1
|
Carlson AP, Davis HT, Jones T, Brennan KC, Torbey M, Ahmadian R, Qeadan F, Shuttleworth CW. Is the Human Touch Always Therapeutic? Patient Stimulation and Spreading Depolarization after Acute Neurological Injuries. Transl Stroke Res 2023; 14:160-173. [PMID: 35364802 PMCID: PMC9526760 DOI: 10.1007/s12975-022-01014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
Touch and other types of patient stimulation are necessary in critical care and generally presumed to be beneficial. Recent pre-clinical studies as well as randomized trials assessing early mobilization have challenged the safety of such routine practices in patients with acute neurological injury such as stroke. We sought to determine whether patient stimulation could result in spreading depolarization (SD), a dramatic pathophysiological event that likely contributes to metabolic stress and ischemic expansion in such patients. Patients undergoing surgical intervention for severe acute neurological injuries (stroke, aneurysm rupture, or trauma) were prospectively consented and enrolled in an observational study monitoring SD with implanted subdural electrodes. Subjects also underwent simultaneous video recordings (from continuous EEG monitoring) to assess for physical touch and other forms of patient stimulation (such as suctioning and positioning). The association of patient stimulation with subsequent SD was assessed. Increased frequency of patient stimulation was associated with increased risk of SD (OR = 4.39 [95%CI = 1.71-11.24]). The overall risk of SD was also increased in the 60 min following patient stimulation compared to times with no stimulation (OR = 1.19 [95%CI = 1.13-1.26]), though not all subjects demonstrated this effect individually. Positioning of the subject was the subtype of stimulation with the strongest overall effect on SD (OR = 4.92 [95%CI = 3.74-6.47]). We conclude that in patients with some acute neurological injuries, touch and other patient stimulation can induce SD (PS-SD), potentially increasing the risk of metabolic and ischemic stress. PS-SD may represent an underlying mechanism for observed increased risk of early mobilization in such patients.
Collapse
Affiliation(s)
- Andrew P Carlson
- Department of Neurosurgery, Neurosciences, and Neurology, University of New Mexico, NM, Albuquerque, USA.
| | - Herbert T Davis
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - K C Brennan
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Michel Torbey
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Rosstin Ahmadian
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Fares Qeadan
- Department of Public Health Sciences, Loyola University Chicago, Chicago, IL, USA
| | | |
Collapse
|
2
|
α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7450514. [PMID: 35391928 PMCID: PMC8983239 DOI: 10.1155/2022/7450514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
The research determined the role of α-lipoic acid (ALA) in reducing the brain manifestations of insulin resistance. The mechanism of ALA action is mainly based on its ability to “scavenge” oxygen free radicals and stimulate biosynthesis of reduced glutathione (GSH), considered the most critical brain antioxidant. Although the protective effect of ALA is widely documented in various diseases, there are still no studies assessing the influence of ALA on brain metabolism in the context of insulin resistance and type 2 diabetes. The experiment was conducted on male Wistar rats fed a high-fat diet for ten weeks with intragastric administration of ALA for four weeks. We are the first to demonstrate that ALA improves the function of enzymatic and nonenzymatic brain antioxidant systems, but the protective effects of ALA were mainly observed in the hypothalamus of insulin-resistant rats. Indeed, ALA caused a significant increase in superoxide dismutase, catalase, peroxidase, and glutathione reductase activities, as well as GSH concentration and redox potential ([GSH]2/[GSSG]) in the hypothalamus of HFD-fed rats. A consequence of antioxidant barrier enhancement by ALA is the reduction of oxidation, glycation, and nitration of brain proteins, lipids, and DNA. The protective effects of ALA result from hypothalamic activation of the transcription factor Nrf2 and inhibition of NF-κB. In the hypothalamus of insulin-resistant rats, we demonstrated reduced levels of oxidation (AOPP) and glycation (AGE) protein products, 4-hydroxynoneal, 8-isoprostanes, and 3-nitrotyrosine and, in the cerebral cortex, lower levels of 8-hydroxydeoxyguanosine and peroxynitrite. In addition, we demonstrated that ALA decreases levels of proinflammatory TNF-α but also increases the synthesis of anti-inflammatory IL-10 in the hypothalamus of insulin-resistant rats. ALA also prevents neuronal apoptosis, confirming its multidirectional effects within the brain. Interestingly, we have shown no correlation between brain and serum/plasma oxidative stress biomarkers, indicating the different nature of redox imbalance at the central and systemic levels. To summarize, ALA improves antioxidant balance and diminishes oxidative/glycative stress, protein nitrosative damage, inflammation, and apoptosis, mainly in the hypothalamus of insulin-resistant rats. Further studies are needed to determine the molecular mechanism of ALA action within the brain.
Collapse
|
3
|
Aizawa H, Sun W, Sugiyama K, Itou Y, Aida T, Cui W, Toyoda S, Terai H, Yanagisawa M, Tanaka K. Glial glutamate transporter GLT-1 determines susceptibility to spreading depression in the mouse cerebral cortex. Glia 2020; 68:2631-2642. [PMID: 32585762 DOI: 10.1002/glia.23874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
Cortical spreading depression (CSD) is a pathological neural excitation that underlies migraine pathophysiology. Since glutamate receptor antagonists impair CSD propagation, susceptibility to CSD might be determined by any of the neuronal (excitatory amino acid carrier 1 [EAAC1]) and glial (GLutamate ASpartate Transporter [GLAST] and glial glutamate transporter 1 [GLT-1]) glutamate transporters, which are responsible for clearing extracellular glutamate. To investigate this hypothesis, we performed electrophysiological, hemodynamic, and electrochemical analyses using EAAC1- (EAAC1 KO), GLAST- (GLAST KO), and conditional GLT1-1-knockout mice (GLT-1 cKO) to assess altered susceptibility to CSD. Despite the incomplete deletion of the gene in the cerebral cortex, GLT-1 cKO mice exhibited significant reduction of GLT-1 protein in the brain without apparent alteration of the cytoarchitecture in the cerebral cortex. Physiological analysis revealed that GLT-1 cKO showed enhanced susceptibility to CSD elicited by chemical stimulation with increased CSD frequency and velocity compared to GLT-1 control. In contrast, the germ-line EAAC1 and GLAST KOs showed no such effect. Intriguingly, both field potential and cerebral blood flow showed faster dynamics with narrower CSD than the controls. An enzyme-based biosensor revealed more rapid accumulation of glutamate in the extracellular space in GLT-1 cKO mice during the early phase of CSD than in GLT-1 control, resulting in an increased susceptibility to CSD. These results provided the first evidence for a novel role of GLT-1 in determining susceptibility to CSD.
Collapse
Affiliation(s)
- Hidenori Aizawa
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Weinan Sun
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaori Sugiyama
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukiko Itou
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wanpeng Cui
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Saori Toyoda
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruhi Terai
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michiko Yanagisawa
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Hartl E, Angel J, Rémi J, Schankin CJ, Noachtar S. Visual Auras in Epilepsy and Migraine - An Analysis of Clinical Characteristics. Headache 2017; 57:908-916. [DOI: 10.1111/head.13113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Elisabeth Hartl
- Department of Neurology, Epilepsy Center; University of Munich; Munich Germany
| | - Jose Angel
- Department of Neurology; University of Regensburg; Regensburg Germany
| | - Jan Rémi
- Department of Neurology, Epilepsy Center; University of Munich; Munich Germany
| | - Christoph J. Schankin
- Department of Neurology, Inselspital; Bern University Hospital, University of Bern; Switzerland
| | - Soheyl Noachtar
- Department of Neurology, Epilepsy Center; University of Munich; Munich Germany
| |
Collapse
|
5
|
Loewendorf AI, Matynia A, Saribekyan H, Gross N, Csete M, Harrington M. Roads Less Traveled: Sexual Dimorphism and Mast Cell Contributions to Migraine Pathology. Front Immunol 2016; 7:140. [PMID: 27148260 PMCID: PMC4836167 DOI: 10.3389/fimmu.2016.00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/31/2016] [Indexed: 12/30/2022] Open
Abstract
Migraine is a common, little understood, and debilitating disease. It is much more prominent in women than in men (~2/3 are women) but the reasons for female preponderance are not clear. Migraineurs frequently experience severe comorbidities, such as allergies, depression, irritable bowel syndrome, and others; many of the comorbidities are more common in females. Current treatments for migraine are not gender specific, and rarely are migraine and its comorbidities considered and treated by the same specialist. Thus, migraine treatments represent a huge unmet medical need, which will only be addressed with greater understanding of its underlying pathophysiology. We discuss the current knowledge about sex differences in migraine and its comorbidities, and focus on the potential role of mast cells (MCs) in both. Sex-based differences in pain recognition and drug responses, fluid balance, and the blood–brain barrier are recognized but their impact on migraine is not well studied. Furthermore, MCs are well recognized for their prominent role in allergies but much less is known about their contributions to pain pathways in general and migraine specifically. MC-neuron bidirectional communication uniquely positions these cells as potential initiators and/or perpetuators of pain. MCs can secrete nociceptor sensitizing and activating agents, such as serotonin, prostaglandins, histamine, and proteolytic enzymes that can also activate the pain-mediating transient receptor potential vanilloid channels. MCs express receptors for both estrogen and progesterone that induce degranulation upon binding. Furthermore, environmental estrogens, such as Bisphenol A, activate MCs in preclinical models but their impact on pain pathways or migraine is understudied. We hope that this discussion will encourage scientists and physicians alike to bridge the knowledge gaps linking sex, MCs, and migraine to develop better, more comprehensive treatments for migraine patients.
Collapse
Affiliation(s)
| | - Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Noah Gross
- Huntington Medical Research Institutes , Pasadena, CA , USA
| | - Marie Csete
- Huntington Medical Research Institutes , Pasadena, CA , USA
| | | |
Collapse
|
6
|
Cui Y, Toyoda H, Sako T, Onoe K, Hayashinaka E, Wada Y, Yokoyama C, Onoe H, Kataoka Y, Watanabe Y. A voxel-based analysis of brain activity in high-order trigeminal pathway in the rat induced by cortical spreading depression. Neuroimage 2015; 108:17-22. [DOI: 10.1016/j.neuroimage.2014.12.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/22/2014] [Accepted: 12/15/2014] [Indexed: 01/02/2023] Open
|
7
|
Fujita S, Mizoguchi N, Aoki R, Cui Y, Koshikawa N, Kobayashi M. Cytoarchitecture-Dependent Decrease in Propagation Velocity of Cortical Spreading Depression in the Rat Insular Cortex Revealed by Optical Imaging. Cereb Cortex 2015; 26:1580-1589. [PMID: 25595184 DOI: 10.1093/cercor/bhu336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cortical spreading depression (SD) is a self-propagating wave of depolarization accompanied by a substantial disturbance of the ionic distribution between the intra- and extracellular compartments. Glial cells, including astrocytes, play critical roles in maintenance of the extracellular environment, including ionic distribution. Therefore, SD propagation in the cerebral cortex may depend on the density of astrocytes. The present study aimed to examine the profile of SD propagation in the insular cortex (IC), which is located between the neocortex and paleocortex and is where the density of astrocytes gradually changes. The velocity of SD propagation in the neocortex, including the somatosensory, motor, and granular insular cortices (5.7 mm/min), was higher than that (2.8 mm/min) in the paleocortex (agranular insular and piriform cortices). Around thick vessels, including the middle cerebral artery, SD propagation was frequently delayed and sometimes disappeared. Immunohistological analysis of glial fibrillary acidic protein (GFAP) demonstrated the sparse distribution of astrocytes in the somatosensory cortex and the IC dorsal to the rhinal fissure, whereas the ventral IC showed a higher density of astrocytes. These results suggest that cortical cytoarchitectonic features, which possibly involve the distribution of astrocytes, are crucial for regulating the velocity of SD propagation in the cerebral cortex.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Naoko Mizoguchi
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Physiology, Department of Human Development and Fostering
| | - Ryuhei Aoki
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Yilong Cui
- Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Noriaki Koshikawa
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
8
|
Cui Y, Kataoka Y, Watanabe Y. Role of cortical spreading depression in the pathophysiology of migraine. Neurosci Bull 2014; 30:812-22. [PMID: 25260797 PMCID: PMC5562594 DOI: 10.1007/s12264-014-1471-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/21/2014] [Indexed: 10/24/2022] Open
Abstract
A migraine is a recurring neurological disorder characterized by unilateral, intense, and pulsatile headaches. In one-third of migraine patients, the attacks are preceded by a visual aura, such as a slowly-propagating scintillating scotoma. Migraine aura is thought to be a result of the neurovascular phenomenon of cortical spreading depression (SD), a self-propagating wave of depolarization that spreads across the cerebral cortex. Several animal experiments have demonstrated that cortical SD causes intracranial neurogenic inflammation around the meningeal blood vessels, such as plasma protein extravasation and pro-inflammatory peptide release. Cortical SD has also been reported to activate both peripheral and central trigeminal nociceptive pathways. Although several issues remain to be resolved, recent evidence suggests that cortical SD could be the initial trigger of intracranial neurogenic inflammation, which then contributes to migraine headaches via subsequent activation of trigeminal afferents.
Collapse
Affiliation(s)
- Yilong Cui
- Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan,
| | | | | |
Collapse
|
9
|
Fonteh AN, Pogoda JM, Chung R, Cowan RP, Harrington MG. Phospholipase C activity increases in cerebrospinal fluid from migraineurs in proportion to the number of comorbid conditions: a case-control study. J Headache Pain 2013; 14:60. [PMID: 23826990 PMCID: PMC3704687 DOI: 10.1186/1129-2377-14-60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/29/2013] [Indexed: 12/30/2022] Open
Abstract
Background Migraineurs are more often afflicted by comorbid conditions than those without primary headache disorders, though the linking pathophysiological mechanism(s) is not known. We previously reported that phosphatidylcholine-specific phospholipase C (PC-PLC) activity in cerebrospinal fluid (CSF) increased during migraine compared to the same individual’s well state. Here, we examined whether PC-PLC activity from a larger group of well-state migraineurs is related to the number of their migraine comorbidities. Methods In a case–control study, migraineurs were diagnosed using International Headache Society criteria, and controls had no primary headache disorder or family history of migraine. Medication use, migraine frequency, and physician-diagnosed comorbidities were recorded for all participants. Lumbar CSF was collected between the hours of 1 and 5 pm, examined immediately for cells and total protein, and stored at −80°C. PC-PLC activity in thawed CSF was measured using a fluorometric enzyme assay. Multivariable logistic regression was used to evaluate age, gender, medication use, migraine frequency, personality scores, and comorbidities as potential predictors of PC-PLC activity in CSF. Results A total of 18 migraineurs-without-aura and 17 controls participated. In a multivariable analysis, only the number of comorbidities was related to PC-PLC activity in CSF, and only in migraineurs [parameter estimate (standard error) = 1.77, p = 0.009]. Conclusion PC-PLC activity in CSF increases with increasing number of comorbidities in migraine-without-aura. These data support involvement of a common lipid signaling pathway in migraine and in the comorbid conditions.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 N El Molino Ave, Pasadena, CA 91101, USA.
| | | | | | | | | |
Collapse
|
10
|
Cui Y, Li QH, Yamada H, Watanabe Y, Kataoka Y. Chronic degeneration of dorsal raphe serotonergic neurons modulates cortical spreading depression: a possible pathophysiology of migraine. J Neurosci Res 2013; 91:737-44. [PMID: 23456883 DOI: 10.1002/jnr.23209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/12/2012] [Accepted: 12/28/2012] [Indexed: 11/12/2022]
Abstract
The vascular serotonergic system in the brain has been implicated in the pathophysiology of migraine, however, involvement of the serotonergic nervous system of the brain parenchyma in the pathophysiology remains unclear. To investigate whether the brain parenchymal serotonergic nervous system is involved in the etiology of migraine, we prepared an experimental model of migraine by generation of cortical spreading depression (SD), characterized by spreading of neuronal/glial membrane depolarization accompanied by temporal elevation of the cerebral blood flow (CBF) throughout the cerebral cortical hemisphere in rats, which underwent pharmacological treatment for degeneration of serotonergic neurons in the dorsal raphe nucleus. We show here that (1) significant degeneration of serotonergic neurons in the dorsal raphe nucleus and serotonergic fibers in the cerebral cortex was observed in treated rats, (2) spreading velocity of the CBF changes was significantly increased in these rats, and (3) calculated width of the depolarization wave was significantly extended in these rats. These results indicate that the dorsal raphe serotonergic neurons modulate cortical spreading depression and might be involved in migraine pathology via a similar mechanism.
Collapse
Affiliation(s)
- Yilong Cui
- Cellular Function Imaging Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan.
| | | | | | | | | |
Collapse
|
11
|
Cortical spreading depression shifts cell fate determination of progenitor cells in the adult cortex. J Cereb Blood Flow Metab 2012; 32:1879-87. [PMID: 22781335 PMCID: PMC3463886 DOI: 10.1038/jcbfm.2012.98] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cortical spreading depression (SD) is propagating neuronal and glial depolarization and is thought to underly the pathophysiology of migraine. We have reported that cortical SD facilitates the proliferative activity of NG2-containing progenitor cells (NG2 cells) that give rise to oligodendrocytes and immature neurons under the physiological conditions in the adult mammalian cortex. Astrocytes have an important role in the maintenance of neuronal functions and alleviate neuronal damage after intense neuronal excitation, including SD and seizures. We here investigated whether SD promotes astrocyte generation from NG2 cells following SD stimuli. Spreading depression was induced by epidural application of 1 mol/L KCl solution in adult rats. We investigated the cell fate of NG2 cells following SD-induced proliferation using 5'-bromodeoxyuridine labeling and immunohistochemical analysis. Newly generated astrocytes were observed only in the SD-stimulated cortex, but not in the contralateral cortex or in normal cortex. The astrocytes were generated from proliferating NG2 cells. Astrogenesis depended on the number of SD stimuli, and was accompanied by suppression of oligodendrogenesis. These observations indicate that the cell fate of NG2 cells was shifted from oligodendrocytes to astrocytes depending on SD stimuli, suggesting activity-dependent tissue remodeling for maintenance of brain functions.
Collapse
|
12
|
Borgens RB, Liu-Snyder P. Understanding secondary injury. QUARTERLY REVIEW OF BIOLOGY 2012; 87:89-127. [PMID: 22696939 DOI: 10.1086/665457] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Secondary injury is a term applied to the destructive and self-propagating biological changes in cells and tissues that lead to their dysfunction or death over hours to weeks after the initial insult (the "primary injury"). In most contexts, the initial injury is usually mechanical. The more destructive phase of secondary injury is, however, more responsible for cell death and functional deficits. This subject is described and reviewed differently in the literature. To biomedical researchers, systemic and tissue-level changes such as hemorrhage, edema, and ischemia usually define this subject. To cell and molecular biologists, "secondary injury" refers to a series of predominately molecular events and an increasingly restricted set of aberrant biochemical pathways and products. These biochemical and ionic changes are seen to lead to death of the initially compromised cells and "healthy" cells nearby through necrosis or apoptosis. This latter process is called "bystander damage." These viewpoints have largely dominated the recent literature, especially in studies of the central nervous system (CNS), often without attempts to place the molecular events in the context of progressive systemic and tissue-level changes. Here we provide a more comprehensive and inclusive discussion of this topic.
Collapse
Affiliation(s)
- Richard Ben Borgens
- Center for Paralysis Research, School of Veterinary Medicine, Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
13
|
Cui Y, Takashima T, Takashima-Hirano M, Wada Y, Shukuri M, Tamura Y, Doi H, Onoe H, Kataoka Y, Watanabe Y. 11C-PK11195 PET for the in vivo evaluation of neuroinflammation in the rat brain after cortical spreading depression. J Nucl Med 2009; 50:1904-11. [PMID: 19837755 DOI: 10.2967/jnumed.109.066498] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Neurogenic inflammation triggered by extravasation of plasma protein has been hypothesized as a key factor in the generation of the pain sensation associated with migraine. The principal immune cell that responds to this inflammation is the parenchymal microglia of the central nervous system. METHODS Using a PET technique with (11)C-(R)-[1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide] ((11)C-PK11195), a PET ligand for peripheral type-benzodiazepine receptor, we evaluated the microglial activation in the rat brain after generation of unilateral cortical spreading depression, a stimulation used to bring up an experimental animal model of migraine. RESULTS We found a significant increase in the brain uptake of (11)C-PK11195, which was completely displaceable by the excess amounts of unlabeled ligands, in the ipsilateral hemisphere of the spreading depression-generated rats. Moreover, the binding potential of (11)C-PK11195 in the spreading depression-generated rats was significantly higher than that in the sham-operated control rats. CONCLUSION These results suggest that as an inflammatory reaction, microglial cells are activated in response to the nociceptive stimuli induced by cortical spreading depression in the rat brain. Therefore, the (11)C-PK11195 PET technique could have a potential for diagnostic and therapeutic monitoring of neurologic disorders related to neuroinflammation such as migraine.
Collapse
Affiliation(s)
- Yilong Cui
- Cellular Function Imaging Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen S, Li P, Gong H, Luo W, Zeng S, Luo Q. Cortical spreading depression in rats. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2008; 27:29-35. [PMID: 18799387 DOI: 10.1109/memb.2008.929418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Shangbin Chen
- Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
15
|
Transcranial photo-inactivation of neural activities in the mouse auditory cortex. Neurosci Res 2008; 60:422-30. [DOI: 10.1016/j.neures.2007.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/11/2007] [Accepted: 12/25/2007] [Indexed: 11/19/2022]
|
16
|
Cui Y, Kataoka Y, Inui T, Mochizuki T, Onoe H, Matsumura K, Urade Y, Yamada H, Watanabe Y. Up-regulated neuronal COX-2 expression after cortical spreading depression is involved in non-REM sleep induction in rats. J Neurosci Res 2008; 86:929-36. [DOI: 10.1002/jnr.21531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Kataoka Y, Tamura Y, Cui Y, Yamada H. Neural Activity-Dependent Cellular Proliferation in the Rat Cerebral Cortex. Acta Histochem Cytochem 2005. [DOI: 10.1267/ahc.38.93] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yosky Kataoka
- Department of Anatomy and Cell Science, KMU 21C COE Project, Kansai Medical University
| | - Yasuhisa Tamura
- Department of Anatomy and Cell Science, KMU 21C COE Project, Kansai Medical University
| | - Yilong Cui
- Department of Anatomy and Cell Science, KMU 21C COE Project, Kansai Medical University
| | - Hisao Yamada
- Department of Anatomy and Cell Science, KMU 21C COE Project, Kansai Medical University
| |
Collapse
|
18
|
Tamura Y, Kataoka Y, Cui Y, Yamada H. Cellular proliferation in the cerebral cortex following neural excitation in rats. Neurosci Res 2004; 50:129-33. [PMID: 15356902 DOI: 10.1016/j.neures.2004.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cortical spreading depression (SD) is characterized by propagation of neuronal/glial membrane depolarization throughout the unilateral cerebral cortex and has been linked to several neurological disorders, including migraine aura and epilepsy. SD induction resulted in a dramatic increase in BrdU-incorporated cells in the ipsilateral cortical hemisphere that was dependent on the number of elicited SD. Immunohistochemical studies revealed that 53% of the BrdU-labeled cells in the SD-generated cortex were NG2 immunopositive and 25% were OX-42 immunopositive. The remaining 22% of BrdU-incorporated cells showed no immunoreactivity to GST-rr, GFAP, NeuN, NG2 or OX-42. These data indicate that functional excitation of the cerebral cortex induces proliferative response in cortical cells, which may subsequently differentiate into glial progenitor or microglia within 3 days after stimulation.
Collapse
Affiliation(s)
- Yasuhisa Tamura
- Department of Anatomy and Cell Science, Kansai Medical University, Moriguchi City, Osaka, Japan
| | | | | | | |
Collapse
|