1
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
2
|
Stewart AK, Chebib FT, Akbar SW, Salas MJ, Sonik RA, Shmukler BE, Alper SL. Interactions of mouse glycophorin A with the dRTA-related mutant G719D of the mouse Cl-/HCO3- exchanger Ae1. Biochem Cell Biol 2011; 89:224-35. [PMID: 21455273 DOI: 10.1139/o10-147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The AE1 mutation G701D, associated with recessive distal renal tubular acidosis (dRTA), produces only minimal erythroid phenotype, reflecting erythroid-specific expression of stimulatory AE1 subunit glycophorin A (GPA). GPA transgene expression could theoretically treat recessive dRTA in patients and in mice expressing cognate Ae1 mutation G719D. However, human (h) GPA and mouse (m) Gpa amino acid sequences are widely divergent, and mGpa function in vitro has not been investigated. We therefore studied in Xenopus oocytes the effects of coexpressed mGpa and hGPA on anion transport by erythroid (e) and kidney (k) isoforms of wild-type mAe1 (meAe1, mkAe1) and of mAe1 mutant G719D. Coexpression of hGPA or mGpa enhanced the function of meAe1 and mkAe1 and rescued the nonfunctional meAe1 and mkAe1 G719D mutants through increased surface expression. Progressive N-terminal truncation studies revealed a role for meAe1 amino acids 22-28 in GPA-responsiveness of meAe1 G719D. MouseN-cyto/humanTMD and humanN-cyto/mouseTMD kAE1 chimeras were active and GPA-responsive. In contrast, whereas chimera mkAe1N-cyto/hkAE1 G701DTMD was GPA-responsive, chimera hkAE1N-cyto/mkAe1 G719DTMD was GPA-insensitive. Moreover, whereas the isolated transmembrane domain (TMD) of hAE1 G701D was GPA-responsive, that of mAe1 G719D was GPA-insensitive. Thus, mGpa increases surface expression and activity of meAe1 and mkAe1. However, the G719D mutation renders certain mAe1 mutant constructs GPA-unresponsive and highlights a role for erythroid-specific meAe1 amino acids 22-28 in GPA-responsiveness.
Collapse
Affiliation(s)
- Andrew K Stewart
- Renal and Molecular Vascular Medicine Divisions, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Johnson DE, Casey JR. Cytosolic H+ microdomain developed around AE1 during AE1-mediated Cl-/HCO3- exchange. J Physiol 2011; 589:1551-69. [PMID: 21300752 DOI: 10.1113/jphysiol.2010.201483] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Microdomains, regions of discontinuous cytosolic solute concentration enhanced by rapid solute transport and slow diffusion rates, have many cellular roles. pH-regulatory membrane transporters, like the Cl−/HCO3− exchanger AE1, could develop H+ microdomains since AE1 has a rapid transport rate and cytosolic H+ diffusion is slow. We examined whether the pH environment surrounding AE1 differs from other cellular locations. As AE1 drives Cl−/HCO3− exchange, differences in pH, near and remote from AE1, were monitored by confocal microscopy using two pH-sensitive fluorescent proteins: deGFP4 (GFP) and mNectarine (mNect). Plasma membrane (PM) pH (defined as ∼1 μm region around the cell periphery) was monitored by GFP fused to AE1 (GFP.AE1), and mNect fused to an inactive mutant of the Na+-coupled nucleoside co-transporter, hCNT3 (mNect.hCNT3). GFP.AE1 to mNect.hCNT3 distance was varied by co-expression of different amounts of the two proteins in HEK293 cells. As the GFP.AE1–mNect.hCNT3 distance increased, mNect.hCNT3 detected the Cl−/HCO3− exchange-associated cytosolic pH change with a time delay and reduced rate of pH change compared to GFP.AE1. We found that a H+ microdomain 0.3 μm in diameter forms around GFP.AE1 during physiological HCO3− transport. Carbonic anhydrase isoform II inhibition prevented H+ microdomain formation. We also measured the rate of H+ movement from PM GFP.AE1 to endoplasmic reticulum (ER), using mNect fused to the cytosolic face of ER-resident calnexin (CNX.mNect). The rate of H+ diffusion through cytosol was 60-fold faster than along the cytosolic surface of the plasma membrane. The pH environment surrounding pH regulatory transport proteins may differ as a result of H+ microdomain formation, which will affect nearby pH-sensitive processes.
Collapse
Affiliation(s)
- Danielle E Johnson
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
4
|
Alper SL, Stewart AK, Vandorpe DH, Clark JS, Horack RZ, Simpson JE, Walker NM, Clarke LL. Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange. Am J Physiol Cell Physiol 2010; 300:C276-86. [PMID: 21068358 DOI: 10.1152/ajpcell.00366.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recent proposal that Dra/Slc26a3 mediates electrogenic 2Cl(-)/1HCO(3)(-) exchange suggests a required revision of classical concepts of electroneutral Cl(-) transport across epithelia such as the intestine. We investigated 1) the effect of endogenous Dra Cl(-)/HCO(3)(-) activity on apical membrane potential (V(a)) of the cecal surface epithelium using wild-type (WT) and knockout (KO) mice; and 2) the electrical properties of Cl(-)/(OH(-))HCO(3)(-) exchange by mouse and human orthologs of Dra expressed in Xenopus oocytes. Ex vivo (36)Cl(-) fluxes and microfluorometry revealed that cecal Cl(-)/HCO(3)(-) exchange was abolished in the Dra KO without concordant changes in short-circuit current. In microelectrode studies, baseline V(a) of Dra KO surface epithelium was slightly hyperpolarized relative to WT but depolarized to the same extent as WT during luminal Cl(-) substitution. Subsequent studies indicated that Cl(-)-dependent V(a) depolarization requires the anion channel Cftr. Oocyte studies demonstrated that Dra-mediated exchange of intracellular Cl(-) for extracellular HCO(3)(-) is accompanied by slow hyperpolarization and a modest outward current, but that the steady-state current-voltage relationship is unaffected by Cl(-) removal or pharmacological blockade. Further, Dra-dependent (36)Cl(-) efflux was voltage-insensitive in oocytes coexpressing the cation channels ENaC or ROMK. We conclude that 1) endogenous Dra and recombinant human/mouse Dra orthologs do not exhibit electrogenic 2Cl(-)/1HCO(3)(-) exchange; and 2) acute induction of Dra Cl(-)/HCO(3)(-) exchange is associated with secondary membrane potential changes representing homeostatic responses. Thus, participation of Dra in coupled NaCl absorption and in uncoupled HCO(3)(-) secretion remains compatible with electroneutrality of these processes, and with the utility of electroneutral transport models for predicting epithelial responses in health and disease.
Collapse
Affiliation(s)
- Seth L Alper
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Stewart AK, Kurschat CE, Alper SL. Role of nonconserved charged residues of the AE2 transmembrane domain in regulation of anion exchange by pH. Pflugers Arch 2007; 454:373-84. [PMID: 17492309 DOI: 10.1007/s00424-007-0220-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/15/2007] [Accepted: 01/22/2007] [Indexed: 11/29/2022]
Abstract
The ubiquitous AE2/SLC4A2 anion exchanger is acutely and independently regulated by intracellular (pH(i)) and extracellular pH (pH(o)), whereas the closely related AE1/SLC4A1 of the red cell and renal intercalated cell is relatively pH-insensitive. We have investigated the contribution of nonconserved charged residues within the C-terminal transmembrane domain (TMD) of AE2 to regulation by pH through mutation to the corresponding AE1 residues. AE2-mediated Cl(-)/Cl(-) exchange was measured as 4,4'-di-isothiocyanatostilbene-2,2'-disulfonic acid-sensitive (36)Cl(-) efflux from Xenopus oocytes by varying pH(i) at constant pH(o), and by varying pH(o) at near-constant pH(i). All mutations of nonconserved charged residues of the AE2 TMD yielded functional protein, but mutations of some conserved charged residues (R789E, R1056A, R1134C) reduced or abolished function. Individual mutation of AE2 TMD residues R921, F922, P1077, and R1107 exhibited reduced pH(i) sensitivity compared to wt AE2, whereas TMD mutants K1153R, R1155K, R1202L displayed enhanced sensitivity to acidic pH(i). In addition, pH(o) sensitivity was significantly acid- shifted when nonconserved AE2 TMD residues E981, K982, and D1075 were individually converted to the corresponding AE1 residues. These results demonstrate that multiple conserved charged residues are important for basal transport function of AE2 and that certain nonconserved charged residues of the AE2 TMD are essential for wild-type regulation of anion exchange by pH(i) and pH(o).
Collapse
Affiliation(s)
- A K Stewart
- Molecular and Vascular Medicine Unit and Renal Unit, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
6
|
Kurschat CE, Shmukler BE, Jiang L, Wilhelm S, Kim EH, Chernova MN, Kinne RKH, Stewart AK, Alper SL. Alkaline-shifted pH Sensitivity of AE2c1-mediated Anion Exchange Reveals Novel Regulatory Determinants in the AE2 N-terminal Cytoplasmic Domain. J Biol Chem 2006; 281:1885-96. [PMID: 16286476 DOI: 10.1074/jbc.m509734200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse anion exchanger AE2/SLC4A2 Cl(-)/HCO(-)(3) exchanger is essential to post-weaning life. AE2 polypeptides regulate pH(i), chloride concentration, cell volume, and transepithelial ion transport in many tissues. Although the AE2a isoform has been extensively studied, the function and regulation of the other AE2 N-terminal variant mRNAs of mouse (AE2b1, AE2b2, AE2c1, and AE2c2) have not been examined. We now present an extended analysis of AE2 variant mRNA tissue distribution and function. We show in Xenopus oocytes that all AE2 variant polypeptides except AE2c2 mediated Cl(-) transport are subject to inhibition by acidic pH(i) and to activation by hypertonicity and NH(+)(4). However, AE2c1 differs from AE2a, AE2b1, and AE2b2 in its alkaline-shifted pH(o)((50)) (7.70 +/- 0.11 versus 6.80 +/- 0.05), suggesting the presence of a novel AE2a pH-sensitive regulatory site between amino acids 99 and 198. Initial N-terminal deletion mutagenesis restricted this site to the region between amino acids 120 and 150. Further analysis identified AE2a residues 127-129, 130-134, and 145-149 as jointly responsible for the difference in pH(o)((50)) between AE2c1 and the longer AE2a, AE2b1, and AE2b2 polypeptides. Thus, AE2c1 exhibits a unique pH(o) sensitivity among the murine AE2 variant polypeptides, in addition to a unique tissue distribution. Physiological coexpression of AE2c1 with other AE2 variant polypeptides in the same cell should extend the range over which changing pH(o) can regulate AE2 transport activity.
Collapse
Affiliation(s)
- Christine E Kurschat
- Molecular and Vascular Medicine and Renal Units, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Stewart AK, Kerr N, Chernova MN, Alper SL, Vaughan-Jones RD. Acute pH-dependent Regulation of AE2-mediated Anion Exchange Involves Discrete Local Surfaces of the NH2-terminal Cytoplasmic Domain. J Biol Chem 2004; 279:52664-76. [PMID: 15452108 DOI: 10.1074/jbc.m408108200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously defined in the NH2-terminal cytoplasmic domain of the mouse AE2/SLC4A2 anion exchanger a critical role for the highly conserved amino acids (aa) 336-347 in determining wild-type pH sensitivity of anion transport. We have now engineered hexa-Ala ((A)6) and individual amino acid substitutions to investigate the importance to pH-dependent regulation of AE2 activity of the larger surrounding region of aa 312-578. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive 36Cl- efflux from AE2-expressing Xenopus oocytes was monitored during changes in pHi or pHo in HEPES-buffered and in 5% CO2/HCO3- -buffered conditions. Wild-type AE2-mediated 36Cl- efflux was profoundly inhibited at low pHo, with a pHo(50) value = 6.75 +/- 0.05 and was stimulated up to 10-fold by intracellular alkalinization. Individual mutation of several amino acid residues at non-contiguous sites preceding or following the conserved sequence aa 336-347 attenuated pHi and/or pHo sensitivity of 36Cl- efflux. The largest attenuation of pH sensitivity occurred with the AE2 mutant (A)6357-362. This effect was phenocopied by AE2 H360E, suggesting a crucial role for His360. Homology modeling of the three-dimensional structure of the AE2 NH2-terminal cytoplasmic domain (based on the structure of the corresponding region of human AE1) predicts that those residues shown by mutagenesis to be functionally important define at least one localized surface region necessary for regulation of AE2 activity by pH.
Collapse
Affiliation(s)
- Andrew K Stewart
- Burdon Sanderson Cardiac Science Centre, University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Dahl NK, Jiang L, Chernova MN, Stuart-Tilley AK, Shmukler BE, Alper SL. Deficient HCO3- transport in an AE1 mutant with normal Cl- transport can be rescued by carbonic anhydrase II presented on an adjacent AE1 protomer. J Biol Chem 2003; 278:44949-58. [PMID: 12933803 DOI: 10.1074/jbc.m308660200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cl-/HCO3- exchange activity mediated by the AE1 anion exchanger is reduced by carbonic anhydrase II (CA2) inhibition or by prevention of CA2 binding to the AE1 C-terminal cytoplasmic tail. This type of AE1 inhibition is thought to represent reduced metabolic channeling of HCO3- to the intracellular HCO3- binding site of AE1. To test the hypothesis that CA2 binding might itself allosterically activate AE1 in Xenopus oocytes, we compared Cl-/Cl- and Cl-/HCO3- exchange activities of AE1 polypeptides with truncation and missense mutations in the C-terminal tail. The distal renal tubular acidosis-associated AE1 901X mutant exhibited both Cl-/Cl- and Cl-/HCO3- exchange activities. In contrast, AE1 896X, 891X, and AE1 missense mutants in the CA2 binding site were inactive as Cl-/HCO3- exchangers despite exhibiting normal Cl-/Cl- exchange activities. Co-expression of CA2 enhanced wild-type AE1-mediated Cl-/HCO3- exchange, but not Cl-/Cl- exchange. CA2 co-expression could not rescue Cl-/HCO3- exchange activity in AE1 mutants selectively impaired in Cl-/HCO3- exchange. However, co-expression of transport-incompetent AE1 mutants with intact CA2 binding sites completely rescued Cl-/HCO3- exchange by an AE1 missense mutant devoid of CA2 binding, with activity further enhanced by CA2 co-expression. The same transport-incompetent AE1 mutants failed to rescue Cl-/HCO3- exchange by the AE1 truncation mutant 896X, despite preservation of the latter's core CA2 binding site. These data increase the minimal extent of a functionally defined CA2 binding site in AE1. The inter-protomeric rescue of HCO3- transport within the AE1 dimer shows functional proximity of the C-terminal cytoplasmic tail of one protomer to the anion translocation pathway in the adjacent protomer within the AE1 heterodimer. The data strongly support the hypothesis that an intact transbilayer anion translocation pathway is completely contained within an AE1 monomer.
Collapse
Affiliation(s)
- Neera K Dahl
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
9
|
Cordat E, Li J, Reithmeier RAF. Carboxyl-terminal truncations of human anion exchanger impair its trafficking to the plasma membrane. Traffic 2003; 4:642-51. [PMID: 12911818 DOI: 10.1034/j.1600-0854.2003.00123.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human anion exchanger AE1 (Band 3) is an abundant glycoprotein localized in plasma membrane of red cells and is responsible for the electro-neutral exchange of chloride for bicarbonate. In order to determine the role of the carboxyl-terminal tail of AE1 in its expression, function and trafficking to the plasma membrane, we generated a series of five constructs encoding truncation mutants missing the last 5 (Delta5), 11 (Delta11), 15 (Delta15), 20 (Delta20) or 35 (Delta35) amino-acids. In transiently transfected HEK 293 cells, immunoblotting of whole cell extracts showed that all the proteins were expressed at the same level as full-length AE1, except Delta20 and particularly Delta35, which showed a reduced expression. Furthermore, the last 15 amino-acids were not required for AE1 folding in the membrane, since Delta5, Delta11 and Delta15 were able to bind to an inhibitor affinity matrix, while Delta20 and Delta35 exhibited poor binding. Immunofluorescence and deglycosylation results showed that Delta15 and Delta11 were retained intracellularly, whereas a lower amount of Delta5 compared with WT trafficked to the plasma membrane. These results indicate that an intact C-terminal tail of human AE1 is important for efficient AE1 trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Emmanuelle Cordat
- Departments of Biochemistry and Medicine, CIHR Group in Membrane Biology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
10
|
Quilty JA, Cordat E, Reithmeier RAF. Impaired trafficking of human kidney anion exchanger (kAE1) caused by hetero-oligomer formation with a truncated mutant associated with distal renal tubular acidosis. Biochem J 2002; 368:895-903. [PMID: 12227829 PMCID: PMC1223038 DOI: 10.1042/bj20020574] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2002] [Revised: 08/06/2002] [Accepted: 09/13/2002] [Indexed: 11/17/2022]
Abstract
Autosomal dominant distal renal tubular acidosis (dRTA) has been associated with several mutations in the anion exchanger AE1 gene. The effect of an 11-amino-acid C-terminal dRTA truncation mutation (901 stop) on the expression of kidney AE1 (kAE1) and erythroid AE1 was examined in transiently transfected HEK-293 cells. Unlike the wild-type proteins, kAE1 901 stop and AE1 901 stop mutants exhibited impaired trafficking from the endoplasmic reticulum to the plasma membrane as determined by immunolocalization, cell-surface biotinylation, oligosaccharide processing and pulse-chase experiments. The 901 stop mutants were able to bind to an inhibitor affinity resin, suggesting that these mutant membrane proteins were not grossly misfolded. Co-expression of wild-type and mutant kAE1 or AE1 resulted in intracellular retention of the wild-type proteins in a pre-medial Golgi compartment. This dominant negative effect was due to hetero-oligomer formation of the mutant and wild-type proteins. Intracellular retention of kAE1 in the alpha-intercalated cells of the kidney would account for the impaired acid secretion into the urine characteristic of dRTA.
Collapse
Affiliation(s)
- Janne A Quilty
- Department of Biochemistry, Room 5205, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
11
|
Stewart AK, Chernova MN, Shmukler BE, Wilhelm S, Alper SL. Regulation of AE2-mediated Cl- transport by intracellular or by extracellular pH requires highly conserved amino acid residues of the AE2 NH2-terminal cytoplasmic domain. J Gen Physiol 2002; 120:707-22. [PMID: 12407081 PMCID: PMC2229549 DOI: 10.1085/jgp.20028641] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We reported recently that regulation by intracellular pH (pH(i)) of the murine Cl-/HCO(3)(-) exchanger AE2 requires amino acid residues 310-347 of the polypeptide's NH(2)-terminal cytoplasmic domain. We have now identified individual amino acid residues within this region whose integrity is required for regulation of AE2 by pH. 36Cl- efflux from AE2-expressing Xenopus oocytes was monitored during variation of extracellular pH (pH(o)) with unclamped or clamped pH(i), or during variation of pH(i) at constant pH(o). Wild-type AE2-mediated 36Cl- efflux was profoundly inhibited by acid pH(o), with a value of pH(o50) = 6.87 +/- 0.05, and was stimulated up to 10-fold by the intracellular alkalinization produced by bath removal of the preequilibrated weak acid, butyrate. Systematic hexa-alanine [(A)6]bloc substitutions between aa 312-347 identified the greatest acid shift in pH(o(50)) value, approximately 0.8 pH units in the mutant (A)6 342-347, but only a modest acid-shift in the mutant (A)6 336-341. Two of the six (A)6 mutants retained normal pH(i) sensitivity of 36Cl- efflux, whereas the (A)6 mutants 318-323, 336-341, and 342-347 were not stimulated by intracellular alkalinization. We further evaluated the highly conserved region between aa 336-347 by alanine scan and other mutagenesis of single residues. Significant changes in AE2 sensitivity to pH(o) and to pH(i) were found independently and in concert. The E346A mutation acid-shifted the pH(o(0) value to the same extent whether pH(i) was unclamped or held constant during variation of pH(o). Alanine substitution of the corresponding glutamate residues in the cytoplasmic domains of related AE anion exchanger polypeptides confirmed the general importance of these residues in regulation of anion exchange by pH. Conserved, individual amino acid residues of the AE2 cytoplasmic domain contribute to independent regulation of anion exchange activity by pH(o) as well as pH(i).
Collapse
Affiliation(s)
- A K Stewart
- Department of Medicine, Harvard Medical School, Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Genetic disorders of acid-base transporters involve plasmalemmal and organellar transporters of H(+), HCO3(-), and Cl(-). Autosomal-dominant and -recessive forms of distal renal tubular acidosis (dRTA) are caused by mutations in ion transporters of the acid-secreting Type A intercalated cell of the renal collecting duct. These include the AE1 Cl(-)/HCO3(-) exchanger of the basolateral membrane and at least two subunits of the apical membrane vacuolar (v)H(+)-ATPase, the V1 subunit B1 (associated with deafness) and the V0 subunit a4. Recessive proximal RTA with ocular disease arises from mutations in the electrogenic Na(+)-bicarbonate cotransporter NBC1 of the proximal tubular cell basolateral membrane. Recessive mixed proximal-distal RTA accompanied by osteopetrosis and mental retardation is associated with mutations in cytoplasmic carbonic anhydrase II. The metabolic alkalosis of congenital chloride-losing diarrhea is caused by mutations in the DRA Cl(-)/HCO3(-) exchanger of the ileocolonic apical membrane. Recessive osteopetrosis is caused by deficient osteoclast acid secretion across the ruffled border lacunar membrane, the result of mutations in the vH(+)-ATPase V0 subunit or in the CLC-7 Cl(-) channel. X-linked nephrolithiasis and engineered deficiencies in some other CLC Cl(-) channels are thought to represent defects of organellar acidification. Study of acid-base transport disease-associated mutations should enhance our understanding of protein structure-function relationships and their impact on the physiology of cell, tissue, and organism.
Collapse
Affiliation(s)
- Seth L Alper
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center, Department of Medicine and Cell Biology, Harvard Medical School Boston, Massachusetts 02215, USA.
| |
Collapse
|
13
|
Casula S, Shmukler BE, Wilhelm S, Stuart-Tilley AK, Su W, Chernova MN, Brugnara C, Alper SL. A dominant negative mutant of the KCC1 K-Cl cotransporter: both N- and C-terminal cytoplasmic domains are required for K-Cl cotransport activity. J Biol Chem 2001; 276:41870-8. [PMID: 11551954 DOI: 10.1074/jbc.m107155200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
K-Cl cotransport regulates cell volume and chloride equilibrium potential. Inhibition of erythroid K-Cl cotransport has emerged as an important adjunct strategy for the treatment of sickle cell anemia. However, structure-function relationships among the polypeptide products of the four K-Cl cotransporter (KCC) genes are little understood. We have investigated the importance of the N- and C-terminal cytoplasmic domains of mouse KCC1 to its K-Cl cotransport function expressed in Xenopus oocytes. Truncation of as few as eight C-terminal amino acids (aa) abolished function despite continued polypeptide accumulation and surface expression. These C-terminal loss-of-function mutants lacked a dominant negative phenotype. Truncation of the N-terminal 46 aa diminished function. Removal of 89 or 117 aa (Delta(N)117) abolished function despite continued polypeptide accumulation and surface expression and exhibited dominant negative phenotypes that required the presence of the C-terminal cytoplasmic domain. The dominant negative loss-of-function mutant Delta(N)117 was co-immunoprecipitated with wild type KCC1 polypeptide, and its co-expression did not reduce wild type KCC1 at the oocyte surface. Delta(N)117 also exhibited dominant negative inhibition of human KCC1 and KCC3 and, with lower potency, mouse KCC4 and rat KCC2.
Collapse
Affiliation(s)
- S Casula
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A 2001; 98:4221-6. [PMID: 11274445 PMCID: PMC31206 DOI: 10.1073/pnas.071516798] [Citation(s) in RCA: 404] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Indexed: 11/18/2022] Open
Abstract
Pendrin is an anion transporter encoded by the PDS/Pds gene. In humans, mutations in PDS cause the genetic disorder Pendred syndrome, which is associated with deafness and goiter. Previous studies have shown that this gene has a relatively restricted pattern of expression, with PDS/Pds mRNA detected only in the thyroid, inner ear, and kidney. The present study examined the distribution and function of pendrin in the mammalian kidney. Immunolocalization studies were performed using anti-pendrin polyclonal and monoclonal antibodies. Labeling was detected on the apical surface of a subpopulation of cells within the cortical collecting ducts (CCDs) that also express the H(+)-ATPase but not aquaporin-2, indicating that pendrin is present in intercalated cells of the CCD. Furthermore, pendrin was detected exclusively within the subpopulation of intercalated cells that express the H(+)-ATPase but not the anion exchanger 1 (AE1) and that are thought to mediate bicarbonate secretion. The same distribution of pendrin was observed in mouse, rat, and human kidney. However, pendrin was not detected in kidneys from a Pds-knockout mouse. Perfused CCD tubules isolated from alkali-loaded wild-type mice secreted bicarbonate, whereas tubules from alkali-loaded Pds-knockout mice failed to secrete bicarbonate. Together, these studies indicate that pendrin is an apical anion transporter in intercalated cells of CCDs and has an essential role in renal bicarbonate secretion.
Collapse
Affiliation(s)
- I E Royaux
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The past few years have witnessed great progress in elucidating the molecular basis of inherited renal tubular acidosis. Consistent with the physiologically defined importance of multiple gene products in urinary acidification, heritable renal tubular acidosis is genetically heterogeneous. Autosomal dominant distal renal tubular acidosis has been associated with a small number of mutations in the AE1 Cl-/HCO3- exchanger although the pathophysiologic mechanisms behind these mutations remain unclear. Rarely, autosomal recessive distal RTA is caused by homozygosity or compound heterozygosity for the loss-of-function mutation AE1 G701D. A larger proportion, often accompanied by hearing loss, is associated with mutations in the ATP6B1 gene encoding the 58 kDa B1 subunit of the vacuolar H+-ATPase. Mutations in the gene encoding the Na+/HCO3- cotransporter, NBC1, have recently been identified in proximal renal tubular acidosis with corneal calcification.
Collapse
Affiliation(s)
- C Shayakul
- Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
16
|
Dhermy D, Burnier O, Bourgeois M, Grandchamp B. The red blood cell band 3 variant (band 3Biceêtrel:R490C) associated with dominant hereditary spherocytosis causes defective membrane targeting of the molecule and a dominant negative effect. Mol Membr Biol 1999; 16:305-12. [PMID: 10766130 DOI: 10.1080/096876899294526] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hereditary spherocytosis (HS), a common human inherited haemolytic anaemia, is associated with partial deficiency of different erythrocyte membrane proteins. In a subset of dominant HS, a partial membrane expression deficiency of band 3, the erythrocyte anion exchanger (AE1), have previously been characterized, and several mutations in the band 3 gene have been found: amino acid substitutions at conserved positions in the membrane domain, nonsense and frameshift mutations. In HS patients bearing missense mutations, the mutated transcript was present, whereas only the normal transcript was found in HS patients with frameshift mutations. In the former group, the membrane expression deficiency of band 3 was significantly more important than that observed in the latter group of HS patients with frameshift mutations, suggesting that missense mutations may have a dominant negative effect. In the present study, transient and stable transfections of K562 and COS-7 cells were used to demonstrate, by immunoblots of cell lysates and immunofluorescence studies, that the band 3 membrane domain bearing the R490C mutation (band 3Bicetrel) is not targeted to the plasma membrane and is retained in the endoplasmic reticulum. Transient cotransfections of K562 cells with plasmid coding for the normal membrane domain of band 3, together with increasing amounts of plasmid coding for the mutated R490C membrane domain, demonstrated that the band 3 mutant polypeptide exerts a dominant negative effect on the plasma membrane targeting of the normal band 3.
Collapse
Affiliation(s)
- D Dhermy
- INSERM U409, Association Claude Bernard, Université Paris 7, Faculté X. Bichat, France.
| | | | | | | |
Collapse
|
17
|
Fujinaga J, Tang XB, Casey JR. Topology of the membrane domain of human erythrocyte anion exchange protein, AE1. J Biol Chem 1999; 274:6626-33. [PMID: 10037758 DOI: 10.1074/jbc.274.10.6626] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anion exchanger 1 (AE1) is the chloride/bicarbonate exchange protein of the erythrocyte membrane. By using a combination of introduced cysteine mutants and sulfhydryl-specific chemistry, we have mapped the topology of the human AE1 membrane domain. Twenty-seven single cysteines were introduced throughout the Leu708-Val911 region of human AE1, and these mutants were expressed by transient transfection of human embryonic kidney cells. On the basis of cysteine accessibility to membrane-permeant biotin maleimide and to membrane-impermeant lucifer yellow iodoacetamide, we have proposed a model for the topology of AE1 membrane domain. In this model, AE1 is composed of 13 typical transmembrane segments, and the Asp807-His834 region is membrane-embedded but does not have the usual alpha-helical conformation. To identify amino acids that are important for anion transport, we analyzed the anion exchange activity for all introduced cysteine mutants, using a whole cell fluorescence assay. We found that mutants G714C, S725C, and S731C have very low transport activity, implying that this region has a structurally and/or catalytically important role. We measured the residual anion transport activity after mutant treatment with the membrane-impermeant, cysteine-directed compound, sodium (2-sulfonatoethyl)methanethiosulfonate) (MTSES). Only two mutants, S852C and A858C, were inhibited by MTSES, indicating that these residues may be located in a pore-lining region.
Collapse
Affiliation(s)
- J Fujinaga
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
18
|
Timmer RT, Gunn RB. Inducible expression of erythrocyte band 3 protein. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C66-75. [PMID: 9886921 DOI: 10.1152/ajpcell.1999.276.1.c66] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A permanent cell line with inducible expression of the human anion exchanger protein 1 (hAE1) was constructed in a derivative of human embryonic kidney cells (HEK-293). In the absence of the inducer, muristerone A, the new cell line had no detectable hAE1 protein by Western analysis or additional 36Cl flux. Increasing dose and incubation time with muristerone A increased the amount of protein (both unglycosylated and glycosylated). The 4,4'-dinitrostilbene-2, 2'-disulfonate (DNDS)-inhibitable rapid Cl exchange flux was increased up to 40-fold in induced cells compared with noninduced cells. There was no DNDS-inhibitable rapid flux component in noninduced cells. This result demonstrates inducible expression of a new rapid Cl transport pathway that is DNDS sensitive. The additional transport of 36Cl and 35SO4 had the characteristics of hAE1-mediated transport in erythrocytes: 1) inhibition by 250 microM DNDS, 2) activation of 36Cl efflux by external Cl with a concentration producing half-maximal effect of 4.8 mM, 3) activation of 36Cl efflux by external anions that was selective in the order NO3 = Cl > Br > I, and 4) activation of 35SO4 influx by external protons. Under the assumption that the turnover numbers of hAE1 were the same as in erythrocytes, there was good agreement (+/-3-fold) between the number of copies of glycosylated hAE1 and the induced tracer fluxes. This is the first expression of hAE1 in a mammalian system to track the kinetic characteristics of the native protein.
Collapse
Affiliation(s)
- R T Timmer
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322-3110, USA
| | | |
Collapse
|
19
|
Eladari D, Blanchard A, Leviel F, Paillard M, Stuart-Tilley AK, Alper SL, Podevin RA. Functional and molecular characterization of luminal and basolateral Cl-/HCO-3 exchangers of rat thick limbs. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F334-42. [PMID: 9729505 DOI: 10.1152/ajprenal.1998.275.3.f334] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cl-/HCO-3 exchange was measured in luminal (LMV) and basolateral (BLMV) membrane vesicles purified from rat medullary thick ascending limb (MTAL). Cl-/HCO-3 exchange in BLMV and LMV was inhibited by DIDS, with respective IC50 values of 3.2 +/- 0.9 and 15.2 +/- 5.2 microM, whereas Cl- conductances were DIDS insensitive. At constant external pH, BLMV 36Cl-/HCO-3 and 36Cl-/Cl- exchanges exhibited a sigmoidal pattern of activation as internal pH (pHi) increased from 6.1 to 8.0, whereas LMV 36Cl-/Cl- exchange was unchanged between pHi 6.7 and 7.8. The 165-kDa AE2 polypeptide and approximately 115-kDa AE1-related polypeptide were present only in BLMV. In contrast, AE1-related polypeptides of approximately 90 and 95 kDa were present not only in BLMV but also (in variable abundance) in LMV. We conclude that rat MTAL BLMV and LMV express distinct anion exchange activities and distinct sets of AE polypeptides. AE2 (and perhaps AE1) in BLMV likely contribute to HCO-3 absorption. In contrast, LMV exchangers may contribute to NaCl absorption via parallel coupling with the luminal Na+/H+ antiporters and/or may provide negative feedback regulation of HCO-3 absorption.
Collapse
Affiliation(s)
- D Eladari
- Laboratoire de Physiologie et Endocrinologie Cellulaire Rénale, Faculté de Médecine Broussais-Hôtel Dieu, Institut National de la Santé et de la Recherche Médicale, Unité 356, Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Vandorpe DH, Shmukler BE, Jiang L, Lim B, Maylie J, Adelman JP, de Franceschi L, Cappellini MD, Brugnara C, Alper SL. cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. J Biol Chem 1998; 273:21542-53. [PMID: 9705284 DOI: 10.1074/jbc.273.34.21542] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned from murine erythroleukemia (MEL) cells, thymus, and stomach the cDNA encoding the Ca2+-gated K+ (KCa) channel, mIK1, the mouse homolog of hIK1 (Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P., and Maylie, J. (1997) Proc. Natl. Acad. Sci.(U. S. A. 94, 11651-11656). mIK1 mRNA was detected at varied levels in many tissue types. mIK1 KCa channel activity expressed in Xenopus oocytes closely resembled the Kca of red cells (Gardos channel) and MEL cells in its single channel conductance, lack of voltage-sensitivity of activation, inward rectification, and Ca2+ concentration dependence. mIK1 also resembled the erythroid channel in its pharmacological properties, mediating whole cell and unitary currents sensitive to low nM concentrations of both clotrimazole (CLT) and its des-imidazolyl metabolite, 2-chlorophenyl-bisphenyl-methanol, and to low nM concentrations of iodocharybdotoxin. Whereas control oocytes subjected to hypotonic swelling remained swollen, mIK1 expression conferred on oocytes a novel, Ca2+-dependent, CLT-sensitive regulatory volume decrease response. Hypotonic swelling of voltage-clamped mIK1-expressing oocytes increased outward currents that were Ca2+-dependent, CLT-sensitive, and reversed near the K+ equilibrium potential. mIK1 mRNA levels in ES cells increased steadily during erythroid differentiation in culture, in contrast to other KCa mRNAs examined. Low nanomolar concentrations of CLT inhibited proliferation and erythroid differentiation of peripheral blood stem cells in liquid culture.
Collapse
Affiliation(s)
- D H Vandorpe
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alper SL, Stuart-Tilley AK, Biemesderfer D, Shmukler BE, Brown D. Immunolocalization of AE2 anion exchanger in rat kidney. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:F601-14. [PMID: 9362338 DOI: 10.1152/ajprenal.1997.273.4.f601] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cellular and subcellular localizations of the AE2 anion exchanger in rat kidney have remained elusive despite detection of moderately abundant AE2 mRNA and AE2 polypeptide in all kidney regions. In this report a simple epitope unmasking technique has allowed the immunolocalization of AE2 antigenic sites in basolateral membranes of several rat kidney tubular epithelial cells. AE2 immunostaining was faint or absent in the glomerulus and proximal tubule, present in descending and ascending thin limbs, and stronger in the medullary thick ascending limb (MTAL). A lower staining intensity was found in cortical thick ascending limbs and even less in the distal convoluted tubule. In contrast, there was an enhanced staining in the macula densa. In principal cells (PC) of the connecting segment, AE2 was undetectable but gradually increased in intensity along the collecting duct, with strongest staining in inner medullary collecting duct (IMCD) PC. A sodium dodecyl sulfate-sensitive AE2-related Golgi epitope was also detected in some interstitial and endothelial cells of the inner medulla and in epithelial cells of IMCD and MTAL. Colchicine treatment of the intact animal altered the distribution of this Golgi-associated epitope but left plasmalemmal AE2 undisturbed. Reverse transcription-polymerase chain reaction detected AE2a, AE2b, and AE2c2 but not AE2cl transcripts in rat kidney mRNA. The results suggest a widespread occurrence of the AE2 protein in several renal epithelial cell types.
Collapse
Affiliation(s)
- S L Alper
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|