1
|
Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol 2020; 17:433-450. [PMID: 32238918 PMCID: PMC7192912 DOI: 10.1038/s41423-020-0412-0] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview of chemoattractant receptors expressed by neutrophils in health and disease. Depending on the (patho)physiological context, specific chemoattractant receptors may be up- or downregulated on distinct neutrophil subsets with beneficial or detrimental consequences, thus opening new windows for the identification of disease biomarkers and potential drug targets.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium.
| |
Collapse
|
2
|
Rahman A, Henry KM, Herman KD, Thompson AA, Isles HM, Tulotta C, Sammut D, Rougeot JJ, Khoshaein N, Reese AE, Higgins K, Tabor C, Sabroe I, Zuercher WJ, Savage CO, Meijer AH, Whyte MK, Dockrell DH, Renshaw SA, Prince LR. Inhibition of ErbB kinase signalling promotes resolution of neutrophilic inflammation. eLife 2019; 8:50990. [PMID: 31613219 PMCID: PMC6839918 DOI: 10.7554/elife.50990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Neutrophilic inflammation with prolonged neutrophil survival is common to many inflammatory conditions, including chronic obstructive pulmonary disease (COPD). There are few specific therapies that reverse neutrophilic inflammation, but uncovering mechanisms regulating neutrophil survival is likely to identify novel therapeutic targets. Screening of 367 kinase inhibitors in human neutrophils and a zebrafish tail fin injury model identified ErbBs as common targets of compounds that accelerated inflammation resolution. The ErbB inhibitors gefitinib, CP-724714, erbstatin and tyrphostin AG825 significantly accelerated apoptosis of human neutrophils, including neutrophils from people with COPD. Neutrophil apoptosis was also increased in Tyrphostin AG825 treated-zebrafish in vivo. Tyrphostin AG825 decreased peritoneal inflammation in zymosan-treated mice, and increased lung neutrophil apoptosis and macrophage efferocytosis in a murine acute lung injury model. Tyrphostin AG825 and knockdown of egfra and erbb2 by CRISPR/Cas9 reduced inflammation in zebrafish. Our work shows that inhibitors of ErbB kinases have therapeutic potential in neutrophilic inflammatory disease. Chronic obstructive pulmonary disease (or COPD) is a serious condition that causes the lungs to become inflamed for long periods of time, leading to permanent damage of the airways. Immune cells known as neutrophils promote inflammation after an injury, or during an infection, to aid the healing process. However, if they are active for too long, they may also cause tissue damage and drive inflammatory diseases including COPD. To limit damage to the body, neutrophils usually have a very short lifespan and die by a regulated process known as apoptosis. Finding ways to stimulate apoptosis in neutrophils may be key to developing better treatments for inflammatory diseases. Cells contain many enzymes known as kinases that control apoptosis and other cell processes. Drugs that inhibit specific kinases are effective treatments for some types of cancer and other conditions, and new kinase-inhibiting drugs are currently being developed. However, it remains unclear which kinases regulate apoptosis in neutrophils or which kinase-inhibiting drugs may have the potential to treat COPD and other inflammatory diseases. To address these questions, Rahman et al. tested over 350 kinase-inhibiting drugs to identify ones that promote apoptosis in neutrophils. The experiments showed that human neutrophils treated with drugs that inhibit the ErbB family of kinases died by apoptosis more quickly than untreated neutrophils. Next, Rahman et al. used zebrafish with injured tail fins as models to study inflammation. Zebrafish treated with one of these drugs – known as Tyrphostin AG825 – had lower levels of inflammation and their neutrophils underwent apoptosis more frequently than untreated zebrafish. Since drugs can have off-target effects, Rahman et al. went on to show using gene-editing technology that reducing the activity of two genes that encode ErbB kinases in zebrafish also decreased the levels of inflammation in the fish. Further experiments used mice that develop inflammation in the lungs similar to COPD in humans. As expected, neutrophils in the lungs of mice treated with Tyrphostin AG825 underwent apoptosis more frequently than those in untreated mice. These dead neutrophils were effectively cleared by other immune cells called macrophages, which also helps limit damage caused by neutrophils. Together, these findings show that Tyrphostin AG825 and other drugs that inhibit ErbB kinases help to reduce inflammation by promoting the death of neutrophils. Since several of these drugs are already used to treat human cancers, it may be possible in the future to repurpose them for use in people with COPD and other long-term inflammatory diseases. Determining whether this is possible is an aim for future studies.
Collapse
Affiliation(s)
- Atiqur Rahman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Katherine M Henry
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kimberly D Herman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Alfred Ar Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Hannah M Isles
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Claudia Tulotta
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - David Sammut
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | | | - Nika Khoshaein
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Abigail E Reese
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Kathryn Higgins
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Caroline Tabor
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - William J Zuercher
- SGC-UNC, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Caroline O Savage
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd, Stevenage, United Kingdom
| | | | - Moira Kb Whyte
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David H Dockrell
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen A Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Lynne R Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Liao HR, Chen IS, Liu FC, Lin SZ, Tseng CP. 2’,3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils. Eur J Pharmacol 2018; 829:26-37. [DOI: 10.1016/j.ejphar.2018.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
|
4
|
Vorobjeva N, Prikhodko A, Galkin I, Pletjushkina O, Zinovkin R, Sud'ina G, Chernyak B, Pinegin B. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur J Cell Biol 2017; 96:254-265. [PMID: 28325500 DOI: 10.1016/j.ejcb.2017.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 12/23/2022] Open
Abstract
Activation of neutrophils is accompanied by the oxidative burst, exocytosis of various granule types (degranulation) and a delay in spontaneous apoptosis. The major source of reactive oxygen species (ROS) in human neutrophils is NADPH oxidase (NOX2), however, other sources of ROS also exist. Although the function of ROS is mainly defensive, they can also play a regulatory role in cell signaling. However, the contribution of various sources of ROS in these processes is not clear. We investigated a possible role of mitochondria-derived ROS (mtROS) in the regulation of neutrophil activation induced by chemoattractant fMLP in vitro. Using the mitochondria-targeted antioxidant SkQ1, we demonstrated that mtROS are implicated in the oxidative burst caused by NOX2 activation as well as in the exocytosis of primary (azurophil) and secondary (specific) granules. Scavenging of mtROS with SkQ1 slightly accelerated spontaneous apoptosis and significantly stimulated apoptosis of fMLP-activated neutrophils. These data indicate that mtROS play a critical role in signal transduction that mediates the major neutrophil functional responses in the process of activation.
Collapse
Affiliation(s)
- Nina Vorobjeva
- Department Immunology, Biology Faculty; Lomonosov Moscow State University, 119998 Moscow, Russia; Institute of Immunology, FMBA, Kashirskoe Shosse 24/2, 115478, Moscow, Russia.
| | - Anastasia Prikhodko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan Galkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Olga Pletjushkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Roman Zinovkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Galina Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Boris Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Boris Pinegin
- Institute of Immunology, FMBA, Kashirskoe Shosse 24/2, 115478, Moscow, Russia
| |
Collapse
|
5
|
Abstract
Neutrophils play a critical role in antimicrobial host defense, but their improper activation also contributes to inflammation-induced tissue damage. Therefore, understanding neutrophil biology is important for the understanding, diagnosis, and therapy of both infectious and inflammatory diseases. Neutrophils express a large number of cell-surface receptors that sense extracellular cues and trigger various functional responses through complex intracellular signaling pathways. During the last several years, we and others have shown that tyrosine kinases play a critical role in those processes. In particular, Src-family and Syk tyrosine kinases couple Fc-receptors and adhesion receptors (integrins and selectins) to various neutrophil effector functions. This pathway shows surprising similarity to lymphocyte antigen receptor signaling and involves various other enzymes (e.g. PLCγ2), exchange factors (e.g. Vav-family members) and adapter proteins (such as ITAM-containing adapters, SLP-76, and CARD9). Those mediators trigger various antimicrobial functions and play a critical role in coordinating the inflammatory response through the release of inflammatory mediators, such as chemokines and LTB4 . Interestingly, however, tyrosine kinases have a limited direct role in the migration of neutrophils to the site of inflammation. Here, we review the role of tyrosine kinase signaling pathways in neutrophils and how those pathways contribute to neutrophil activation in health and disease.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Győri D, Csete D, Benkő S, Kulkarni S, Mandl P, Dobó-Nagy C, Vanhaesebroeck B, Stephens L, Hawkins PT, Mócsai A. The phosphoinositide 3-kinase isoform PI3Kβ regulates osteoclast-mediated bone resorption in humans and mice. Arthritis Rheumatol 2014; 66:2210-21. [PMID: 24719382 PMCID: PMC4314683 DOI: 10.1002/art.38660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/03/2014] [Indexed: 11/23/2022]
Abstract
Objective While phosphoinositide 3-kinases (PI3Ks) are involved in various intracellular signal transduction processes, the specific functions of the different PI3K isoforms are poorly understood. We have previously shown that the PI3Kβ isoform is required for arthritis development in the K/BxN serum–transfer model. Since osteoclasts play a critical role in pathologic bone loss during inflammatory arthritis and other diseases, we undertook this study to test the role of PI3Kβ in osteoclast development and function using a combined genetic and pharmacologic approach. Methods The role of PI3Kβ in primary human and murine osteoclast cultures was tested with the PI3Kβ-selective inhibitor TGX221 and by using PI3Kβ−/− mice. The trabecular bone architecture of PI3Kβ−/− mice was evaluated using micro–computed tomography and histomorphometric analyses. Results The expression of PI3Kβ was strongly and specifically up-regulated during in vitro osteoclast differentiation. In vitro development of large multinucleated osteoclasts from human or murine progenitors and their resorption capacity were strongly reduced by the PI3Kβ inhibitor TGX221 or by the genetic deficiency of PI3Kβ. This was likely due to defective cytoskeletal reorganization and vesicular trafficking, since PI3Kβ−/− mouse multinucleated cells failed to form actin rings and retained intracellular acidic vesicles and cathepsin K. In contrast, osteoclast-specific gene expression and the survival and apoptosis of osteoclasts were not affected. PI3Kβ−/− mice had significantly increased trabecular bone volume and showed abnormal osteoclast morphology with defective resorption pit formation. Conclusion PI3Kβ plays an important role in osteoclast development and function and is required for in vivo bone homeostasis.
Collapse
Affiliation(s)
- Dávid Győri
- Semmelweis University School of Medicine, and MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Futosi K, Fodor S, Mócsai A. Reprint of Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17:1185-97. [PMID: 24263067 DOI: 10.1016/j.intimp.2013.11.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca(2+) signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | | | | |
Collapse
|
8
|
Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17:638-50. [PMID: 23994464 PMCID: PMC3827506 DOI: 10.1016/j.intimp.2013.06.034] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. Neutrophils are crucial players in innate and adaptive immunity. Neutrophils also participate in autoimmune and inflammatory diseases. Various neutrophil receptors recognize pathogens and the inflammatory environment. The various cell surface receptors trigger diverse intracellular signaling. Neutrophil receptors and signaling are potential targets in inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Szabina Fodor
- Department of Computer Science, Corvinus University of Budapest, 1093 Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
- Corresponding author at: Department of Physiology, Semmelweis University School of Medicine, Tűzoltó utca 37–47, 1094 Budapest, Hungary. Tel.: + 36 1 459 1500x60 409; fax: + 36 1 266 7480.
| |
Collapse
|
9
|
Aslam R, Laventie BJ, Marban C, Prévost G, Keller D, Strub JM, Dorsselaer AV, Haikel Y, Taddei C, Metz-Boutigue MH. Activation of Neutrophils by the Two-Component Leukotoxin LukE/D from Staphylococcus aureus: Proteomic Analysis of the Secretions. J Proteome Res 2013; 12:3667-78. [DOI: 10.1021/pr400199x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rizwan Aslam
- Inserm UMR 1121, Université de Strasbourg, Strasbourg, F-67000,
France
| | - Benoît-Joseph Laventie
- EA 7290 Virulence bactérienne
précoce, Fédération de Médecine Translationnelle
de Strasbourg, Université de Strasbourg - CHRU Strasbourg, Institut de Bactériologie, F-67000
Strasbourg, France
| | - Céline Marban
- Inserm UMR 1121, Université de Strasbourg, Strasbourg, F-67000,
France
| | - Gilles Prévost
- EA 7290 Virulence bactérienne
précoce, Fédération de Médecine Translationnelle
de Strasbourg, Université de Strasbourg - CHRU Strasbourg, Institut de Bactériologie, F-67000
Strasbourg, France
| | - Daniel Keller
- EA 7290 Virulence bactérienne
précoce, Fédération de Médecine Translationnelle
de Strasbourg, Université de Strasbourg - CHRU Strasbourg, Institut de Bactériologie, F-67000
Strasbourg, France
| | - Jean-Marc Strub
- CNRS UMR 7178, Université de Strasbourg, Strasbourg, F-67000, France
| | | | - Youssef Haikel
- Inserm UMR 1121, Université de Strasbourg, Strasbourg, F-67000,
France
- Faculté d’Odontologie, Université de Strasbourg, Strasbourg, F-67000,
France
| | - Corinne Taddei
- Faculté d’Odontologie, Université de Strasbourg, Strasbourg, F-67000,
France
| | | |
Collapse
|
10
|
Daou S, El Chemaly A, Christofilopoulos P, Bernard L, Hoffmeyer P, Demaurex N. The potential role of cobalt ions released from metal prosthesis on the inhibition of Hv1 proton channels and the decrease in Staphyloccocus epidermidis killing by human neutrophils. Biomaterials 2011; 32:1769-77. [DOI: 10.1016/j.biomaterials.2010.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 11/01/2010] [Indexed: 12/01/2022]
|
11
|
Luerman GC, Powell DW, Uriarte SM, Cummins TD, Merchant ML, Ward RA, McLeish KR. Identification of phosphoproteins associated with human neutrophil granules following chemotactic peptide stimulation. Mol Cell Proteomics 2010; 10:M110.001552. [PMID: 21097543 DOI: 10.1074/mcp.m110.001552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulated exocytosis of neutrophil intracellular storage granules is necessary for neutrophil participation in the inflammatory response. The signal transduction pathways that participate in neutrophil exocytosis are complex and poorly defined. Several protein kinases, including p38 MAPK and the nonreceptor tyrosine kinases, Hck and Fgr, participate in this response. However, the downstream targets of these kinases that regulate exocytosis are unknown. The present study combined a novel inhibitor of neutrophil exocytosis with proteomic techniques to identify phosphopeptides and phosphoproteins from a population of gelatinase and specific granules isolated from unstimulated and fMLF-stimulated neutrophils. To prevent loss of granule-associated phosphoproteins upon exocytosis, neutrophils were pretreated with a TAT-fusion protein containing a SNARE domain from SNAP-23 (TAT-SNAP-23), which inhibited fMLF-stimulated CD66b-containing granule exocytosis by 100±10%. Following TAT-SNAP-23 pretreatment, neutrophils were stimulated with the chemotactic peptide fMLF for 0 min, 1 min, and 2 min. Granules were isolated by gradient centrifugation and subjected to proteolytic digestion with trypsin or chymotrypsin to obtain peptides from the outer surface of the granule. Phosphopeptides were enriched by gallium or TiO2 affinity chromatography, and phosphopeptides and phosphorylation sites were identified by reversed phase high performance liquid chromatography-electrospray ionization-tandem MS. This resulted in the identification of 243 unique phosphopeptides corresponding to 235 proteins, including known regulators of vesicle trafficking. The analysis identified 79 phosphoproteins from resting neutrophils, 81 following 1 min of fMLF stimulation, and 118 following 2 min of stimulation. Bioinformatic analysis identified a potential Src tyrosine kinase motif from a phosphopeptide corresponding to G protein coupled receptor kinase 5 (GRK5). Phosphorylation of GRK5 by Src was confirmed by an in vitro kinase reaction and by precursor ion scanning for phospho-tyrosine specific immonium ions containing Tyr251 and Tyr253. Immunoprecipitation of phosphorylated GRK5 from intact cells was reduced by a Src inhibitor. In conclusion, targets of signal transduction pathways were identified that are candidates to regulate neutrophil granule exocytosis.
Collapse
Affiliation(s)
- Gregory C Luerman
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Uriarte SM, Jog NR, Luerman GC, Bhimani S, Ward RA, McLeish KR. Counterregulation of clathrin-mediated endocytosis by the actin and microtubular cytoskeleton in human neutrophils. Am J Physiol Cell Physiol 2009; 296:C857-67. [PMID: 19176760 DOI: 10.1152/ajpcell.00454.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have recently reported that disruption of the actin cytoskeleton enhanced N-formylmethionyl-leucyl-phenylalanine (fMLP)-stimulated granule exocytosis in human neutrophils but decreased plasma membrane expression of complement receptor 1 (CR1), a marker of secretory vesicles. The present study was initiated to determine if reduced CR1 expression was due to fMLP-stimulated endocytosis, to determine the mechanism of this endocytosis, and to examine its impact on neutrophil functional responses. Stimulation of neutrophils with fMLP or ionomycin in the presence of latrunculin A resulted in the uptake of Alexa fluor 488-labeled albumin and transferrin and reduced plasma membrane expression of CR1. These effects were prevented by preincubation of the cells with sucrose, chlorpromazine, or monodansylcadaverine (MDC), inhibitors of clathrin-mediated endocytosis. Sucrose, chlorpromazine, and MDC also significantly inhibited fMLP- and ionomycin-stimulated specific and azurophil granule exocytosis. Disruption of microtubules with nocodazole inhibited endocytosis and azurophil granule exocytosis stimulated by fMLP in the presence of latrunculin A. Pharmacological inhibition of phosphatidylinositol 3-kinase, ERK1/2, and PKC significantly reduced fMLP-stimulated transferrin uptake in the presence of latrunculin A. Blockade of clathrin-mediated endocytosis had no significant effect on fMLP-stimulated phosphorylation of ERK1/2 in neutrophils pretreated with latrunculin A. From these data, we conclude that the actin cytoskeleton functions to limit microtubule-dependent, clathrin-mediated endocytosis in stimulated human neutrophils. The limitation of clathrin-mediated endocytosis by actin regulates the extent of both specific and azurophilic granule exocytosis.
Collapse
Affiliation(s)
- Silvia M Uriarte
- Department of Medicine, University of Louisville, Louisville, KY, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Mitogen-activated protein kinase assays. Methods Mol Biol 2008. [PMID: 18453108 DOI: 10.1007/978-1-59745-467-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Polymorphonuclear neutrophils (PMN) play an essential role in host defense against bacteria and fungi through coordinated responses such as adhesion, migration, phagocytosis, secretion, and activation of the NADPH oxidase. The mitogen-activated protein kinases (MAPKs) and their activation kinase cascades, which transduce signals from the plasma membrane to the cytosol and nucleus, are an integral part of signaling pathways involved in many cellular responses. PMN express several members of the MAPK family that have been shown, mainly through the use of pharmacological inhibitors, to mediate the cellular activities triggered by a variety of extracellular agonists. Methods to determine MAPK activation have been greatly simplified with the availability of antibodies raised to active MAPKs. The recent development of novel inhibitors for the MAPK pathways may further our understanding of their role in neutrophil function.
Collapse
|
14
|
Bruno O, Brullo C, Bondavalli F, Ranise A, Schenone S, Falzarano MS, Varani K, Spisani S. 2-Phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole derivatives: New potent inhibitors of fMLP-induced neutrophil chemotaxis. Bioorg Med Chem Lett 2007; 17:3696-701. [DOI: 10.1016/j.bmcl.2007.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/11/2007] [Accepted: 04/12/2007] [Indexed: 11/29/2022]
|
15
|
Fumagalli L, Zhang H, Baruzzi A, Lowell CA, Berton G. The Src family kinases Hck and Fgr regulate neutrophil responses to N-formyl-methionyl-leucyl-phenylalanine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3874-85. [PMID: 17339487 PMCID: PMC4683084 DOI: 10.4049/jimmunol.178.6.3874] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a respiratory burst and display reduced F-actin polymerization in response to fMLP. Additionally, albeit migration of both hck-/-fgr-/-mouse neutrophils and human neutrophils incubated with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) through 3-microm pore size Transwells was normal, deficiency, or inhibition, of Src kinases resulted in a failure of neutrophils to migrate through 1-microm pore size Transwells. Among MAPKs, phosphorylation of ERK1/2 was not different, phosphorylation of p38 was only partially affected, and phosphorylation of JNK was markedly decreased in fMLP-stimulated hck-/-fgr-/- neutrophils and in human neutrophils incubated with PP2. An increase in intracellular Ca(2+) concentration and phosphorylation of Akt/PKB occurred normally in fMLP-stimulated hck-/-fgr-/- neutrophils, indicating that activation of both phosphoinositide-specific phospholipase C and PI3K is independent of Hck and Fgr. In contrast, phosphorylation of the Rho/Rac guanine nucleotide exchange factor Vav1 and the Rac target p21-activated kinases were markedly reduced in both hck-/-fgr-/- neutrophils and human neutrophils incubated with a PP2. Consistent with these findings, PP2 inhibited Rac2 activation in human neutrophils. We suggest that Hck and Fgr act within a signaling pathway triggered by fMLP receptors that involves Vav1 and p21-activated kinases, leading to respiratory burst and F-actin polymerization.
Collapse
Affiliation(s)
- Laura Fumagalli
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | - Hong Zhang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Anna Baruzzi
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Giorgio Berton
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Mócsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat Immunol 2006; 7:1326-33. [PMID: 17086186 PMCID: PMC4698344 DOI: 10.1038/ni1407] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 10/06/2006] [Indexed: 01/25/2023]
Abstract
At sites of inflammation, ligation of leukocyte integrins is critical for the activation of cellular effector functions required for host defense. However, the signaling pathways linking integrin ligation to cellular responses are poorly understood. Here we show that integrin signaling in neutrophils and macrophages requires adaptors containing immunoreceptor tyrosine-based activation motifs (ITAMs). Neutrophils and macrophages lacking two ITAM-containing adaptor proteins, DAP12 and FcRgamma, were defective in integrin-mediated responses. Activation of the tyrosine kinase Syk by integrins required that DAP12 and FcRgamma were first phosphorylated by Src family kinases. Retroviral transduction of neutrophils and macrophages with wild-type and mutant Syk or DAP12 demonstrated that the Src homology 2 domains of Syk and the ITAM of DAP12 were required for integrin signaling. Our data show that integrin signaling for the activation of cellular responses in neutrophils and macrophages proceeds by an immunoreceptor-like mechanism.
Collapse
Affiliation(s)
- Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1088 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
17
|
Selvatici R, Falzarano S, Mollica A, Spisani S. Signal transduction pathways triggered by selective formylpeptide analogues in human neutrophils. Eur J Pharmacol 2006; 534:1-11. [PMID: 16516193 DOI: 10.1016/j.ejphar.2006.01.034] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 01/03/2006] [Accepted: 01/20/2006] [Indexed: 01/01/2023]
Abstract
Human neutrophils are highly specialised for their primary function, i.e. phagocytosis and destruction of microorganisms. Leukocyte recruitment to sites of inflammation and infection is dependent upon the presence of a gradient of locally produced chemotactic factors. The bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) was one of the first of these to be identified and is a highly potent leukocyte chemoattractant. It interacts with its receptor on the neutrophil membrane, activating these cells through a G-protein-coupled pathway. Two functional fMLP receptors have thus far been cloned and characterized, namely FPR (formyl peptide receptor) and FPRL1 (FPR like-1), with high and low affinities for fMLP, respectively. FMLP is known to activate phospholipase C (PLC), PLD, PLA2 and phosphatidylinositol-3-kinase (PI3K), and it also activates tyrosine phosphorylation. The second messengers resulting from the fMLP receptor interaction act on various intracellular kinases, including protein kinase C (PKC) and mitogen-activated protein kinases (MAPKs). The activation of these signal transduction pathways is known to be responsible for various biochemical responses which contribute to physiological defence against bacterial infection and cell disruption. This review will consider the ability of selective analogues (ligands able to discriminate between different biological responses) to activate a single spectrum of signal transduction pathways capable of producing a unique set of cellular responses, hypothesising that a distinctive imprint of signal protein activation may exist. Through more complete understanding of intracellular signaling, new drugs could be developed for the selective inflammatory blockade.
Collapse
Affiliation(s)
- Rita Selvatici
- Dipartimento di Medicina Sperimentale e Diagnostica, Sezione Genetica Medica, Via Fossato di Mortara 74, Università degli Studi di Ferrara, 44100 Ferrara, Italy
| | | | | | | |
Collapse
|
18
|
Lominadze G, Powell DW, Luerman GC, Link AJ, Ward RA, McLeish KR. Proteomic Analysis of Human Neutrophil Granules. Mol Cell Proteomics 2005; 4:1503-21. [PMID: 15985654 DOI: 10.1074/mcp.m500143-mcp200] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulated exocytosis of intracellular granules plays a critical role in conversion of inactive, circulating neutrophils to fully activated cells capable of chemotaxis, phagocytosis, and bacterial killing. The functional changes induced by exocytosis of each of the granule subsets, gelatinase (tertiary) granules, specific (secondary) granules, and azurophil (primary) granules, are poorly defined. To improve the understanding of the role of exocytosis of these granule subsets, a proteomic analysis of the azurophil, specific, and gelatinase granules from human neutrophils was performed. Two different methods for granule protein identification were applied. First, two-dimensional (2D) gel electrophoresis followed by MALDI-TOF MS analysis of peptides obtained by in-gel trypsin digestion of proteins was performed. Second, peptides from tryptic digests of granule membrane proteins were separated by two-dimensional microcapillary chromatography using strong cation exchange and reverse phase microcapillary high pressure liquid chromatography and analyzed with electrospray ionization tandem mass spectrometry (2D HLPC ESI-MS/MS). Our analysis identified 286 proteins on the three granule subsets, 87 of which were identified by MALDI MS and 247 were identified by 2D HPLC ESI-MS/MS. The increased sensitivity of 2D HPLC ESI-MS/MS, however, resulted in identification of over 500 proteins from subcellular organelles contaminating isolated granules. Defining the proteome of neutrophil granule subsets provides a basis for understanding the role of exocytosis in neutrophil biology. Additionally, the described methods may be applied to mobilizable compartments of other secretory cells.
Collapse
Affiliation(s)
- George Lominadze
- Department of Medicine, University of Louisville and the Veterans Affairs Medical Center, Louisville, Kentucky 40202, USA
| | | | | | | | | | | |
Collapse
|
19
|
Cavicchioni G, Fraulini A, Turchetti M, Varani K, Falzarano S, Pavan B, Spisani S. Biological activity of for-Met-Leu-Phe-OMe analogs: Relevant substitutions specifically trigger killing mechanisms in human neutrophils. Eur J Pharmacol 2005; 512:1-8. [PMID: 15814083 DOI: 10.1016/j.ejphar.2005.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 02/08/2005] [Accepted: 02/10/2005] [Indexed: 10/25/2022]
Abstract
Two analogs of the prototypical peptide for-Met-Leu-Phe-OMe (fMLP-OMe), for-Gln-Tyr-Phe-OMe (1) and for-Gln-Tyr-Tyr-OMe (2), carrying unusual hydrophilic residues, were synthesized in order to investigate whether they provoked specific biological responses, as well as intracellular calcium mobilization, in human neutrophils. Whereas neither compound stimulates chemotaxis, both are able to elicit lysosomal enzyme production. However compound 1 is able to trigger copious superoxide anion production while compound 2 only elicits minor superoxide anion production. In binding experiments on formylpeptide receptors, the newly synthesized compounds for-Gln-Tyr-Phe-OMe (1) and for-Gln-Tyr-Tyr-OMe (2) showed affinity values in the micromolar range. These derivatives demonstrate inability to find a positive contribute from single substitutions. A very important result of this research is the evidence of the ability of the formyl group alone to trigger the primary target of the human neutrophil activity, i.e. killing mechanisms, by activating the specific receptor conformation.
Collapse
Affiliation(s)
- Giorgio Cavicchioni
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44100 Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 2004; 279:46065-72. [PMID: 15326186 DOI: 10.1074/jbc.m403046200] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) play a major role in drug-, noise-, and age-dependent hearing loss, but the source of ROS in the inner ear remains largely unknown. Herein, we demonstrate that NADPH oxidase (NOX) 3, a member of the NOX/dual domain oxidase family of NADPH oxidases, is highly expressed in specific portions of the inner ear. As assessed by real-time PCR, NOX3 mRNA expression in the inner ear is at least 50-fold higher than in any other tissues where its expression has been observed (e.g. fetal kidney, brain, skull). Microdissection and in situ hybridization studies demonstrated that NOX3 is localized to the vestibular and cochlear sensory epithelia and to the spiral ganglions. Transfection of human embryonic kidney 293 cells with NOX3 revealed that it generates low levels of ROS on its own but produces high levels of ROS upon co-expression with cytoplasmic NOX subunits. NOX3-dependent superoxide production required a stimulus in the absence of subunits and upon co-expression with phagocyte NADPH oxidase subunits p47(phox) and p67(phox), but it was stimulus-independent upon co-expression with colon NADPH oxidase subunits NOX organizer 1 and NOX activator 1. Pre-incubation of NOX3-transfected human embryonic kidney 293 cells with the ototoxic drug cisplatin markedly enhanced superoxide production, in both the presence and the absence of subunits. Our data suggest that NOX3 is a relevant source of ROS generation in the cochlear and vestibular systems and that NOX3-dependent ROS generation might contribute to hearing loss and balance problems in response to ototoxic drugs.
Collapse
Affiliation(s)
- Botond Bánfi
- Department of Anatomy and Cell Biology and Inflammation Program and Dept. of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Káldi K, Kalocsai A, Rada BK, Mezo G, Molnár GZ, Báthori G, Ligeti E. Degranulation and superoxide production depend on cholesterol in PLB-985 cells. Biochem Biophys Res Commun 2003; 310:1241-6. [PMID: 14559248 DOI: 10.1016/j.bbrc.2003.09.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of agents disrupting cholesterol-rich microdomains of the cell membrane was studied on the chemoattractant receptor (FPR and FRPL1) coupled effector responses of promyelocytic PLB-985 cells. Both methyl-beta-cyclodextrin (MbetaCD) and filipin III inhibited exocytosis of primary granules and O(2)(.-) production induced by stimulation of either chemotactic receptor. Alteration of calcium homeostasis of MbetaCD-treated cells does not account for the impairment of the effector responses. Disruption of microfilaments by cytochalasin B (CB) partially reverses the inhibitory effect of cholesterol depletion. Our results provide functional support for the involvement of cholesterol-rich membrane domains in the signaling of chemotactic receptors and call the attention to the possible role of microfilaments in the organization of lipid microdomains.
Collapse
Affiliation(s)
- Krisztina Káldi
- Department of Physiology, Semmelweis University, POB 259, H-1444 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
22
|
Dreiem A, Myhre O, Fonnum F. Involvement of the extracellular signal regulated kinase pathway in hydrocarbon-induced reactive oxygen species formation in human neutrophil granulocytes. Toxicol Appl Pharmacol 2003; 190:102-10. [PMID: 12878040 DOI: 10.1016/s0041-008x(03)00158-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the present study we have examined the effects of hydrocarbons on the formation of reactive oxygen species (ROS) in human neutrophil granulocytes in vitro. We found that hydrocarbons induce ROS formation in a concentration-dependent manner and that the ROS-inducing potency increases with increasing number of carbon atoms in the structure. In general, aromatic hydrocarbons were less potent inducers of ROS than aliphatic and cyclic hydrocarbons. The most potent compound in each group, t-butylcyclohexane, n-decane, and n-butylbenzene, were chosen for mechanistic studies. ROS formation was inhibited by the MEK1/2 inhibitor U0126, the tyrosine kinase inhibitor erbstatin-A, and the phosphatidylinositol-3 kinase inhibitor wortmannin. The involvement of the ERK1/2 pathway was confirmed by Western blot analysis of phosphorylated ERK1/2. The study revealed only small differences in the mechanisms involved for the three compounds. The responses were not affected by Pertussis toxin, indicating that Gi-protein coupled receptors are not involved in neutrophil activation after hydrocarbon exposure. Based on these findings we propose a mechanism involving tyrosine kinases, PI3 kinase, and the ERK1/2 pathway, leading to activation of the NADPH oxidase and production of ROS in neutrophils stimulated by organic solvents.
Collapse
Affiliation(s)
- Anne Dreiem
- Norwegian Defence Research Establishment, Division for Protection and Materiel, Kjeller, Norway.
| | | | | |
Collapse
|
23
|
Fazal N, Al-Ghoul WM, Schmidt MJ, Choudhry MA, Sayeed MM. Lyn- and ERK-mediated vs. Ca2+ -mediated neutrophil O responses with thermal injury. Am J Physiol Cell Physiol 2002; 283:C1469-79. [PMID: 12372808 DOI: 10.1152/ajpcell.00114.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the dependency of neutrophil O production on PTK-Lyn and MAPK-ERK1/2 in rats after thermal injury. Activation of PTK-Lyn was assessed by immunoprecipitation. Phosphorylation of ERK1/2 was assessed by Western blot analysis. O production was measured by isoluminol-enhanced luminometry. Imaging technique was employed to measure neutrophil [Ca2+](i) in individual cells. Thermal injury caused marked upregulation of Lyn and ERK1/2 accompanying enhanced neutrophil O production. Treatment of rats with PTK blocker (AG556) or MAPK blocker (AG1478) before burn injury caused complete inhibition of the respective kinase activation. Both AG556 and AG1478 produced an ~66% inhibition in O production. Treatment with diltiazem (DZ) produced an ~37% inhibition of O production without affecting Lyn or ERK1/2 activation with burn injury. Ca2+ mobilization was upregulated with burn injury but not affected by treatment of burn rats with AG556. Unlike the partial inhibition of burn-induced O production by AG556, AG1478, or DZ, platelet-activating factor antagonist (PAFa) treatment of burn rats produced near complete inhibition of O production. PAFa treatment also blocked activation of Lyn. The findings suggest that the near complete inhibition of O production by PAFa was a result of blockade of PTK as well as Ca2+ signaling. Overall, our studies show that enhanced neutrophil O production after thermal injury is a result of potentiation of Ca2+ -linked and -independent signaling triggered by inflammatory agents such as PAF.
Collapse
Affiliation(s)
- Nadeem Fazal
- Burn & Shock Trauma Institute, Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
24
|
Silliman CC, Moore EE, Zallen G, Gonzalez R, Johnson JL, Elzi DJ, Meng X, Hanasaki K, Ishizaki J, Arita H, Ao L, England KM, Banerjee A. Presence of the M-type sPLA(2) receptor on neutrophils and its role in elastase release and adhesion. Am J Physiol Cell Physiol 2002; 283:C1102-13. [PMID: 12225974 DOI: 10.1152/ajpcell.00608.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretory phospholipase A(2) (sPLA(2)) produces lipids that stimulate polymorphonuclear neutrophils (PMNs). With the discovery of sPLA(2) receptors (sPLA(2)-R), we hypothesize that sPLA(2) stimulates PMNs through a receptor. Scatchard analysis was used to determine the presence of a sPLA(2) ligand. Lysates were probed with an antibody to the M-type sPLA(2)-R, and the immunoreactivity was localized. PMNs were treated with active and inactive (+EGTA) sPLA(2) (1-100 units of enzyme activity/ml, types IA, IB, and IIA), and elastase release and PMN adhesion were measured. PMNs incubated with inactive, FITC-linked sPLA(2)-IB, but not sPLA(2)-IA, demonstrated the presence of a sPLA(2)-R with saturation at 2.77 fM and a K(d) of 167 pM. sPLA(2)-R immunoreactivity was present at 185 kDa and localized to the membrane. Inactive sPLA(2)-IB activated p38 MAPK, and p38 MAPK inhibition attenuated elastase release. Active sPLA(2)-IA caused elastase release, but inactive type IA did not. sPLA(2)-IB stimulated elastase release independent of activity; inactive sPLA(2)-IIA partially stimulated PMNs. sPLA(2)-IB and sPLA(2)-IIA caused PMN adhesion. We conclude that PMNs contain a membrane M-type sPLA(2)-R that activates p38 MAPK.
Collapse
Affiliation(s)
- Christopher C Silliman
- Bonfils Blood Center, Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Káldi K, Szeberényi J, Rada BK, Kovács P, Geiszt M, Mócsai A, Ligeti E. Contribution of phopholipase D and a brefeldin A‐sensitive ARF to chemoattractant‐induced superoxide production and secretion of human neutrophils. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.4.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Krisztina Káldi
- Department of Physiology, Cell and Immunobiology, Semmelweis University, Budapest, Hungary and
| | - Júlia Szeberényi
- Department of Physiology, Cell and Immunobiology, Semmelweis University, Budapest, Hungary and
| | - Balázs K. Rada
- Department of Physiology, Cell and Immunobiology, Semmelweis University, Budapest, Hungary and
| | - Péter Kovács
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Miklós Geiszt
- Department of Physiology, Cell and Immunobiology, Semmelweis University, Budapest, Hungary and
| | - Attila Mócsai
- Department of Physiology, Cell and Immunobiology, Semmelweis University, Budapest, Hungary and
| | - Erzsébet Ligeti
- Department of Physiology, Cell and Immunobiology, Semmelweis University, Budapest, Hungary and
| |
Collapse
|
27
|
Abstract
The Syk tyrosine kinase plays a critical role in the signaling machinery of various receptors of the adaptive immune system. Here we show that Syk is also an essential component of integrin signaling in neutrophils. syk(-/-) neutrophils failed to undergo respiratory burst, degranulation, or spreading in response to proinflammatory stimuli while adherent to immobilized integrin ligands or when stimulated by direct crosslinking of integrins. Signaling from the beta(1), beta(2), or beta(3) integrins was defective in syk(-/-) cells. Syk colocalized with CD18 during cell spreading and initiated downstream signaling events leading to actin polymerization. Surprisingly, these defects in integrin-mediated activation did not impair the integrin-dependent in vitro or in vivo migration of syk(-/-) neutrophils or of cells deficient in Src-family kinases. Thus, integrins use different signaling mechanisms to support migration and adherent activation.
Collapse
Affiliation(s)
- Attila Mócsai
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
28
|
Mott J, Rikihisa Y, Tsunawaki S. Effects of Anaplasma phagocytophila on NADPH oxidase components in human neutrophils and HL-60 cells. Infect Immun 2002; 70:1359-66. [PMID: 11854221 PMCID: PMC127795 DOI: 10.1128/iai.70.3.1359-1366.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Revised: 10/17/2001] [Accepted: 11/29/2001] [Indexed: 11/20/2022] Open
Abstract
The human granulocytic ehrlichiosis agent, Anaplasma phagocytophila, resides and multiplies exclusively in cytoplasmic vacuoles of granulocytes. A. phagocytophila rapidly inhibits the superoxide anion (O(2)(-)) generation by human neutrophils in response to various stimuli. To determine the inhibitory mechanism, the influence of A. phagocytophila on protein levels and localization of components of the NADPH oxidase were examined. A. phagocytophila decreased levels of p22(phox), but not gp91(phox), p47(phox), p67(phox), or P40(phox) reactive with each component-specific antibody in human peripheral blood neutrophils and HL-60 cells. Double immunofluorescence labeling revealed that p47(phox), p67(phox), Rac2, and p22(phox) did not colocalize with A. phagocytophila inclusions in neutrophils or HL-60 cells, and p22(phox) levels were also reduced. A. phagocytophila did not prevent either membrane translocation of cytoplasmic p47(phox) and p67(phox) or phosphorylation of p47(phox) upon stimulation by phorbol myristate acetate. The inhibitory signals for O(2)(-) generation was independent of several signals required for A. phagocytophila internalization. These results suggest that rapid alteration in p22(phox) induced by binding of A. phagocytophila to neutrophils is involved in the inhibition of O(2)(-) generation. Absence of colocalization of NADPH oxidase components with the inclusion further protects A. phagocytophila from oxidative damage.
Collapse
Affiliation(s)
- Jason Mott
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210-1092, USA
| | | | | |
Collapse
|
29
|
Dalpiaz A, Ferretti ME, Vertuani G, Traniello S, Scatturin A, Spisani S. C- and N-terminal residue effect on peptide derivatives' antagonism toward the formyl-peptide receptor. Eur J Pharmacol 2002; 436:187-96. [PMID: 11858798 DOI: 10.1016/s0014-2999(01)01627-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biological action of several X-Phe-D-Leu-Phe-D-Leu-Z (X=3',5'-dimethylphenyl-ureido; Z=Phe, Lys, Glu, Tyr) analogues was analysed on human neutrophils to evaluate their ability to antagonize formyl-peptide receptors. X-Phe-D-Leu-Phe-D-Leu-Phe analogues obtained as C-terminal olo or amido derivatives and T-Phe-D-Leu-Phe-D-Leu-Phe analogues (T=thiazolyl-ureido) were also analysed. The activities of pentapeptide derivatives were compared with those of X-Phe-D-Leu-Phe-D-Leu-Phe chosen as reference antagonist. Our results demonstrate that X-Phe-D-Leu-Phe-D-Leu-Phe-olo, X-Phe-D-Leu-Phe-D-Leu-Glu and X-Phe-D-Leu-Phe-D-Leu-Tyr are more active antagonists than X-Phe-D-Leu-Phe-D-Leu-Phe. The presence of Lys (X-Phe-D-Leu-Phe-D-Leu-Lys) seems, instead, to inhibit the formyl-peptide receptor antagonist properties. The presence of the N-terminal thiazolyl-ureido group seems to considerably contribute to the receptor antagonist properties of T-Phe-D-Leu-Phe-D-Leu-Phe-OH. The introduction of the C-terminal methyl ester (T-Phe-D-Leu-Phe-D-Leu-Phe-OMe) or amido group (X-Phe-D-Leu-Phe-D-Leu-Phe-NH2) appears detrimental for the affinity and formyl-peptide receptor antagonist properties of the Phe-D-Leu-Phe-D-Leu-Phe derivatives. The examined peptides inhibit superoxide anion production and lysozyme release more efficaciously than neutrophil chemotaxis.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Pharmaceutical Sciences, Ferrara University, via Fossato di Mortara 19, 44100 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Chan SS, Monteiro HP, Schindler F, Stern A, Junqueira VB. Alpha-tocopherol modulates tyrosine phosphorylation in human neutrophils by inhibition of protein kinase C activity and activation of tyrosine phosphatases. Free Radic Res 2001; 35:843-56. [PMID: 11811535 DOI: 10.1080/10715760100301341] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Alpha-tocopherol augmentation in human neutrophils was investigated for effects on neutrophil activation and tyrosine phosphorylation of proteins, through its modulation of protein kinase C (PKC) and tyrosine phosphatase activities. Incubation of neutrophils with alpha-tocopherol succinate (TS) resulted in a dose-dependent incorporation into cell membranes, up to 2.5 nmol/2x10(6) cells. A saturating dose of TS (40 micromol/l) inhibited oxidant production by neutrophils stimulated with phorbol myristate acetate (PMA) or opsonized zymosan (OZ) by 86 and 57%, as measured by luminol-amplified chemiluminescence (CL). With PMA, TS inhibited CL generation to a similar extent to staurosporine (10 nmol/l) or genistein (100 micromol/l), and much more than Trolox (40 micromol/l). With OZ, TS inhibited CL to a similar extent to Trolox. Neutrophil PKC activity was inhibited 50% or more by TS or staurosporine. The enzyme activity was unaffected by genistein or Trolox, indicating a specific interaction of alpha-tocopherol. TS or Trolox increased protein tyrosine phosphorylation in resting neutrophils, and as with staurosporine further increased tyrosine phosphorylation in PMA-stimulated neutrophils, while the tyrosine kinase (TK) inhibitor genistein diminished phosphorylation. These effects in resting or PMA-stimulated neutrophils were unrelated to protein tyrosine phosphatase (PTP) activities, which were maintained or increased by TS or Trolox. In OZ-stimulated neutrophils, on the other hand, all four compounds inhibited the increase in tyrosine-phosphorylated proteins. In this case, the effects of pre-incubation with TS or Trolox corresponded with partial inhibition of the marked (85%) decrease in PTP activity induced by OZ. These results indicate that alpha-tocopherol inhibits PMA-activation of human neutrophils by inhibition of PKC activity, and inhibits tyrosine phosphorylation and activation of OZ-stimulated neutrophils also through inhibition of phosphatase inactivation.
Collapse
Affiliation(s)
- S S Chan
- Instituto de Quimica, Universidade de São Paulo, Brazil
| | | | | | | | | |
Collapse
|
31
|
Bánfi B, Molnár G, Maturana A, Steger K, Hegedûs B, Demaurex N, Krause KH. A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 2001; 276:37594-601. [PMID: 11483596 DOI: 10.1074/jbc.m103034200] [Citation(s) in RCA: 457] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Superoxide and its derivatives are increasingly implicated in the regulation of physiological functions from oxygen sensing and blood pressure regulation to lymphocyte activation and sperm-oocyte fusion. Here we describe a novel superoxide-generating NADPH oxidase referred to as NADPH oxidase 5 (NOX5). NOX5 is distantly related to the gp91(phox) subunit of the phagocyte NADPH oxidase with conserved regions crucial for the electron transport (NADPH, FAD and heme binding sites). However, NOX5 has a unique N-terminal extension that contains three EF hand motifs. The mRNA of NOX5 is expressed in pachytene spermatocytes of testis and in B- and T-lymphocyte-rich areas of spleen and lymph nodes. When heterologously expressed, NOX5 was quiescent in unstimulated cells. However, in response to elevations of the cytosolic Ca(2+) concentration it generated large amounts of superoxide. Upon Ca(2+) activation, NOX5 also displayed a second function: it became a proton channel, presumably to compensate charge and pH alterations due to electron export. In summary, we have identified a novel NADPH oxidase that generates superoxide and functions as a H(+) channel in a Ca(2+)-dependent manner. NOX5 is likely to be involved in Ca(2+)-activated, redox-dependent processes of spermatozoa and lymphocytes such as sperm-oocyte fusion, cell proliferation, and cytokine secretion.
Collapse
Affiliation(s)
- B Bánfi
- Biology of Aging Laboratory, Department of Geriatrics, Geneva University Hospitals, Ch. du Petit-Bel-Air 2, CH-1225 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Sipeki S, Bander E, Farkas G, Gujdár A, Ways DK, Faragó A. Protein kinase C decreases the hepatocyte growth factor-induced activation of Erk1/Erk2 MAP kinases. Cell Signal 2000; 12:549-55. [PMID: 11027948 DOI: 10.1016/s0898-6568(00)00105-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HGF and phorbol ester induce the scattering of HepG2 cells. Recently, we have reported that the motility and morphological responses that accompany this process require the activation of Erk1/Erk2 MAP kinases, and phosphatidylinositol 3-kinase contributes to the activation of Erk1/Erk2 in HGF-induced cells. The cell scattering-associated appearance of a high-M(r) (>300 kDa) protein pair has also been observed, and has been proven to be a sensitive marker of the intensity of Erk1/Erk2 activation. Our present study demonstrates that in HGF-induced cells protein kinase C and phosphatidylinositol 3-kinase regulate oppositely the expression of these cell scattering-associated proteins. While in phorbol ester-treated cells the sustained activation of protein kinase C is essential for this expression, in HGF-induced cells the inhibition of protein kinase C with bisindolylmaleimide I stimulates the expression. Protein kinase C reduces the HGF-induced phosphorylation of Erk1/Erk2, and in this way it can limit the intensity of Erk1/Erk2-dependent gene-expression
Collapse
Affiliation(s)
- S Sipeki
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, P.O.B. 260, 1444, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
33
|
Smolen JE, Petersen TK, Koch C, O'Keefe SJ, Hanlon WA, Seo S, Pearson D, Fossett MC, Simon SI. L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen-activated protein kinase. J Biol Chem 2000; 275:15876-84. [PMID: 10748078 DOI: 10.1074/jbc.m906232199] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adhesion molecules known as selectins mediate the capture of neutrophils from the bloodstream. We have previously reported that ligation and cross-linking of L-selectin on the neutrophil surface enhances the adhesive function of beta(2)-integrins in a synergistic manner with chemotactic agonists. In this work, we examined degranulation and adhesion of neutrophils in response to cross-linking of L-selectin and addition of interleukin-8. Cross-linking of L-selectin induced priming of degranulation that was similar to that observed with the alkaloid cytochalasin B. Activation mediated by L-selectin of neutrophil shape change and adhesion through CD11b/CD18 were strongly blocked by Merck C, an imidazole-based inhibitor of p38 mitogen-activated protein kinase (MAPK), but not by a structurally similar non-binding regioisomer. Priming by L-selectin of the release of secondary, tertiary, and secretory, but not primary, granules was blocked by inhibition of p38 MAPK. Peak phosphorylation of p38 MAPK was observed within 1 min of cross-linking L-selectin, whereas phosphorylation of ERK1/2 was highest at 10 min. Phosphorylation of p38 MAPK, but not ERK1/2, was inhibited by Merck C. These data suggest that signal transduction as a result of clustering L-selectin utilizes p38 MAPK to effect neutrophil shape change, integrin activation, and the release of secondary, tertiary, and secretory granules.
Collapse
Affiliation(s)
- J E Smolen
- Department of Pediatrics, Leukocyte Biology Section, Baylor College of Medicine, Houston, Texas 77030-2600, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mócsai A, Jakus Z, Vántus T, Berton G, Lowell CA, Ligeti E. Kinase pathways in chemoattractant-induced degranulation of neutrophils: the role of p38 mitogen-activated protein kinase activated by Src family kinases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4321-31. [PMID: 10754332 DOI: 10.4049/jimmunol.164.8.4321] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate the role of tyrosine phosphorylation pathways in fMLP-induced exocytosis of the different secretory compartments (primary and secondary granules, as well as secretory vesicles) of neutrophils. Genistein, a broad specificity tyrosine kinase inhibitor, blocked the exocytosis of primary and secondary granules, but had only a marginal effect on the release of secretory vesicles. Genistein also inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinases (MAPK), raising the possibility that inhibition of ERK and/or p38 MAPK might be responsible for the effect of the drug on the degranulation response. Indeed, SB203580, an inhibitor of p38 MAPK, decreased the release of primary and secondary granules, but not that of secretory vesicles. However, blocking the ERK pathway with PD98059 had no effect on any of the exocytic responses tested. PP1, an inhibitor of Src family kinases, also attenuated the release of primary and secondary granules, and neutrophils from mice deficient in the Src family kinases Hck, Fgr, and Lyn were also defective in secondary granule release. Furthermore, activation of p38 MAPK was blocked by both PP1 and the hck-/-fgr-/-lyn-/- mutation. Taken together, our data indicate that fMLP-induced degranulation of primary and secondary granules of neutrophils is mediated by p38 MAPK activated via Src family tyrosine kinases. Although piceatannol, a reportedly selective inhibitor of Syk, also prevented degranulation and activation of p38 MAPK, no fMLP-induced phosphorylation of Syk could be observed, raising doubts about the specificity of the inhibitor.
Collapse
Affiliation(s)
- A Mócsai
- Department of Physiology, Semmelweis University of Medicine, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
35
|
Daniels I, Fletcher J, Haynes AP. Role of p38 in the priming of human neutrophils by peritoneal dialysis effluent. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:878-84. [PMID: 10548580 PMCID: PMC95792 DOI: 10.1128/cdli.6.6.878-884.1999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peritoneal dialysis effluent (PDE) contains a low-molecular-weight substance that is able to prime human neutrophils for the release of arachidonic acid and superoxide anion. Conventional priming agents, such as tumor necrosis factor alpha (TNF-alpha), are known to signal via mitogen-activated protein (MAP) kinases; at least one possible substrate for MAP kinases is cytosolic phospholipase A(2) (cPLA(2)). Phosphorylation of this enzyme results in arachidonic acid release, and this fatty acid is a potent primer and activator of the human neutrophil NADPH oxidase. Because of the striking similarities between the priming of neutrophils with agents such as TNF-alpha and PDE, we have investigated the signalling pathways evoked by PDE and explored the possibility that cPLA(2) is a target for activated MAP kinases. Our results show that PDE treatment of human neutrophils results in the phosphorylation of the p38 kinase rather than the p42 and p44 kinases. Phosphorylation of p38 is transient with maximal activity being observed 1 min after exposure to PDE. We were unable to demonstrate that activation of p38 resulted in phosphorylation of cPLA(2); furthermore, translocation of this enzyme to a membrane-containing fraction was not enhanced in PDE-treated neutrophils. Taken together, these data suggest that, in a manner similar to that of TNF-alpha, PDE primes human neutrophils by the activation of the p38 kinase. However, unlike the cytokine, the activation of this protein does not result in phosphorylation or activation of cPLA(2).
Collapse
Affiliation(s)
- I Daniels
- Medical Research Centre, City Hospital, Nottingham, United Kingdom.
| | | | | |
Collapse
|
36
|
Nagaishi K, Adachi R, Matsui S, Yamaguchi T, Kasahara T, Suzuki K. Herbimycin A inhibits both dephosphorylation and translocation of cofilin induced by opsonized zymosan in macrophagelike U937 cells. J Cell Physiol 1999; 180:345-54. [PMID: 10430174 DOI: 10.1002/(sici)1097-4652(199909)180:3<345::aid-jcp5>3.0.co;2-j] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously reported that a 21-kDa phosphoprotein may play an important role in superoxide production through dephosphorylation by neutrophillike differentiated HL-60 cells (Suzuki et al., 1995, Biochim Biophys Acta 1266: 261-267). The phosphoprotein was identified as cofilin, an actin-binding protein, and the activation-induced changes in its intracellular distribution have been described elsewhere (Suzuki et al., 1995, J Biol Chem 270:19551-19556). However, the physiologic roles of cofilin in phagocytes remain to be established, and the regulatory mechanisms for dephosphorylation and translocation of cofilin are unknown. In the present study, we investigated the roles of cofilin in the opsonized zymosan (OZ)-activated macrophagelike U937 cells by using herbimycin A, an inhibitor for protein tyrosine kinase. In the individual adherent phagocytes, OZ induced many events: 1) production of superoxide, 2) phagocytosis of the insoluble particles OZ, 3) dephosphorylation of cofilin, 4) translocation of cofilin from cytosol to plasma membrane regions, 5) decrease in intracellular pH from 7.4 to aprroximately 6.8, and 6) rapid and transient increase in filamentous actin at the cell periphery. All of these events were inhibited or reduced significantly by herbimycin A. OZ increased phosphorylation of tyrosine in 110-, 50-, 34-, and 29-kDa proteins, whereas herbimycin A inhibited it. These results suggest that tyrosine kinase plays an essential role upstream of these events through phosphorylation of such proteins. Furthermore, microinjection of anti-cofilin antibody to the differentiated U937 cells caused inhibition of the phagocytosis. These results suggest that cofilin plays critical roles in phagocytic functions through changes in cytoskeletal organization.
Collapse
Affiliation(s)
- K Nagaishi
- National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- B D Car
- Safety Assessment, Preclinical Research and Development, DuPont Pharmaceuticals, Newark, Delaware 19714, USA
| | | |
Collapse
|
38
|
Abstract
Neutrophil granulocytes play an important role in the defense mechanisms of mammalian organisms against bacterial invaders. The combat arsenal of neutrophils consists of engulfing and endocytosing the foreign particle, producing toxic oxygen compounds, and liberating substances stored in intracellular vesicles. At least four different types of granules are formed during maturation of neutrophil granulocytes in the bone marrow. Functional properties of release from the different granule populations differ in several respects from characteristics of neurotransmitter release, the best understood secretory process in mammals. The available data indicate that several key proteins of the exocytotic machinery identified in neural tissue either are absent from neutrophil granulocytes or their subcellular localization is different. Furthermore, in a human disease (Chédiak-Higashi syndrome), the defect of the secretory pathway affects mainly the cells of the haemopoietic lineage. Taken together, these data suggest that regulated exocytosis from neutrophil granulocytes (or perhaps also from other haemopoietic cells) may represent a specific case of the general mechanism of secretion.
Collapse
Affiliation(s)
- E Ligeti
- Department of Physiology, Semmelweis Medical University, Budapest, Hungary.
| | | |
Collapse
|
39
|
Mócsai A, Ligeti E, Lowell CA, Berton G. Adhesion-Dependent Degranulation of Neutrophils Requires the Src Family Kinases Fgr and Hck. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Polymorphonuclear neutrophils (PMN) adherent to integrin ligands respond to inflammatory mediators by reorganizing their cytoskeleton and releasing reactive oxygen intermediates. As Src family tyrosine kinases are implicated in these responses, we investigated their possible role in regulating degranulation. Human PMN incubated on fibrinogen released lactoferrin in response to TNF-α and this response was inhibited by PP1, a Src family tyrosine kinase inhibitor. This drug had no effect on lactoferrin secretion induced by PMA, an adhesion-independent agonist of PMN degranulation. However, PP1 blocked secretion in PMN plated on plain tissue culture plastic, a surface inducing PMN spreading in the absence of any stimulus. Double knockout hck−/−fgr−/− PMN adherent to collagen or fibrinogen failed to release lactoferrin in response to TNF-α but responded to PMA as wild-type PMN. Degranulation induced by spreading over tissue culture plastic was also defective in hck−/−fgr−/− PMN. Defective adhesion-dependent degranulation required the absence of both kinases, because single knockout fgr−/− or hck−/− PMN responded as wild-type cells. Analysis of lactoferrin secretion in hck−/−fgr−/− or PP1-treated, suspended PMN showed that Src kinases are not implicated in degranulation dependent on activation of protein kinase C or increase in intracellular free Ca2+ but may play a role in the response to FMLP of cytochalasin B-treated PMN. These findings identify a role for Src family kinases in a signaling pathway leading to granule-plasma membrane fusion and suggest that Fgr and Hck would be targets for pharmacological control of adhesion-dependent degranulation in the inflammatory site.
Collapse
Affiliation(s)
- Attila Mócsai
- *Institute of General Pathology, University of Verona, Verona, Italy
- †Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University of Medicine, Budapest, Hungary; and
| | - Erzsébet Ligeti
- †Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University of Medicine, Budapest, Hungary; and
| | - Clifford A. Lowell
- ‡Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Giorgio Berton
- *Institute of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
40
|
Tardif M, Rabiet MJ, Christophe T, Milcent MD, Boulay F. Isolation and Characterization of a Variant HL60 Cell Line Defective in the Activation of the NADPH Oxidase by Phorbol Myristate Acetate. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.12.6885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Promyelocytic human leukemia HL60 cells can be differentiated into neutrophil-like cells that exhibit an NADPH oxidase activity through direct stimulation of protein kinase C (PKC) with PMA or through formyl peptide receptor activation. We have isolated a variant HL60 clone that exhibited a conditional PMA-induced oxidative response depending on the agent used for the differentiation. While cells differentiated with DMSO responded to either PMA or N-formyl peptide (N-formyl-Met-Leu-Phe-Lys or fMLFK), cells differentiated with dibutyryl-cAMP (Bt2cAMP) responded to fMLFK but very poorly to PMA. However, in Bt2cAMP-differentiated cells, the expression of the different PKC isoforms was similar to that observed in DMSO-differentiated cells. Moreover, PMA was able to induce a normal phosphorylation of the cytosolic factor p47phox and to fully activate extracellular signal-regulated kinases (Erk1/2). Interestingly, Bt2cAMP-differentiated cells exhibited a strong and sustained O2− production when costimulated with PMA and suboptimal concentrations of fMLFK which were, per se, ineffective. This sustained response was only slightly reduced by the conjunction of the mitogen-activated protein (MAP) kinase kinase (MEK) inhibitor PD98059 and wortmannin, a phosphatidylinositol-3 kinase (PI3K) inhibitor. Variant HL60 cells that were stably transfected with a constitutively active form of Rac1 were able, when differentiated with Bt2cAMP, to secrete oxidant following PMA stimulation. Altogether, the results suggest that, in addition to the phosphorylation of p47phox, the activation of NADPH oxidase requires the activation of a Rac protein through a pathway that diverges at a point upstream of MEK and that is independent of the activation of wortmannin sensitive PI3K.
Collapse
Affiliation(s)
- Marianne Tardif
- Commissariat à l’Energie Atomique (CEA)/Grenoble, Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 314 CEA/Centre National de la Recherche Scientifique), Grenoble, France
| | - Marie-Josèphe Rabiet
- Commissariat à l’Energie Atomique (CEA)/Grenoble, Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 314 CEA/Centre National de la Recherche Scientifique), Grenoble, France
| | - Thierry Christophe
- Commissariat à l’Energie Atomique (CEA)/Grenoble, Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 314 CEA/Centre National de la Recherche Scientifique), Grenoble, France
| | - Marie-Danielle Milcent
- Commissariat à l’Energie Atomique (CEA)/Grenoble, Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 314 CEA/Centre National de la Recherche Scientifique), Grenoble, France
| | - François Boulay
- Commissariat à l’Energie Atomique (CEA)/Grenoble, Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 314 CEA/Centre National de la Recherche Scientifique), Grenoble, France
| |
Collapse
|
41
|
Capodici C, Pillinger MH, Han G, Philips MR, Weissmann G. Integrin-dependent homotypic adhesion of neutrophils. Arachidonic acid activates Raf-1/Mek/Erk via a 5-lipoxygenase- dependent pathway. J Clin Invest 1998; 102:165-75. [PMID: 9649570 PMCID: PMC509078 DOI: 10.1172/jci592] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AA stimulates integrin-dependent neutrophil adhesion, a critical early step in acute inflammation. However, neither the signaling pathway(s) of AA-stimulated adhesion, nor whether AA acts directly or through the generation of active metabolites, has been elucidated. Previously, we have observed a tight association between neutrophil Erk activation and homotypic adhesion in response to chemoattractants acting through G protein-linked receptors. We now report a similar association between homotypic adhesion and Erk activation in response to AA. Erk activation was cyclooxygenase independent and required AA metabolism to 5(S)- hydroperoxyeicosatetraenoic acid (5-HpETE) via 5-lipoxygenase, but not the further lipoxygenase-dependent metabolism of 5-HpETE to leukotrienes. AA stimulation of Erk was accompanied by Raf-1 activation and was sensitive to inhibitors of Raf-1 and Mek. Whereas activation of Erk by AA was pertussis toxin sensitive, [3H]-AA binding to neutrophils was not saturable, suggesting that an AA metabolite activates a G protein. Consistent with this hypothesis, Erk activation by 5(S)-hydroxyeicosatetraenoic acid (5-HETE; lipoxygenase-independent metabolite of 5-HpETE) was also pertussis toxin sensitive. These data suggest that a 5-lipoxygenase metabolite of AA, e.g., 5-HETE, is released from AA-treated cells to engage a plasma membrane-associated, pertussis toxin-sensitive, G protein-linked receptor, leading to activation of Erk and adhesion via the Raf-1/Mek signal transduction pathway.
Collapse
Affiliation(s)
- C Capodici
- Department of Medicine, New York University School of Medicine, New York 10016, USA
| | | | | | | | | |
Collapse
|