1
|
Han Y, Zhang M, Yu S, Jia L. Oxidative Stress in Pediatric Asthma: Sources, Mechanisms, and Therapeutic Potential of Antioxidants. FRONT BIOSCI-LANDMRK 2025; 30:22688. [PMID: 40018915 DOI: 10.31083/fbl22688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 03/01/2025]
Abstract
Pediatric asthma is a common respiratory condition in children, characterized by a complex interplay of environmental and genetic factors. Evidence shows that the airways of stimulated asthmatic patients have increased oxidative stress, but the exact mechanisms through which this stress contributes to asthma progression are not fully understood. Oxidative stress originates from inflammatory cells in the airways, producing significant amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS). External factors such as cigarette smoke, particulate matter, and atmospheric pollutants also contribute to ROS and RNS levels. The accumulation of these reactive species disrupts the cellular redox balance, leading to heightened oxidative stress, which activates cellular signaling pathways and modulates the release of inflammatory factors, worsening asthma inflammation. Therefore, understanding the sources and impacts of oxidative stress in pediatric asthma is crucial to developing antioxidant-based treatments. This review examines the sources of oxidative stress in children with asthma, the role of oxidative stress in asthma development, and the potential of antioxidants as a therapeutic strategy for pediatric asthma.
Collapse
Affiliation(s)
- Yanhua Han
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, 130021 Changchun, Jilin, China
| | - Mingyao Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, 130117 Changchun, Jilin, China
| | - Shishu Yu
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, 130117 Changchun, Jilin, China
| | - Lulu Jia
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, 130117 Changchun, Jilin, China
| |
Collapse
|
2
|
Mahgoup EM, Khaleel SA, El-Mahdy MA, Zweier JL. Electronic cigarette vape decreases nitric oxide bioavailability in vascular smooth muscle cells via increased cytoglobin-mediated metabolism. Free Radic Biol Med 2025; 228:339-349. [PMID: 39743029 PMCID: PMC11788057 DOI: 10.1016/j.freeradbiomed.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Cytoglobin (Cygb) regulates vascular tone by modulating nitric oxide (NO) metabolism in vascular smooth muscle cells (VSMCs). In the presence of its cytochrome B5a (B5)/B5 reductase-isoform-3 (B5R) reducing system, Cygb controls NO metabolism via oxygen-dependent NO dioxygenation. Electronic cigarette (EC) use has been shown to induce vascular dysfunction and decrease NO bioavailability; however, the role of Cygb-mediated NO metabolism in the pathophysiology of this process has not been previously investigated. Therefore, we utilized aortic VSMCs with EC vape extract (ECE) exposure to elucidate the effects of EC vape constituents on NO degradation and alterations in the process of Cygb-mediated NO metabolism. VSMCs were exposed to ECE, either nicotine-free (ECEV) or nicotine-containing (ECEN), for various durations. NO decay rates were measured along with cellular expression of Cygb and its B5/B5R reducing system. Exposure to ECEV led to a much higher rate of NO consumption by VSMCs, with an even larger effect following ECEN exposure. With 4 h of exposure, a modest increase in NO decay rate occurred that was followed by much higher increases with exposure times of 24-48 h. This effect was paralleled by upregulation of Cygb and B5/B5R expression. siRNA-mediated knock-down of Cygb expression largely reversed this ECE-induced increase in NO metabolism rate. Thus, ECE exposure led to increased Cygb-mediated NO metabolism in VSMCs with diminished NO bioavailability, which in turn can play a key role in EC-induced vascular dysfunction.
Collapse
Affiliation(s)
- Elsayed M Mahgoup
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Sahar A Khaleel
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Liu C, Fukui E, Matsumoto H. Molecular and cellular regulators of embryo implantation and their application in improving the implantation potential of IVF-derived blastocysts. Reprod Med Biol 2025; 24:e12633. [PMID: 39866379 PMCID: PMC11759885 DOI: 10.1002/rmb2.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Background In vitro fertilization (IVF) and embryo transfer (ET) are widely used in reproductive biology. Despite the transfer of high-quality blastocysts, the implantation rate of IVF-derived blastocysts remains low after ET. Methods This article provides a comprehensive review of current research on embryo implantation regulators and their application to improve the implantation potential of IVF-derived blastocysts. Main Findings The in vivo mouse model revealed selective proteolysis immediately after expression in activated blastocysts, that is, degradation of ERα expression in activated blastocysts regulated by the ubiquitin-proteasome pathway, followed by completion of blastocyst implantation. Treatment of blastocysts to induce appropriate protein expression during in vitro culture prior to ET is a useful approach for improving implantation rates. This approach showed that combined treatment with PRL, EGF, and 4-OH-E2 (PEC) improved the blastocyst implantation rates. Furthermore, arginine and leucine drive reactive oxygen species (ROS)-mediated integrin α5β1 expression and promote blastocyst implantation. Conclusion Findings based on analysis of molecular and cellular regulators are useful for improving the implantation potential of IVF-derived blastocysts. These approaches may help to elucidate the mechanisms underlying the completion of the blastocyst implantation, although further investigation is required to improve the success of implantation and pregnancy.
Collapse
Affiliation(s)
- Chunyan Liu
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
| | - Emiko Fukui
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaTochigiJapan
| | - Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaTochigiJapan
| |
Collapse
|
4
|
Sahoo L, Panwar P, Sastri CV, de Visser SP. Unraveling Chlorite Oxidation Pathways in Equatorially Heteroatom-Substituted Nonheme Iron Complexes. ACS ORGANIC & INORGANIC AU 2024; 4:673-680. [PMID: 39649995 PMCID: PMC11621950 DOI: 10.1021/acsorginorgau.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 12/11/2024]
Abstract
The first-coordination sphere of catalysts is known to play a crucial role in reaction mechanisms, but details of how equatorial ligands influence the reactivity remain unknown. Heteroatom ligated to the equatorial position of iron centers in nonheme iron metalloenzymes modulates structure and reactivity. To investigate the impact of equatorial heteroatom substitution on chlorite oxidation, we synthesized and characterized three novel mononuclear nonheme iron(II) complexes with a pentadentate bispidine scaffold. These complexes feature systematic substitutions at the equatorial position in the bispidine ligand framework where the pyridine group is replaced with NMe2, SMe, and OMe groups. The three iron(II)-bispidine complexes were subjected to studies in chlorite oxidation reactions as a model pathway for oxygen atom transfer. Chlorine oxyanions, which have the halide in an oxidation state ranging from +1 to +7, have numerous applications but can contaminate water bodies, and this demands urgent environmental remediation. Chlorite, a common precursor to chlorine dioxide, is of particular interest due to the superior antimicrobial activity of chlorine dioxide. Moreover, its generation leads to fewer harmful byproducts in water treatment. Here, we demonstrate that these complexes can produce chlorine dioxide from chlorite in acetate buffer at room temperature and pH 5.0, oxidizing chlorite through the in situ formation of high-valent iron(IV)-oxo intermediates. This study establishes how subtle changes in the coordination sphere around iron can influence the reactivity.
Collapse
Affiliation(s)
- Limashree Sahoo
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Payal Panwar
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Chivukula V. Sastri
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Sam P. de Visser
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
- The
Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
5
|
Sumi MP, Tupta B, Song K, Mavrakis L, Comhair S, Erzurum SC, Liu X, Stuehr DJ, Ghosh A. Expression of soluble guanylate cyclase (sGC) and its ability to form a functional heterodimer are crucial for reviving the NO-sGC signaling in PAH. Free Radic Biol Med 2024; 225:846-855. [PMID: 39515593 DOI: 10.1016/j.freeradbiomed.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In order to determine the underpinnings of a dysfunctional NO-sGC signal pathway which occurs in pulmonary arterial hypertension (PAH), we investigated pulmonary arterial smooth muscle cells (PASMCs) derived from PAH patients. We found low expression of sGC, a poor sGCα1β1 heterodimer and this correlated with low expression of its facilitator chaperon, hsp90. Treating PASMCs overnight (16 h) with low micromolar doses of a slow release NO donor DETANONOate, reinstated the sGCα1β1 heterodimer and restored its NO-heme dependent activity. Transwell co-culture of HEK cells stably expressing eNOS with PAH PASMCs also restored the sGC heterodimer and its heme-dependent activity with sGC stimulator, BAY 41-2272. To determine whether the dysfunctionality in the NO-sGC pathway stems from a dysfunctional eNOS producing negligible NO, we did transwell co-cultures of pulmonary arterial endothelial cells (PAECs) with PASMCs. Our results indicated that PAECs from both control and PAH samples when activated for eNOS restored both sGC heterodimer and its heme-dependent sGC activity in the corresponding PASMCs, suggesting that PAECs from PAH can also generate NO. In line with these results expression of eNOS, its support chaperon hsp90, its specific kinase Akt, p-Akt or post-translational modifications (PTMs) like OGlcNAc or phospho-tyrosine were unchanged in PAH relative to controls. Additionally there was uniform expression of Hbα/β and Mb in PASMCs or PAECs in PAH or controls and these globins can effectively scavenge the eNOS generated NO, as there was evidence of strong eNOS-Hb/Mb interactions. Our studies suggest that factors such as globin NO scavenging along with vascular remodeling in PAH can cause hampered vasodilation which in the face of poor NO levels as occurs in PAH are additional impediments for effective vasodilation. However importantly our studies suggests that future therapies can use low doses of NO along with sGC stimulators as a potential drug for PAH subjects.
Collapse
Affiliation(s)
- Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Kevin Song
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Lori Mavrakis
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Suzy Comhair
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Xuefeng Liu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA.
| |
Collapse
|
6
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
7
|
Satpathy JK, Yadav R, Bagha UK, Kumar D, Sastri CV, de Visser SP. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)-Oxo Complexes: Insights from Experiment and Theory. Inorg Chem 2024; 63:6752-6766. [PMID: 38551622 DOI: 10.1021/acs.inorgchem.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.
Collapse
Affiliation(s)
- Jagnyesh K Satpathy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Umesh K Bagha
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
8
|
Nakazato M, Matsuzaki M, Okai D, Takeuchi E, Seki M, Takeuchi M, Fukui E, Matsumoto H. Arginine with leucine drives reactive oxygen species-mediated integrin α5β1 expression and promotes implantation in mouse blastocysts. PNAS NEXUS 2024; 3:pgae114. [PMID: 38525303 PMCID: PMC10959068 DOI: 10.1093/pnasnexus/pgae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
The implantation rate of in vitro fertilization (IVF)-derived blastocysts after embryo transfer remains low, suggesting that the inadequate expression of specific proteins in culture-induced IVF-derived blastocysts contributes to low implantation rates. Therefore, treatment with appropriate regulation may improve the blastocyst implantation ability. This study demonstrated that the combination of l-arginine (Arg) and l-leucine (Leu) exerts distinct effects on IVF-derived mouse blastocysts. Arg with Leu promotes blastocyst implantation, whereas Arg alone decreases the blastocyst ability. Integrin α5β1 expression was increased in blastocysts treated with Arg and Leu. Arg with Leu also increased reactive oxygen species (ROS) levels and showed a positive correlation with integrin α5β1. Ascorbic acid, an antioxidant, decreased ROS and integrin α5β1 levels, which were elevated by Arg with Leu. Meanwhile, the mitochondrial membrane potential (ΔΨm) in blastocysts did not differ between treatments. Glutathione peroxidase (GPx) is involved in ROS scavenging using glutathione (GSH) as a reductant. Arg with Leu decreased GPx4 and GSH levels in blastocysts, and blastocysts with higher ROS levels had lower GPx4 and GSH levels. In contrast, Arg alone increased the percentage of caspase-positive cells, indicating that Arg alone, which attenuated implantation ability, was associated with apoptosis. This study revealed that elevated ROS levels induced by Arg with Leu stimulated integrin α5β1 expression, thereby enhancing implantation capacity. Our results also suggest that ROS were not due to increased production by oxidative phosphorylation, but rather to a reduction in ROS degradation due to diminished GPx4 and GSH levels.
Collapse
Affiliation(s)
- Momoka Nakazato
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Mumuka Matsuzaki
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Daiki Okai
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Eisaku Takeuchi
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Misato Seki
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Miki Takeuchi
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Emiko Fukui
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
9
|
Ali HS, de Visser SP. Catalytic divergencies in the mechanism of L-arginine hydroxylating nonheme iron enzymes. Front Chem 2024; 12:1365494. [PMID: 38406558 PMCID: PMC10884159 DOI: 10.3389/fchem.2024.1365494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Many enzymes in nature utilize a free arginine (L-Arg) amino acid to initiate the biosynthesis of natural products. Examples include nitric oxide synthases, which generate NO from L-Arg for blood pressure control, and various arginine hydroxylases involved in antibiotic biosynthesis. Among the groups of arginine hydroxylases, several enzymes utilize a nonheme iron(II) active site and let L-Arg react with dioxygen and α-ketoglutarate to perform either C3-hydroxylation, C4-hydroxylation, C5-hydroxylation, or C4-C5-desaturation. How these seemingly similar enzymes can react with high specificity and selectivity to form different products remains unknown. Over the past few years, our groups have investigated the mechanisms of L-Arg-activating nonheme iron dioxygenases, including the viomycin biosynthesis enzyme VioC, the naphthyridinomycin biosynthesis enzyme NapI, and the streptothricin biosynthesis enzyme OrfP, using computational approaches and applied molecular dynamics, quantum mechanics on cluster models, and quantum mechanics/molecular mechanics (QM/MM) approaches. These studies not only highlight the differences in substrate and oxidant binding and positioning but also emphasize on electronic and electrostatic differences in the substrate-binding pockets of the enzymes. In particular, due to charge differences in the active site structures, there are changes in the local electric field and electric dipole moment orientations that either strengthen or weaken specific substrate C-H bonds. The local field effects, therefore, influence and guide reaction selectivity and specificity and give the enzymes their unique reactivity patterns. Computational work using either QM/MM or density functional theory (DFT) on cluster models can provide valuable insights into catalytic reaction mechanisms and produce accurate and reliable data that can be used to engineer proteins and synthetic catalysts to perform novel reaction pathways.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Stadler K, Ilatovskaya DV. Renal Epithelial Mitochondria: Implications for Hypertensive Kidney Disease. Compr Physiol 2023; 14:5225-5242. [PMID: 38158371 PMCID: PMC11194858 DOI: 10.1002/cphy.c220033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
According to the Centers for Disease Control and Prevention, 1 in 2 U.S. adults have hypertension, and more than 1 in 7 chronic kidney disease. In fact, hypertension is the second leading cause of kidney failure in the United States; it is a complex disease characterized by, leading to, and caused by renal dysfunction. It is well-established that hypertensive renal damage is accompanied by mitochondrial damage and oxidative stress, which are differentially regulated and manifested along the nephron due to the diverse structure and functions of renal cells. This article provides a summary of the relevant knowledge of mitochondrial bioenergetics and metabolism, focuses on renal mitochondrial function, and discusses the evidence that has been accumulated regarding the role of epithelial mitochondrial bioenergetics in the development of renal tissue dysfunction in hypertension. © 2024 American Physiological Society. Compr Physiol 14:5225-5242, 2024.
Collapse
Affiliation(s)
- Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
11
|
Zhao Z, Shan X, Zhang H, Shi X, Huang P, Sun J, He Z, Luo C, Zhang S. Nitric oxide-driven nanotherapeutics for cancer treatment. J Control Release 2023; 362:151-169. [PMID: 37633361 DOI: 10.1016/j.jconrel.2023.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule endowed with diverse biological functions, offering vast potential in the realm of cancer treatment. Considerable efforts have been dedicated to NO-based cancer therapy owing to its good biosafety and high antitumor activity, as well as its efficient synergistic therapy with other antitumor modalities. However, delivering this gaseous molecule effectively into tumor tissues poses a significant challenge. To this end, nano drug delivery systems (nano-DDSs) have emerged as promising platforms for in vivo efficient NO delivery, with remarkable achievements in recent years. This review aims to provide a summary of the emerging NO-driven antitumor nanotherapeutics. Firstly, the antitumor mechanism and related clinical trials of NO therapy are detailed. Secondly, the latest research developments in the stimulation of endogenous NO synthesis are presented, including the regulation of nitric oxide synthases (NOS) and activation of endogenous NO precursors. Moreover, the emerging nanotherapeutics that rely on tumor-specific delivery of NO donors are outlined. Additionally, NO-driven combined nanotherapeutics for multimodal cancer theranostics are discussed. Finally, the future directions, application prospects, and challenges of NO-driven nanotherapeutics in clinical translation are highlighted.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinzhu Shan
- Department of State Key Laboratory of Natural and Biomimetic Drugs, College of Pharmaceutical Sciences, Peking University, Beijing 100871, PR China
| | - Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Peiqi Huang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
12
|
Brandwein JN, Sculthorpe TS, Ridder MJ, Bose JL, Rice KC. Factors impacting the regulation of nos gene expression in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0168823. [PMID: 37747881 PMCID: PMC10580903 DOI: 10.1128/spectrum.01688-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 09/27/2023] Open
Abstract
Staphylococcus aureus nitric oxide synthase (saNOS) contributes to oxidative stress resistance, antibiotic tolerance, virulence, and modulation of aerobic and nitrate-based cellular respiration. Despite its involvement in these essential processes, the genetic regulation of nos expression has not been well characterized. 5' rapid amplification of cDNA ends on nos RNA isolated from S. aureus UAMS-1 (USA200 strain) and AH1263 (USA300 strain) revealed that the nos transcriptional start site mapped to an adenine nucleotide in the predicted Shine-Dalgarno site located 11 bp upstream of the nos ATG start codon, suggesting that the nos transcript may have a leaderless organization or may be subject to processing. The SrrAB two-component system (TCS) was previously identified as a positive regulator of nos RNA levels, and experiments using a β-galactosidase reporter plasmid confirmed that SrrAB is a positive regulator of nos promoter activity. In addition, the quorum-sensing system Agr was identified as a negative regulator of low-oxygen nos expression in UAMS-1, with activity epistatic to SrrAB. Involvement of Agr was strain dependent, as nos expression remained unchanged in an AH1263 agr mutant, which has higher Agr activity compared to UAMS-1. Furthermore, nos promoter activity and RNA levels were significantly stronger in AH1263 relative to UAMS-1 during late-exponential low-oxygen growth, when nos expression is maximal. Global regulators Rex and MgrA were also implicated as negative regulators of low-oxygen nos promoter activity in UAMS-1. Collectively, these results provide new insight into factors that control nos expression.IMPORTANCEBacterial nitric oxide synthase (bNOS) has recently emerged in several species as a key player in resistance to stresses commonly encountered during infection. Although Staphylococcus aureus (sa)NOS has been suggested to be a promising drug target in S. aureus, an obstacle to this in practice is the existence of mammalian NOS, whose oxygenase domain is like bacterial NOS. Increased understanding of the nos regulatory network in S. aureus could allow targeting of saNOS through its regulators, bypassing the issue of also inhibiting mammalian NOS. Furthermore, the observed strain-dependent differences in S. aureus nos regulation presented in this study reinforce the importance of studying bacterial NOS regulation and function at both the strain and species levels.
Collapse
Affiliation(s)
- Jessica N. Brandwein
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tiffany S. Sculthorpe
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Miranda J. Ridder
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey L. Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kelly C. Rice
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Camp OG, Bembenek JN, Goud PT, Awonuga AO, Abu-Soud HM. The Implications of Insufficient Zinc on the Generation of Oxidative Stress Leading to Decreased Oocyte Quality. Reprod Sci 2023; 30:2069-2078. [PMID: 36920672 PMCID: PMC11047769 DOI: 10.1007/s43032-023-01212-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Zinc is a transition metal that displays wide physiological implications ranging from participation in hundreds of enzymes and proteins to normal growth and development. In the reproductive tract of both sexes, zinc maintains a functional role in spermatogenesis, ovulation, fertilization, normal pregnancy, fetal development, and parturition. In this work, we review evidence to date regarding the importance of zinc in oocyte maturation and development, with emphasis on the role of key zinc-binding proteins, as well as examine the effects of zinc and reactive oxygen species (ROS) on oocyte quality and female fertility. We summarize our current knowledge about the participation of zinc in the developing oocyte bound to zinc finger proteins as well as loosely bound zinc ion in the intracellular and extracellular environments. These include aspects related to (1) the impact of zinc deficiency and overwhelming production of ROS under inflammatory conditions on the offset of the physiological antioxidant machinery disturbing biomolecules, proteins, and cellular processes, and their role in contributing to further oxidative stress; (2) the role of ROS in modulating damage to proteins containing zinc, such as zinc finger proteins and nitric oxide synthases (NOS), and expelling the zinc resulting in loss of protein function; and (3) clarify the different role of oxidative stress and zinc deficiency in the pathophysiology of infertility diseases with special emphasis on endometriosis-associated infertility.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Joshua N Bembenek
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Pravin T Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA
- Laurel Fertility Care, San Francisco, CA, 94109, USA
- California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Lee SH, Lee S. Effects of Melatonin and Silymarin on Reactive Oxygen Species, Nitric Oxide Production, and Sperm Viability and Motility during Sperm Freezing in Pigs. Animals (Basel) 2023; 13:ani13101705. [PMID: 37238134 DOI: 10.3390/ani13101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Sperm during the freezing and thawing process is damaged by oxidative stress. Thus, its antioxidant scavenger is essential for sperm survival and death in frozen-thawed semen. We used melatonin and silymarin in experiments after the dose-dependent experiment. Our study aimed to identify the effect of melatonin and silymarin on the motility and viability of sperm, reactive oxygen species (ROS), and nitric oxide (NO) production in frozen-thawed boar semen. Melatonin and silymarin were treated alone and cotreated in the fresh boar semen. Boar semen was collected using the gloved-hand method from ten crossbred pigs, and samples were used in the experiments. We evaluated sperm viability using SYBR-14 and PI kit, and ROS and NO production were detected by DCF-DA and DAF-2, respectively. The sperm motility was not significantly different between non-treatment and treatment. ROS and NO production in frozen-thawed sperm were decreased by melatonin and silymarin. Moreover, silymarin significantly reduced NO production more than melatonin. Melatonin and silymarin enhanced the viability of sperm. We suggest that melatonin and silymarin are essential antioxidants in semen cryopreservation for protecting sperm damage and maintaining sperm viability. Melatonin and silymarin may be useful antioxidants in freezing boar sperm.
Collapse
Affiliation(s)
- Sang-Hee Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
16
|
Sumi MP, Tupta B, Roychowdhury S, Comhair S, Asosingh K, Stuehr DJ, Erzurum SC, Ghosh A. Hemoglobin resident in the lung epithelium is protective for smooth muscle soluble guanylate cyclase function. Redox Biol 2023; 63:102717. [PMID: 37120930 PMCID: PMC10172757 DOI: 10.1016/j.redox.2023.102717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Hemoglobin (Hb) present in the lung epithelium is of unknown significance. However Hb being an nitric oxide (NO) scavenger can bind to NO and reduce its deleterious effects. Hence we postulated an NO scavenging role for this lung Hb. Doing transwell co-culture with bronchial epithelial cells, A549/16-HBE (apical) and human airway smooth muscle cells (HASMCs as basal), we found that Hb can protect the smooth muscle soluble guanylyl cyclase (sGC) from excess NO. Inducing the apical A549/16-HBE cells with cytokines to trigger iNOS expression and NO generation caused a time dependent increase in SNO-sGC and this was accompanied with a concomitant drop in sGC-α1β1 heterodimerization. Silencing Hbαβ in the apical cells further increased the SNO on sGC with a faster drop in the sGC heterodimer and these effects were additive along with further silencing of thioredoxin 1 (Trx1). Since heme of Hb is critical for NO scavenging we determined the Hb heme in a mouse model of allergic asthma (OVA) and found that Hb in the inflammed OVA lungs was low in heme or heme-free relative to those of naïve lungs. Further we established a direct correlation between the status of the sGC heterodimer and the Hb heme from lung samples of human asthma, iPAH, COPD and cystic fibrosis. These findings present a new mechanism of protection of lung sGC by the epithelial Hb, and suggests that this protection maybe lost in asthma or COPD where lung Hb is unable to scavenge the NO due to it being heme-deprived.
Collapse
Affiliation(s)
- Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Suzy Comhair
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
17
|
A Comparative Study of the Impact of NO-Related Agents on MK-801- or Scopolamine-Induced Cognitive Impairments in the Morris Water Maze. Brain Sci 2023; 13:brainsci13030410. [PMID: 36979220 PMCID: PMC10046674 DOI: 10.3390/brainsci13030410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Learning and memory deficits accompany numerous brain dysfunctions, including schizophrenia and Alzheimer’s disease (AD), and many studies point to the role of nitric oxide (NO) in these processes. The present investigations constitute the follow-up of our previous research, in which we investigated the activity of NO releasers and a selective inhibitor of neuronal NO synthase (nNOS) to prevent short-term memory deficits in novel object recognition and T-maze. Here, the ability of the compounds to prevent the induction of long-term memory deficits by MK-801 or scopolamine administration was investigated. The Morris Water Maze test, a reliable and valid test of spatial learning and memory, was used, in which escape latency in the acquisition phase and nine different parameters in the retention phase were measured. A fast NO releaser (spermine NONOate), a slow NO releaser (DETA NONOate), and a nNOS inhibitor, N(ω)-propyl-L-arginine (NPLA), were used. The compounds were administered i.p. at a dose range of 0.05–0.5 mg/kg. All compounds prevented learning deficits in the acquisition phase and reversed reference memory deficits in the retention phase of the scopolamine-treated mice. Spermine NONOate was the least effective. In contrast, the drugs poorly antagonised MK-801-induced deficits, and only the administration of DETA NONOate induced some improvements in the retention trial.
Collapse
|
18
|
Is vitamin C a booster of the effects of dietary nitrate on endothelial function? Physiologic rationale and implications for research. Nutrition 2023; 109:111995. [PMID: 36917872 DOI: 10.1016/j.nut.2023.111995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
Endothelial dysfunction (ED) is an early marker of vascular damage linked to the loss of integrity of the endothelial lining and represents a key step in the pathogenesis of atherosclerosis and cardiovascular diseases (CVDs). ED may be reversible, hence the development and testing of effective early interventions could be beneficial for the prevention and treatment of CVDs. Recent studies have demonstrated that the consumption of dietary nitrate (NO3-), an inorganic anion that serves as a substrate for the gas transmitter nitric oxide (NO), can lower blood pressure, improve endothelial function and, in observational studies, reduce the risk for CVD. We hypothesize that the co-consumption of NO3- with vitamin C, which is a potent antioxidant, could enhance the "yield" of NO produced from a given NO3- dose byThis could translate into greater NO-dependent effects on endothelial function (EF) and overall vascular health (than may be experienced with NO3- supplementation alone). This review presents evidence to suggest that the combination of vitamin C and dietary nitrate could represent a promising and effective approach to improve EF and reduce CVD risk, and discuss opportunities for future research.
Collapse
|
19
|
Aftabi Y, Gilani N, Ansarin A, Amiri-Sadeghan A, Bakhtiyari N, Seyyedi M, Faramarzi E, Sharifi A, Ansarin K, Seyedrezazadeh E. Female-biased association of NOS2-c.1823C>T (rs2297518) with co-susceptibility to metabolic syndrome and asthma. Can J Physiol Pharmacol 2023; 101:200-213. [PMID: 36716438 DOI: 10.1139/cjpp-2022-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The nitric oxide (NO) pathway contributes to the pathogeneses of metabolic syndrome (MetS) and asthma. NOS2 encodes inducible-NO synthase, which is an important enzyme of the pathway, and its variations could affect the risk of asthma and MetS and thereby co-susceptibility to them. This study aims to estimate the association of NOS2-c.1823C>T with risk of asthma, MetS, and asthma with MetS condition (ASMetS), and with asthma stages: intermittent, mild, moderate, and severe asthma. The study included asthmatics (n = 555), MetS (n = 334), and ASMetS cases (n = 232) and 351 controls, which were genotyped by the PCR-RFLP method. The T allele was significantly associated with an increased risk of asthma and MetS in the sample population and females. CT genotype and CT+TT model were significantly associated with increased risk of ASMetS in females. A significant association between CT genotype and increased risk of ASMetS in the sample population and females was found in ASMetS versus MetS. In the sample population and among females, the T allele was significantly associated with severe asthma. The rs2297518 single nucleotide polymorphism of NOS2 contributes to the risk of MetS, asthma, and co-susceptibility to them, and this contribution may be stronger in females compared to males.
Collapse
Affiliation(s)
- Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Amiri-Sadeghan
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Bakhtiyari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Seyyedi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Faramarzi
- Liver and Gastrointestinal Diseases Research Center, Clinical Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Sharifi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Feibel D, Kwiatkowski A, Opländer C, Grieb G, Windolf J, Suschek CV. Enrichment of Bone Tissue with Antibacterially Effective Amounts of Nitric Oxide Derivatives by Treatment with Dielectric Barrier Discharge Plasmas Optimized for Nitrogen Oxide Chemistry. Biomedicines 2023; 11:biomedicines11020244. [PMID: 36830781 PMCID: PMC9953554 DOI: 10.3390/biomedicines11020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Cold atmospheric plasmas (CAPs) generated by dielectric barrier discharge (DBD), particularly those containing higher amounts of nitric oxide (NO) or NO derivates (NOD), are attracting increasing interest in medical fields. In the present study, we, for the first time, evaluated DBD-CAP-induced NOD accumulation and therapeutically relevant NO release in calcified bone tissue. This knowledge is of great importance for the development of new therapies against bacterial-infectious complications during bone healing, such as osteitis or osteomyelitis. We found that by modulating the power dissipation in the discharge, it is possible (1) to significantly increase the uptake of NODs in bone tissue, even into deeper regions, (2) to significantly decrease the pH in CAP-exposed bone tissue, (3) to induce a long-lasting and modulable NO production in the bone samples as well as (4) to significantly protect the treated bone tissue against bacterial contaminations, and to induce a strong bactericidal effect in bacterially infected bone samples. Our results strongly suggest that the current DBD technology opens up effective NO-based therapy options in the treatment of local bacterial infections of the bone tissue through the possibility of a targeted modulation of the NOD content in the generated CAPs.
Collapse
Affiliation(s)
- Dennis Feibel
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Alexander Kwiatkowski
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, University Witten/Herdecke, 58455 Witten-Herdecke, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Burn Centre, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph V. Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
21
|
Wołowiec Ł, Grześk G, Osiak J, Wijata A, Mędlewska M, Gaborek P, Banach J, Wołowiec A, Głowacka M. Beta-blockers in cardiac arrhythmias-Clinical pharmacologist's point of view. Front Pharmacol 2023; 13:1043714. [PMID: 36699057 PMCID: PMC9868422 DOI: 10.3389/fphar.2022.1043714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
β-blockers is a vast group of antiarrhythmic drugs which differ in their pharmacokinetic and chemical properties. Some of them block β-adrenergic receptors selectively while the others work non-selectively. Consequently, they reduce the influence of the sympathetic nervous system on the heart, acting negatively inotropic, chronotropic, bathmotropic and dromotropic. Although they have been present in medicine since the beginning of the 1960s, they still play a crucial role in the treatment of cardiac arrhythmias. They are also first-line group of drugs used to control the ventricular rate in patients with the most common arrhythmia-atrial fibrillation. Previous reports indicate that infection with SARS-CoV-2 virus may constitute an additional risk factor for arrhythmia. Due to the aging of the population in developed countries and the increase in the number of patients with cardiac burden, the number of people suffering from cardiac arrhythmias will increase in the upcoming years. As a result the role of above-mentioned beta-blockers will remain significant. Particularly noteworthy is propranolol-the oldest beta adrenergic antagonist, which in recent years has found additional applications due to its unique properties. In this article, we reviewed the accessible literature and summarized the current guidelines on the use of beta-blockers in the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Osiak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Aleksandra Wijata
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Martyna Mędlewska
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Patryk Gaborek
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Banach
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Wołowiec
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | | |
Collapse
|
22
|
Seki M, Takeuchi E, Fukui E, Matsumoto H. Upregulation of iNOS and phosphorylated eNOS in the implantation-induced blastocysts of mice. Reprod Med Biol 2023; 22:e12545. [PMID: 37841392 PMCID: PMC10568119 DOI: 10.1002/rmb2.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/20/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose This study aimed to examine expressions of iNOS and phosphorylated eNOS (p-eNOS) in implantation-induced blastocysts. We also examined the upstream of p-eNOS. Methods To address the protein expressions in implantation-induced blastocysts, we performed immunohistochemical analysis using a delayed implantation mouse model. Immunostaining for iNOS, p-eNOS, and p-Akt was done. To address the relationship between p-eNOS and p-Akt, activated blastocysts were treated with an Akt inhibitor, MK-2206. Results iNOS expression was at low levels in dormant blastocysts, whereas the expression was significantly increased in the activated blastocysts. Double staining of p-eNOS and p-Akt in individual blastocysts showed colocalization of p-eNOS and p-Akt of the trophectoderm. p-eNOS and p-Akt expressions were at low levels in dormant blastocysts, whereas both of them were significantly increased in the activated blastocysts. Both dormant and activated blastocysts showed significant positive correlations between p-eNOS and p-Akt. MK-2206 treatment for activated blastocysts showed that blastocysts with lower p-Akt had significantly lower p-eNOS levels. Conclusions iNOS and p-eNOS, Ca2+ independent NOS, are upregulated by E2 in the blastocysts during implantation activation. Furthermore, p-eNOS is upregulated in implantation-induced blastocysts downstream of p-Akt.
Collapse
Affiliation(s)
- Misato Seki
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
| | - Eisaku Takeuchi
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
| | - Emiko Fukui
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya, TochigiJapan
| | - Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya, TochigiJapan
| |
Collapse
|
23
|
Giles GI, Erickson JR, Bussey CT. Photoactivation of tDodSNO induces localized vasodilation in rats: Metabolically stable S-nitrosothiols can act as targeted nitric oxide donors in vivo. Nitric Oxide 2022; 129:53-62. [DOI: 10.1016/j.niox.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
24
|
Caudet J, Trelis M, Cifre S, Tapia G, Soriano JM, Rodrigo R, Merino-Torres JF. Do Intestinal Unicellular Parasites Have a Role in the Inflammatory and Redox Status among the Severely Obese? Antioxidants (Basel) 2022; 11:2090. [PMID: 36358463 PMCID: PMC9686585 DOI: 10.3390/antiox11112090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The diagnosis of obesity comprises subjects with totally different phenotypes and metabolic profiles. Systemic inflammation and oxidative stress derived from the white adipose tissue are suggested as the link between this disease and the development of insulin resistance and metabolic comorbidities. The presence of unicellular eukaryotic parasites colonizing the human gut ecosystem is a common circumstance, and yet their influence on the inflammatory and redox status of the obese host has not been assessed. Herein, a set of inflammatory and redox biomarkers were assessed together with a parasitological analysis of 97 severely obese subjects. Information was also collected on insulin resistance and on the antioxidant composition of the diet. The global prevalence of intestinal unicellular parasites was 49.5%, with Blastocystis sp. the most prevalent protozoan found (42.3%). Colonized subjects displayed a higher total antioxidant capacity and a trend towards higher extracellular superoxide dismutase activity, regardless of their insulin resistance status, along with lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratios in plasma in the insulin-resistant subgroup. No changes in malondialdehyde levels, or in inflammatory cytokines in plasma, were found in regard to the colonization status. In conclusion, enteric eukaryotic unicellular parasites may play an important role in modulating the antioxidant defenses of an obese host, thus could have beneficial effects with respect to the development of systemic metabolic disorders.
Collapse
Affiliation(s)
- Jana Caudet
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
| | - María Trelis
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - Susana Cifre
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
| | - Gabriela Tapia
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - José M. Soriano
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain
| | - Regina Rodrigo
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
- Joint Research Unit on Rare Diseases, CIPF-Health Research Institute Hospital La Fe, 46012 Valencia, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Juan F. Merino-Torres
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
25
|
Ghosh A, Sumi MP, Tupta B, Okamoto T, Aulak K, Tsutsui M, Shimokawa H, Erzurum SC, Stuehr DJ. Low levels of nitric oxide promotes heme maturation into several hemeproteins and is also therapeutic. Redox Biol 2022; 56:102478. [PMID: 36116161 PMCID: PMC9486108 DOI: 10.1016/j.redox.2022.102478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide (NO) is a signal molecule and plays a critical role in the regulation of vascular tone, displays anti-platelet and anti-inflammatory properties. While our earlier and current studies found that low NO doses trigger a rapid heme insertion into immature heme-free soluble guanylyl cyclase β subunit (apo-sGCβ), resulting in a mature sGC-αβ heterodimer, more recent evidence suggests that low NO doses can also trigger heme-maturation of hemoglobin and myoglobin. This low NO phenomena was not only limited to sGC and the globins, but was also found to occur in all three nitric oxide synthases (iNOS, nNOS and eNOS) and Myeloperoxidase (MPO). Interestingly high NO doses were inhibitory to heme-insertion for these hemeproteins, suggesting that NO has a dose-dependent dual effect as it can act both ways to induce or inhibit heme-maturation of key hemeproteins. While low NO stimulated heme-insertion of globins required the presence of the NO-sGC-cGMP signal pathway, iNOS heme-maturation also required the presence of an active sGC. These effects of low NO were significantly diminished in the tissues of double (n/eNOS−/−) and triple (n/i/eNOS−/−) NOS knock out mice where lung sGC was found be heme-free and the myoglobin or hemoglobin from the heart/lungs were found be low in heme, suggesting that loss of endogenous NO globally impacts the whole animal and that this impact of low NO is both essential and physiologically relevant for hemeprotein maturation. Effects of low NO were also found to be protective against ischemia reperfusion injury on an ex vivo lung perfusion (EVLP) system prior to lung transplant, which further suggests that low NO levels are also therapeutic. Low levels of NO enable heme-maturation of the globins by a process that required an NO triggered heme-insertion into sGCβ. •This effect of low NO was also found to occur for all three nitric oxide synthases (NOSs) and Myeloperoxidase (MPO). •Tissues from n/eNOS−/− and n/i/eNOS−/− knock out mice had low heme levels in the globins, while sGC was largely heme-free. •Low NO at ppm levels also manifests itself as a therapy during ischemic reperfusion injury of lungs on the EVLP.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Toshihiro Okamoto
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kulwant Aulak
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Hiroaki Shimokawa
- Faculty of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
26
|
Nitric Oxide Trickle Drives Heme into Hemoglobin and Muscle Myoglobin. Cells 2022; 11:cells11182838. [PMID: 36139413 PMCID: PMC9496899 DOI: 10.3390/cells11182838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Ever since the days of NO being proclaimed as the “molecule of the year”, the molecular effects of this miracle gas on the globins have remained elusive. While its vasodilatory role in the cardiopulmonary system and the vasculature is well recognized, the molecular underpinnings of the NO–globin axis are incompletely understood. We show, by transwell co-culture of nitric oxide (NO) generating, HEK eNOS/nNOS cells, and K562 erythroid or C2C12 muscle myoblasts, that low doses of NO can effectively insert heme into hemoglobin (Hb) and myoglobin (Mb), making NO not only a vasodilator, but also a globin heme trigger. We found this process to be dependent on the NO flux, occurring at low NO doses and fading at higher doses. This NO-triggered heme insertion occurred into Hb in just 30 min in K562 cells and into muscle Mb in C2C12 myoblasts between 30 min and 1 h, suggesting that the classical effect of NO on upregulation of globin (Hb or Mb) is just not transcriptional, but may involve sufficient translational events where NO can cause heme-downloading into the apo-globins (Hb/Mb). This effect of NO is unexpected and highlights its significance in maintaining globins in its heme-containing holo-form, where such heme insertions might be required in the circulating blood or in the muscle cells to perform spontaneous functions.
Collapse
|
27
|
Arnau Del Valle C, Williams L, Thomas P, Johnson R, Raveenthiraraj S, Warren D, Sobolewski A, Muñoz MP, Galindo F, Marín MJ. A highly photostable and versatile two-photon fluorescent probe for the detection of a wide range of intracellular nitric oxide concentrations in macrophages and endothelial cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112512. [PMID: 35850002 DOI: 10.1016/j.jphotobiol.2022.112512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is involved in many biological processes affecting the cardiovascular, nervous and immune systems. Intracellular NO can be monitored using fluorescent probes in combination with fluorescence imaging techniques. Most of the currently available NO fluorescent molecular probes are excited via one-photon excitation using UV or Vis light, which results in poor penetration and high photodamage to living tissues. Here, we report a two-photon fluorescent molecular probe, DANPY-NO, able to detect NO in live cells. The probe consists of an o-phenylenediamine linked to a naphthalimide core; and operates via photoinduced electron transfer. DANPY-NO exhibits good sensitivity (LOD of 77.8 nM) and high selectivity towards NO, and is stable over a broad range of pHs. The probe targeted acidic organelles within macrophages and endothelial cells, and demonstrated enhanced photostability over a commercially available NO probe. DANPY-NO was used to selectively detect endogenous NO in RAW264.7ϒ NO- macrophages, THP-1 human leukemic cells, primary mouse (bone marrow-derived) macrophages and endothelial cells. The probe was also able to detect exogenous NO in endothelial cells and distinguish between increasing concentrations of NO. The NO detection was evidenced using confocal laser scanning and two-photon microscopies, and flow cytometry. Further evidence was obtained by recording the changes in the intracellular fluorescence emission spectrum of the probe. Importantly, the probe displayed negligible toxicity to the analysed biological samples. The excellent sensitivity, selectivity, stability and versatility of DANPY-NO confirm its potential for in vitro and in vivo imaging of NO.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Lewis Williams
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Paul Thomas
- Faculty of Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Robert Johnson
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Anastasia Sobolewski
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - María Paz Muñoz
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón de la Plana 12071, Spain
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
28
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
29
|
Mahmoud MF, Elmaghraby AM, Ali N, Mostafa I, El-Shazly AM, Abdelfattah MA, Sobeh M. Black pepper oil (Piper nigrum L.) mitigates dexamethasone induced pancreatic damage via modulation of oxidative and nitrosative stress. Biomed Pharmacother 2022; 153:113456. [PMID: 36076569 PMCID: PMC9350854 DOI: 10.1016/j.biopha.2022.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/06/2022] Open
Abstract
Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.
Collapse
|
30
|
Doman AJ, Tommasi S, Perkins MV, McKinnon RA, Mangoni AA, Nair PC. Chemical similarities and differences among inhibitors of nitric oxide synthase, arginase and dimethylarginine dimethylaminohydrolase-1: implications for the design of novel enzyme inhibitors modulating the nitric oxide pathway. Bioorg Med Chem 2022; 72:116970. [DOI: 10.1016/j.bmc.2022.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
|
31
|
Irwandi RA, Chiesa ST, Hajishengallis G, Papayannopoulos V, Deanfield JE, D’Aiuto F. The Roles of Neutrophils Linking Periodontitis and Atherosclerotic Cardiovascular Diseases. Front Immunol 2022; 13:915081. [PMID: 35874771 PMCID: PMC9300828 DOI: 10.3389/fimmu.2022.915081] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Inflammation plays a crucial role in the onset and development of atherosclerosis. Periodontitis is a common chronic disease linked to other chronic inflammatory diseases such as atherosclerotic cardiovascular disease (ASCVD). The mechanistic pathways underlying this association are yet to be fully understood. This critical review aims at discuss the role of neutrophils in mediating the relationship between periodontitis and ASCVD. Systemic inflammation triggered by periodontitis could lead to adaptations in hematopoietic stem and progenitor cells (HSPCs) resulting in trained granulopoiesis in the bone marrow, thereby increasing the production of neutrophils and driving the hyper-responsiveness of these abundant innate-immune cells. These alterations may contribute to the onset, progression, and complications of atherosclerosis. Despite the emerging evidence suggesting that the treatment of periodontitis improves surrogate markers of cardiovascular disease, the resolution of periodontitis may not necessarily reverse neutrophil hyper-responsiveness since the hyper-inflammatory re-programming of granulopoiesis can persist long after the inflammatory inducers are removed. Novel and targeted approaches to manipulate neutrophil numbers and functions are warranted within the context of the treatment of periodontitis and also to mitigate its potential impact on ASCVD.
Collapse
Affiliation(s)
- Rizky A. Irwandi
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Scott T. Chiesa
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - George Hajishengallis
- Department of Basic & Translational Sciences, Laboratory of Innate Immunity & Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - John E. Deanfield
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Francesco D’Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- *Correspondence: Francesco D’Aiuto,
| |
Collapse
|
32
|
Gas regulation of complex II reversal via electron shunting to fumarate in the mammalian ETC. Trends Biochem Sci 2022; 47:689-698. [PMID: 35397924 PMCID: PMC9288524 DOI: 10.1016/j.tibs.2022.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
The electron transport chain (ETC) is a major currency converter that exchanges the chemical energy of fuel oxidation to proton motive force and, subsequently, ATP generation, using O2 as a terminal electron acceptor. Discussed herein, two new studies reveal that the mammalian ETC is forked. Hypoxia or H2S exposure promotes the use of fumarate as an alternate terminal electron acceptor. The fumarate/succinate and CoQH2/CoQ redox couples are nearly iso-potential, revealing that complex II is poised for facile reverse electron transfer, which is sensitive to CoQH2 and fumarate concentrations. The gas regulators, H2S and •NO, modulate O2 affinity and/or inhibit the electron transfer rate at complex IV. Their induction under hypoxia suggests a mechanism for how traffic at the ETC fork can be regulated.
Collapse
|
33
|
Reverte M, Snäkä T, Fasel N. The Dangerous Liaisons in the Oxidative Stress Response to Leishmania Infection. Pathogens 2022; 11:pathogens11040409. [PMID: 35456085 PMCID: PMC9029764 DOI: 10.3390/pathogens11040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmania parasites preferentially invade macrophages, the professional phagocytic cells, at the site of infection. Macrophages play conflicting roles in Leishmania infection either by the destruction of internalized parasites or by providing a safe shelter for parasite replication. In response to invading pathogens, however, macrophages induce an oxidative burst as a mechanism of defense to promote pathogen removal and contribute to signaling pathways involving inflammation and the immune response. Thus, oxidative stress plays a dual role in infection whereby free radicals protect against invading pathogens but can also cause inflammation resulting in tissue damage. The induced oxidative stress in parasitic infections triggers the activation in the host of the antioxidant response to counteract the damaging oxidative burst. Consequently, macrophages are crucial for disease progression or control. The ultimate outcome depends on dangerous liaisons between the infecting Leishmania spp. and the type and strength of the host immune response.
Collapse
|
34
|
Molecular docking prediction and in vitro studies elucidate anti-inflammatory effect of Garcinia extract against inducible nitric oxide synthase and cyclooxygenase-2 targets. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Garcinia is a tropical plant that has been traditionally used in medicinal folklore for its potential antioxidant, antibacterial, anti-hyperlipidemic, anti-diabetic, hepatoprotective, etc. In this study, methanolic extract of Garcinia herbal supplement (GME) and its important phytoconstituents (Garcinol and hydroxycitric acid) were evaluated for their inhibitory action against important inflammatory markers iNOS and COX-2 in lipopolysaccharide-induced RAW 264.7 cells. iNOS and COX-2 play a major role in the process of inflammation, and inhibition of these molecules will help to alleviate the inflammatory process. The cells were pre-treated with two doses of GME (115 µg/ml and 230 µg/ml); Ggarcinol (6 µM and 12 µM); hydroxycitric acid (17.5 µg/ml and 35 µg/ml) followed by stimulation with 1 µg/ml of LPS for 24 h.
Results
The results of the study demonstrated that Garcinia and its active components Garcinol and HCA play an important role in suppressing LPS-induced relative mRNA expression of iNOS, COX-2, and subsequent reduction in the levels of total nitric oxide and prostaglandinE2. Molecular docking analysis of Ggarcinol and HCA with iNOS and COX-2 proteins showed potent interactions with negative binding energies.
Conclusions
This study suggests that Garcinia possess anti-inflammatory activity thus providing a possibility for drug designing as iNOS and COX-2 inhibitor.
Graphical Abstract
Collapse
|
35
|
Mahgoup EM, Khaleel SA, El-Mahdy MA, Abd-Allah AR, Zweier JL. Role of cytoglobin in cigarette smoke constituent-induced loss of nitric oxide bioavailability in vascular smooth muscle cells. Nitric Oxide 2022; 119:9-18. [PMID: 34875385 PMCID: PMC8752519 DOI: 10.1016/j.niox.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023]
Abstract
Cytoglobin (Cygb) has been identified as the major nitric oxide (NO) metabolizing protein in vascular smooth muscle cells (VSMCs) and is crucial for the regulation of vascular tone. In the presence of its requisite cytochrome B5a (B5)/B5 reductase-isoform-3 (B5R) reducing system, Cygb controls NO metabolism through the oxygen-dependent process of NO dioxygenation. Tobacco cigarette smoking (TCS) induces vascular dysfunction; however, the role of Cygb in the pathophysiology of TCS-induced cardiovascular disease has not been previously investigated. While TCS impairs NO biosynthesis, its effect on NO metabolism remains unclear. Therefore, we performed studies in aortic VSMCs with tobacco smoke extract (TSE) exposure to investigate the effects of cigarette smoke constituents on the rates of NO decay, with focus on the alterations that occur in the process of Cygb-mediated NO metabolism. TSE greatly enhanced the rates of NO metabolism by VSMCs. An initial increase in superoxide-mediated NO degradation was seen at 4 h of exposure. This was followed by much larger progressive increases at 24 and 48 h, accompanied by parallel increases in the expression of Cygb and B5/B5R. siRNA-mediated Cygb knockdown greatly decreased these TSE-induced elevations in NO decay rates. Therefore, upregulation of the levels of Cygb and its reducing system accounted for the large increase in NO metabolism rate seen after 24 h of TSE exposure. Thus, increased Cygb-mediated NO degradation would contribute to TCS-induced vascular dysfunction and partial inhibition of Cygb expression or its NO dioxygenase function could be a promising therapeutic target to prevent secondary cardiovascular disease.
Collapse
Affiliation(s)
- Elsayed M Mahgoup
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Sahar A Khaleel
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Adel R Abd-Allah
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
36
|
Cho K, Ueno M, Liang Y, Kim D, Oda T. Generation of Reactive Oxygen Species (ROS) by Harmful Algal Bloom (HAB)-Forming Phytoplankton and Their Potential Impact on Surrounding Living Organisms. Antioxidants (Basel) 2022; 11:206. [PMID: 35204089 PMCID: PMC8868398 DOI: 10.3390/antiox11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Most marine phytoplankton with relatively high ROS generation rates are categorized as harmful algal bloom (HAB)-forming species, among which Chattonella genera is the highest ROS-producing phytoplankton. In this review, we examined marine microalgae with ROS-producing activities, with focus on Chattonella genera. Several studies suggest that Chattonella produces superoxide via the activities of an enzyme similar to NADPH oxidase located on glycocalyx, a cell surface structure, while hydrogen peroxide is generated inside the cell by different pathways. Additionally, hydroxyl radical has been detected in Chattonella cell suspension. By the physical stimulation, such as passing through between the gill lamellas of fish, the glycocalyx is easily discharged from the flagellate cells and attached on the gill surface, where ROS are continuously produced, which might cause gill tissue damage and fish death. Comparative studies using several strains of Chattonella showed that ROS production rate and ichthyotoxicity of Chattonella is well correlated. Furthermore, significant levels of ROS have been reported in other raphidophytes and dinoflagellates, such as Cochlodinium polykrikoides and Karenia mikimotoi. Chattonella is the most extensively studied phytoplankton in terms of ROS production and its biological functions. Therefore, this review examined the potential ecophysiological roles of extracellular ROS production by marine microalgae in aquatic environment.
Collapse
Affiliation(s)
- Kichul Cho
- Department of Microbiology, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea;
| | - Mikinori Ueno
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.U.); (Y.L.)
| | - Yan Liang
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.U.); (Y.L.)
| | - Daekyung Kim
- Daegu Center, Korea Basic Science Institute (KBSI), Daegu 41566, Korea
| | - Tatsuya Oda
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.U.); (Y.L.)
| |
Collapse
|
37
|
Repova K, Aziriova S, Krajcirovicova K, Simko F. Cardiovascular therapeutics: A new potential for anxiety treatment? Med Res Rev 2022; 42:1202-1245. [PMID: 34993995 PMCID: PMC9304130 DOI: 10.1002/med.21875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Besides the well‐recognized risk factors, novel conditions increasing cardiovascular morbidity and mortality are emerging. Undesirable emotions and behavior such as anxiety and depression, appear to participate in worsening cardiovascular pathologies. On the other hand, deteriorating conditions of the heart and vasculature result in disturbed mental and emotional health. The pathophysiological background of this bidirectional interplay could reside in an inappropriate activation of vegetative neurohormonal and other humoral systems in both cardiovascular and psychological disturbances. This results in circulus vitiosus potentiating mental and circulatory disorders. Thus, it appears to be of utmost importance to examine the alteration of emotions, cognition, and behavior in cardiovascular patients. In terms of this consideration, recognizing the potential of principal cardiovascular drugs to interact with the mental state in patients with heart or vasculature disturbances is unavoidable, to optimize their therapeutic benefit. In general, beta‐blockers, central sympatholytics, ACE inhibitors, ARBs, aldosterone receptor blockers, sacubitril/valsartan, and fibrates are considered to exert anxiolytic effect in animal experiments and clinical settings. Statins and some beta‐blockers appear to have an equivocal impact on mood and anxiety and ivabradine expressed neutral psychological impact. It seems reasonable to suppose that the knowledge of a patient's mood, cognition, and behavior, along with applying careful consideration of the choice of the particular cardiovascular drug and respecting its potential psychological benefit or harm might improve the individualized approach to the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
38
|
Tetsuka S, Ogawa T, Hashimoto R, Kato H. Clinical features, pathogenesis, and management of stroke-like episodes due to MELAS. Metab Brain Dis 2021; 36:2181-2193. [PMID: 34118021 DOI: 10.1007/s11011-021-00772-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is a disease that should be considered as a differential diagnosis to acute ischemic stroke taking into account its onset pattern and neurological symptoms, which are similar to those of an ischemic stroke. Technological advancements in neuroimaging modalities have greatly facilitated differential diagnosis between stroke and MELAS on diagnostic imaging. Stroke-like episodes in MELAS have the following features: (1) symptoms are neurolocalized according to lesion site; (2) epileptic seizures are often present; (3) lesion distribution is inconsistent with vascular territory; (4) lesions are common in the posterior brain regions; (5) lesions continuously develop in adjacent sites over several weeks or months; (6) neurological symptoms and stroke-like lesions tend to be reversible, as presented on magnetic resonance imaging; (7) the rate of recurrence is high; and; (8) brain dysfunction and atrophy are slowly progressive. The m.3243ANG mutation in the MT-TL1 gene encoding the mitochondrial tRNALeu(UUR) is most commonly associated with MELAS. Although the precise pathophysiology is still unclear, one possible hypothesis for these episodes is a neuronal hyperexcitability theory, including neuron-astrocyte uncoupling. Supplementation, such as with L-arginine or taurine, has been proposed as preventive treatments for stroke-like episodes. As this disease is still untreatable and devastating, numerous drugs are being tested, and new gene therapies hold great promise for the future. This article contributes to the understanding of MELAS and its implications for clinical practice, by deepening their insight into the latest pathophysiological hypotheses and therapeutic developments.
Collapse
Affiliation(s)
- Syuichi Tetsuka
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan.
| | - Tomoko Ogawa
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| | - Ritsuo Hashimoto
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| | - Hiroyuki Kato
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| |
Collapse
|
39
|
Lourenço CF, Laranjinha J. Nitric Oxide Pathways in Neurovascular Coupling Under Normal and Stress Conditions in the Brain: Strategies to Rescue Aberrant Coupling and Improve Cerebral Blood Flow. Front Physiol 2021; 12:729201. [PMID: 34744769 PMCID: PMC8569710 DOI: 10.3389/fphys.2021.729201] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
The brain has impressive energy requirements and paradoxically, very limited energy reserves, implying its huge dependency on continuous blood supply. Aditionally, cerebral blood flow must be dynamically regulated to the areas of increased neuronal activity and thus, of increased metabolic demands. The coupling between neuronal activity and cerebral blood flow (CBF) is supported by a mechanism called neurovascular coupling (NVC). Among the several vasoactive molecules released by glutamatergic activation, nitric oxide (•NO) is recognized to be a key player in the process and essential for the development of the neurovascular response. Classically, •NO is produced in neurons upon the activation of the glutamatergic N-methyl-D-aspartate (NMDA) receptor by the neuronal isoform of nitric oxide synthase and promotes vasodilation by activating soluble guanylate cyclase in the smooth muscle cells of the adjacent arterioles. This pathway is part of a more complex network in which other molecular and cellular intervenients, as well as other sources of •NO, are involved. The elucidation of these interacting mechanisms is fundamental in understanding how the brain manages its energy requirements and how the failure of this process translates into neuronal dysfunction. Here, we aimed to provide an integrated and updated perspective of the role of •NO in the NVC, incorporating the most recent evidence that reinforces its central role in the process from both viewpoints, as a physiological mediator and a pathological stressor. First, we described the glutamate-NMDA receptor-nNOS axis as a central pathway in NVC, then we reviewed the link between the derailment of the NVC and neuronal dysfunction associated with neurodegeneration (with a focus on Alzheimer's disease). We further discussed the role of oxidative stress in the NVC dysfunction, specifically by decreasing the •NO bioavailability and diverting its bioactivity toward cytotoxicity. Finally, we highlighted some strategies targeting the rescue or maintenance of •NO bioavailability that could be explored to mitigate the NVC dysfunction associated with neurodegenerative conditions. In line with this, the potential modulatory effects of dietary nitrate and polyphenols on •NO-dependent NVC, in association with physical exercise, may be used as effective non-pharmacological strategies to promote the •NO bioavailability and to manage NVC dysfunction in neuropathological conditions.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
40
|
Dent MR, DeMartino AW, Tejero J, Gladwin MT. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorg Chem 2021; 60:15918-15940. [PMID: 34313417 PMCID: PMC9167621 DOI: 10.1021/acs.inorgchem.1c01048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is central to physiological NO signaling, serving as the active site for canonical NO biosynthesis in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of nitrite. This auxiliary hemoprotein reaction unlocks a "second axis" of NO signaling in which nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent physiological pathways and examine complex chemical and biochemical reactions that govern NO and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these key reaction pathways to target NO signaling and treat a wide range of diseases.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
41
|
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2021; 227:113934. [PMID: 34700268 DOI: 10.1016/j.ejmech.2021.113934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
HDAC inhibitors and NO donors have both demonstrated independently broad therapeutic potential in a variety of diseases. Borretto et al. presented the topic of NO-HDAC dual inhibitors for the first time in 2013 as an attractive new topic. Here we collected the general structure of all synthesized NO-HDAC dual inhibitors, lead compounds, synthesis methods and biological features of the most potent dual NO-HDAC inhibitor in each category with the intention of assisting in the synthesis and optimization of new drug-like compounds for diverse diseases. Based on studies done so far, NO-HDAC dual inhibitors have displayed satisfactory results against wound healing (3), heart hypertrophy (3), inflammatory, cardiovascular, neuromuscular illnesses (11a-11e) and cancer (6a-6o, 9a-9d, 10a-10d, 16 and 17). NO-HDAC dual inhibitors can have high therapeutic potential for various diseases due to their new properties, NO properties, HDAC inhibitor properties and also due to the effects of NO on HDAC enzymes.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, Strandback E, Toplak M, Wallner S, Winkler A, Macheroux P. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 189:112822. [PMID: 34118767 DOI: 10.1016/j.phytochem.2021.112822] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are utilized as coenzymes in many biochemical reduction-oxidation reactions owing to the ability of the tricyclic isoalloxazine ring system to employ the oxidized, radical and reduced state. We have analyzed the genome of Arabidopsis thaliana to establish an inventory of genes encoding flavin-dependent enzymes (flavoenzymes) as a basis to explore the range of flavin-dependent biochemical reactions that occur in this model plant. Expectedly, flavoenzymes catalyze many pivotal reactions in primary catabolism, which are connected to the degradation of basic metabolites, such as fatty and amino acids as well as carbohydrates and purines. On the other hand, flavoenzymes play diverse roles in anabolic reactions most notably the biosynthesis of amino acids as well as the biosynthesis of pyrimidines and sterols. Importantly, the role of flavoenzymes goes much beyond these basic reactions and extends into pathways that are equally crucial for plant life, for example the production of natural products. In this context, we outline the participation of flavoenzymes in the biosynthesis and maintenance of cofactors, coenzymes and accessory plant pigments (e. g. carotenoids) as well as phytohormones. Moreover, several multigene families have emerged as important components of plant immunity, for example the family of berberine bridge enzyme-like enzymes, flavin-dependent monooxygenases and NADPH oxidases. Furthermore, the versatility of flavoenzymes is highlighted by their role in reactions leading to tRNA-modifications, chromatin regulation and cellular redox homeostasis. The favorable photochemical properties of the flavin chromophore are exploited by photoreceptors to govern crucial processes of plant adaptation and development. Finally, a sequence- and structure-based approach was undertaken to gain insight into the catalytic role of uncharacterized flavoenzymes indicating their involvement in unknown biochemical reactions and pathways in A. thaliana.
Collapse
Affiliation(s)
- Reinmar Eggers
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Alexandra Jammer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Bianca Kerschbaumer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Majd Lahham
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Emilia Strandback
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria.
| |
Collapse
|
43
|
Mazurek M, Rola R. The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 2021; 150:105172. [PMID: 34461111 DOI: 10.1016/j.neuint.2021.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Glial tumors are the most common intracranial malignancies. Unfortunately, despite such a high prevalence, patients' prognosis is usually poor. It is related to the high invasiveness, tendency to relapse and the resistance of tumors to traditional methods of treatment. An important link in the aspect of these issues may be nitric oxide (NO) metabolism. It is a very complex mechanism with multidirectional effects on the neoplastic process. Depending on the concentration axis, it can both exert pro-tumor action as well as contribute to the inhibition of tumorigenesis. The latest observations show that the control of its metabolism can be very helpful in the development of new methods of treating gliomas, as well as in increasing the effectiveness of the agents currently used. The influence of nitric oxide and nitric oxide synthase (NOS) activity on glioma stem cells seem to be of particular importance. The use of specific inhibitors may allow the reduction of tumor growth and its tendency to relapse. Another important feature of GSCs is their conditioning of glioma resistance to traditional forms of treatment. Recent studies have shown that modulation of NO metabolism can suppress this effect, preventing the induction of radio and chemoresistance. Moreover, nitric oxide is involved in the regulation of a number of immune mechanisms. Adequate modulation of its metabolism may contribute to the induction of an anti-tumor response in the patients' immune system.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland.
| | - Radosław Rola
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland
| |
Collapse
|
44
|
Automated Synthesis and Initial Evaluation of (4'-Amino-5',8'-difluoro-1'H-spiro[piperidine-4,2'-quinazolin]-1-yl)(4-[ 18F]fluorophenyl)methanone for PET/MR Imaging of Inducible Nitric Oxide Synthase. Mol Imaging 2021; 2021:9996125. [PMID: 34381316 PMCID: PMC8328489 DOI: 10.1155/2021/9996125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
Background Inducible nitric oxide synthase (iNOS) plays a crucial role in neuroinflammation, especially microglial activity, and may potentially represent a useful biomarker of neuroinflammation. In this study, we carefully defined a strategic plan to develop iNOS-targeted molecular PET imaging using (4′-amino-5′,8′-difluoro-1′H-spiro[piperidine-4,2′-quinazolin]-1-yl)(4-fluorophenyl)methanone ([18F]FBAT) as a tracer in a mouse model of lipopolysaccharide- (LPS-) induced brain inflammation. Methods An in vitro model, murine microglial BV2 cell line, was used to assess the uptake of [18F]FBAT in response to iNOS induction at the cellular level. In vivo whole-body dynamic PET/MR imaging was acquired in LPS-treated (5 mg/kg) and control mice. Standard uptake value (SUV), total volume of distribution (Vt), and area under the curve (AUC) based on the [18F]FBAT PET signals were determined. The expression of iNOS was confirmed by immunohistochemistry (IHC) of brain tissues. Results At the end of synthesis, the yield of [18F]FBAT was 2.2–3.1% (EOS), radiochemical purity was >99%, and molar radioactivity was 125–137 GBq/μmol. In vitro, [18F]FBAT rapidly and progressively accumulated in murine microglial BV2 cells exposed to LPS; however, [18F]FBAT accumulation was inhibited by aminoguanidine, a selective iNOS inhibitor. In vivo biodistribution studies of [18F]FBAT showed a significant increase in the liver and kidney on LPS-treated mice. At 3 h postinjection of LPS, in vivo, the [18F]FBAT accumulation ratios at 30 min post intravenous (i.v.) radiotracer injection for the whole brain, cortex, cerebellum, and brainstem were 2.16 ± 0.18, 1.53 ± 0.25, 1.41 ± 0.21, and 1.90 ± 0.12, respectively, compared to those of mice not injected with LPS. The mean area under the curve (AUC0-30min), total volume of distribution (Vt, mL/cm3), and Ki (influx rate) of [18F]FBAT were 1.9 ± 0.21- and 1.4 ± 0.22-fold higher in the 3 h LPS group, respectively, than in the control group. In the pharmacokinetic two-compartment model, the whole brain Ki of [18F]FBAT was significantly higher in mice injected with LPS compared to the control group. Aminoguanidine, selective iNOS inhibitor, pretreatment significantly reduced the AUC0-30min and Vt values in LPS-induced mice. Quantitative analysis of immunohistochemically stained brain sections confirmed iNOS was preferentially upregulated in the cerebellum and cortex of mice injected with LPS. Conclusion An automated robotic method was established for radiosynthesis of [18F]FBAT, and the preliminary in vitro and in vivo results demonstrated the feasibility of detecting iNOS activity/expression in LPS-treated neuroinflammation by noninvasive imaging with [18F]FBAT PET/MRI.
Collapse
|
45
|
Neurochemical changes underlying cognitive impairment in olfactory bulbectomized rats and the impact of the mGlu 5-positive allosteric modulator CDPPB. Brain Res 2021; 1768:147577. [PMID: 34217728 DOI: 10.1016/j.brainres.2021.147577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022]
Abstract
The olfactory bulbectomized (OBX) rat model is a well-established model of depression in which antidepressant drugs reverse deficits in the passive avoidance test 14 days after administration. Recently, the olfactory bulbectomized rat model has been proposed to be a model of Alzheimer's disease (AD), and the available data indicate similarities between the changes that typically occur in AD and those observed in OBX animals. In the present study, the occurrence of neurochemical impairments related to AD were investigated 8 months after OB ablation. The expression of the nitric oxide synthases eNOS and nNOS, receptor for advanced glycation endproducts (RAGEs) and dimethylarginine dimethylaminohydrolase (DDAH1) in the prefrontal cortices (PFCs), hippocampi and striata of olfactory bulbectomized and sham-operated rats was evaluated. Subsequently, the impact of the administration of a positive allosteric modulator of the mGlu5 receptor, CDPPB (14 days, 2.5 or 5 mg/kg), on OBX-related changes was assessed. OB ablation induced typical deficits in passive avoidance. Significant aberrations in the expression of both isoforms of NOS were observed in the hippocampus and striatum, and the expression of DDAH1 was increased in the PFCs of OBX animals. CDPPB at a dose of 5 mg/kg ameliorated cognitive impairment in the passive avoidance test and partially reversed the changes in eNOS and nNOS expression induced by the lesion. The results of this study confirm that some of the neurochemical changes observed in OBX animals may resemble those associated with AD pathology and that activation of the mGlu5 receptor may partially counteract these pathological alterations.
Collapse
|
46
|
Yan L, Wang Y, Zhang S, Li X, Wei J, Wang Z, Liu Y. Inactivation Mechanism of Neuronal Nitric Oxide Synthase by ( S)-2-Amino-5-(2-(methylthio)acetimidamido)pentanoic Acid: Chemical Conversion of the Inactivator in the Active Site. Inorg Chem 2021; 60:9345-9358. [PMID: 34137256 DOI: 10.1021/acs.inorgchem.1c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is one of the three isoforms of nitric oxide synthase (NOS). The other two isoforms include inducible NOS (iNOS) and endothelial NOS (eNOS). These three isoforms of NOS are widely present in both human and other mammals and are responsible for the biosynthesis of NO. As an essential biological molecule, NO plays an essential role in neurotransmission, immune response, and vasodilation; however, the overproduction of NO can cause a series of diseases. Thus, the selective inhibition of three isoforms of NOS has been considered to be important in treating related diseases. The active sites of the three enzymes are highly conserved, causing the selective inhibition of the three enzymes to be a great challenge. (S)-2-Amino-5-(2-(methylthio)acetimidamido)pentanoic acid (1) has been experimentally proved to be a selective and time-dependent irreversible inhibitor of nNOS, and three pathways, including sulfide oxidation, oxidative dethiolation, and oxidative demethylation, have been suggested. In this work, we performed quantum mechanics/molecular mechanics calculations to verify the chemical conversion of inactivator 1. Although we agree with the previously suggested chemical transformation process, our calculations demonstrated that there are lower energy pathways to accomplish both oxidative dethiolation and oxidative demethylation. These three branching reactions are competitive, but only dethiolation and demethylation reactions can generate inhibitory intermediates. As a powerful time-dependent irreversible inhibitor of nNOS, the key sulfur atom and middle imine are all necessary. Our calculation results not only verified the chemical reaction of inhibitor 1 occurring in the enzymatic active site but also explained the inactivation mechanism of inhibitor 1. This is also the first verified example of the heme-enzyme-catalyzed S-demethylation mechanism.
Collapse
Affiliation(s)
- Lijuan Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Shiqing Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
47
|
Belsare KD, Ruff AJ, Martinez R, Schwaneberg U. Insights on intermolecular FMN-heme domain interaction and the role of linker length in cytochrome P450cin fusion proteins. Biol Chem 2021; 401:1249-1255. [PMID: 32549121 DOI: 10.1515/hsz-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
Abstract
Cytochrome P450s are an important group of enzymes catalyzing hydroxylation, and epoxidations reactions. In this work we describe the characterization of the CinA-CinC fusion enzyme system of a previously reported P450 using genetically fused heme (CinA) and FMN (CinC) enzyme domains from Citrobacter braaki. We observed that mixing individually inactivated heme (-) with FMN (-) domain in the CinA-10aa linker - CinC fusion constructs results in recovered activity and the formation of (2S)-2β-hydroxy,1,8-cineole (174 µM), a similar amount when compared to the fully functional fusion protein (176 µM). We also studied the effect of the fusion linker length in the activity complementation assay. Our results suggests an intermolecular interaction between heme and FMN parts from different CinA-CinC fusion protein similar to proposed mechanisms for P450 BM3 on the other hand, linker length plays a crucial influence on the activity of the fusion constructs. However, complementation assays show that inactive constructs with shorter linker lengths have functional subunits, and that the lack of activity might be due to incorrect interaction between fused enzymes.
Collapse
Affiliation(s)
- Ketaki D Belsare
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen, D-52074, Germany
- University of California at San Francisco, 555 Mission Bay Blvd South, San Francisco, 94158, CA, USA
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen, D-52074, Germany
| | - Ronny Martinez
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen, D-52074, Germany
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, 1720010, Chile
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen, D-52074, Germany
- DWI - Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen, D-52074, Germany
| |
Collapse
|
48
|
Kumar G, Mukherjee S, Kumar S, Patnaik R. Rapid Determination of Nitrate in Brain Regions and Cerebrospinal Fluid of Transient Bilateral Common Carotid Artery Occlusion Rat Model by HPLC–UV. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA SECTION A: PHYSICAL SCIENCES 2021; 91:361-368. [DOI: 10.1007/s40010-020-00666-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
|
49
|
Mustapha S, Mohammed M, Azemi AK, Yunusa I, Shehu A, Mustapha L, Wada Y, Ahmad MH, Ahmad WANW, Rasool AHG, Mokhtar SS. Potential Roles of Endoplasmic Reticulum Stress and Cellular Proteins Implicated in Diabesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8830880. [PMID: 33995826 PMCID: PMC8099518 DOI: 10.1155/2021/8830880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER stress, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sagir Mustapha
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Pulau Pinang, Malaysia
- Department of Clinical Pharmacy and Pharmacy Practice, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Ahmad Khusairi Azemi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Ismaeel Yunusa
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, College of Pharmacy, Columbia, SC, USA
| | - Aishatu Shehu
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Lukman Mustapha
- Department of Pharmaceutical and Medicinal Chemistry, Kaduna State University, Kaduna, Nigeria
| | - Yusuf Wada
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Mubarak Hussaini Ahmad
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
- School of Pharmacy Technician, Aminu Dabo College of Health Sciences and Technology, Kano, Nigeria
| | - Wan Amir Nizam Wan Ahmad
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
50
|
mTOR Attenuation with Rapamycin Reverses Neurovascular Uncoupling and Memory Deficits in Mice Modeling Alzheimer's Disease. J Neurosci 2021; 41:4305-4320. [PMID: 33888602 DOI: 10.1523/jneurosci.2144-20.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Vascular dysfunction is a universal feature of aging and decreased cerebral blood flow has been identified as an early event in the pathogenesis of Alzheimer's disease (AD). Cerebrovascular dysfunction in AD includes deficits in neurovascular coupling (NVC), a mechanism that ensures rapid delivery of energy substrates to active neurons through the blood supply. The mechanisms underlying NVC impairment in AD, however, are not well understood. We have previously shown that mechanistic/mammalian target of rapamycin (mTOR) drives cerebrovascular dysfunction in models of AD by reducing the activity of endothelial nitric oxide synthase (eNOS), and that attenuation of mTOR activity with rapamycin is sufficient to restore eNOS-dependent cerebrovascular function. Here we show mTOR drives NVC impairments in an AD model through the inhibition of neuronal NOS (nNOS)- and non-NOS-dependent components of NVC, and that mTOR attenuation with rapamycin is sufficient to restore NVC and even enhance it above WT responses. Restoration of NVC and concomitant reduction of cortical amyloid-β levels effectively treated memory deficits in 12-month-old hAPP(J20) mice. These data indicate that mTOR is a critical driver of NVC dysfunction and underlies cognitive impairment in an AD model. Together with our previous findings, the present studies suggest that mTOR promotes cerebrovascular dysfunction in AD, which is associated with early disruption of nNOS activation, through its broad negative impact on nNOS as well as on non-NOS components of NVC. Our studies highlight the potential of mTOR attenuation as an efficacious treatment for AD and potentially other neurologic diseases of aging.SIGNIFICANCE STATEMENT Failure of the blood flow response to neuronal activation [neurovascular coupling (NVC)] in a model of AD precedes the onset of AD-like cognitive symptoms and is driven, to a large extent, by mammalian/mechanistic target of rapamycin (mTOR)-dependent inhibition of nitric oxide synthase activity. Our studies show that mTOR also drives AD-like failure of non-nitric oxide (NO)-mediated components of NVC. Thus, mTOR attenuation may serve to treat AD, where we find that neuronal NO synthase is profoundly reduced early in disease progression, and potentially other neurologic diseases of aging with cerebrovascular dysfunction as part of their etiology.
Collapse
|