1
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
2
|
Kou K, Li S, Qiu W, Fan Z, Li M, Lv G. Hypoxia-inducible factor 1α/IL-6 axis in activated hepatic stellate cells aggravates liver fibrosis. Biochem Biophys Res Commun 2023; 653:21-30. [PMID: 36848821 DOI: 10.1016/j.bbrc.2023.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Hepatic stellate cells (HSCs) upregulate hypoxia inducible factor 1 alpha (HIF-1α) expression in response to fibrosis-induced hypoxia. The mechanism by which HIF-1α promotes liver fibrosis in HSCs is not fully understood. In this study, we found that increased expression of α-SMA, HIF-1α and IL-6, as well as colocalization of α-SMA and HIF-1α, and HIF-1α and IL-6, were observed in liver fibrotic tissues of patients and a mouse model. HIF-1α expression induced IL-6 secretion in activated HSCs and the increase could be abolished by HIF-1α suppression or HIF1A gene knockdown. HIF-1α directly bound to the hypoxia response element (HRE) region in HSC IL6/Il6 promoters. Additionally, culturing naïve CD4 T cells with supernatant from HSCs in which HIF-1α is highly expressed increased IL-17A expression, and the expression could be abolished by HIF1A knockdown in LX2. In turn, the IL-17A-enriched supernatant induced IL-6 secretion in HSCs. Together, these results show that HIF-1α upregulates IL-6 expression in HSCs and induces IL-17A secretion through directly binding to the HRE of IL6 promoter.
Collapse
Affiliation(s)
- Kai Kou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Shuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
3
|
Thiamine insufficiency induces Hypoxia Inducible Factor-1α as an upstream mediator for neurotoxicity and AD-like pathology. Mol Cell Neurosci 2022; 123:103785. [PMID: 36241022 DOI: 10.1016/j.mcn.2022.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Insufficiencies of the micronutrient thiamine (Vitamin B1) have been associated with inducing Alzheimer's disease (AD)-like neuropathology. The hypometabolic state associated with chronic thiamine insufficiency (TI) has been demonstrated to be a contributor towards the development of amyloid plaque deposition and neurotoxicity. However, the molecular mechanism underlying TI induced AD pathology is still unresolved. Previously, we have established that TI stabilizes the metabolic stress transcriptional factor, Hypoxia Inducible Factor-1α (HIF1α). Utilizing neuronal hippocampal cells (HT22), TI-induced HIF1α activation triggered the amyloidogenic cascade through transcriptional expression and increased activity of β-secretase (BACE1). Knockdown and pharmacological inhibition of HIF1α during TI significantly reduced BACE1 and C-terminal Fragment of 99 amino acids (C99) formation. TI also increased the expression of the HIF1α regulated pro-apoptotic protein, BCL2/adenovirus E1B 19 kDa protein-interacting protein (BNIP3). Correspondingly, cell toxicity during TI conditions was significantly reduced with HIF1α and BNIP3 knockdown. The role of BNIP3 in TI-mediated toxicity was further highlighted by localization of dimeric BNIP3 into the mitochondria and nuclear accumulation of Endonuclease G. Subsequently, TI decreased mitochondrial membrane potential and enhanced chromatin fragmentation. However, cell toxicity via the HIF1α/BNIP3 cascade required TI induced oxidative stress. HIF1α, BACE1 and BNIP3 expression was induced in 3xTg-AD mice after TI and administration with the HIF1α inhibitor YC1 significantly attenuated HIF1α and target genes levels in vivo. Overall, these findings demonstrate a critical stress response during TI involving the induction of HIF1α transcriptional activity that directly promotes neurotoxicity and AD-like pathology.
Collapse
|
4
|
Targeting HIF-1α by Natural and Synthetic Compounds: A Promising Approach for Anti-Cancer Therapeutics Development. Molecules 2022; 27:molecules27165192. [PMID: 36014432 PMCID: PMC9413992 DOI: 10.3390/molecules27165192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Advancement in novel target detection using improved molecular cancer biology has opened up new avenues for promising anti-cancer drug development. In the past two decades, the mechanism of tumor hypoxia has become more understandable with the discovery of hypoxia-inducible factor-1α (HIF-1α). It is a major transcriptional regulator that coordinates the activity of various transcription factors and their downstream molecules involved in tumorigenesis. HIF-1α not only plays a crucial role in the adaptation of tumor cells to hypoxia but also regulates different biological processes, including cell proliferation, survival, cellular metabolism, angiogenesis, metastasis, cancer stem cell maintenance, and propagation. Therefore, HIF-1α overexpression is strongly associated with poor prognosis in patients with different solid cancers. Hence, pharmacological targeting of HIF-1α has been considered to be a novel cancer therapeutic strategy in recent years. In this review, we provide brief descriptions of natural and synthetic compounds as HIF-1α inhibitors that have the potential to accelerate anticancer drug discovery. This review also introduces the mode of action of these compounds for a better understanding of the chemical leads, which could be useful as cancer therapeutics in the future.
Collapse
|
5
|
Kheshtchin N, Hadjati J. Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy. J Cell Physiol 2021; 237:1285-1298. [PMID: 34796969 DOI: 10.1002/jcp.30643] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022]
Abstract
The development of new strategies of anticancer immunotherapies has provided promising approaches in the treatment of solid tumors. However, despite the improved survival in responders, most of the patients show incomplete responses with a lack of remarkable clinical improvement. Hypoxia has been identified as a common characteristic of solid tumors contributing to different aspects of tumor progression, including invasion, metastasis, and the creation of the immunosuppressive tumor microenvironment. Hypoxia, through its main mediator, hypoxia-inducible factor-1 (HIF-1) is also associated with the limited efficacy of immunotherapies. Therefore, designing new strategies for immunotherapy implicating therapeutic targeting of HIF-1 molecules may enhance the clinical effectiveness of immunotherapy. Here, we discuss the contribution of hypoxia to the development of the immunosuppressive tumor microenvironment. We will also outline different strategies for targeting hypoxia to provide insight into the therapeutic potential of the application of such strategies to improve the clinical benefit of cancer immunotherapy.
Collapse
Affiliation(s)
- Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kerget B, Erol Afşin D, Aksakal A, Kerget F, Aşkın S, Yılmazel Uçar E, Sağlam L. Could VEGF-D level have a role in clinical risk scoring, estimation of thrombus burden, and treatment in acute pulmonary thromboembolism? Int J Clin Pract 2021; 75:e14601. [PMID: 34228874 DOI: 10.1111/ijcp.14601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/02/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Pulmonary embolism (PE) is usually a complication of deep vein thrombosis and is an important cause of mortality and morbidity. Vascular endothelial growth factor D (VEGF-D) is a secretory protein that plays a role in the remodelling of blood vessels and the lymphatic system. This study aimed to determine the relationship between VEGF-D level and clinical risk scoring in patients with PE. METHODS The study included 117 patients admitted for PE that were divided into four groups: high-risk patients (n = 35), high-intermediate-risk patients (n = 30), low-intermediate-risk patients (n = 24), and low-risk patients (n = 28). Plasma VEGF-D was measured from peripheral venous blood samples (5 mL) using a commercial enzyme-linked immunosorbent assay (ELISA) kit. Pulmonary Artery Obstruction Index (PAOI) was calculated from CT angiography imaging. RESULTS There was no significant difference in troponin-I and NT-proBNP levels between the high-intermediate-risk and high-risk PE patients (P = .134, .146). VEGF-D and PAOI levels were found to be statistically significantly higher in high-risk patients compared with high-intermediate-risk patients (P = .016, .001). VEGF-D level was moderately correlated with mean pulmonary artery pressure and PAOI (r = .481, P = .01; r = .404, P = .01). In ROC curve analysis, a cut-off of 370.1 pg/mL for VEGF-D had 91.4% sensitivity and 67% specificity in the differentiation of high-intermediate-risk and high-risk PE patients. CONCLUSION This study showed that plasma VEGF-D level was more reliable than troponin-I and NT-proBNP in clinical risk scoring and demonstrating thrombus burden. VEGF-D can be used as a biomarker in clinical risk scoring and estimation of thrombus burden in patients with acute PE.
Collapse
Affiliation(s)
- Buğra Kerget
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Erzurum, Turkey
| | - Dursun Erol Afşin
- Department of Pulmonary Diseases, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Alperen Aksakal
- Department of Pulmonary Diseases, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Ferhan Kerget
- Department of Infection Diseases and Clinical Microbiology, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Seda Aşkın
- Department of Biochemistry, Ataturk University School of Medicine, Erzurum, Turkey
| | - Elif Yılmazel Uçar
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Erzurum, Turkey
| | - Leyla Sağlam
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Erzurum, Turkey
| |
Collapse
|
7
|
Tarantino R, Chiu LLY, Weber JF, Yat Tse M, Bardana DD, Pang SC, Waldman SD. Effect of nutrient metabolism on cartilaginous tissue formation. Biotechnol Bioeng 2021; 118:4119-4128. [PMID: 34265075 DOI: 10.1002/bit.27888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022]
Abstract
A major shortcoming in cartilage tissue engineering is the low biosynthetic response of chondrocytes. While different strategies have been investigated, a novel approach may be to control nutrient metabolism. Although known for their anaerobic metabolism, chondrocytes are more synthetically active under conditions that elicit mixed aerobic-anaerobic metabolism. Here, we postulate this metabolic switch induces HIF-1α signaling resulting in improved growth. Transition to different metabolic states can result in the pooling of metabolites, several of which can stabilize HIF-1α by interfering with PHD2. Chondrocytes cultured under increased media availability accelerated tissue deposition with the greatest effect occurring at 2 ml/106 cells. Under higher media availability, metabolism switched from anaerobic to mixed aerobic-anaerobic. Around this transition, maximal changes in PHD2 activity, HIF-1α expression, and HIF-1 target gene expression were observed. Loss-of-function studies using YC-1 confirmed the involvement of HIF-1. Lastly, targeted metabolomic studies revealed that intracellular lactate and succinate correlated with PHD2 activity. This study demonstrates that cartilaginous tissue formation can be regulated by nutrient metabolism and that this response is mediated through changes in HIF-1α signaling. By harnessing this newly identified metabolic switch, engineered cartilage implants may be developed without the need for sophisticated methods which could aid translation to the clinic.
Collapse
Affiliation(s)
- Roberto Tarantino
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Loraine L Y Chiu
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Joanna F Weber
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Man Yat Tse
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Davide D Bardana
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stephen D Waldman
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Pan Z, Ma G, Kong L, Du G. Hypoxia-inducible factor-1: Regulatory mechanisms and drug development in stroke. Pharmacol Res 2021; 170:105742. [PMID: 34182129 DOI: 10.1016/j.phrs.2021.105742] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Stroke is an acute cerebrovascular disease caused by sudden rupture of blood vessels in the brain or blockage of blood vessels, which has now become one of the main causes of adult death. During stroke, hypoxia-inducible factor-1 (HIF-1), as an important regulator under hypoxia conditions, is involved in the pathological process of stroke by regulating multi-pathways, such as glucose metabolism, angiogenesis, erythropoiesis, cell survival. However, the roles of HIF-1 in stroke are still controversial, which are related with ischemic time and degree of ischemia. The regulatory mechanisms of HIF-1 in stroke include inflammation, autophagy, oxidative stress, apoptosis and energy metabolism. The potential drugs targeting HIF-1 have attracted more attention, such as HIF-1 inhibitors, HIF-1 stabilizers and natural products. Based on the role of HIF-1 in stroke, HIF-1 is expected to be a potential target for stroke treatment. Resolving when and what interventions for HIF-1 to take during stroke will provide novel strategies for stroke treatment.
Collapse
Affiliation(s)
- Zirong Pan
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
9
|
Ma Z, Wang LZ, Cheng JT, Lam WST, Ma X, Xiang X, Wong ALA, Goh BC, Gong Q, Sethi G, Wang L. Targeting Hypoxia-Inducible Factor-1-Mediated Metastasis for Cancer Therapy. Antioxid Redox Signal 2021; 34:1484-1497. [PMID: 33198508 DOI: 10.1089/ars.2019.7935] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Hypoxia is emerging as a crucial regulator of the tumor microenvironment; it governs the metastatic potential of multiple primary cancers. It is also potentially involved in the regulation of tumorigenesis, tumor metabolism, and proangiogenic activity. Recent Advances: A wealth of clinical data across a wide range of cancer types has revealed strong correlations between hypoxia or the overexpression of hypoxia-inducible transcription factors and the rates of distant metastases and poor prognoses. Hypoxia-inducible factor (HIF)-1α, one of the key regulatory molecules of the HIF-1 signaling pathways, is involved in multiple crucial steps in the metastatic cascade. Critical Issues: Here, we present recent findings on the roles of the HIF-1 complex in tumor metastasis and highlight the potential of HIF-1α as a target for abrogating tumor metastasis. Moreover, we systematically describe the regulatory role of HIF-1 at each step of the metastatic cascade. Finally, we present the most recent advances in potential pharmacological interventions and the development of specific HIF-1 inhibitors for blocking tumor metastasis. Future Directions: Well-designed clinical trials are urgently needed to validate the anti-metastatic activity of HIF-1 inhibitors discovered in preclinical models. Antioxid. Redox Signal. 34, 1484-1497.
Collapse
Affiliation(s)
- Zhaowu Ma
- Department of Immunology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, China
| | - Louis Zizhao Wang
- SingHealth Internal Medicine Residency Programme, Singapore General Hospital, Singapore, Singapore
| | - Jun-Ting Cheng
- Department of Immunology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, China
| | - Walter Sze Tung Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Quan Gong
- Department of Immunology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Kong L, Ma Y, Wang Z, Liu N, Ma G, Liu C, Shi R, Du G. Inhibition of hypoxia inducible factor 1 by YC-1 attenuates tissue plasminogen activator induced hemorrhagic transformation by suppressing HMGB1/TLR4/NF-κB mediated neutrophil infiltration in thromboembolic stroke rats. Int Immunopharmacol 2021; 94:107507. [PMID: 33657523 DOI: 10.1016/j.intimp.2021.107507] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Hemorrhagic transformation (HT) is a frequent complication of ischemic stroke after thrombolytic therapy and seriously affects the prognosis of stroke. Due to the limited therapeutic window and hemorrhagic complications, tissue plasminogen activator (t-PA) is underutilized in acute ischemic stroke. Currently, there are no clinically effective drugs to decrease the incidence of t-PA-induced HT. Hypoxia-inducible factor 1 (HIF-1) is an important transcription factor that maintains oxygen homeostasis and mediates neuroinflammation under hypoxia. However, the effect of HIF-1 on t-PA-induced HT is not clear. The aim of this study was to investigate the role of HIF-1 in t-PA-induced HT by applying YC-1, an inhibitor of HIF-1. In the present study, we found that HIF-1 expression was significantly increased in ischemic brain tissue after delayed t-PA treatment and was mainly localized in neurons and endothelial cells. Inhibition of HIF-1 by YC-1 improved infarct volume and neurological deficits. YC-1 inhibited matrix metalloproteinase protein expression, increased tight junction protein expression, and ameliorated BBB disruption and the occurrence of HT. Furthermore, YC-1 suppressed the release of inflammatory factors, neutrophil infiltration and the activation of the HMGB1/TLR4/NF-κB signaling pathway. These results demonstrated that inhibition of HIF-1 could protect BBB integrity by suppressing HMGB1/TLR4/NF-κB-mediated neutrophil infiltration, thereby reducing the risk of t-PA-induced HT. Thus, HIF-1 may be a potential therapeutic target for t-PA-induced HT.
Collapse
Affiliation(s)
- Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yinzhong Ma
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Nannan Liu
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chengdi Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruili Shi
- Department of Physiology, Baotou Medical College, Baotou 014060, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Quiroga J, Alarcón P, Manosalva C, Teuber S, Taubert A, Hermosilla C, Hidalgo MA, Carretta MD, Burgos RA. Metabolic Reprogramming and Inflammatory Response Induced by D-Lactate in Bovine Fibroblast-Like Synoviocytes Depends on HIF-1 Activity. Front Vet Sci 2021; 8:625347. [PMID: 33796579 PMCID: PMC8007789 DOI: 10.3389/fvets.2021.625347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Acute ruminal acidosis (ARA) occurs after an excessive intake of rapidly fermentable carbohydrates and is characterized by the overproduction of D-lactate in the rumen that reaches the bloodstream. Lameness presentation, one of the primary consequences of ARA in cattle, is associated with the occurrence of laminitis and aseptic polysynovitis. Fibroblast-like synoviocytes (FLS) are predominant cells of synovia and play a key role in the pathophysiology of joint diseases, thus increasing the chances of the release of pro-inflammatory cytokines. Increased D-lactate levels and disturbances in the metabolism of carbohydrates, pyruvates, and amino acids are observed in the synovial fluid of heifers with ARA-related polysynovitis prior to neutrophil infiltration, suggesting an early involvement of metabolic disturbances in joint inflammation. We hypothesized that D-lactate induces metabolic reprogramming, along with an inflammatory response, in bovine exposed FLS. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics revealed that D-lactate disrupts the metabolism of bovine FLS, mainly enhancing glycolysis and gluconeogenesis, pyruvate metabolism, and galactose metabolism. The reverse-transcription quantitative PCR (RT-qPCR) analysis revealed an increased expression of metabolic-related genes, including hypoxia-inducible factor 1 (HIF-1)α, glucose transporter 1 (Glut-1), L-lactate dehydrogenase subunit A (L-LDHA), and pyruvate dehydrogenase kinase 1 (PDK-1). Along with metabolic disturbances, D-lactate also induced an overexpression and the secretion of IL-6. Furthermore, the inhibition of HIF-1, PI3K/Akt, and NF-κB reduced the expression of IL-6 and metabolic-related genes. The results of this study reveal a potential role for D-lactate in bFLS metabolic reprogramming and support a close relationship between inflammation and metabolism in cattle.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Anja Taubert
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - María Angélica Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
12
|
HIF-1 Inhibitor YC-1 Reverses the Acquired Resistance of EGFR-Mutant HCC827 Cell Line with MET Amplification to Gefitinib. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6633867. [PMID: 33763171 PMCID: PMC7946473 DOI: 10.1155/2021/6633867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 12/28/2022]
Abstract
Background Acquired resistance occurred in the majority of nonsmall cell lung cancer (NSCLC) patients receiving epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) therapy, and this may be related to the activation of the HIF-1 pathway. Therefore, we examined the influence of the hypoxia-inducible factor-1 (HIF-1) pathway inhibition on the sensitivity of HCC827 gefitinib-resistant (HCC827 GR) cells with MET amplification to gefitinib. Methods We established HCC827 GR cell line with MET amplification and set four groups with different treatment. An MTT assay, a colony formation analysis, and a wound healing assay were performed to determine the sensitivity change of HCC827 GR cells after different treatments. HIF-1α, p-EGFR, and p-Met levels were detected with western blot. Correlations among HIF-1α, p-EGFR, and p-Met levels of HCC827 GR cells with different treatments were analyzed with Pearson's correlation analysis. Results HIF-1 inhibitor YC-1 enhanced the sensitivity of HCC827 GR cells to gefitinib. p-Met level was correlated with HIF-1α level, while there was no correlation between p-Met level and p-EGFR level. Conclusion HIF-1 inhibitor YC-1 is able to reverse the acquired resistance of HCC827 GR to gefitinib, and the regulation of the HIF-1 pathway on MET may be one of the mechanisms.
Collapse
|
13
|
Abstract
Hypoxia-inducible factors (HIFs) control transcriptional responses to reduced O2 availability. HIFs are heterodimeric proteins composed of an O2-regulated HIF-α subunit and a constitutively expressed HIF-1β subunit. HIF-α subunits are subject to prolyl hydroxylation, which targets the proteins for degradation under normoxic conditions. Small molecule prolyl hydroxylase inhibitors, which stabilize the HIF-α subunits and increase HIF-dependent expression of erythropoietin, are in phase III clinical trials for the treatment of anemia in patients with chronic kidney disease. HIFs contribute to the pathogenesis of many cancers, particularly the clear cell type of renal cell carcinoma in which loss of function of the von Hippel-Lindau tumor suppressor blocks HIF-2α degradation. A small molecule inhibitor that binds to HIF-2α and blocks dimerization with HIF-1β is in clinical trials for the treatment of renal cell carcinoma. Targeting HIFs for stabilization or inhibition may improve outcomes in diseases that are common causes of mortality in the US population.
Collapse
Affiliation(s)
- Gregg L Semenza
- Institute for Cell Engineering, McKusick-Nathans Institute of Genetic Medicine, and Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
14
|
Kerget B, Afşin DE, Aksakal A, Aşkin S, Araz Ö. Could HIF-1α be a novel biomarker for the clinical course and treatment of pulmonary embolism? Turk J Med Sci 2020; 50:963-968. [PMID: 32421278 PMCID: PMC7379473 DOI: 10.3906/sag-1908-93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 05/16/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim Pulmonary embolism (PE) is associated with high morbidity and mortality rates if not diagnosed and treated rapidly. The aim of our study was to investigate the relationship between levels of hypoxia-induced factor-1 alpha (HIF-1α) and clinical course and prognosis in patients with intermediate low-risk, intermediate high-risk, and high-risk PE. Materials and methods The study included 240 subjects in 4 groups: a healthy control group (n = 60, mean age = 60 ± 15.2, female/male = 30/30 ), intermediate low-risk PE group (n = 60, mean age = 60 ± 12,5, female/male = 27/33), intermediate high-risk PE group (n = 60, mean age = 61,4 ± 14,8, female/male = 36/24), and high-risk PE group (n = 60, mean age = 62,3 ± 15, female/male = 33/27). Plasma HIF-1α levels were measured using commercial enzyme-linked immunosorbent assay (ELISA) kit. Results Comparison of HIF-1α levels revealed a statistically significant difference between the groups in proportion to clinical scoring (P = 0.001 for all). Comparison of initial HIF-1α and troponin levels in intermediate high-risk PE patients given thrombolytic therapy and those treated with enoxaparin sodium showed that HIF-1α levels were significantly higher in the group that received thrombolytic therapy (P = 0.001), while there was no difference in troponin levels (P = 0.146). Conclusion HIF-1α can be used in the PE clinical risk stratification and monitoring of PE and may also serve as a valuable early indicator in intermediate high-risk PE, for which early reperfusion therapy is important.
Collapse
Affiliation(s)
- Buğra Kerget
- Department of Pulmonary Diseases, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | | | - Alperen Aksakal
- Department of Pulmonary Diseases, School of Medicine, Atatürk University, Erzurum, Turkey
| | - Seda Aşkin
- Department of Biochemistry, School of Medicine, Atatürk University, Erzurum, Turkey
| | - Ömer Araz
- Department of Pulmonary Diseases, School of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
15
|
Oxygen-Glucose Deprivation/Reoxygenation-Induced Barrier Disruption at the Human Blood–Brain Barrier is Partially Mediated Through the HIF-1 Pathway. Neuromolecular Med 2019; 21:414-431. [DOI: 10.1007/s12017-019-08531-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
16
|
Jin Q, Zhou J, Xu X, Huang F, Xu W. Hypoxia-inducible factor-1 signaling pathway influences the sensitivity of HCC827 cells to gefitinib. Oncol Lett 2019; 17:4034-4043. [PMID: 30881515 DOI: 10.3892/ol.2019.10025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
The majority of patients with non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations inevitably progress in stage despite an initial substantial and rapid response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Previous research indicates that hypoxia may be associated with resistance to EGFR-TKIs in EGFR mutation-positive NSCLC. Therefore, the present study regulated the activity of hypoxia-inducible factor-1 (HIF-1) signaling pathway to observe if it is able to alter the sensitivity of lung cancer cells to gefitinib. The present study selected 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) and dimethyloxalylglycine (DMOG) as a HIF-1 signaling pathway inhibitor and activator, respectively, on HCC827 cells. Cells were incubated with different treatments for different durations: A blank control, DMOG, gefitinib, or DMOG and gefitinib combined, for 36 and 48 h; and then a blank control, YC-1, gefitinib, or YC-1 and gefitinib combined, for 16 and 28 h. A western blot analysis assay was performed to evaluate the protein expression levels of HIF-1α and phosphorylated hepatocyte growth factor receptor (p-MET), an MTT assay was used to determine cell proliferation, a colony formation assay was used to investigate the colony-forming ability and a wound healing assay was used to test the cell migration ability. Additionally, Pearson's correlation analysis was used to evaluate the correlation between p-Met and HIF-1α expression levels. Finally, it was identified that gefitinib and DMOG combined notably improve the growth and cell migration ability of HCC827 cells, compared with gefitinib alone. When gefitinib and YC-1 were combined, the inhibiting effect on the growth and cell migration ability of HCC827 cells was substantially enhanced, compared with the control cells. Pearson's correlation analysis revealed that the p-Met expression level had a strong positive correlation with HIF-1α expression levels. Thus, it was concluded that the HIF-1 signaling pathway influences the sensitivity of HCC827 cells to gefitinib. The positive correlation between p-Met and HIF-1α expression levels may be the underlying mechanism of the HIF-1 signaling pathway influencing the sensitivity of HCC827 cells to gefitinib.
Collapse
Affiliation(s)
- Qian Jin
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Jianying Zhou
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xianrong Xu
- Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Feihua Huang
- Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Weihua Xu
- Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
17
|
Hsieh KY, Wei CK, Wu CC. YC-1 Prevents Tumor-Associated Tissue Factor Expression and Procoagulant Activity in Hypoxic Conditions by Inhibiting p38/NF-κB Signaling Pathway. Int J Mol Sci 2019; 20:ijms20020244. [PMID: 30634531 PMCID: PMC6359014 DOI: 10.3390/ijms20020244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
Tissue factor (TF) expressed in cancer cells has been linked to tumor-associated thrombosis, a major cause of mortality in malignancy. Hypoxia is a common feature of solid tumors and can upregulate TF. In this study, the effect of YC-1, a putative inhibitor of hypoxia-inducible factor-1α (HIF-1α), on hypoxia-induced TF expression was investigated in human lung cancer A549 cells. YC-1 selectively prevented hypoxia-induced TF expression and procoagulant activity without affecting the basal TF levels. Surprisingly, knockdown or pharmacological inhibition of HIF-1α failed to mimic YC-1′s effect on TF expression, suggesting other mechanisms are involved. NF-κB, a transcription factor for TF, and its upstream regulator p38, were activated by hypoxia exposure. Treatment of hypoxic A549 cells with YC-1 prevented the activation of both NF-κB and p38. Inhibition of p38 suppressed hypoxia-activated NF-κB, and inhibited TF expression and activity to similar levels as treatment with an NF-κB inhibitor. Furthermore, stimulation of p38 by anisomycin reversed the effects of YC-1. Taken together, our results suggest that YC-1 prevents hypoxia-induced TF in cancer cells by inhibiting the p38/NF-κB pathway, this is distinct from the conventional anticoagulants that systemically inhibit blood coagulation and may shed new light on approaches to treat tumor-associated thrombosis.
Collapse
Affiliation(s)
- Kan-Yen Hsieh
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chien-Kei Wei
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Research Center for Natural Product and Drug Development, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
18
|
Wang K, Wu J, Xu J, Gu S, Li Q, Cao P, Li M, Zhang Y, Zeng F. Correction of Anemia in Chronic Kidney Disease With Angelica sinensis Polysaccharide via Restoring EPO Production and Improving Iron Availability. Front Pharmacol 2018; 9:803. [PMID: 30108502 PMCID: PMC6079227 DOI: 10.3389/fphar.2018.00803] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 07/03/2018] [Indexed: 12/15/2022] Open
Abstract
Given the limited efficacy and potential disadvantages of erythropoiesis-stimulating agents (ESAs) in treating anemia of chronic kidney disease (CKD), the development of better alternative therapies has become a priority. The primary purpose of this study is to investigate the effects of Angelica sinensis polysaccharide (ASP) and its underlying mechanism in the treatment of renal anemia. In the present study, we found that ASP could enhance hypoxic induction of EPO in Hep3B cells, with a mechanism that involved the stabilization of HIF-2α protein. In parallel, ASP rescued the inhibition of EPO, induced by proinflammatory factor TNF-α through blocking GATA2 and NF-κB activation. In a rat model of adenine-induced anemia of CKD, oral administration of ASP corrected anemia and alleviated renal damage and inflammation. By increasing the accumulation of HIF-2α protein and reducing the expression of NF-κB and GATA2 as well as pro-inflammatory cytokines, ASP stimulated both renal and hepatic EPO production, and resulted in an elevation of serum EPO. The restoration of EPO production and EPOR mRNA expression with ASP treatment activated EPOR downstream JAK2/STAT5 and PI3K/Akt signaling, induced their target genes, such as Bcl-xL, Fam132b and Tfrc, and increased Bcl-2/Bax ratio in bone marrow-derived mononuclear cells of CKD rats. Furthermore, we found that ASP suppressed hepatic hepcidin expression, mobilized iron from spleen and liver and increased serum iron. These findings demonstrate that ASP elicits anti-anemic action by restoring EPO production and improving iron availability in the setting of CKD in rats.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Jingya Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Saisai Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingming Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Wei Y, Hong H, Zhang X, Lai W, Wang Y, Chu K, Brown J, Hong G, Chen L. Salidroside Inhibits Inflammation Through PI3K/Akt/HIF Signaling After Focal Cerebral Ischemia in Rats. Inflammation 2018; 40:1297-1309. [PMID: 28478514 DOI: 10.1007/s10753-017-0573-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Salidroside is being investigated for its therapeutic potential in stroke because it is neuroprotective over an extended therapeutic window of time. In the present study, we investigated the mechanisms underlying the anti-inflammatory effects of salidroside (50 mg/kg intraperitoneally) in rats, given 1 h after reperfusion of a middle cerebral artery that had been occluded for 2 h. After 24 h, we found that salidroside increased the neuronal nuclear protein NeuN and reduced the marker of microglia and macrophages CD11b in the peri-infarct area of the brain. Salidroside also decreased IL-6, IL-1β, TNF-α, CD14, CD44, and iNOs mRNAs. At the same time, salidroside increased the ratio of phosphorylated protein kinase B (p-Akt) to total Akt. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 prevented this increase in p-Akt and reversed the inhibitory effects of salidroside on CD11b and inflammatory mediators. Salidroside also elevated the protein levels of hypoxia-inducible factor (HIF) subunits HIF1α, HIF2α, HIF3α, and of erythropoietin (EPO). The stimulatory effects of salidroside on HIFα subunits were blocked by LY294002. Moreover, YC-1, a HIF inhibitor, abolished salidroside-mediated increase of HIF1α and prevented the inhibitory effects of salidroside on CD11b and inflammatory mediators. Taken together, our results provide evidence for the first time that all three HIFα subunits and EPO can be regulated by PI3K/Akt in cerebral tissue, and that salidroside entrains this signaling pathway to induce production of HIFα subunits and EPO, one or more of which mediate the anti-inflammatory effects of salidroside after cerebral IRI.
Collapse
Affiliation(s)
- Yicong Wei
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Haimian Hong
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Xiaoqin Zhang
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Wenfang Lai
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Yingzheng Wang
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Kedan Chu
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - John Brown
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Lidian Chen
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China.
| |
Collapse
|
20
|
Yan Z, An J, Shang Q, Zhou N, Ma J. YC-1 Inhibits VEGF and Inflammatory Mediators Expression on Experimental Central Retinal Vein Occlusion in Rhesus Monkey. Curr Eye Res 2018; 43:526-533. [PMID: 29364731 DOI: 10.1080/02713683.2018.1426102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhipeng Yan
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Jianbin An
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Nalei Zhou
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Jingxue Ma
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| |
Collapse
|
21
|
Liu C, Shui CL, Wang Q, Luo H, Gu CG. Mechanism of hif-1α mediated hypoxia-induced permeability changes in bladder endothelial cells. ACTA ACUST UNITED AC 2017; 51:e6768. [PMID: 29267502 PMCID: PMC5734185 DOI: 10.1590/1414-431x20176768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 09/22/2017] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate the mechanism of hypoxia-inducible factor-1 alpha (HIF-1α) mediated hypoxia-induced permeability changes in bladder endothelial cells. Models of in vitro hypoxic cell culture of bladder cancer, bladder cancer cells with low HIF-1α expression and HIF-1α RNA interference (RNAi) expression vector were established. Western blot and reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of HIF-1α and vascular endothelial growth factor (VEGF) in each group. Bladder cell permeability was determined. Results showed that protein and mRNA expression of HIF-1α and VEGF at 3 and 12 h of hypoxia were significantly higher than normal control (P<0.05), and peaked at 12 h. HIF-1α and VEGF expression in the hypoxic group and hypoxic+3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1) group were significantly higher than normal control (P<0.05), while expression in the hypoxic+YC-1 group was significantly lower than the hypoxic group (P<0.05). Bladder cell permeability in the hypoxic and hypoxic+YC-1 group were significantly increased compared to normal control (P<0.05), while in the hypoxic+YC-1 group was significantly decreased compared to the hypoxic group (P<0.05). Most of the cells in the stably transfected HIF-1α RNAi expression vector pcDNA6.2-GW/EmGFP-miR-siHIF-1α expressed green fluorescence protein (GFP) under fluorescence microscope. pcDNA6.2-GW/EmGFP-miR-siHIF-1α could significantly inhibit HIF-1α gene expression (P<0.05). HIF-1α and VEGF expression in the hypoxic group and siHIF-1α hypoxic group were significantly higher than normal group (P<0.05), while expression in the siHIF-1α hypoxic group was significantly lower than the hypoxic group (P<0.05). Findings suggest that HIF-1α is an important factor in the increase of bladder cancer cell permeability.
Collapse
Affiliation(s)
- C Liu
- Department of Urology, The Second People's Hospital of Deyang City, Deyang, Sichuan Province, China
| | - C L Shui
- Department of Anesthesiology, Affiliated Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing, China
| | - Q Wang
- Department of Pathology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - H Luo
- Department of Urology, The Second People's Hospital of Deyang City, Deyang, Sichuan Province, China
| | - C G Gu
- Department of Laboratory Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan Province, China
| |
Collapse
|
22
|
Bernard O, Jeny F, Uzunhan Y, Dondi E, Terfous R, Label R, Sutton A, Larghero J, Vanneaux V, Nunes H, Boncoeur E, Planès C, Dard N. Mesenchymal stem cells reduce hypoxia-induced apoptosis in alveolar epithelial cells by modulating HIF and ROS hypoxic signaling. Am J Physiol Lung Cell Mol Physiol 2017; 314:L360-L371. [PMID: 29167125 DOI: 10.1152/ajplung.00153.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Distal lung diseases, such as pulmonary fibrosis or acute lung injury, are commonly associated with local alveolar hypoxia that may be deleterious through the stimulation of alveolar epithelial cell (AEC) apoptosis. In various murine models of alveolar injury, administration of allogenic human mesenchymal stem cells (hMSCs) exerts an overall protective paracrine effect, limiting lung inflammation and fibrosis. However, the precise mechanisms on lung cells themselves remain poorly understood. Here, we investigated whether hMSC-conditioned medium (hMSC-CM) would protect AECs from hypoxia-induced apoptosis and explored the mechanisms involved in this cytoprotective effect. Exposure of rat primary AECs to hypoxia (1.5% O2 for 24 h) resulted in hypoxia-inducible factor (HIF)-1α protein stabilization, partly dependent on reactive oxygen species (ROS) accumulation, and in a twofold increase in AEC apoptosis that was prevented by the HIF inhibitor 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole and the antioxidant drug N-acetyl cysteine. Incubation of AECs with hMSC-CM significantly reduced hypoxia-induced apoptosis. hMSC-CM decreased HIF-1α protein expression, as well as ROS accumulation through an increase in antioxidant enzyme activities. Expression of Bnip3 and CHOP, two proapoptotic targets of HIF-1α and ROS pathways, respectively, was suppressed by hMSC-CM, while Bcl-2 expression was restored. The paracrine protective effect of hMSC was partly dependent on keratinocyte growth factor and hepatocyte growth factor secretion, preventing ROS and HIF-1α accumulation.
Collapse
Affiliation(s)
- Olivier Bernard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Florence Jeny
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Elisabetta Dondi
- Institut National de la Santé et de la Recherche Médicale, UMR 978, Bobigny, France
| | - Rahma Terfous
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Rabab Label
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Angela Sutton
- Institut National de la Santé et de la Recherche Médicale, UMR 1148, Laboratory for Vascular Translational Science, UFR Santé Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, Groupe Biothérapies et Glycoconjugués, Bobigny, France
| | - Jérôme Larghero
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et Centre d'Investigation Clinique de Biothérapies, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Paris , France
| | - Valérie Vanneaux
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et Centre d'Investigation Clinique de Biothérapies, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Paris , France
| | - Hilario Nunes
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Emilie Boncoeur
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Nicolas Dard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| |
Collapse
|
23
|
Zera K, Zastre J. Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes. PLoS One 2017; 12:e0186707. [PMID: 29045486 PMCID: PMC5646851 DOI: 10.1371/journal.pone.0186707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
Thiamine is an essential enzyme cofactor required for proper metabolic function and maintenance of metabolism and energy production in the brain. In developed countries, thiamine deficiency (TD) is most often manifested following chronic alcohol consumption leading to impaired mitochondrial function, oxidative stress, inflammation and excitotoxicity. These biochemical lesions result in apoptotic cell death in both neurons and astrocytes. Comparable histological injuries in patients with hypoxia/ischemia and TD have been described in the thalamus and mammillary bodies, suggesting a congruency between the cellular responses to these stresses. Consistent with hypoxia/ischemia, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α) under physiological oxygen levels. However, the role of TD-induced HIF-1α in neurological injury is currently unknown. Using Western blot analysis and RT-PCR, we have demonstrated that TD induces HIF-1α expression and activity in primary mouse astrocytes. We observed a time-dependent increase in mRNA and protein expression of the pro-apoptotic and pro-inflammatory HIF-1α target genes MCP1, BNIP3, Nix and Noxa during TD. We also observed apoptotic cell death in TD as demonstrated by PI/Annexin V staining, TUNEL assay, and Cell Death ELISA. Pharmacological inhibition of HIF-1α activity using YC1 and thiamine repletion both reduced expression of pro-apoptotic HIF-1α target genes and apoptotic cell death in TD. These results demonstrate that induction of HIF-1α mediated transcriptional up-regulation of pro-apoptotic/inflammatory signaling contributes to astrocyte cell death during thiamine deficiency.
Collapse
Affiliation(s)
- Kristy Zera
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
| | - Jason Zastre
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
24
|
Hypoxia-inducible factor-1α is involved in isoflurane-induced blood-brain barrier disruption in aged rats model of POCD. Behav Brain Res 2017; 339:39-46. [PMID: 28887194 DOI: 10.1016/j.bbr.2017.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/25/2017] [Accepted: 09/02/2017] [Indexed: 12/27/2022]
Abstract
Prolonged exposure to inhaled anesthetics may lead to postoperative cognitive dysfunction (POCD). Nevertheless, the underlying mechanisms are not known. Hypoxia-inducible factor-1α (HIF-1α) and its target gene vascular endothelial growth factor (VEGF) were shown to be activated by inhaled anesthetics. The aim of the present study was to determine the role of HIF-1α in isoflurane-induced blood-brain barrier (BBB) disruption and resultant cognitive impairment. After a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increases in vascular permeability, and disrupted BBB ultrastructure were accompanied by the degradation of tight junction proteins occludin and collagen type IV in brain blood vessels. Increases in HIF-1α and VEGF proteins and activation of MMP-2 in the hippocampus were also observed in the hippocamp of isoflurane-exposed rats compared with control rats. Pharmacological inhibition of HIF-1α activation by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) markedly suppressed the expression of HIF-1α, VEGF and MMP-2, and mitigated the severity of BBB disruption.YC-1 pretreatment also significantly attenuated isoflurane-induced cognitive deficits in the Morris water maze task. Overall, our results demonstrate that hippocampal HIF-1α/VEGF signaling seems to be the upstream mechanism of isoflurane-induced cognitive impairment, and provides apotential preventive and therapeutic target for POCD.
Collapse
|
25
|
Madu C, Li L, Lu Y. Selection, Analysis and Improvement of Anti-Angiogenesis Compounds Identified by an Anti-HIF-1α Screening and Validation System. J Cancer 2016; 7:1926-1938. [PMID: 27877208 PMCID: PMC5118656 DOI: 10.7150/jca.15603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer cells resort to activating hypoxia-inducible factor-1 (HIF-1) as one of several responses to hypoxic conditions. Overexpression of HIF-1, the transcriptional regulator for a group of malignant-pathway related genes including vascular endothelial growth factor (VEGF), is associated with increased tumor growth, vascularization, and metastasis. HIF-1 is composed of an inducible subunit, HIF-1α and a constitutively expressed subunit, HIF-1ß. HIF-1 activity is mainly dependent on the level of HIF-1α protein, the inducible and regulatory subunit of the HIF-1 heterodimer complex; thus, identification of novel anti-HIF-1α agents will lead to effective blockage of the HIF-1 (HIF-1α)-mediated "switch-on" function for those malignant-pathway related genes and suppression of the HIF-1α/VEGF-mediated signaling pathway that promotes cancer progression and metastasis. While there is an extremely large number of small molecule compounds in the database (compound libraries), the currently existing screening system is inefficient and time-consuming; or, at best, the application of the existing screening system is very limited as it is usually not coupled with biological validation processes. The further development of potential drugs is partly hindered due to the cumbersome steps in between the primary screen and consequent validation: the slow, exhausted and sometimes lack of a linked biological validation process contributes to the dismal fate of scant compounds uncovered in the primary screen. To improve upon the status quo, we developed a prototype screening system that is coupled anti-HIF-1α primary screen with secondary anti-VEGF/anti-angiogenesis validation screens. We used breast cancer cells as the model to select potent anti-HIF-1α small-molecule compounds by their abilities to inhibit transactivation of a VEGF promoter fused to a luciferase reporter gene under hypoxia. Positive compounds were then validated by a series of assays that confirm compounds' anti-HIF-1α activities including measurement of their effects on HIF-1α downstream VEGF gene expression and angiogenic ability of breast cancer cells. Moreover, we demonstrated that we could further improve the compound's potency of anti-HIF-1α and anti-angiogenesis by modifying the identified lead to synthesize a superior (novel) drug.
Collapse
Affiliation(s)
- Chikezie Madu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38016, USA
| | - Liyuan Li
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38016, USA
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38016, USA
| |
Collapse
|
26
|
Wang WJ, Sui H, Qi C, Li Q, Zhang J, Wu SF, Mei MZ, Lu YY, Wan YT, Chang H, Guo PT. Ursolic acid inhibits proliferation and reverses drug resistance of ovarian cancer stem cells by downregulating ABCG2 through suppressing the expression of hypoxia-inducible factor-1α in vitro. Oncol Rep 2016; 36:428-40. [PMID: 27221674 DOI: 10.3892/or.2016.4813] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022] Open
Abstract
Hypoxia in tumors is closely related to drug resistance. It has not been verified whether hypoxia-inducible factor-1α (HIF-1α) or ABCG2 is related to hypoxia-induced resistance. Ursolic acid (UA), when used in combination with cisplatin can significantly increase the sensitivity of ovarian cancer stem cells (CSCs) to cisplatin, but the exact mechanism is unknown. The cell growth inhibitory rate of cisplatin under different conditions was evaluated using Cell Counting Kit-8 (CCK-8) in adherence and sphere cells (SKOV3, A2780, and HEY). The expression of HIF-1α and ABCG2 was tested using quantitative PCR, western blotting, and immuno-fluorescence under different culture conditions and treated with UA. Knockdown of HIF-1α by shRNA and LY294002 was used to inhibit the activity of PI3K/Akt pathway. Ovarian CSCs express stemness-related genes and drug resistance significantly higher than normal adherent cells. Under hypoxic conditions, the ovarian CSCs grew faster and were more drug resistant than under normoxia. UA could inhibit proliferation and reverse the drug resistance of ovarian CSC by suppressing ABCG2 and HIF-1α under different culture conditions. HIF-1α inhibitor YC-1 combined with UA suppressed the stemness genes and ABCG2 under hypoxic condition. The PI3K/Akt signaling pathway activation plays an important functional role in UA-induced downregulation of HIF-1α and reduction of ABCG2. UA inhibits the proliferation and reversal of drug resistance in ovarian CSCs by suppressing the expression of downregulation of HIF-1α and ABCG2.
Collapse
Affiliation(s)
- Wen-Jing Wang
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Cong Qi
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Zhang
- Department of Science and Technology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Shao-Fei Wu
- Department of Hepatopathy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ming-Zhu Mei
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ying-Yu Lu
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yi-Ting Wan
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hannah Chang
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Piao-Ting Guo
- Department of Medical Oncology, Shanghai General Hospital, Shanghai 201203, P.R. China
| |
Collapse
|
27
|
Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 2016; 164:152-69. [PMID: 27139518 DOI: 10.1016/j.pharmthera.2016.04.009] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insufficient tissue oxygenation, or hypoxia, contributes to tumor aggressiveness and has a profound impact on clinical outcomes in cancer patients. At decreased oxygen tensions, hypoxia-inducible factors (HIFs) 1 and 2 are stabilized and mediate a hypoxic response, primarily by acting as transcription factors. HIFs exert differential effects on tumor growth and affect important cancer hallmarks including cell proliferation, apoptosis, differentiation, vascularization/angiogenesis, genetic instability, tumor metabolism, tumor immune responses, and invasion and metastasis. As a consequence, HIFs mediate resistance to chemo- and radiotherapy and are associated with poor prognosis in cancer patients. Intriguingly, perivascular tumor cells can also express HIF-2α, thereby forming a "pseudohypoxic" phenotype that further contributes to tumor aggressiveness. Therefore, therapeutic targeting of HIFs in cancer has the potential to improve treatment efficacy. Different strategies to target hypoxic cancer cells and/or HIFs include hypoxia-activated prodrugs and inhibition of HIF dimerization, mRNA or protein expression, DNA binding capacity, and transcriptional activity. Here we review the functions of HIFs in the progression and treatment of malignant solid tumors. We also highlight how HIFs may be targeted to improve the management of patients with therapy-resistant and metastatic cancer.
Collapse
Affiliation(s)
- Caroline Wigerup
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden
| | - Sven Påhlman
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden.
| | - Daniel Bexell
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Ban HS, Uto Y, Won M, Nakamura H. Hypoxia-inducible factor (HIF) inhibitors: a patent survey (2011-2015). Expert Opin Ther Pat 2016; 26:309-22. [DOI: 10.1517/13543776.2016.1146252] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Tsui L, Chang SF, Huang HP, Fong TH, Wang IJ. YC-1 induces lipid droplet formation in RAW 264.7 macrophages. J Biomed Sci 2016; 23:2. [PMID: 26767504 PMCID: PMC4714490 DOI: 10.1186/s12929-016-0218-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/11/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND 3-(5'-Hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) is a potential anticancer drug that may activate soluble guanylyl cyclase (sGC) and increase the level of cyclic guanosine monophosphate (cGMP). The aim of this study was to explore the effects of YC-1 on lipid droplet accumulation and foam cell formation in macrophages. RESULTS Human-oxidized low density lipoprotein (ox-LDL) was used to induce accumulation of lipid droplets in a murine macrophage cell line, RAW 264.7. Oil red O staining showed that treatment with 20 μM YC-1 for 24 h increased the area of intracellular lipid droplets in macrophages. The results of high content screening (HCS) with the AdipoRed™ assay further revealed that YC-1 enhanced ox-LDL-induced foam cell formation. This was evidenced by an increase in the total area of lipid droplets and the mean fluorescence intensity per cell. Inhibition of cGMP-dependent protein kinase (PKG) using KT5823 significantly reduced YC-1-enhanced lipid droplet formation in ox-LDL-induced macrophage foam cells. CONCLUSION YC-1 induces lipid droplet formation in macrophages, possibly through the sGC/cGMP/PKG signaling pathway. This chemical should be tested with caution in future clinical trials.
Collapse
Affiliation(s)
- Leo Tsui
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsorng-Harn Fong
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
30
|
Wang X, Li J, Wu D, Bu X, Qiao Y. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway. Exp Biol Med (Maywood) 2015; 241:177-83. [PMID: 26350953 DOI: 10.1177/1535370215600548] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/21/2015] [Indexed: 11/16/2022] Open
Abstract
Neuronal cells are highly sensitive to hypoxia and may be subjected to apoptosis when exposed to hypoxia. Several apoptosis-related genes and miRNAs involve in hypoxia-induced apoptosis. This study aimed to examine the role of HIF1α-miR-204-BCL-2 pathway in hypoxia-induced apoptosis in neuronal cells. Annexin V/propidium iodide assay was performed to analyze cell apoptosis in AGE1.HN and PC12 cells under hypoxic or normoxic conditions. The expression of BCL-2 and miR-204 were determined by Western blot and qRT-PCR. The effects of miR-204 overexpression or knockdown on the expression of BCL-2 were evaluated by luciferase assay and Western blot under hypoxic or normoxic conditions. HIF-1α inhibitor YC-1 and siHIF-1α were employed to determine the effect of HIF-1α on the up-regulation of miR-204 and down-regulation of BCL-2 induced by hypoxia. Apoptosis assay showed the presence of apoptosis induced by hypoxia in neuronal cells. Moreover, we found that hypoxia significantly down-regulated the expression of BCL-2, and increased the mRNA level of miR-204 in neuronal cells than that in control. Bioinformatic analysis and luciferase reporter assay demonstrated that miR-204 directly targeted and regulated the expression of BCL-2. Specifically, the expression of BCL-2 was inhibited by miR-204 mimic and enhanced by miR-204 inhibitor. Furthermore, we detected that hypoxia induced cell apoptosis via HIF-1α/miR-204/BCL-2 in neuronal cells. This study demonstrated that HIF-1α-miR-204-BCL-2 pathway contributed to apoptosis of neuronal cells induced by hypoxia, which could potentially be exploited to prevent spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiuwen Wang
- Department of Spinal Surgery, The Second Hospital of Shandong University, Ji'nan 250033, China
| | - Ji Li
- Department of Spinal Surgery, The Second Hospital of Shandong University, Ji'nan 250033, China
| | - Dongjin Wu
- Department of Spinal Surgery, The Second Hospital of Shandong University, Ji'nan 250033, China
| | - Xiangpeng Bu
- Department of Spinal Surgery, The 7th People's Hospital of Ji'nan, Ji'nan 251400, China
| | - Yong Qiao
- Department of Spinal Surgery, The Second Hospital of Shandong University, Ji'nan 250033, China
| |
Collapse
|
31
|
Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 2015; 5:378-89. [PMID: 26579469 PMCID: PMC4629436 DOI: 10.1016/j.apsb.2015.05.007] [Citation(s) in RCA: 1374] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) has been recognized as an important cancer drug target. Many recent studies have provided convincing evidences of strong correlation between elevated levels of HIF-1 and tumor metastasis, angiogenesis, poor patient prognosis as well as tumor resistance therapy. It was found that hypoxia (low O2 levels) is a common character in many types of solid tumors. As an adaptive response to hypoxic stress, hypoxic tumor cells activate several survival pathways to carry out their essential biological processes in different ways compared with normal cells. Recent advances in cancer biology at the cellular and molecular levels highlighted the HIF-1α pathway as a crucial survival pathway for which novel strategies of cancer therapy could be developed. However, targeting the HIF-1α pathway has been a challenging but promising progresses have been made in the past twenty years. This review summarizes the role and regulation of the HIF-1α in cancer, and recent therapeutic approaches targeting this important pathway.
Collapse
Key Words
- 4E-BP1, eukaryotic translation initiation factor 4E (eIF-4E) binding protein p70 S6 kinase (S6K)
- ADM, adrenomedullin
- AKt, protein kinase B
- ARD-1, arrest-defective-1
- ARNT, aryl hydrocarbon nuclear translocator
- AhR, aryl hydrocarbon receptor
- C-MYC, myelocytomatosis virus oncogene cellular homolog
- C-TAD, COOH-terminal TAD
- CAC, circulating angiogenic cells
- CPTs, camptothecins
- Cancer drug discovery and development
- ChIP, chromatin immunoprecipitation
- CoCl2, cobalt chloride
- DFO, deferoxamine
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- EMSA, electrophoretic mobility shift assay
- EPO, erythropoietin
- ERK, extracellular signal-regulated kinase
- FIH-1, factor inhibiting HIF-1
- GA, geldanamycin
- GAs, geldanamycins
- GLUT1, glucose transporter 1
- GLUT3, glucose transporter 3
- GLUTs, glucose transporters
- HDAC, histone deacetylase
- HIF-1α
- HIF-1α inhibitors
- HIF-1α, hypoxia-inducible factor-1α
- HK1, hexokinase 1
- HK2, hexokinase 2
- HPH, HIF-1 prolyl hydroxylases
- HRE, hypoxia response elements
- HTS, high throughput screens
- Hsp90, heat shock protein 90
- ID2, DNA-binding protein inhibitor
- IGF-BP2, IGF-factor-binding protein 2
- IGF-BP3, IGF-factor-binding protein 3
- IGF2, insulin-like growth factor 2
- IPAS, inhibitory PAS
- K, lysine residue
- LDHA, lactate dehydrogenase
- LEP, leptin
- LRP1, LDL-receptor-related protein 1
- Luc, luciferase
- MAPK, mitogen-activated protein kinases
- MEK, MAPK/ERK kinase
- MNK, MAP kinase interacting kinase
- MTs, microtubules
- Mdm2, mouse double minute 2 homolog
- N, asparagine residue
- N-TAD, NH2-terminal TAD
- NOS, nitric oxide synthase
- ODDD, oxygen dependent degradation domain
- P, proline residue
- PAS, Per and Sim
- PCAF, p300/CBP associated factor
- PHDs, prolyl-4-hydroxylases
- PI3K, phosphatidyl inositol-4,5-bisphosphate-3-kinase
- PKM, pyruvate kinase M
- RCC, renal cell carcinoma
- RT-PCR, reverse transcription polymerase chain reaction
- Raf, rapidly accelerated fibrosarcoma
- Ras, rat sarcoma
- SIRT 1, Sirtuin 1
- TAD, transactivation domains
- TGF-α, transforming growth factor α
- TGF-β3, transforming growth factor beta3
- TPT, topotecan
- Top I, topoisomerase I
- VEGF, vascular endothelial growth factor
- bHLH, basic-helix-loop-helix
- eIF-4E, eukaryotic translation initiation factor 4E
- mTOR, mammalian target of rapamycin
- pVHL, von Hippel-Lindau protein
Collapse
Affiliation(s)
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
32
|
Chemical biology approach for the development of hypoxia inducible factor (HIF) inhibitor LW6 as a potential anticancer agent. Arch Pharm Res 2015; 38:1563-74. [DOI: 10.1007/s12272-015-0632-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022]
|
33
|
Moon Y, Choi SM, Chang S, Park B, Lee S, Lee MO, Choi HS, Park H. Chenodeoxycholic Acid Reduces Hypoxia Inducible Factor-1α Protein and Its Target Genes. PLoS One 2015; 10:e0130911. [PMID: 26098428 PMCID: PMC4476666 DOI: 10.1371/journal.pone.0130911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/25/2015] [Indexed: 12/28/2022] Open
Abstract
This study evaluated HIF-1α inhibitors under different hypoxic conditions, physiological hypoxia (5% O2) and severe hypoxia (0.1% O2). We found that chenodeoxy cholic acid (CDCA) reduced the amount of HIF-1α protein only under physiological hypoxia but not under severe hypoxia without decreasing its mRNA level. By using a proteasome inhibitor MG132 and a translation inhibitor cyclohexamide, we showed that CDCA reduced HIF-1α protein by decreasing its translation but not by enhancing its degradation. The following findings indicated that farnesoid X receptor (FXR), a CDCA receptor and its target gene, Small heterodimer partner (SHP) are not involved in this effect of CDCA. Distinctly from CDCA, MG132 prevented SHP and an exogenous FXR agonist, GW4064 from reducing HIF-1α protein. Furthermore a FXR antagonist, guggulsterone failed to prevent CDCA from decreasing HIF-1α protein. Furthermore, guggulsterone by itself reduced HIF-1α protein even in the presence of MG132. These findings suggested that CDCA and guggulsterone reduced the translation of HIF-1α in a mechanism which FXR and SHP are not involved. This study reveals novel therapeutic functions of traditional nontoxic drugs, CDCA and guggulsterone, as inhibitors of HIF-1α protein.
Collapse
Affiliation(s)
- Yunwon Moon
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Su Mi Choi
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Soojeong Chang
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Bongju Park
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Seongyeol Lee
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul, Korea
- * E-mail:
| |
Collapse
|
34
|
Li P, Wu J, Zhao L, Feng XW. Effects and relationship of intermittent hypoxia on serum lipid levels, hepatic low-density lipoprotein receptor-related protein 1, and hypoxia-inducible factor 1α. Sleep Breath 2015; 20:167-73. [DOI: 10.1007/s11325-015-1200-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/05/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022]
|
35
|
Kumar H, Lim JH, Kim IS, Choi DK. Differential regulation of HIF-3α in LPS-induced BV-2 microglial cells: Comparison and characterization with HIF-1α. Brain Res 2015; 1610:33-41. [DOI: 10.1016/j.brainres.2015.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
|
36
|
Nakamura H, Tazaki L, Kanoh D, Sato S. Diaryl-substituted carboranes as inhibitors of hypoxia inducible factor-1 transcriptional activity. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2014-0911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractDiaryl-substituted carboranes, as a new class of HIF-1α inhibitors, were synthesized from the corresponding diaryl-substituted alkynes by decaborane coupling. The microwave-irradiated conditions with a combination of N,N-dimethylaniline and chlorobenzene were effective to obtain the diaryl-substituted carboranes in good to high yields. Among the compounds synthesized, compounds 1a and 1d showed significant inhibition of HIF-1 mediated transcriptional activity under hypoxia. Both compounds similarly suppressed hypoxia-induced HIF-1α accumulation in a concentration-dependent manner without affecting HIF-1α mRNA expression.
Collapse
Affiliation(s)
| | - Lisa Tazaki
- 2Faculty of Science, Department of Chemistry, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
| | - Daisuke Kanoh
- 2Faculty of Science, Department of Chemistry, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
| | - Shinichi Sato
- 1Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
37
|
Overexpression of isocitrate dehydrogenase-1R¹³²H enhances the proliferation of A172 glioma cells via aerobic glycolysis. Mol Med Rep 2015; 11:3715-21. [PMID: 25586175 DOI: 10.3892/mmr.2015.3187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 11/25/2014] [Indexed: 11/05/2022] Open
Abstract
Gliomas are the most common type of primary malignancy of the central nervous system. The identification of mutations in the gene encoding isocitrate dehydrogenase‑1 (IDH1) represents a key area of investigation in studies on glioma. The IDH1R132H mutation is a heterozygous point mutation, which affects the amino acid arginine at position 132, however, the metabolic importance of this mutation in tumor cell growth remains to be elucidated. In the present study, A172 glioma cell lines stably overexpressing either wild‑type IDH1 or IDH1R132H were produced. The results demonstrated that the IDH1R132H mutation enhanced the proliferation of the A172 glioma cells in vitro. Furthermore, IDH1R132H performed this function by elevating the expression levels of hypoxia inducible factor‑1α, leading to an increase in the expression levels of the key glycolytic enzymes, glucose transporter 1 and hexokinase 2. Therefore, the metabolism was shifted towards aerobic glycolysis, leading to an increase in glucose uptake and lactate production. These findings demonstrated that the IDH1R132H molecular target was involved in orchestrating the Warburg effect in mutant IDH1R132H glioma cells.
Collapse
|
38
|
Sheng R, Li S, Lin G, Shangguan S, Gu Y, Qiu N, Cao J, He Q, Yang B, Hu Y. Novel potent HIF-1 inhibitors for the prevention of tumor metastasis: discovery and optimization of 3-aryl-5-indazole-1,2,4-oxadiazole derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra15191k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our newly synthesized HIF-1 inhibitors 4g and 4h are proved to be the most potential therapeutic agents against tumor metastasis.
Collapse
|
39
|
Yi JM, Park JS, Lee J, Hong JT, Bang OS, Kim NS. Anti-angiogenic potential of an ethanol extract of Annona atemoya seeds in vitro and in vivo. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:353. [PMID: 25249371 PMCID: PMC4180132 DOI: 10.1186/1472-6882-14-353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/19/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Angiogenesis, which is initiated by certain tumor micro-environmental conditions and diverse protein factors, plays a pivotal role during tumor development and metastasis. Therefore, many efforts have been made to develop effective anti-angiogenic agents as anticancer therapeutics. In the current study, we investigated the anti-angiogenic potential of an ethanol extract of Annona atemoya seeds (EEAA) in vitro and in vivo. METHODS The anti-angiogenic potential of EEAA was evaluated using various in vitro/in vivo models, including cell proliferation, migration, and tube formation by human umbilical vascular endothelial cells (HUVECs); a Matrigel plug assay; and tumor-induced angiogenesis. The expression of hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF) was investigated using reverse transcription-polymerase chain reaction, immunoassays, and western blotting. RESULTS EEAA was able to significantly inhibit the angiogenic properties of HUVECs in vitro as well as angiogenic factor-induced blood vessel formation in vivo. EEAA down-regulated the expression of VEGF and HIF-1alpha/2alpha at the mRNA and protein levels, respectively, in cancer cells under hypoxic conditions. CONCLUSIONS EEAA shows a strong anti-angiogenic potential in both in vitro and in vivo systems, and we suggest that EEAA may be a valuable herbal source for anticancer drug development.
Collapse
|
40
|
Kim HY, Park SY, Lee SW, Lee HR, Lee WS, Rhim BY, Hong KW, Kim CD. Inhibition of HMGB1-induced angiogenesis by cilostazol via SIRT1 activation in synovial fibroblasts from rheumatoid arthritis. PLoS One 2014; 9:e104743. [PMID: 25126750 PMCID: PMC4134224 DOI: 10.1371/journal.pone.0104743] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/15/2014] [Indexed: 11/21/2022] Open
Abstract
High mobility group box chromosomal protein 1 (HMGB-1) released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA) of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arthritis (RA) patients were assessed by Western blotting, and in vitro and in vivo angiogenesis were analyzed. Tube formations by human microvascular endothelial cells (HMVECs) were significantly increased by direct exposure to HMGB1 or to conditioned medium derived from HMGB1-stimulated RA fibroblasts, and these increases were attenuated by cilostazol, the latter of which was blocked by sirtinol. HMGB1 increased the expression of HIF-1α and VEGF and concomitantly increased nuclear NF-κB p65 and DNA binding activity, but these effects of HMGB1 were inhibited by cilostazol. SIRT1 protein expression was time-dependently decreased (3–24 hr) by HMGB1, which was recovered by pretreatment with cilostazol (1–30 µM) or resveratrol, accompanying with increased SIRT1 deacetylase activity. In the tibiotarsal joint tissues of CIA mice treated with vehicle, HIF-1α- and VEGF-positive spots and CD31 staining were markedly exaggerated, whereas SIRT1 immunofluorescence was diminished. These variables were wholly reversed in cilostazol (30 mg/kg/day)-treated mice. Furthermore, number of blood vessels stained by von Willebrand factor antibody was significantly lower in cilostazol-treated CIA mice. Summarizing, cilostazol activated SIRT1 and inhibited NF-κB-mediated transcription, thereby suppressing the expression of HIF-1α and VEGF. In addition, cilostazol caused HIF-1α deacetylation by enhancing SIRT1 activity and reduced VEGF production, thereby had an anti-angiogenic effect in vitro studies and in CIA murine model.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Cells, Cultured
- Cilostazol
- Fibroblasts/drug effects
- Fibroblasts/immunology
- Fibroblasts/pathology
- HMGB1 Protein/immunology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/immunology
- Male
- Mice
- NF-kappa B/immunology
- Neovascularization, Pathologic/complications
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Sirtuin 1/immunology
- Synovial Membrane/cytology
- Tetrazoles/pharmacology
- Tetrazoles/therapeutic use
Collapse
Affiliation(s)
- Hye Young Kim
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - So Youn Park
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Sung Won Lee
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Hye Rin Lee
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Won Suk Lee
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Byung Yong Rhim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Ki Whan Hong
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Chi Dae Kim
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- * E-mail:
| |
Collapse
|
41
|
Hyperthermia-Conditioned OECs Serum-Free–Conditioned Medium Induce NSC Differentiation Into Neuron More Efficiently by the Upregulation of HIF-1 Alpha and Binding Activity. Transplantation 2014; 97:1225-32. [DOI: 10.1097/tp.0000000000000118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Zhang Z, Yan J, Taheri S, Liu KJ, Shi H. Hypoxia-inducible factor 1 contributes to N-acetylcysteine's protection in stroke. Free Radic Biol Med 2014; 68:8-21. [PMID: 24296245 PMCID: PMC3943875 DOI: 10.1016/j.freeradbiomed.2013.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 01/01/2023]
Abstract
Stroke is a leading cause of adult morbidity and mortality with very limited treatment options. Evidence from preclinical models of ischemic stroke has demonstrated that the antioxidant N-acetylcysteine (NAC) effectively protects the brain from ischemic injury. Here, we evaluated a new pathway through which NAC exerted its neuroprotection in a transient cerebral ischemia animal model. Our results demonstrated that pretreatment with NAC increased protein levels of hypoxia-inducible factor-1α (HIF-1α), the regulatable subunit of HIF-1, and its target proteins erythropoietin (EPO) and glucose transporter (GLUT)-3, in the ipsilateral hemispheres of rodents subjected to 90min middle cerebral artery occlusion (MCAO) and 24h reperfusion. Interestingly, after NAC pretreatment and stroke, the contralateral hemisphere also demonstrated increased levels of HIF-1α, EPO, and GLUT-3, but to a lesser extent. Suppressing HIF-1 activity with two widely used pharmacological inhibitors, YC-1 and 2ME2, and specific knockout of neuronal HIF-1α abolished NAC's neuroprotective effects. The results also showed that YC-1 and 2ME2 massively enlarged infarcts, indicating that their toxic effect was larger than just abolishing NAC's neuroprotective effects. Furthermore, we determined the mechanism of NAC-mediated HIF-1α induction. We observed that NAC pretreatment upregulated heat-shock protein 90 (Hsp90) expression and increased the interaction of Hsp90 with HIF-1α in ischemic brains. The enhanced association of Hsp90 with HIF-1α increased HIF-1α stability. Moreover, Hsp90 inhibition attenuated NAC-induced HIF-1α protein accumulation and diminished NAC-induced neuroprotection in the MCAO model. These results strongly indicate that HIF-1 plays an important role in NAC-mediated neuroprotection and provide a new molecular mechanism involved in the antioxidant's neuroprotection in ischemic stroke.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS 66045, USA
| | - Jingqi Yan
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS 66045, USA
| | - Saeid Taheri
- Department of Radiology, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Honglian Shi
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
43
|
Nakamura H, Tasaki L, Kanoh D, Sato S, Ban HS. Diaryl-substituted ortho-carboranes as a new class of hypoxia inducible factor-1α inhibitors. Dalton Trans 2014; 43:4941-4. [DOI: 10.1039/c3dt52828f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Yang S, Yu M, Sun L, Xiao W, Yang X, Sun L, Zhang C, Ma Y, Yang H, Liu Y, Lu D, Teitelbaum DH, Yang H. Interferon-γ-induced intestinal epithelial barrier dysfunction by NF-κB/HIF-1α pathway. J Interferon Cytokine Res 2013; 34:195-203. [PMID: 24237301 DOI: 10.1089/jir.2013.0044] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interferon-γ (IFN-γ) plays an important role in intestinal barrier dysfunction. However, the mechanisms are not fully understood. As hypoxia-inducible factor-1 (HIF-1) is a critical determinant response to hypoxia and inflammation, which has been shown to be deleterious to intestinal barrier function, we hypothesized that IFN-γ induces loss of barrier function through the regulation of HIF-1α activation and function. In this study, we detected the expressions of HIF-1α and tight junction proteins in IFN-γ-treated T84 intestinal epithelial cell line. IFN-γ led to an increase of HIF-1α expression in time- and dose-dependent manners but did not change the expression of HIF-1β. The IFN-γ-induced increase in HIF-1α was associated with an activation of NF-κB. Treatment with the NF-κB inhibitor, pyrolidinedithiocarbamate (PDTC), significantly suppressed the activation of NF-κB and the expression of HIF-1α. In addition, IFN-γ also increased intestinal epithelial permeability and depletion of tight junction proteins; inhibition of NF-κB or HIF-1α prevented the increase in intestinal permeability and alteration in tight junction protein expressions. Interestingly, we demonstrated that a significant portion of IFN-γ activation NF-kB and modulation tight junction expression is mediated through HIF-1α. Taken together, this study suggested that IFN-γ induced the loss of epithelial barrier function and disruption of tight junction proteins, by upregulation of HIF-1α expression through NF-κB pathway.
Collapse
Affiliation(s)
- Songwei Yang
- 1 Department of General Surgery, Xinqiao Hospital, Third Military Medical University , Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wiesner D, Merdian I, Lewerenz J, Ludolph AC, Dupuis L, Witting A. Fumaric acid esters stimulate astrocytic VEGF expression through HIF-1α and Nrf2. PLoS One 2013; 8:e76670. [PMID: 24098549 PMCID: PMC3789659 DOI: 10.1371/journal.pone.0076670] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/26/2013] [Indexed: 12/02/2022] Open
Abstract
Fumaric acid esters (FAE) are oral analogs of fumarate that have recently been shown to decrease relapse rate and disease progression in multiple sclerosis (MS), prompting to investigate their protective potential in other neurological diseases such as amyotrophic lateral sclerosis (ALS). Despite efficacy in MS, mechanisms of action of FAEs are still largely unknown. FAEs are known to activate the transcription factor Nrf2 and downstream anti-oxidant responses through the succination of Nrf2 inhibitor KEAP1. However, fumarate is also a known inhibitor of prolyl-hydroxylases domain enzymes (PhD), and PhD inhibition might lead to stabilization of the HIF-1α transcription factor under normoxic conditions and subsequent activation of a pseudo hypoxic response. Whether Nrf2 activation is associated with HIF-1α stabilization in response to FAEs in cell types relevant to MS or ALS remains unknown. Here, we show that FAEs elicit HIF-1α accumulation, and VEGF release as its expected consequence, in astrocytes but not in other cell types of the central nervous system. Reporter assays demonstrated that increased astrocytic VEGF release in response to FAEs was dependent upon both HIF-1α and Nrf2 activation. Last, astrocytes of transgenic mice expressing SOD1(G93A), an animal model of ALS, displayed reduced VEGF release in response to FAEs. These studies show that FAEs elicit different signaling pathways in cell types from the central nervous system, in particular a pseudo-hypoxic response in astrocytes. Disease relevant mutations might affect this response.
Collapse
Affiliation(s)
- Diana Wiesner
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Irma Merdian
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Luc Dupuis
- U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Inserm, Strasbourg, France
- UMRS1118, Université de Strasbourg, Fédération de médecine translationnelle, Strasbourg, France
- * E-mail: (LD); (AW)
| | - Anke Witting
- Department of Neurology, University of Ulm, Ulm, Germany
- * E-mail: (LD); (AW)
| |
Collapse
|
46
|
Lee JC, Chou LC, Lien JC, Wu JC, Huang CH, Chung CH, Lee FY, Huang LJ, Kuo SC, Way TD. CLC604 preferentially inhibits the growth of HER2-overexpressing cancer cells and sensitizes these cells to the inhibitory effect of Taxol in vitro and in vivo. Oncol Rep 2013; 30:1762-72. [PMID: 23900492 DOI: 10.3892/or.2013.2634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/25/2013] [Indexed: 11/06/2022] Open
Abstract
HER2 has become a solicitous therapeutic target in metastatic and clinical drug-resistant cancer. Here, we evaluated whether or not 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) and its furopyrazole and thienopyrazole analogues repress the expression of the HER2 protein. Among the test compounds, (1-benzyl-3-(p-hydroxymethylphenyl)-5-methylfuro[3,2-c]pyrazol) (CLC604), an isosteric analogue of YC-1, significantly suppressed the expression of HER2, and preferentially inhibited cell proliferation and induced apoptosis in HER2-overexpressing cancer cells. Our results revealed that CLC604 reduced HER2 expression through a post-transcriptional mechanism and involvement of proteasomal activity. CLC604 disrupted the association of 90-kDa heat shock protein (Hsp90) with HER2 resulting from the inhibition of Hsp90 ATPase activity. Moreover, we found that CLC604 significantly enhanced the antitumor efficacy of clinical drugs against HER2-overexpressing tumors and efficiently reduced HER2-induced drug resistance in vitro and in vivo. These findings suggest that CLC604 should be developed further as a novel antitumor drug candidate for the treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Jang-Chang Lee
- Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hu Y, Liu J, Huang H. Recent agents targeting HIF-1α for cancer therapy. J Cell Biochem 2013; 114:498-509. [PMID: 22961911 DOI: 10.1002/jcb.24390] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/30/2012] [Indexed: 12/11/2022]
Abstract
The discovery of hypoxia-inducible factor-1 (HIF-1) has led to an increasing understanding of the mechanism of tumor hypoxia in the past two decades. As a key transcriptional regulator, HIF-1 plays a central role in the adaptation of tumor cells to hypoxia by activating the transcription of targeting genes, which regulate several biological processes including angiogenesis, cell proliferation, survival, glucose metabolism and migration. The inhibitors of HIF-1 in cancer have provided us a new clue for the targeting cancer therapy. This review will introduce the general knowledge of the biology characteristic of HIF-1 and mechanism of O(2)-dependent regulation. Moreover, a number of chemical inhibitors plus protein and nucleic acid inhibitors are included and classified mainly based on their different mechanism of inhibiting action. We also prefer to discuss the advantages of protein and nucleic acid inhibitors compared with chemical inhibitors.
Collapse
Affiliation(s)
- Yaozhong Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | |
Collapse
|
48
|
Crotty Alexander LE, Akong-Moore K, Feldstein S, Johansson P, Nguyen A, McEachern EK, Nicatia S, Cowburn AS, Olson J, Cho JY, Isaacs H, Johnson RS, Broide DH, Nizet V. Myeloid cell HIF-1α regulates asthma airway resistance and eosinophil function. J Mol Med (Berl) 2013; 91:637-44. [PMID: 23250618 PMCID: PMC3646920 DOI: 10.1007/s00109-012-0986-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/09/2012] [Accepted: 12/02/2012] [Indexed: 01/10/2023]
Abstract
Hypoxia-inducible factor (HIF)-1α is a master regulator of inflammatory activities of myeloid cells, including neutrophils and macrophages. These studies examine the role of myeloid cell HIF-1α in regulating asthma induction and pathogenesis, and for the first time, evaluate the roles of HIF-1α and HIF-2α in the chemotactic properties of eosinophils, the myeloid cells most associated with asthma. Wild-type (WT) and myeloid cell-specific HIF-1α knockout (KO) C57BL/6 mice were studied in an ovalbumin (OVA) model of asthma. Administration of the pharmacological HIF-1α antagonist YC-1 was used to corroborate findings from the genetic model. WT, HIF-1α, and HIF-2α KO eosinophils underwent in vitro chemotaxis assays. We found that deletion of HIF-1α in myeloid cells and systemic treatment with YC-1 during asthma induction decreased airway hyperresponsiveness (AHR). Deletion of HIF-1α in myeloid cells in OVA-induced asthma also reduced eosinophil infiltration, goblet cell hyperplasia, and levels of cytokines IL-4, IL-5, and IL-13 in the lung. HIF-1α inhibition with YC-1 during asthma induction decreased eosinophilia in bronchoalveolar lavage, lung parenchyma, and blood, as well as decreased total lung inflammation, IL-5, and serum OVA-specific IgE levels. Deletion of HIF-1α in eosinophils decreased their chemotaxis, while deletion of the isoform HIF-2α led to increased chemotaxis. This work demonstrates that HIF-1α in myeloid cells plays a role in asthma pathogenesis, particularly in AHR development. Additionally, treatment with HIF-1α inhibitors during asthma induction decreases AHR and eosinophilia. Finally, we show that HIF-1α and HIF-2α regulate eosinophil migration in opposing ways.
Collapse
Affiliation(s)
- Laura E Crotty Alexander
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Widmer DS, Hoek KS, Cheng PF, Eichhoff OM, Biedermann T, Raaijmakers MIG, Hemmi S, Dummer R, Levesque MP. Hypoxia contributes to melanoma heterogeneity by triggering HIF1α-dependent phenotype switching. J Invest Dermatol 2013; 133:2436-2443. [PMID: 23474946 DOI: 10.1038/jid.2013.115] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 02/06/2023]
Abstract
We have previously reported a model for melanoma progression in which oscillation between melanoma cell phenotypes characterized by invasion or proliferation is fundamental to tumor heterogeneity and disease progression. In this study we examine the possible role of hypoxia as one of the microenvironmental influences driving metastatic progression by promoting a switch from a proliferative to an invasive phenotype. Immunohistochemistry on primary human cutaneous melanoma biopsies showed intratumoral heterogeneity for cells expressing melanocytic markers, and a loss of these markers correlated with hypoxic regions. Furthermore, we show that the downregulation of melanocytic markers is dependent on hypoxia inducible factor 1α (HIF1α), a known regulator of the hypoxic response. In vitro invasion assays showed that a hypoxic environment increases the invasiveness of proliferative melanoma cell cultures in a HIF1α-dependent manner. In contrast, invasive phenotype melanoma cells showed no increase in invasive potential upon exposure to hypoxia. Thus, exposure of proliferative melanoma cells to hypoxic microenvironments is sufficient, in a HIF1α-dependent manner, to downregulate melanocytic marker expression and increase their invasive potential.
Collapse
Affiliation(s)
- Daniel S Widmer
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Keith S Hoek
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Phil F Cheng
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Ossia M Eichhoff
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Thomas Biedermann
- Department of Surgery, University Children's Hospital Zürich, Zürich, Switzerland
| | | | - Silvio Hemmi
- Faculty of Mathematics and Natural Sciences, Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.
| |
Collapse
|
50
|
Carroll CE, Liang Y, Benakanakere I, Besch-Williford C, Hyder SM. The anticancer agent YC-1 suppresses progestin-stimulated VEGF in breast cancer cells and arrests breast tumor development. Int J Oncol 2012; 42:179-87. [PMID: 23123638 PMCID: PMC3583650 DOI: 10.3892/ijo.2012.1675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/04/2012] [Indexed: 01/01/2023] Open
Abstract
Recent epidemiological studies show that postmenopausal women taking estrogen-progestin hormone replacement therapy (HRT) have a higher risk of breast cancer than women on an HRT regimen lacking progestins. This may be related to the observation that progestin-treated breast cancer cells express and secrete high levels of vascular endothelial growth factor (VEGF), a potent angiogenic factor that promotes breast tumor growth. Anti-progestins such as RU-486 block this effect, indicating that progesterone receptors (PR) are involved in promoting VEGF induction; however antiprogestins cross-react with other steroid receptors which limits their clinical use. Alternative strategies are, therefore, needed to arrest the growth of progestin-dependent tumors. 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1), a novel anticancer drug initially developed as an inhibitor of HIF-1α, is currently undergoing preclinical trials against various forms of cancer. Since HIF-1α has recently been implicated in PR-mediated VEGF synthesis, we undertook studies to determine whether YC-1 inhibits progestin-dependent VEGF induction and tumor progression. Surprisingly, we found that YC-1 downregulated PR in human breast cancer cells, both in vivo and in vitro, thereby blocking progestin-dependent induction of VEGF and tumor growth. YC-1 also inhibited progestin-accelerated DMBA-induced mammary tumors in rats, properties which would likely render it effective against progestin-dependent tumors which frequently develop in post-menopausal women. We, therefore, propose that based on our observations, YC-1 warrants further investigation as a novel agent which could prove extremely useful as an anti-angiogenic chemotherapeutic drug.
Collapse
Affiliation(s)
- Candace E Carroll
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|