluoride inhibits microbial growth by affecting metabolic pathways, the molecular mechanisms underlying its activity under anaerobic conditions remain poorly defined. Here, using genome-wide transcriptomics, we explore the impact of fluoride treatments on E. coli gene expression under anaerobic conditions. We reveal key gene clusters associated with cellular responses to fluoride and define its ATP-dependent stabilizing effects on transcripts containing repetitive extragenic palindromic sequences. We demonstrate the mechanisms controlling the RNA stability of these REP-containing mRNAs. Thus, fluoride can affect gene expression posttranscriptionally by stabilizing structured RNAs.
Collapse
Affiliation(s)
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Vladimir R. Kaberdin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), Plentzia, Spain
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
42
|
Simcox BS, Tomlinson BR, Shaw LN, Rohde KH. Mycobacterium abscessus DosRS two-component system controls a species-specific regulon required for adaptation to hypoxia. Front Cell Infect Microbiol 2023; 13:1144210. [PMID: 36968107 PMCID: PMC10034137 DOI: 10.3389/fcimb.2023.1144210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Mycobacterium abscessus (Mab), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for Mab infections are poor due to Mab's inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches Mab must overcome via alterations in gene expression for survival. Regulatory mechanisms important for the adaptation and long-term persistence of Mab within the host are poorly understood, warranting further genetic and transcriptomics study of this emerging pathogen. DosRS Mab , a two-component signaling system (TCS), is one proposed mechanism utilized to subvert host defenses and counteract environmental stress such as hypoxia. The homologous TCS of Mycobacterium tuberculosis (Mtb), DosRS Mtb , is known to induce a ~50 gene regulon in response to hypoxia, carbon monoxide (CO) and nitric oxide (NO) in vitro and in vivo. Previously, a small DosR Mab regulon was predicted using bioinformatics based on DosR Mtb motifs however, the role and regulon of DosRS Mab in Mab pathogenesis have yet to be characterized in depth. To address this knowledge gap, our lab generated a Mab dosRS knockout strain (MabΔdosRS) to investigate differential gene expression, and phenotype in an in vitro hypoxia model of dormancy. qRT-PCR and lux reporter assays demonstrate Mab_dosR and 6 predicted downstream genes are induced in hypoxia. In addition, RNAseq revealed induction of a much larger hypoxia response comprised of >1000 genes, including 127 differentially expressed genes in a dosRS mutant strain. Deletion of DosRS Mab led to attenuated growth under low oxygen conditions, a shift in morphotype from smooth to rough, and down-regulation of 216 genes. This study provides the first look at the global transcriptomic response of Mab to low oxygen conditions encountered in the airways of CF patients and within macrophage phagosomes. Our data also demonstrate the importance of DosRS Mab for adaptation of Mab to hypoxia, highlighting a distinct regulon (compared to Mtb) that is significantly larger than previously described, including both genes conserved across mycobacteria as well as Mab-specific genes.
Collapse
Affiliation(s)
- Breven S. Simcox
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Kyle H. Rohde
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
43
|
Bak DW, Weerapana E. Monitoring Fe-S cluster occupancy across the E. coli proteome using chemoproteomics. Nat Chem Biol 2023; 19:356-366. [PMID: 36635565 PMCID: PMC9992348 DOI: 10.1038/s41589-022-01227-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous metallocofactors involved in redox chemistry, radical generation and gene regulation. Common methods to monitor Fe-S clusters include spectroscopic analysis of purified proteins and autoradiographic visualization of radiolabeled iron distribution in proteomes. Here, we report a chemoproteomic strategy that monitors changes in the reactivity of Fe-S cysteine ligands to inform on Fe-S cluster occupancy. We highlight the utility of this platform in Escherichia coli by (1) demonstrating global disruptions in Fe-S incorporation in cells cultured under iron-depleted conditions, (2) determining Fe-S client proteins reliant on five scaffold, carrier and chaperone proteins within the Isc Fe-S biogenesis pathway and (3) identifying two previously unannotated Fe-S proteins, TrhP and DppD. In summary, the chemoproteomic strategy described herein is a powerful tool that reports on Fe-S cluster incorporation directly within a native proteome, enabling the interrogation of Fe-S biogenesis pathways and the identification of previously uncharacterized Fe-S proteins.
Collapse
Affiliation(s)
- Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| | | |
Collapse
|
44
|
Abstract
Aminoglycosides (AG) have been used against Gram-negative bacteria for decades. Yet, how bacterial metabolism and environmental conditions modify AG toxicity is poorly understood. Here, we show that the level of AG susceptibility varies depending on the nature of the respiratory chain that Escherichia coli uses for growth, i.e., oxygen, nitrate, or fumarate. We show that all components of the fumarate respiratory chain, namely, hydrogenases 2 and 3, the formate hydrogenlyase complex, menaquinone, and fumarate reductase are required for AG-mediated killing under fumarate respiratory conditions. In addition, we show that the AAA+ ATPase RavA and its Von Wildebrand domain-containing partner, ViaA, are essential for AG to act under fumarate respiratory conditions. This effect was true for all AG that were tested but not for antibiotics from other classes. In addition, we show that the sensitizing effect of RavA-ViaA is due to increased gentamicin uptake in a proton motive force-dependent manner. Interestingly, the sensitizing effect of RavA-ViaA was prominent in poor energy conservation conditions, i.e., with fumarate, but dispensable under high energy conservation conditions, i.e., in the presence of nitrate or oxygen. We propose that RavA-ViaA can facilitate uptake of AG across the membrane in low-energy cellular states. IMPORTANCE Antibiotic resistance is a major public health, social, and economic problem. Aminoglycosides (AG) are known to be highly effective against Gram-negative bacteria, but their use is limited to life-threatening infections because of their nephrotoxicity and ototoxicity at therapeutic dose. Elucidation of AG-sensitization mechanisms in bacteria would allow reduced effective doses of AG. Here, we have identified the molecular components involved in anaerobic fumarate respiration that are required for AG to kill. In addition to oxidoreductases and menaquinone, this includes new molecular players, RavA, an AAA+ ATPase, and ViaA, its partner that has the VWA motif. Remarkably, the influence of RavA-ViaA on AG susceptibility varies according to the type of bioenergetic metabolism used by E. coli. This is a significant advance because anaerobiosis is well known to reduce the antibacterial activity of AG. This study highlights the critical importance of the relationship between culture conditions, metabolism, and antibiotic susceptibility.
Collapse
|
45
|
Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash A, Immanuel SRC, Brooks AN, Shepherd TR, Baliga NS. Disrupting the ArcA Regulatory Network Amplifies the Fitness Cost of Tetracycline Resistance in Escherichia coli. mSystems 2023; 8:e0090422. [PMID: 36537814 PMCID: PMC9948699 DOI: 10.1128/msystems.00904-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 02/24/2023] Open
Abstract
There is an urgent need for strategies to discover secondary drugs to prevent or disrupt antimicrobial resistance (AMR), which is causing >700,000 deaths annually. Here, we demonstrate that tetracycline-resistant (TetR) Escherichia coli undergoes global transcriptional and metabolic remodeling, including downregulation of tricarboxylic acid cycle and disruption of redox homeostasis, to support consumption of the proton motive force for tetracycline efflux. Using a pooled genome-wide library of single-gene deletion strains, at least 308 genes, including four transcriptional regulators identified by our network analysis, were confirmed as essential for restoring the fitness of TetR E. coli during treatment with tetracycline. Targeted knockout of ArcA, identified by network analysis as a master regulator of this new compensatory physiological state, significantly compromised fitness of TetR E. coli during tetracycline treatment. A drug, sertraline, which generated a similar metabolome profile as the arcA knockout strain, also resensitized TetR E. coli to tetracycline. We discovered that the potentiating effect of sertraline was eliminated upon knocking out arcA, demonstrating that the mechanism of potential synergy was through action of sertraline on the tetracycline-induced ArcA network in the TetR strain. Our findings demonstrate that therapies that target mechanistic drivers of compensatory physiological states could resensitize AMR pathogens to lost antibiotics. IMPORTANCE Antimicrobial resistance (AMR) is projected to be the cause of >10 million deaths annually by 2050. While efforts to find new potent antibiotics are effective, they are expensive and outpaced by the rate at which new resistant strains emerge. There is desperate need for a rational approach to accelerate the discovery of drugs and drug combinations that effectively clear AMR pathogens and even prevent the emergence of new resistant strains. Using tetracycline-resistant (TetR) Escherichia coli, we demonstrate that gaining resistance is accompanied by loss of fitness, which is restored by compensatory physiological changes. We demonstrate that transcriptional regulators of the compensatory physiologic state are promising drug targets because their disruption increases the susceptibility of TetR E. coli to tetracycline. Thus, we describe a generalizable systems biology approach to identify new vulnerabilities within AMR strains to rationally accelerate the discovery of therapeutics that extend the life span of existing antibiotics.
Collapse
Affiliation(s)
| | - Min Pan
- Institute for Systems Biology, Seattle, Washington, USA
| | - Amardeep Kaur
- Institute for Systems Biology, Seattle, Washington, USA
| | - Evan Pepper-Tunick
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering Sciences Institute, University of Washington, Seattle, Washington, USA
| | | | - Ananya Dash
- Institute for Systems Biology, Seattle, Washington, USA
| | | | | | | | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering Sciences Institute, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
- Lawrence Berkeley National Lab, Berkeley, California, USA
- Department of Microbiology, University of Washington, Seattle Washington, USA
| |
Collapse
|
46
|
Cruz E, Haeberle AL, Westerman TL, Durham ME, Suyemoto MM, Knodler LA, Elfenbein JR. Nonredundant Dimethyl Sulfoxide Reductases Influence Salmonella enterica Serotype Typhimurium Anaerobic Growth and Virulence. Infect Immun 2023; 91:e0057822. [PMID: 36722978 PMCID: PMC9933680 DOI: 10.1128/iai.00578-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Facultative anaerobic enteric pathogens can utilize a diverse array of alternate electron acceptors to support anaerobic metabolism and thrive in the hypoxic conditions within the mammalian gut. Dimethyl sulfoxide (DMSO) is produced by methionine catabolism and can act as an alternate electron acceptor to support anaerobic respiration. The DMSO reductase complex consists of three subunits, DmsA, DmsB, and DmsC, and allows bacteria to grow anaerobically with DMSO as an electron acceptor. The genomes of nontyphoidal Salmonella enterica encode three putative dmsABC operons, but the impact of the apparent genetic redundancy in DMSO reduction on the fitness of nontyphoidal S. enterica during infection remains unknown. We hypothesized that DMSO reduction would be needed for S. enterica serotype Typhimurium to colonize the mammalian gut. We demonstrate that an S. Typhimurium mutant with loss of function in all three putative DMSO reductases (ΔdmsA3) poorly colonizes the mammalian intestine when the microbiota is intact and when inflammation is absent. DMSO reduction enhances anaerobic growth through nonredundant contributions of two of the DMSO reductases. Furthermore, DMSO reduction influences virulence by increasing expression of the type 3 secretion system 2 and reducing expression of the type 3 secretion system 1. Collectively, our data demonstrate that the DMSO reductases of S. Typhimurium are functionally nonredundant and suggest DMSO is a physiologically relevant electron acceptor that supports S. enterica fitness in the gut.
Collapse
Affiliation(s)
- E. Cruz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - A. L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - T. L. Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - M. E. Durham
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - M. M. Suyemoto
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - L. A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - J. R. Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
47
|
Bennett EM, Murray JW, Isalan M. Engineering Nitrogenases for Synthetic Nitrogen Fixation: From Pathway Engineering to Directed Evolution. BIODESIGN RESEARCH 2023; 5:0005. [PMID: 37849466 PMCID: PMC10521693 DOI: 10.34133/bdr.0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/24/2022] [Indexed: 10/19/2023] Open
Abstract
Globally, agriculture depends on industrial nitrogen fertilizer to improve crop growth. Fertilizer production consumes fossil fuels and contributes to environmental nitrogen pollution. A potential solution would be to harness nitrogenases-enzymes capable of converting atmospheric nitrogen N2 to NH3 in ambient conditions. It is therefore a major goal of synthetic biology to engineer functional nitrogenases into crop plants, or bacteria that form symbiotic relationships with crops, to support growth and reduce dependence on industrially produced fertilizer. This review paper highlights recent work toward understanding the functional requirements for nitrogenase expression and manipulating nitrogenase gene expression in heterologous hosts to improve activity and oxygen tolerance and potentially to engineer synthetic symbiotic relationships with plants.
Collapse
Affiliation(s)
- Emily M. Bennett
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - James W. Murray
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
48
|
Sun Y, Kokko M, Vassilev I. Anode-assisted electro-fermentation with Bacillus subtilis under oxygen-limited conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:6. [PMID: 36627716 PMCID: PMC9832610 DOI: 10.1186/s13068-022-02253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Bacillus subtilis is generally regarded as a ubiquitous facultative anaerobe. Oxygen is the major electron acceptor of B. subtilis, and when oxygen is absent, B. subtilis can donate electrons to nitrate or perform fermentation. An anode electrode can also be used by microorganisms as the electron sink in systems called anodic electro-fermentation. The facultative anaerobic character of B. subtilis makes it an excellent candidate to explore with different electron acceptors, such as an anode. This study aimed to optimise industrial aerobic bioprocesses using alternative electron acceptors. In particular, different end product spectrum of B. subtilis with various electron acceptors, including anode from the electro-fermentation system, was investigated. RESULTS B. subtilis was grown using three electron acceptors, i.e. oxygen, nitrate and anode (poised at a potential of 0.7 V vs. standard hydrogen electrode). The results showed oxygen had a crucial role for cells to remain metabolically active. When nitrate or anode was applied as the sole electron acceptor anaerobically, immediate cell lysis and limited glucose consumption were observed. In anode-assisted electro-fermentation with a limited aeration rate, acetoin, as the main end product showed the highest yield of 0.78 ± 0.04 molproduct/molglucose, two-fold higher than without poised potential (0.39 ± 0.08 molproduct/molglucose). CONCLUSIONS Oxygen controls B. subtilis biomass growth, alternative electron acceptors utilisation and metabolites formation. Limited oxygen/air supply enabled the bacteria to donate excess electrons to nitrate or anode, leading to steered product spectrum. The anode-assisted electro-fermentation showed its potential to boost acetoin production for future industrial biotechnology applications.
Collapse
Affiliation(s)
- Yu Sun
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Marika Kokko
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Igor Vassilev
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| |
Collapse
|
49
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Schubert C, Unden G. Fumarate, a central electron acceptor for Enterobacteriaceae beyond fumarate respiration and energy conservation. Adv Microb Physiol 2023; 82:267-299. [PMID: 36948656 DOI: 10.1016/bs.ampbs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C4-dicarboxylates (C4-DCs) such as fumarate, l-malate and l-aspartate are key substrates for Enterobacteria such as Escherichia coli or Salmonella typhimurium during anaerobic growth. In general, C4-DCs are oxidants during biosynthesis, e.g., of pyrimidine or heme, acceptors for redox balancing, a high-quality nitrogen source (l-aspartate) and electron acceptor for fumarate respiration. Fumarate reduction is required for efficient colonization of the murine intestine, even though the colon contains only small amounts of C4-DCs. However, fumarate can be produced endogenously by central metabolism, allowing autonomous production of an electron acceptor for biosynthesis and redox balancing. Bacteria possess a complex set of transporters for the uptake (DctA), antiport (DcuA, DcuB, TtdT) and excretion (DcuC) of C4-DCs. DctA and DcuB exert regulatory functions and link transport to metabolic control through interaction with regulatory proteins. The sensor kinase DcuS of the C4-DC two-component system DcuS-DcuR forms complexes with DctA (aerobic) or DcuB (anaerobic), representing the functional state of the sensor. Moreover, EIIAGlc from the glucose phospho-transferase system binds to DctA and presumably inhibits C4-DC uptake. Overall, the function of fumarate as an oxidant in biosynthesis and redox balancing explains the pivotal role of fumarate reductase for intestinal colonization, while the role of fumarate in energy conservation (fumarate respiration) is of minor importance.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|