1
|
Kowluru A. Roles of GTP and Rho GTPases in pancreatic islet beta cell function and dysfunction. Small GTPases 2020; 12:323-335. [PMID: 32867592 DOI: 10.1080/21541248.2020.1815508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence implicates requisite roles for GTP and its binding proteins (Rho GTPases) in the cascade of events leading to physiological insulin secretion from the islet beta cell. Interestingly, chronic exposure of these cells to hyperglycaemic conditions appears to result in sustained activation of specific Rho GTPases (e.g. Rac1) leading to significant alterations in cellular functions including defects in mitochondrial function and nuclear collapse culminating in beta cell demise. One of the objectives of this review is to highlight our current understanding of the regulatory roles of GTP and Rho GTPases in normal islet function (e.g. proliferation and insulin secretion) as well potential defects in these signalling molecules and metabolic pathways that could contribute islet beta cell dysfunction and loss of functional beta cell mass leading to the onset of diabetes. Potential knowledge gaps in this field and possible avenues for future research are also highlighted. ABBREVIATIONS ARNO: ADP-ribosylation factor nucleotide binding site opener; CML: carboxyl methylation; Epac: exchange protein directly activated by cAMP; ER stress: endoplasmic reticulum stress; FTase: farnesyltransferase; GAP: GTPase activating protein; GDI: GDP dissociation inhibitor; GEF: guanine nucleotide exchange factor; GGTase: geranylgeranyltransferase; GGpp: geranylgeranylpyrophosphate; GGPPS: geranylgeranyl pyrophosphate synthase; GSIS: glucose-stimulated insulin secretion; HGPRTase: hypoxanthine-guanine phosphoribosyltransferase; IMPDH: inosine monophosphate dehydrogenase; α-KIC: α-ketoisocaproic acid; MPA: mycophenolic acid; MVA: mevalonic acid; NDPK: nucleoside diphosphate kinase; NMPK: nucleoside monophosphate kinase; Nox2: phagocyte-like NADPH oxidase; PAK-I: p21-activated kinase-I; β-PIX: β-Pak-interacting exchange factor; PRMT: protein arginine methyltransferase; Rac1: ras-related C3 botulinum toxin substrate 1; Tiam1: T-cell lymphoma invasion and metastasis-inducing protein 1; Trx-1: thioredoxin-1; Vav2: vav guanine nucleotide exchange factor 2.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center and Department of Pharmaceutical Sciences and Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Recent advances in design, synthesis and bioactivity of paclitaxel-mimics. Fitoterapia 2016; 110:26-37. [DOI: 10.1016/j.fitote.2016.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/18/2022]
|
3
|
Krautz C, Wolk S, Steffen A, Knoch KP, Ceglarek U, Thiery J, Bornstein S, Saeger HD, Solimena M, Kersting S. Effects of immunosuppression on alpha and beta cell renewal in transplanted mouse islets. Diabetologia 2013; 56:1596-604. [PMID: 23532258 DOI: 10.1007/s00125-013-2895-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/07/2013] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Immunosuppressive drugs used in human islet transplantation interfere with the balance between beta cell renewal and death, and thus may contribute to progressive graft dysfunction. We analysed the influence of immunosuppressants on the proliferation of transplanted alpha and beta cells after syngeneic islet transplantation in streptozotocin-induced diabetic mice. METHODS C57BL/6 diabetic mice were transplanted with syngeneic islets in the liver and simultaneously abdominally implanted with a mini-osmotic pump delivering BrdU alone or together with an immunosuppressant (tacrolimus, sirolimus, everolimus or mycophenolate mofetil [MMF]). Glycaemic control was assessed for 4 weeks. The area and proliferation of transplanted alpha and beta cells were subsequently quantified. RESULTS After 4 weeks, glycaemia was significantly higher in treated mice than in controls. Insulinaemia was significantly lower in mice treated with everolimus, tacrolimus and sirolimus. MMF was the only immunosuppressant that did not significantly reduce beta cell area or proliferation, albeit its levels were in a lower range than those used in clinical settings. CONCLUSIONS/INTERPRETATION After transplantation in diabetic mice, syngeneic beta cells have a strong capacity for self-renewal. In contrast to other immunosuppressants, MMF neither impaired beta cell proliferation nor adversely affected the fractional beta cell area. Although human beta cells are less prone to proliferate compared with rodent beta cells, the use of MMF may improve the long-term outcome of islet transplantation.
Collapse
Affiliation(s)
- C Krautz
- Department of General, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstrasse 74, 01307, Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gallo R, Natale M, Vendrame F, Boggi U, Filipponi F, Marchetti P, Laghi Pasini F, Dotta F. In vitro effects of mycophenolic acid on survival, function, and gene expression of pancreatic beta-cells. Acta Diabetol 2012; 49 Suppl 1:S123-31. [PMID: 22249339 DOI: 10.1007/s00592-011-0368-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/23/2011] [Indexed: 12/24/2022]
Abstract
Post-transplant diabetes mellitus represents an important complication of prolonged immunosuppressive treatment after solid organ transplantation. The immunosuppressive toxicity, responsible for a persistent impairment of glucose metabolism in pancreatic islet-transplanted patients, is mainly attributed to calcineurin inhibitors and steroids, while other immunosuppressive molecules (azathioprine and mycophenolic acid, MPA) are considered not to have a toxic effect. In the present study, in vitro effects of MPA have been investigated in mouse beta-cell lines (βTC-1 and βTC-6) and in purified human pancreatic islets. βTC-1, βTC-6, and human pancreatic islets were exposed to various concentrations of MPA for different times. Consequently, we evaluated the viability, the induction of apoptosis, the glucose-stimulated insulin secretion, and the expression of β-cell function genes (Isl1, Pax6, Glut-2, glucokinase) and apoptosis-related genes (Bax and Bcl2). βTC-1, βTC-6, and human islets treated, respectively, for 48 and 72 h with 15-30 nM MPA showed altered islet architecture, as compared with control cells. We observed for βTC-1 and βTC-6 almost 70% reduction in cell viability; three to sixfold induction of TUNEL/apoptotic-positive cells quantified by FACS analysis. A twofold increase in apoptotic cells was observed in human islets after MPA exposure associated with strong inhibition of glucose-stimulated insulin secretion. Furthermore, we showed significant down-regulation of gene expression of molecules involved in β-cell function and increase rate between Bax/Bcl2. Our data demonstrate that MPA has an in vitro diabetogenic effect interfering at multiple levels with survival and function of murine and human pancreatic β-cells.
Collapse
Affiliation(s)
- R Gallo
- Department of Internal Medicine, Diabetes Unit, Endocrine and Metabolic Sciences and Biochemistry, University of Siena, Viale Bracci 18, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kuramoto T, Daikoku T, Yoshida Y, Takemoto M, Oshima K, Eizuru Y, Kanda Y, Miyawaki T, Shiraki K. Novel anticytomegalovirus activity of immunosuppressant mizoribine and its synergism with ganciclovir. J Pharmacol Exp Ther 2010; 333:816-21. [PMID: 20194528 DOI: 10.1124/jpet.109.160630] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytomegalovirus (CMV) infection is a prominent infection in transplant recipients. The immunosuppressive drug mizoribine was shown to have anti-CMV activity in vitro and was reported to have an anti-CMV effect in renal transplantation. This study characterized the anti-CMV activity of mizoribine in vitro and its synergistic activity with ganciclovir. Mizoribine suppressed replication and at the EC(50) for plaque inhibition of 12.0 microg/ml. Mizoribine and ganciclovir exerted a strong synergism in anti-CMV activity. Mizoribine depletes guanosine nucleotides by inhibiting inosine monophosphate dehydrogenase and may increase the ratio of ganciclovir to guanosine in treated cells, resulting in a strong synergistic augmentation of the anti-CMV activity of ganciclovir. Two clinical isolates with UL97 mutations were less susceptible to mizoribine than the Towne strain but were equally susceptible in the presence of guanine. Two mizoribine-resistant strains were isolated after culture for 3 months with 100 microg/ml mizoribine, but they were as sensitive to ganciclovir as the parent Towne strain. The anti-CMV activity of mizoribine was antagonized by 2'-deoxyguanosine. Mizoribine inhibited CMV replication directly, and the sequence of mizoribine-resistant mutants of UL97 and UL54 was identical to that of the parent Towne strain, indicating the different anti-CMV action from ganciclovir, foscarnet, and maribavir. Mizoribine as an immunosuppressive and anti-CMV drug in the clinical regimen was suggested to suppress replication of CMV in vivo and control CMV infection in transplant recipients in combination with ganciclovir.
Collapse
Affiliation(s)
- Takashi Kuramoto
- Department of Virology, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- R Paul Robertson
- Pacific Northwest Research Institute and the Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle 98122, USA.
| |
Collapse
|
7
|
Huo J, Metz SA, Li G. Role of tissue transglutaminase in GTP depletion-induced apoptosis of insulin-secreting (HIT-T15) cells. Biochem Pharmacol 2003; 66:213-23. [PMID: 12826264 DOI: 10.1016/s0006-2952(03)00262-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of tissue transglutaminase (tTG), a calcium-dependent and GTP-modulated enzyme, in apoptotic death induced by GTP depletion in islet beta-cells was investigated. GTP depletion and apoptosis were induced by mycophenolic acid (MPA) in insulin-secreting HIT-T15 cells. MPA treatment increased in situ tTG activity (but not protein levels) in a dose- and time-dependent manner in parallel with the induction of apoptosis. MPA-induced increases of both tTG activity and apoptosis were entirely blocked by co-provision of guanosine but not adenosine. MPA-enhanced tTG activity could be substantially reduced by co-exposure to monodansylcadaverine or putrescine (tTG inhibitors), and largely blocked by lowering free Ca(2+) concentrations in the culture medium. However, MPA-induced cell death was either not changed or was only slightly reduced under these conditions. By contrast, a pan-caspase inhibitor (Z-VAD-FMK) entirely prevented apoptosis induced by MPA, but did not block the enhanced tTG activity, indicating that GTP depletion can induce apoptosis and activate tTG either independently or as part of a cascade of events involving caspases. Importantly, the morphological changes accompanying apoptosis could be markedly prevented by tTG inhibitors. These findings suggest that the effect of the marked increase in tTG activity in GTP depletion-induced apoptosis of insulin-secreting cells may be restricted to some terminal morphological changes.
Collapse
Affiliation(s)
- JianXin Huo
- Cardiovascular Research Institute, National University Medical Institutes, National University of Singapore, Blk MD11 #02-01, 10 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
8
|
Huo J, Luo RH, Metz SA, Li G. Activation of caspase-2 mediates the apoptosis induced by GTP-depletion in insulin-secreting (HIT-T15) cells. Endocrinology 2002; 143:1695-704. [PMID: 11956151 DOI: 10.1210/endo.143.5.8810] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated the possible involvement of a specific caspase(s) (a family of aspartate-specific cysteine proteases) in programmed cell death of islet beta-cells due to sustained GTP depletion. Treatment (up to 48 h) with 3 microg/ml mycophenolic acid (MPA), which specifically depletes intracellular guanine nucleotides, reduced cell-cycle progression from G1 phase into S and G2/M phases (as assessed by flow cytometry) and, subsequently, induced apoptosis of HIT-15 cells (transformed pancreatic beta-cells). The latter was accompanied by a marked increase of caspase-2 activity (+343%) and moderate activation of caspase-9 (+150%) and caspase-3 (+145%). Importantly, only caspase-2 activation preceded induction of apoptosis. There was no change in activity of caspase-1, -4, -5, -6, and -8. Release of the mitochondrial protein cytochrome c into cytosol was also observed at a late stage. Cotreatment of cells with a permeable pan-caspase inhibitor (Z-VAD-FMK) blocked GTP depletion-induced cell death in a dose-dependent manner. A specific caspase-2 inhibitor (Z-VDVAD-FMK), but not a caspase-3 inhibitor (DEVD-CHO), was also capable of restoring cell viability. Interestingly, activation of caspase-2 leads to caspase-3 activation because the caspase-2 inhibitor abrogated caspase-3 activity. Our results indicate that, while activation of multiple caspases are involved in the execution phase of GTP depletion-induced apoptosis, caspase-2 appears to play the major role in the initiation of this program. This study revealed a novel, caspase-2 mediated form of apoptosis that may be consequent to impaired mitogenesis.
Collapse
Affiliation(s)
- Jianxin Huo
- Cardiovascular Research Institute, National University Medical Institutes, National University of Singapore, 10 Medical Drive, Singapore 117597
| | | | | | | |
Collapse
|
9
|
Paty BW, Harmon JS, Marsh CL, Robertson RP. Inhibitory effects of immunosuppressive drugs on insulin secretion from HIT-T15 cells and Wistar rat islets. Transplantation 2002; 73:353-7. [PMID: 11884930 DOI: 10.1097/00007890-200202150-00007] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Until recently, islet allotransplantation for type 1 diabetic patients has been largely unsuccessful. Previous pharmacologic studies of single drugs have suggested that one factor contributing to this poor success is toxicity of immunosuppressive drugs on transplanted islets. However, no comprehensive study of agents currently used for islet transplantation has been previously reported. Consequently, we exposed HIT-T15 cells and Wistar rat islets to various concentrations of five immunosuppressive agents for 48 and 24 hr, respectively, and measured glucose-stimulated insulin secretion during subsequent static incubations. Results are expressed as percent reduction of insulin secretion at the lower and upper limits, respectively, of plasma drug concentrations used in clinical transplantation compared with control (no drug exposure). Insulin secretion from HIT-T15 cells was significantly inhibited by 74% and 90% after exposure to methylprednisolone (P<0.05), 11% and 24% after exposure to cyclosporine (P<0.01), 60% and 83% after exposure to mycophenolate (P<0.05), 56% and 63% after exposure to sirolimus (P<0.001), and 10% and 20% after exposure to tacrolimus (P<0.001). Insulin secretion from Wistar rat islets was reduced by 0% and 48% after exposure to mycophenolate (P<0.001) and 20% and 31% after exposure to tacrolimus (P<0.05). No reduction in insulin secretion was observed from either HIT-T15 cells or rat islets after exposure to daclizumab. The results support the hypothesis that toxicity of certain immunosuppressive drugs on beta-cell function plays a role in the poor success of islet allotransplantation. This is especially true of intrahepatically transplanted islets, which are exposed to higher portal concentrations of immunosuppressive agents. These findings support the use of low-dose immunosuppressive drug protocols in clinical islet transplantation.
Collapse
Affiliation(s)
- B W Paty
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | | | | | |
Collapse
|
10
|
Metz S, Holland S, Johnson L, Espling E, Rabaglia M, Segu V, Brockenbrough JS, Tran PO. Inosine-5'-monophosphate dehydrogenase is required for mitogenic competence of transformed pancreatic beta cells. Endocrinology 2001; 142:193-204. [PMID: 11145582 DOI: 10.1210/endo.142.1.7869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The relation of inosine-5'-monophosphate dehydrogenase (IMPDH; the rate-limiting enzyme in GTP synthesis) to mitogenesis was studied by enzymatic assay, immunoblots, and RT-PCR in several dissimilar transformed pancreatic ss-cell lines, using intact cells. Both of the two isoforms of IMPDH (constitutive type 1 and inducible type 2) were identified using RT-PCR in transformed beta cells or in intact islets. IMPDH 2 messenger RNA (mRNA) and IMPDH protein were both regulated reciprocally by changes in levels of their end-products. Flux through IMPDH was greatest in rapidly growing cells, due mostly to increased uptake of precursor. Glucose (but not 3-0-methylglucose, L-glucose, or fructose) further augmented substrate uptake and also increased IMPDH enzymatic activity after either 4 or 21 h of stimulation. Serum or ketoisocaproate also increased IMPDH activity (but not uptake). Two selective IMPDH inhibitors (mycophenolic acid and mizoribine) reduced IMPDH activity in all cell lines, and, with virtually identical concentration-response curves, inhibited DNA synthesis (assessed as bromodeoxyuridine incorporation) in response to glucose, serum, or ketoisocaproate. Inhibition of DNA synthesis was reversible, completely prevented by repletion of cellular guanine (but not adenine) nucleotides, and could not be attributed to toxic effects. Despite the fact that modulation of IMPDH expression by guanine nucleotides was readily detectable, glucose and/or serum failed to alter IMPDH mRNA or protein, indicating that their effects on IMPDH activity were largely at the enzyme level. Precursors of guanine nucleotides failed, by themselves, to induce mitogenesis. Thus, adequate IMPDH activity (and thereby, availability of GTP) is a critical requirement for beta-cell proliferation. Although it is unlikely that further increases in GTP can, by themselves, initiate DNA synthesis, such increments may be needed to sustain mitogenesis.
Collapse
Affiliation(s)
- S Metz
- Diabetes Laboratories, Pacific Northwest Research Institute, Seattle, Washington 98122, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Li GD, Luo RH, Metz SA. Effects of inhibitors of guanine nucleotide synthesis on membrane potential and cytosolic free Ca2+ levels in insulin-secreting cells. Biochem Pharmacol 2000; 59:545-56. [PMID: 10660120 DOI: 10.1016/s0006-2952(99)00356-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Adenine nucleotides play an important role in the control of membrane potential by acting on ATP-sensitive K+ (K(ATP)) channels and, in turn, modulating the open probability of voltage-gated Ca2+ channels in pancreatic islet beta-cells. Here, we provide evidence that guanine nucleotides (GNs) also may be involved in the modulation of these events in vivo. GNs were depleted by treatment of HIT-T15 cells with mycophenolic acid (MPA). Resting membrane potential was more depolarized in cells treated for 3 and 6 hr with MPA than in control cells, and this effect was inhibited by diazoxide. After 6 hr of exposure to MPA, basal cytosolic free Ca2+ concentrations ([Ca2+]i) were elevated by 20%. Increments in [Ca2+]i induced by submaximal concentrations of K+ (10-15 mM) or bombesin were enhanced by > 50%. Opening K(ATP) channels with diazoxide lowered basal [Ca2+]i in MPA-treated cells to normal and abrogated the enhanced [Ca2+]i responses. However, an L-type Ca2+ channel blocker only abolished the enhanced [Ca2+]i response to stimuli and had no effect on the elevated basal [Ca2+]i, in contrast to EGTA, which obliterated both, implying that the latter was due to Ca2+ influx via non-L-type Ca2+ channels. These effects on ion fluxes were attributable specifically to GN depletion, since guanosine, which restores GTP content and the GTP/GDP ratio, but not adenosine, prevented all MPA-induced ion changes; furthermore, the latter were mimicked by mizoribine (a structurally dissimilar GTP synthesis inhibitor). It is concluded that, in addition to adenine nucleotides, GNs might contribute to the modulation of K(ATP) channels in intact beta-cells. In addition, GN depletion appeared to be able to reduce stimulated insulin secretion by a mechanism largely independent of the changes of ion fluxes observed above.
Collapse
Affiliation(s)
- G D Li
- Cardiovascular Research Institute, National University Medical Institutes, National University of Singapore, Singapore.
| | | | | |
Collapse
|
12
|
Li G, Segu VB, Rabaglia ME, Luo RH, Kowluru A, Metz SA. Prolonged depletion of guanosine triphosphate induces death of insulin-secreting cells by apoptosis. Endocrinology 1998; 139:3752-62. [PMID: 9724027 DOI: 10.1210/endo.139.9.6207] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inhibitors of IMP dehydrogenase, such as mycophenolic acid (MPA) and mizoribine, which deplete cellular GTP, are used clinically as immunosuppressive drugs. The prolonged effect of such agents on insulin-secreting beta-cells (HIT-T15 and INS-1) was investigated. Both MPA and mizoribine inhibited mitogenesis, as reflected by [3H]thymidine incorporation. Cell number, DNA and protein contents, and cell (metabolic) viability were decreased by about 30%, 60%, and 80% after treatment of HIT cells with clinically relevant concentrations (e.g. 1 microg/ml) of MPA for 1, 2, and 4 days, respectively. Mizoribine (48 h) similarly induced the death of HIT cells. INS-1 cells also were damaged by prolonged MPA treatment. MPA-treated HIT cells displayed a strong and localized staining with a DNA-binding dye (propidium iodide), suggesting condensation and fragmentation of DNA, which were confirmed by detection of DNA laddering in multiples of about 180 bp. DNA fragmentation was observed after 24-h MPA treatment and was dose dependent (29%, 49%, and 70% of cells were affected after 48-h exposure to 1, 3, and 10 microg/ml MPA, respectively). Examination of MPA-treated cells by electron microscopy revealed typical signs of apoptosis: condensed and marginated chromatin, apoptotic bodies, cytosolic vacuolization, and loss of microvilli. MPA-induced cell death was almost totally prevented by supplementation with guanosine, but not with adenosine or deoxyguanosine, indicating a specific effect of GTP depletion. An inhibitor of protein isoprenylation (lovastatin, 10-100 microM for 2-3 days) induced cell death and DNA degradation similar to those induced by sustained GTP depletion, suggesting a mediatory role of posttranslationally modified GTP-binding proteins. Indeed, impeding the function of G proteins of the Rho family (via glucosylation using Clostridium difficile toxin B), although not itself inducing apoptosis, potentiated cell death induced by MPA or lovastatin. These findings indicate that prolonged depletion of GTP induces beta-cell death compatible with apoptosis; this probably involves a direct impairment of GTP-dependent RNA-primed DNA synthesis, but also appears to be modulated by small GTP-binding proteins. Treatment of intact adult rat islets (the beta-cells of which replicate slowly) induced a modest, but definite, death by apoptosis over 1- to 3-day periods. Thus, more prolonged use of the new generation of immunosuppressive agents exemplified by MPA might have deleterious effects on the survival of islet or pancreas grafts.
Collapse
Affiliation(s)
- G Li
- Medical Service, Middleton Veterans Administration Hospital, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | |
Collapse
|