1
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2025; 46:525-538. [PMID: 39448859 PMCID: PMC11845611 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
2
|
Okamoto HH, Cecon E, Nureki O, Rivara S, Jockers R. Melatonin receptor structure and signaling. J Pineal Res 2024; 76:e12952. [PMID: 38587234 DOI: 10.1111/jpi.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT1 and MT2 receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to Gi/o proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT1 and MT2 receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.
Collapse
Affiliation(s)
- Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Erika Cecon
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
3
|
Gu P, Wu Y, Lu W. New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. Am J Cardiovasc Drugs 2024; 24:171-195. [PMID: 38436867 DOI: 10.1007/s40256-024-00631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. It is essential to develop novel interventions to prevent/delay CVDs by targeting their fundamental cellular and molecular processes. Melatonin is a small indole molecule acting both as a hormone of the pineal gland and as a local regulator molecule in various tissues. It has multiple features that may contribute to its cardiovascular protection. Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiological barriers. Additionally, this indoleamine also serves as a safe exogenous therapeutic agent. Increasing evidence has demonstrated the beneficial effects of melatonin in preventing and improving cardiovascular risk factors. Exogenous administration of melatonin, as a result of its antioxidant and anti-inflammatory properties, has been reported to decrease blood pressure, protect against atherosclerosis, attenuate molecular and cellular damage resulting from cardiac ischemia/reperfusion, and improve the prognosis of myocardial infarction and heart failure. This review aims to summarize the beneficial effects of melatonin against these conditions, the possible protective mechanisms of melatonin, and its potential clinical applicability in CVDs.
Collapse
Affiliation(s)
- Pengchen Gu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Yuxin Wu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China.
| |
Collapse
|
4
|
Feng Y, Jiang X, Liu W, Lu H. The location, physiology, pathology of hippocampus Melatonin MT 2 receptor and MT 2-selective modulators. Eur J Med Chem 2023; 262:115888. [PMID: 37866336 DOI: 10.1016/j.ejmech.2023.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Melatonin, a neurohormone secreted by the pineal gland and regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus, is synthesized and directly released into the cerebrospinal fluid (CSF) of the third ventricle (3rdv), where it undergoes rapid absorption by surrounding tissues to exert its physiological function. The hippocampus, a vital structure in the limbic system adjacent to the ventricles, plays a pivotal role in emotional response and memory formation. Melatonin MT1 and MT2 receptors are G protein-coupled receptors (GPCRs) that primarily mediate melatonin's receptor-dependent effects. In comparison to the MT1 receptor, the widely expressed MT2 receptor is crucial for mediating melatonin's biological functions within the hippocampus. Specifically, MT2 receptor is implicated in hippocampal synaptic plasticity and memory processes, as well as neurogenesis and axogenesis. Numerous studies have demonstrated the involvement of MT2 receptors in the pathophysiology and pharmacology of Alzheimer's disease, depression, and epilepsy. This review focuses on the anatomical localization of MT2 receptor in the hippocampus, their physiological function in this region, and their signal transduction and pharmacological roles in neurological disorders. Additionally, we conducted a comprehensive review of MT2 receptor ligands used in psychopharmacology and other MT2-selective ligands over recent years. Ultimately, we provide an outlook on future research for selective MT2 receptor drug candidates.
Collapse
Affiliation(s)
- Yueqin Feng
- Department of Ultrasound, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | - Hongyuan Lu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| |
Collapse
|
5
|
Silva BR, Barrozo LG, Nascimento DR, Costa FC, Azevedo VAN, Paulino LRFM, Lopes EPF, Batista ALPS, Aguiar FLN, Peixoto CA, Donato MAM, Rodrigues APR, Silva JRV. Effects of cyclic adenosine monophosphate modulating agents during oocyte pre-maturation and the role of melatonin on in vitro maturation of bovine cumulus-oocyte complexes. Anim Reprod Sci 2023; 257:107327. [PMID: 37696223 DOI: 10.1016/j.anireprosci.2023.107327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
This study investigated the effects of cyclic adenosine monophosphate modulating during cumulus-oocyte complexes (COCs) pre-maturation and the role of melatonin on in vitro maturation (IVM) of bovine COCs. In experiment one, COCs were pre-matured for 8 h in control medium or with 3-isobutyl-1-methylxanthine (IBMX) and forskolin, IBMX and C-type natriuretic peptide, c-type natriuretic peptide and forskolin or IBMX, forskolin and c-type natriuretic peptide. Then, meiotic progression was evaluated. In experiment two, COCs were pre-matured, followed by IVM in control medium alone or with 10-6, 10-7 or 10-8 M melatonin. After IVM, chromatin configuration, transzonal projections (TZPs), reactive oxygen species, mitochondrial distribution, ultrastructure and mRNA expression for antioxidant enzymes were evaluated. In experiment 1, COCs pre-matured with both C-type natriuretic peptide and forskolin or C-type natriuretic peptide, forskolin and IBMX had lower meiotic resumption rate when compared to control. Considering that IBMX had not an additional effect to potentiate inhibition of meiotic resumption, a combination of C-type natriuretic peptide and forskolin was chosen. In experiment 2, COCs matured with 10-8 M melatonin had greater rates of meiotic resumption when compared to the other treatments (P < 0.05). The COCs matured with 10-7 or 10-8 M melatonin had greater mitochondrial activity (P < 0.05), while those matured with 10-6 or 10-8 M of melatonin had greater levels of TZPs. Ultrastructure of oocyte and cumulus cells after IVM with melatonin was relatively well preserved. COCs matured with 10-8 M melatonin increased mRNA expression for superoxide dismutase (SOD) and catalase (CAT) (P < 0.05), when compared to non-cultured and pre-matured COCs, respectively. In conclusion, bovine COC pre-maturation with C-type natriuretic peptide and forskolin, followed by IVM with 10-8 M melatonin improves meiotic resumption rates, TZPs, mitochondrial distribution and mRNA expression for SOD and CAT.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Laryssa G Barrozo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Danisvânia R Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Francisco C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Everton P F Lopes
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, Ceará, Brazil
| | - Ana L P S Batista
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Francisco L N Aguiar
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Christina A Peixoto
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Mariana A M Donato
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana P R Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, Ceará, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil.
| |
Collapse
|
6
|
Somalo-Barranco G, Pagano Zottola AC, Abdulrahman AO, El Zein RM, Cannich A, Muñoz L, Serra C, Oishi A, Marsicano G, Masri B, Bellocchio L, Llebaria A, Jockers R. Mitochondria-targeted melatonin photorelease supports the presence of melatonin MT1 receptors in mitochondria inhibiting respiration. Cell Chem Biol 2023; 30:920-932.e7. [PMID: 37572668 DOI: 10.1016/j.chembiol.2023.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/16/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
The presence of signaling-competent G protein-coupled receptors in intracellular compartments is increasingly recognized. Recently, the presence of Gi/o protein-coupled melatonin MT1 receptors in mitochondria has been revealed, in addition to the plasma membrane. Melatonin is highly cell permeant, activating plasma membrane and mitochondrial receptors equally. Here, we present MCS-1145, a melatonin derivative bearing a triphenylphosphonium cation for specific mitochondrial targeting and a photocleavable o-nitrobenzyl group releasing melatonin upon illumination. MCS-1145 displayed low affinity for MT1 and MT2 but spontaneously accumulated in mitochondria, where it was resistant to washout. Uncaged MCS-1145 and exogenous melatonin recruited β-arrestin 2 to MT1 in mitochondria and inhibited oxygen consumption in mitochondria isolated from HEK293 cells only when expressing MT1 and from mouse cerebellum of WT mice but not from MT1-knockout mice. Overall, we developed the first mitochondria-targeted photoactivatable melatonin ligand and demonstrate that melatonin inhibits mitochondrial respiration through mitochondrial MT1 receptors.
Collapse
Affiliation(s)
- Gloria Somalo-Barranco
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France; MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | | | | | - Rami M El Zein
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Lourdes Muñoz
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Carme Serra
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Atsuro Oishi
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Bernard Masri
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France.
| |
Collapse
|
7
|
Verma AK, Singh S, Rizvi SI. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp Gerontol 2023; 172:112076. [PMID: 36574855 DOI: 10.1016/j.exger.2022.112076] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The circadian system is an intricate molecular network of coordinating circadian clocks that organize the internal synchrony of the organism in response to the environment. These rhythms are maintained by genetically programmed positive and negative auto-regulated transcriptional and translational feedback loops that sustain 24-hour oscillations in mRNA and protein components of the endogenous circadian clock. Since inter and intracellular activity of the central pacemaker appears to reduce with aging, the interaction between the circadian clock and aging continues to elude our understanding. In this review article, we discuss circadian clock components at the molecular level and how aging adversely affects circadian clock functioning in rodents and humans. The natural decline in melatonin levels with aging strongly contributes to circadian dysregulation resulting in the development of neurological anomalies. Additionally, inappropriate environmental conditions such as Artificial Light at Night (ALAN) can cause circadian disruption or chronodisruption (CD) which can result in a variety of pathological diseases, including premature aging. Furthermore, we summarize recent evidence suggesting that CD may also be a predisposing factor for the development of age-related neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), although more investigation is required to prove this link. Finally, certain chrono-enhancement approaches have been offered as intervention strategies to prevent, alleviate, or mitigate the impacts of CD. This review thus aims to bring together recent advancements in the chronobiology of the aging process, as well as its role in NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India; Psychedelics Research Group, Biological Psychiatry Laboratory and Hadassah BrainLabs, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
8
|
|
9
|
Gbahou F, Jockers R. 2-[ 125I]iodomelatonin and [ 3H]melatonin Binding Assays for Melatonin Receptors. Methods Mol Biol 2022; 2550:141-149. [PMID: 36180687 DOI: 10.1007/978-1-0716-2593-4_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The radioligand binding assay is a powerful method to study the interaction of a ligand with its target. This technique allows not only to determine different pharmacological key parameters such as the affinity and the association and dissociation constants but also to estimate the amount of target expressed in recombinant or endogenous cells or tissues. The current detailed protocols describe the different binding assays (saturation, kinetic, and competition) that can be performed on melatonin receptors using their most commonly used and validated radioligands 2-[125I]-iodomelatonin (2-[125I]-MLT) and [3H]-melatonin ([3H]-MLT).
Collapse
Affiliation(s)
- Florence Gbahou
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.
| |
Collapse
|
10
|
Nikolaev G, Robeva R, Konakchieva R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int J Mol Sci 2021; 23:ijms23010471. [PMID: 35008896 PMCID: PMC8745360 DOI: 10.3390/ijms23010471] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The pineal hormone melatonin has attracted great scientific interest since its discovery in 1958. Despite the enormous number of basic and clinical studies the exact role of melatonin in respect to human physiology remains elusive. In humans, two high-affinity receptors for melatonin, MT1 and MT2, belonging to the family of G protein-coupled receptors (GPCRs) have been cloned and identified. The two receptor types activate Gi proteins and MT2 couples additionally to Gq proteins to modulate intracellular events. The individual effects of MT1 and MT2 receptor activation in a variety of cells are complemented by their ability to form homo- and heterodimers, the functional relevance of which is yet to be confirmed. Recently, several melatonin receptor genetic polymorphisms were discovered and implicated in pathology-for instance in type 2 diabetes, autoimmune disease, and cancer. The circadian patterns of melatonin secretion, its pleiotropic effects depending on cell type and condition, and the already demonstrated cross-talks of melatonin receptors with other signal transduction pathways further contribute to the perplexity of research on the role of the pineal hormone in humans. In this review we try to summarize the current knowledge on the membrane melatonin receptor activated cell signaling in physiology and pathology and their relevance to certain disease conditions including cancer.
Collapse
Affiliation(s)
- Georgi Nikolaev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
- Correspondence:
| | - Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Rossitza Konakchieva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
| |
Collapse
|
11
|
Won E, Na KS, Kim YK. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int J Mol Sci 2021; 23:ijms23010305. [PMID: 35008730 PMCID: PMC8745430 DOI: 10.3390/ijms23010305] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pro-inflammatory systemic conditions that can cause neuroinflammation and subsequent alterations in brain regions involved in emotional regulation have been suggested as an underlying mechanism for the pathophysiology of major depressive disorder (MDD). A prominent feature of MDD is disruption of circadian rhythms, of which melatonin is considered a key moderator, and alterations in the melatonin system have been implicated in MDD. Melatonin is involved in immune system regulation and has been shown to possess anti-inflammatory properties in inflammatory conditions, through both immunological and non-immunological actions. Melatonin has been suggested as a highly cytoprotective and neuroprotective substance and shown to stimulate all stages of neuroplasticity in animal models. The ability of melatonin to suppress inflammatory responses through immunological and non-immunological actions, thus influencing neuroinflammation and neurotoxicity, along with subsequent alterations in brain regions that are implicated in depression, can be demonstrated by the antidepressant-like effects of melatonin. Further studies that investigate the associations between melatonin, immune markers, and alterations in the brain structure and function in patients with depression could identify potential MDD biomarkers.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Chaum, Seoul 06062, Korea;
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon 21565, Korea;
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
- Correspondence:
| |
Collapse
|
12
|
Tse LH, Wong YH. Modeling the Heterodimer Interfaces of Melatonin Receptors. Front Cell Neurosci 2021; 15:725296. [PMID: 34690701 PMCID: PMC8529217 DOI: 10.3389/fncel.2021.725296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Melatonin receptors are Class A G protein-coupled receptors (GPCRs) that regulate a plethora of physiological activities in response to the rhythmic secretion of melatonin from the pineal gland. Melatonin is a key regulator in the control of circadian rhythm and has multiple functional roles in retinal physiology, memory, immunomodulation and tumorigenesis. The two subtypes of human melatonin receptors, termed MT1 and MT2, utilize overlapping signaling pathways although biased signaling properties have been reported in some cellular systems. With the emerging concept of GPCR dimerization, melatonin receptor heterodimers have been proposed to participate in system-biased signaling. Here, we used computational approaches to map the dimerization interfaces of known heterodimers of melatonin receptors, including MT1/MT2, MT1/GPR50, MT2/GPR50, and MT2/5-HT2C. By homology modeling and membrane protein docking analyses, we have identified putative preferred interface interactions within the different pairs of melatonin receptor dimers and provided plausible structural explanations for some of the unique pharmacological features of specific heterodimers previously reported. A thorough understanding of the molecular basis of melatonin receptor heterodimers may enable the development of new therapeutic approaches against aliments involving these heterodimeric receptors.
Collapse
Affiliation(s)
- Lap Hang Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR China
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR China.,State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, SAR China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
13
|
Ng MG, Ng KY, Koh RY, Chye SM. Potential role of melatonin in prevention and treatment of leukaemia. Horm Mol Biol Clin Investig 2021; 42:445-461. [PMID: 34355548 DOI: 10.1515/hmbci-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Leukaemia is a haematological malignancy originated from the bone marrow. Studies have shown that shift work could disrupt the melatonin secretion and eventually increase leukaemia incidence risk. Melatonin, a pineal hormone, has shown promising oncostatic properties on a wide range of cancers, including leukaemia. We first reviewed the relationship between shift work and the incidence rate of leukaemia and then discussed the role of melatonin receptors (MT1 and MT2) and their functions in leukaemia. Moreover, the connection between inflammation and leukaemia, and melatonin-induced anti-leukaemia mechanisms including anti-proliferation, apoptosis induction and immunomodulation are comprehensively discussed. Apart from that, the synergistic effects of melatonin with other anticancer compounds are also included. In short, this review article has compiled the evidence of anti-leukaemia properties displayed by melatonin and discuss its potential to act as adjunct for anti-leukaemia treatment. This review may serve as a reference for future studies or experimental research to explore the possibility of melatonin serving as a novel therapeutic agent for leukaemia.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Nishimon S, Nishino N, Nishino S. Advances in the pharmacological management of non-24-h sleep-wake disorder. Expert Opin Pharmacother 2021; 22:1039-1049. [PMID: 33618599 DOI: 10.1080/14656566.2021.1876665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Introduction: Melatonin, a hormone that regulates circadian rhythms and the sleep-wake cycle, is produced mainly during the dark period in the pineal gland and is suppressed by light exposure. Patients with non-24-h sleep-wake disorder (non-24) fail to entrain the master clock with the 24-h light-dark cycle due to the lack of light perception to the suprachiasmatic nucleus typically in totally blind individuals or other organic disorders in sighted individuals, causing a progressive delay in the sleep-wake cycle and periodic insomnia and daytime sleepiness.Areas covered: Herein, the authors review the pharmacological therapies including exogenous melatonin and melatonin receptor agonists for the management of non-24. They introduce a historical report about the effects of melatonin on the phase shift and entrainment for blind individuals with the free-running circadian rhythm.Expert opinion: Orally administered melatonin entrains the endogenous circadian rhythm and improves nighttime sleep and daytime alertness for non-24. Currently, tasimelteon is the only approved medication for non-24 by the US Food and Drug Administration and the European Medicines Agency. Treatments that focus only on sleep problems are insufficient for the treatment of non-24, and aids to entrain the free-running rhythm with the light-dark cycle are needed.
Collapse
Affiliation(s)
- Shohei Nishimon
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, USA.,Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoya Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, USA
| |
Collapse
|
15
|
Chen M, Cecon E, Karamitri A, Gao W, Gerbier R, Ahmad R, Jockers R. Melatonin MT 1 and MT 2 receptor ERK signaling is differentially dependent on G i/o and G q/11 proteins. J Pineal Res 2020; 68:e12641. [PMID: 32080899 DOI: 10.1111/jpi.12641] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) transmit extracellular signals into cells by activating G protein- and β-arrestin-dependent pathways. Extracellular signal-regulated kinases (ERKs) play a central role in integrating these different linear inputs coming from a variety of GPCRs to regulate cellular functions. Here, we investigated human melatonin MT1 and MT2 receptors signaling through the ERK1/2 cascade by employing different biochemical techniques together with pharmacological inhibitors and siRNA molecules. We show that ERK1/2 activation by both receptors is exclusively G protein-dependent, without any participation of β-arrestin1/2 in HEK293 cells. ERK1/2 activation by MT1 is only mediated though Gi/o proteins, while MT2 is dependent on the cooperative activation of Gi/o and Gq/11 proteins. In the absence of Gq/11 proteins, however, MT2 -induced ERK1/2 activation switches to a β-arrestin1/2-dependent mode. The signaling cascade downstream of G proteins is the same for both receptors and involves activation of the PI3K/PKCζ/c-Raf/MEK/ERK cascade. The differential G protein dependency of MT1 - and MT2 -mediated ERK activation was confirmed at the level of EGR1 and FOS gene expression, two ERK1/2 target genes. Gi/o /Gq/11 cooperativity was also observed in Neuroscreen-1 cells expressing endogenous MT2 , whereas in the mouse retina, where MT2 is engaged into MT1 /MT2 heterodimers, ERK1/2 signaling is exclusively Gi/o -dependent. Collectively, our data reveal differential signaling modes of MT1 and MT2 in terms of ERK1/2 activation, with an unexpected Gi/o /Gq/11 cooperativity exclusively for MT2 . The plasticity of ERK activation by MT2 is highlighted by the switch to a β-arrestin1/2-dependent mode in the absence of Gq/11 proteins and by the switch to a Gi/o mode when engaged into MT1 /MT2 heterodimers, revealing a new mechanism underlying tissue-specific responses to melatonin.
Collapse
Affiliation(s)
- Min Chen
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Erika Cecon
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | | | - Wenwen Gao
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Romain Gerbier
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Raise Ahmad
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| |
Collapse
|
16
|
Tan HY, Ng KY, Koh RY, Chye SM. Pharmacological Effects of Melatonin as Neuroprotectant in Rodent Model: A Review on the Current Biological Evidence. Cell Mol Neurobiol 2020; 40:25-51. [PMID: 31435851 PMCID: PMC11448813 DOI: 10.1007/s10571-019-00724-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
The progressive loss of structure and functions of neurons, including neuronal death, is one of the main factors leading to poor quality of life. Promotion of functional recovery of neuron after injury is a great challenge in neuroregenerative studies. Melatonin, a hormone is secreted by pineal gland and has antioxidative, anti-inflammatory, and anti-apoptotic properties. Besides that, melatonin has high cell permeability and is able to cross the blood-brain barrier. Apart from that, there are no reported side effects associated with long-term usage of melatonin at both physiological and pharmacological doses. Thus, in this review article, we summarize the pharmacological effects of melatonin as neuroprotectant in central nervous system injury, ischemic-reperfusion injury, optic nerve injury, peripheral nerve injury, neurotmesis, axonotmesis, scar formation, cell degeneration, and apoptosis in rodent models.
Collapse
Affiliation(s)
- Hui Ying Tan
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia.
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM. Melatonin Prevents Oxidative Stress-Induced Mitochondrial Dysfunction and Apoptosis in High Glucose-Treated Schwann Cells via Upregulation of Bcl2, NF-κB, mTOR, Wnt Signalling Pathways. Antioxidants (Basel) 2019; 8:antiox8070198. [PMID: 31247931 PMCID: PMC6680940 DOI: 10.3390/antiox8070198] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Neuropathy is a complication that affects more than 50% of long-standing diabetic patients. One of the causes of diabetes neuropathy (DN) is the apoptosis of Schwann cells due to prolonged exposure to high glucose and build-up of oxidative stress. Melatonin is a hormone that has a known antioxidant property. In this study, we investigated the protective effect of melatonin on high glucose-induced Schwann cells' apoptosis. Our results revealed that high glucose promoted apoptosis via mitochondrial-related oxidative stress and downregulated Bcl-2 family proteins in Schwann cells. In this signalling pathway, Bcl-2, Bcl-XL and Mcl-1 proteins were down-regulated while p-BAD and Puma proteins were up-regulated by high glucose treatment. Besides, we also proved that high glucose promoted apoptosis in Schwann cells through decreasing the p-NF-κB in the NF-κB signalling pathway. Key regulators of mTOR signalling pathway such as p-mTOR, Rictor and Raptor were also down-regulated after high glucose treatment. Additionally, high glucose treatment also decreased the Wnt signalling pathway downstream proteins (Wnt 5a/b, p-Lrp6 and Axin). Our results showed that melatonin treatment significantly inhibited high glucose-induced ROS generation, restored mitochondrial membrane potential and inhibited high glucose-induced apoptosis in Schwann cells. Furthermore, melatonin reversed the alterations of protein expression caused by high glucose treatment. Our results concluded that melatonin alleviates high glucose-induced apoptosis in Schwann cells through mitigating mitochondrial-related oxidative stress and the alterations of Bcl-2, NF-κB, mTOR and Wnt signalling pathways.
Collapse
Affiliation(s)
- Yee Lian Tiong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | | | - Soi Moi Chye
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
18
|
Nishimon S, Nishimon M, Nishino S. Tasimelteon for treating non-24-h sleep-wake rhythm disorder. Expert Opin Pharmacother 2019; 20:1065-1073. [DOI: 10.1080/14656566.2019.1603293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shohei Nishimon
- Sleep and Circadian Neurobiology Laboratory, Psychiatry and Behavior Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mari Nishimon
- Sleep and Circadian Neurobiology Laboratory, Psychiatry and Behavior Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Psychiatry and Behavior Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
19
|
Tang H, Ma M, Wu Y, Deng M, Hu F, Almansoub H, Huang H, Wang D, Zhou L, Wei N, Man H, Lu Y, Liu D, Zhu L. Activation of MT2 receptor ameliorates dendritic abnormalities in Alzheimer's disease via C/EBPα/miR-125b pathway. Aging Cell 2019; 18:e12902. [PMID: 30706990 PMCID: PMC6413662 DOI: 10.1111/acel.12902] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 01/24/2023] Open
Abstract
Impairments of dendritic trees and spines have been found in many neurodegenerative diseases, including Alzheimer's disease (AD), in which the deficits of melatonin signal pathway were reported. Melatonin receptor 2 (MT2) is widely expressed in the hippocampus and mediates the biological functions of melatonin. It is known that melatonin application is protective to dendritic abnormalities in AD. However, whether MT2 is involved in the neuroprotection and the underlying mechanisms are not clear. Here, we first found that MT2 is dramatically reduced in the dendritic compartment upon the insult of oligomer Aβ. MT2 activation prevented the Aβ-induced disruption of dendritic complexity and spine. Importantly, activation of MT2 decreased cAMP, which in turn inactivated transcriptional factor CCAAT/enhancer-binding protein α(C/EBPα) to suppress miR-125b expression and elevate the expression of its target, GluN2A. In addition, miR-125b mimics fully blocked the protective effects of MT2 activation on dendritic trees and spines. Finally, injection of a lentivirus containing a miR-125b sponge into the hippocampus of APP/PS1 mice effectively rescued the dendritic abnormalities and learning/memory impairments. Our data demonstrated that the cAMP-C/EBPα/miR-125b/GluN2A signaling pathway is important to the neuroprotective effects of MT2 activation in Aβ-induced dendritic injuries and learning/memory disorders, providing a novel therapeutic target for the treatment of AD synaptopathy.
Collapse
Affiliation(s)
- Hui Tang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Mei Ma
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Ying Wu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Man‐Fei Deng
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Fan Hu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Hasan.a.m.m. Almansoub
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - He‐Zhou Huang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Ding‐Qi Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Lan‐Ting Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Na Wei
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Pathology, School of Basic MedicineZhengzhou UniversityZhengzhouChina
| | - Hengye Man
- Department of BiologyBoston UniversityBostonMassachusetts
| | - Youming Lu
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
- Department of Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling‐Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
20
|
Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 2018; 175:3263-3280. [PMID: 28707298 PMCID: PMC6057902 DOI: 10.1111/bph.13950] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, an evolutionally old molecule, is produced by the pineal gland in vertebrates, and it binds with high affinity to melatonin receptors, which are members of the GPCR family. Among the multiple effects attributed to melatonin, we will focus here on those that are dependent on the activation of the two mammalian MT1 and MT2 melatonin receptors. We briefly summarize the latest developments on synthetic melatonin receptor ligands, including multi-target-directed ligands, and the characterization of signalling-biased ligands. We discuss signalling pathways activated by melatonin receptors that appear to be highly cell- and tissue-dependent, emphasizing the impact of system bias on the functional outcome. Different proteins have been demonstrated to interact with melatonin receptors, and thus, we postulate that part of this system bias has its molecular basis in differences of the expression of receptor-associated proteins including heterodimerization partners. Finally, bias at the level of the receptor, by the expression of genetic receptor variants, will be discussed to show how a modified receptor function can have an effect on the risk for common diseases like type 2 diabetes in humans. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Erika Cecon
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Atsuro Oishi
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Ralf Jockers
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| |
Collapse
|
21
|
Baker J, Kimpinski K. Role of melatonin in blood pressure regulation: An adjunct anti-hypertensive agent. Clin Exp Pharmacol Physiol 2018; 45:755-766. [DOI: 10.1111/1440-1681.12942] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Jacquie Baker
- School of Kinesiology; Western University; London ON Canada
- Department of Clinical Neurological Sciences; London Health Sciences Centre; University Hospital; London ON Canada
| | - Kurt Kimpinski
- School of Kinesiology; Western University; London ON Canada
- Department of Clinical Neurological Sciences; London Health Sciences Centre; University Hospital; London ON Canada
- Schulich School of Medicine & Dentistry; Western University; London ON Canada
| |
Collapse
|
22
|
Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018; 119:17-33. [PMID: 29198727 DOI: 10.1016/j.freeradbiomed.2017.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
Circadian rhythms are approximately 24-h oscillations of physiological and behavioral processes that allow us to adapt to daily environmental cycles. Like many other biological functions, cellular redox status and antioxidative defense systems display circadian rhythmicity. In the central nervous system (CNS), glutathione (GSH) is a critical antioxidant because the CNS is extremely vulnerable to oxidative stress; oxidative stress, in turn, causes several fatal diseases, including neurodegenerative diseases. It has long been known that GSH level shows circadian rhythm, although the mechanism underlying GSH rhythm production has not been well-studied. Several lines of recent evidence indicate that the expression of antioxidant genes involved in GSH homeostasis as well as circadian clock genes are regulated by post-transcriptional regulator microRNA (miRNA), indicating that miRNA plays a key role in generating GSH rhythm. Interestingly, several reports have shown that alterations of miRNA expression as well as circadian rhythm have been known to link with various diseases related to oxidative stress. A growing body of evidence implicates a strong correlation between antioxidative defense, circadian rhythm and miRNA function, therefore, their dysfunctions could cause numerous diseases. It is hoped that continued elucidation of the antioxidative defense systems controlled by novel miRNA regulation under circadian control will advance the development of therapeutics for the diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
23
|
Melatonin promotes triacylglycerol accumulation via MT2 receptor during differentiation in bovine intramuscular preadipocytes. Sci Rep 2017; 7:15080. [PMID: 29118419 PMCID: PMC5678110 DOI: 10.1038/s41598-017-12780-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a derivative of tryptophan which is produced and secreted mainly by the pineal gland and regulates a variety of important central and peripheral actions. To examine the potential effects of melatonin on the proliferation and differentiation of bovine intramuscular preadipocytes (BIPs), BIPs were incubated with different concentrations of melatonin. Melatonin supplementation at 1 mM significantly increased peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein (C/EBP) β, and C/EBPα expression and promoted the differentiation of BIPs into adipocytes with large lipid droplets and high cellular triacylglycerol (TAG) levels. Melatonin also significantly enhanced lipolysis and up-regulated the expression of lipolytic genes and proteins, including hormone sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL), and perilipin 1 (PLIN1). Moreover, melatonin reduced intracellular reactive oxygen species (ROS) levels by increasing the expression levels and activities of superoxide dismutase 1 (SOD1) and glutathione peroxidase 4 (GPX4). Finally, the positive effects of melatonin on adipogenesis, lipolysis, and redox status were reversed by treatment with luzindole, anantagonist of nonspecific melatonin receptors 1 (MT1) and 2 (MT2), and 4-phenyl-2-propionamidotetraline (4P-PDOT), a selective MT2 antagonist. These results reveal that melatonin promotes TAG accumulation via MT2 receptor during differentiation in BIPs.
Collapse
|
24
|
Gbahou F, Cecon E, Viault G, Gerbier R, Jean-Alphonse F, Karamitri A, Guillaumet G, Delagrange P, Friedlander RM, Vilardaga JP, Suzenet F, Jockers R. Design and validation of the first cell-impermeant melatonin receptor agonist. Br J Pharmacol 2017; 174:2409-2421. [PMID: 28493341 DOI: 10.1111/bph.13856] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The paradigm that GPCRs are able to prolong or initiate cellular signalling through intracellular receptors recently emerged. Melatonin binds to G protein-coupled MT1 and MT2 receptors. In contrast to most other hormones targeting GPCRs, melatonin and its synthetic analogues are amphiphilic molecules easily penetrating into cells, but the existence of intracellular receptors is still unclear mainly due to a lack of appropriate tools. EXPERIMENTAL APPROACH We therefore designed and synthesized a series of hydrophilic melatonin receptor ligands coupled to the Cy3 cyanin fluorophore to reliably monitor its inability to penetrate cells. Two compounds, one lipophilic and one hydrophilic, were then functionally characterized in terms of their affinity for human and murine melatonin receptors expressed in HEK293 cells and their signalling efficacy. KEY RESULTS Among the different ligands, ICOA-13 showed the desired properties as it was cell-impermeant and bound to human and mouse MT1 and MT2 receptors. ICOA-13 showed differential activities on melatonin receptors ranging from partial to full agonistic properties for the Gi /cAMP and ERK pathway and β-arrestin 2 recruitment. Notably, ICOA-13 enabled us to discriminate between Gi /cAMP signalling of the MT1 receptor initiated at the cell surface and neuronal mitochondria. CONCLUSIONS AND IMPLICATIONS We report here the first cell-impermeant melatonin receptor agonist, ICOA-13, which allows us to discriminate between signalling events initiated at the cell surface and intracellular compartments. Detection of mitochondrial MT1 receptors may have an important impact on the development of novel melatonin receptor ligands relevant for neurodegenerative diseases, such as Huntington disease.
Collapse
Affiliation(s)
- Florence Gbahou
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Guillaume Viault
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Romain Gerbier
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Frederic Jean-Alphonse
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Servier, Croissy, France
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
25
|
Rocha AKADA, de Lima E, Amaral F, Peres R, Cipolla-Neto J, Amado D. Altered MT1 and MT2 melatonin receptors expression in the hippocampus of pilocarpine-induced epileptic rats. Epilepsy Behav 2017; 71:23-34. [PMID: 28460319 DOI: 10.1016/j.yebeh.2017.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Clinical and experimental findings show that melatonin may be used as an adjuvant to the treatment of epilepsy-related complications by alleviates sleep disturbances, circadian alterations and attenuates seizures alone or in combination with AEDs. In addition, it has been observed that there is a circadian component on seizures, which cause changes in circadian system and in melatonin production. Nevertheless, the dynamic changes of the melatoninergic system, especially with regard to its membrane receptors (MT1 and MT2) in the natural course of TLE remain largely unknown. The aim of this study was to evaluate the 24-hour profile of MT1 and MT2 mRNA and protein expression in the hippocampus of rats submitted to the pilocarpine-induced epilepsy model analyzing the influence of the circadian rhythm in the expression pattern during the acute, silent, and chronic phases. Melatonin receptor MT1 and MT2 mRNA expression levels were increased in the hippocampus of rats few hours after SE, with MT1 returning to normal levels and MT2 reducing during the silent phase. During the chronic phase, mRNA expression levels of both receptors return to levels close to control, however, presenting a different daily profile, showing that there is a circadian change during the chronic phase. Also, during the acute and silent phase it was possible to verify MT1 label only in CA2 hippocampal region with an increased expression only in the dark period of the acute phase. The MT2 receptor was present in all hippocampal regions, however, it was reduced in the acute phase and it was found in astrocytes. In chronic animals, there is a reduction in the presence of both receptors especially in regions where there is a typical damage derived from epilepsy. Therefore, we conclude that SE induced by pilocarpine is able to change melatonin receptor MT1 and MT2 protein and mRNA expression levels in the hippocampus of rats few hours after SE as well as in silent and chronic phases.
Collapse
Affiliation(s)
| | - Eliangela de Lima
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil; Department of Physiology, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Fernanda Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil; Departament of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafael Peres
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Amado
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
26
|
Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct 2017; 222:2921-2939. [DOI: 10.1007/s00429-017-1439-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022]
|
27
|
Geng CA, Huang XY, Ma YB, Hou B, Li TZ, Zhang XM, Chen JJ. (±)-Uncarilins A and B, Dimeric Isoechinulin-Type Alkaloids from Uncaria rhynchophylla. JOURNAL OF NATURAL PRODUCTS 2017; 80:959-964. [PMID: 28225280 DOI: 10.1021/acs.jnatprod.6b00938] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
(±)-Uncarilins A and B (1a/1b and 2a/2b), two pairs of unusual dimeric isoechinulin-type enantiomers with a symmetric four-membered core, were isolated from Uncaria rhynchophylla driven by LCMS-IT-TOF analyses. Their structures were elucidated by extensive 1D and 2D NMR spectra, X-ray diffraction, and ECD spectroscopic data. (-)-Uncarilin B (2a) showed activities on MT1 and MT2 receptors with agonistic rates of 11.26% and 52.44% at a concentration of 0.25 mM.
Collapse
Affiliation(s)
- Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Bo Hou
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| |
Collapse
|
28
|
Landagaray E, Ettaoussi M, Rami M, Boutin JA, Caignard DH, Delagrange P, Melnyk P, Berthelot P, Yous S. New quinolinic derivatives as melatonergic ligands: Synthesis and pharmacological evaluation. Eur J Med Chem 2017; 127:621-631. [DOI: 10.1016/j.ejmech.2016.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 01/03/2023]
|
29
|
Popovska-Gorevski M, Dubocovich ML, Rajnarayanan RV. Carbamate Insecticides Target Human Melatonin Receptors. Chem Res Toxicol 2017; 30:574-582. [PMID: 28027439 DOI: 10.1021/acs.chemrestox.6b00301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbaryl (1-naphthyl methylcarbamate) and carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) are among the most toxic insecticides, implicated in a variety of diseases including diabetes and cancer among others. Using an integrated pharmacoinformatics based screening approach, we have identified these insecticides to be structural mimics of the neurohormone melatonin and were able to bind to the putative melatonin binding sites in MT1 and MT2 melatonin receptors in silico. Carbaryl and carbofuran then were tested for competition with 2-[125I]-iodomelatonin (300 pM) binding to hMT1 or hMT2 receptors stably expressed in CHO cells. Carbaryl and carbofuran showed higher affinity for competition with 2-[125I]-iodomelatonin binding to the hMT2 compared to the hMT1 melatonin receptor (33 and 35-fold difference, respectively) as predicted by the molecular modeling. In the presence of GTP (100 μM), which decouples the G-protein linked receptors to modulate signaling, the apparent efficacy of carbaryl and carbofuran for 2-[125I]-iodomelatonin binding for the hMT1 melatonin receptor was not affected but significantly decreased for the hMT2 melatonin receptor compatible with receptor antagonist/inverse agonist and agonist efficacy, respectively. Altogether, our data points to a potentially new mechanism through which carbamate insecticides carbaryl and carbofuran could impact human health by altering the homeostatic balance of key regulatory processes by directly binding to melatonin receptors.
Collapse
Affiliation(s)
- Marina Popovska-Gorevski
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York 14221, United States
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York 14221, United States
| | - Rajendram V Rajnarayanan
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York 14221, United States
| |
Collapse
|
30
|
Yu L, Liang H, Dong X, Zhao G, Jin Z, Zhai M, Yang Y, Chen W, Liu J, Yi W, Yang J, Yi D, Duan W, Yu S. Reduced silent information regulator 1 signaling exacerbates myocardial ischemia-reperfusion injury in type 2 diabetic rats and the protective effect of melatonin. J Pineal Res 2015; 59:376-90. [PMID: 26327197 DOI: 10.1111/jpi.12269] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
Abstract
Diabetes mellitus (DM) increases myocardial oxidative stress and endoplasmic reticulum (ER) stress. Melatonin confers cardioprotective effect by suppressing oxidative damage. However, the effect and mechanism of melatonin on myocardial ischemia-reperfusion (MI/R) injury in type 2 diabetic state are still unknown. In this study, we developed high-fat diet-fed streptozotocin (HFD-STZ) rat, a well-known type 2 diabetic model, to evaluate the effect of melatonin on MI/R injury with a focus on silent information regulator 1 (SIRT1) signaling, oxidative stress, and PERK/eIF2α/ATF4-mediated ER stress. HFD-STZ treated rats were exposed to melatonin treatment in the presence or the absence of sirtinol (a SIRT1 inhibitor) and subjected to MI/R surgery. Compared with nondiabetic animals, type 2 diabetic rats exhibited significantly decreased myocardial SIRT1 signaling, increased apoptosis, enhanced oxidative stress, and ER stress. Additionally, further reduced SIRT1 signaling, aggravated oxidative damage, and ER stress were found in diabetic animals subjected to MI/R surgery. Melatonin markedly reduced MI/R injury by improving cardiac functional recovery and decreasing myocardial apoptosis in type 2 diabetic animals. Melatonin treatment up-regulated SIRT1 expression, reduced oxidative damage, and suppressed PERK/eIF2α/ATF4 signaling. However, these effects were all attenuated by SIRT1 inhibition. Melatonin also protected high glucose/high fat cultured H9C2 cardiomyocytes against simulated ischemia-reperfusion injury-induced ER stress by activating SIRT1 signaling while SIRT1 siRNA blunted this action. Taken together, our study demonstrates that reduced cardiac SIRT1 signaling in type 2 diabetic state aggravates MI/R injury. Melatonin ameliorates reperfusion-induced oxidative stress and ER stress via activation of SIRT1 signaling, thus reducing MI/R damage and improving cardiac function.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongliang Liang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaochao Dong
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guolong Zhao
- Department of Cardiovascular Surgery, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Wensheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dinghua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 2015; 59:1-23. [PMID: 25904189 DOI: 10.1111/jpi.12240] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin influences insulin secretion, as well as glucagon and somatostatin secretion, both in vivo and in vitro. These effects are mediated by two specific, high-affinity, seven transmembrane, pertussis toxin-sensitive, Gi-protein-coupled melatonin receptors, MT1 and MT2. Both isoforms are expressed in the β-cells, α-cells as well as δ-cells of the pancreatic islets of Langerhans and are involved in the modulation of insulin secretion, leading to inhibition of the adenylate cyclase-dependent cyclic adenosine monophosphate as well as cyclic guanosine monophosphate formation in pancreatic β-cells by inhibiting the soluble guanylate cyclase, probably via MT2 receptors. In this way, melatonin also likely inhibits insulin secretion, whereas using the inositol triphosphate pathway after previous blocking of Gi-proteins by pertussis toxin, melatonin increases insulin secretion. Desynchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genomewide association studies pinpointing variances of the MT2 receptor as a risk factor for this rapidly spreading metabolic disturbance. As melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. Observations of the circadian expression of clock genes (Clock, Bmal1, Per1,2,3, and Cry1,2) in pancreatic islets, as well as in INS1 rat insulinoma cells, may indicate that circadian rhythms are generated in the β-cells themselves. The circadian secretion of insulin from pancreatic islets is clock-driven. Disruption of circadian rhythms and clock function leads to metabolic disturbances, for example, type 2 diabetes. The study of melatonin-insulin interactions in diabetic rat models has revealed an inverse relationship between these two hormones. Both type 2 diabetic rats and patients exhibit decreased melatonin levels and slightly increased insulin levels, whereas type 1 diabetic rats show extremely reduced levels or the absence of insulin, but statistically significant increases in melatonin levels. Briefly, an increase in melatonin levels leads to a decrease in stimulated insulin secretion and vice versa. Melatonin levels in blood plasma, as well as the activity of the key enzyme of melatonin synthesis, AA-NAT (arylalkylamine-N-acetyltransferase) in pineal, are lower in type 2 diabetic rats compared to controls. In contrast, melatonin and pineal AA-NAT mRNA are increased and insulin receptor mRNA is decreased in type 1 diabetic rats, which also indicates a close relationship between insulin and melatonin. As an explanation, it was hypothesized that catecholamines, which reduce insulin levels and stimulate melatonin synthesis, control insulin-melatonin interactions. This conviction stems from the observation that catecholamines are increased in type 1 but are diminished in type 2 diabetes. In this context, another important line of inquiry involves the fact that melatonin protects β-cells against functional overcharge and, consequently, hinders the development of type 2 diabetes.
Collapse
Affiliation(s)
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
32
|
Kamal M, Gbahou F, Guillaume JL, Daulat AM, Benleulmi-Chaachoua A, Luka M, Chen P, Kalbasi Anaraki D, Baroncini M, Mannoury la Cour C, Millan MJ, Prevot V, Delagrange P, Jockers R. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J Biol Chem 2015; 290:11537-46. [PMID: 25770211 DOI: 10.1074/jbc.m114.559542] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Maud Kamal
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Florence Gbahou
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Jean-Luc Guillaume
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Avais M Daulat
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Abla Benleulmi-Chaachoua
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Marine Luka
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Patty Chen
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Dina Kalbasi Anaraki
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Marc Baroncini
- INSERM, Jean-Pierre Aubert Research Center, U837, 59045 Lille, France, and
| | | | - Mark J Millan
- Institut de Recherches Servier, 78290 Croissy/Seine, France
| | - Vincent Prevot
- INSERM, Jean-Pierre Aubert Research Center, U837, 59045 Lille, France, and
| | | | - Ralf Jockers
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France,
| |
Collapse
|
33
|
Zibolka J, Mühlbauer E, Peschke E. Melatonin influences somatostatin secretion from human pancreatic δ-cells via MT1 and MT2 receptors. J Pineal Res 2015; 58:198-209. [PMID: 25585597 DOI: 10.1111/jpi.12206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022]
Abstract
Melatonin is an effector of the diurnal clock on pancreatic islets. The membrane receptor-transmitted inhibitory influence of melatonin on insulin secretion is well established and contrasts with the reported stimulation of glucagon release from α-cells. Virtually, nothing is known concerning the melatonin-mediated effects on islet δ-cells. Analysis of a human pancreatic δ-cell model, the cell line QGP-1, and the use of a somatostatin-specific radioimmunoassay showed that melatonin primarily has an inhibitory effect on somatostatin secretion in the physiological concentration range. In the pharmacological range, melatonin elicited slightly increased somatostatin release from δ-cells. Cyclic adenosine monophosphate (cAMP) is the major second messenger dose-dependently stimulating somatostatin secretion, in experiments employing the membrane-permeable 8-Br-cAMP. 8-Br-cyclic guanosine monophosphate proved to be of only minor relevance to somatostatin release. As the inhibitory effect of 1 nm melatonin was reversed after incubation of QGP-1 cells with the nonselective melatonin receptor antagonist luzindole, but not with the MT2-selective antagonist 4-P-PDOT (4-phenyl-2-propionamidotetraline), an involvement of the MT1 receptor can be assumed. Somatostatin release from the δ-cells at low glucose concentrations was significantly inhibited during co-incubation with 1 nm melatonin, an effect which was less pronounced at higher glucose levels. Transient expression experiments, overexpressing MT1, MT2, or a deletion variant as a control, indicated that the MT1 and not the MT2 receptor was the major transmitter of the inhibitory melatonin effect. These data point to a significant influence of melatonin on pancreatic δ-cells and on somatostatin release.
Collapse
Affiliation(s)
- Juliane Zibolka
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
34
|
Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai M, Pei H, Wang X, Zhang H, Meng Q, Zhang Y, Yu S, Duan W. Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1. J Pineal Res 2014; 57:228-38. [PMID: 25052362 DOI: 10.1111/jpi.12161] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
Abstract
Melatonin confers cardioprotective effect against myocardial ischemia/reperfusion (MI/R) injury by reducing oxidative stress. Activation of silent information regulator 1 (SIRT1) signaling also reduces MI/R injury. We hypothesize that melatonin may protect against MI/R injury by activating SIRT1 signaling. This study investigated the protective effect of melatonin treatment on MI/R heart and elucidated its potential mechanisms. Rats were exposed to melatonin treatment in the presence or the absence of the melatonin receptor antagonist luzindole or SIRT1 inhibitor EX527 and then subjected to MI/R operation. Melatonin conferred a cardioprotective effect by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase release, upregulating SIRT1, Bcl-2 expression and downregulating Bax, caspase-3 and cleaved caspase-3 expression. Melatonin treatment also resulted in reduced myocardium superoxide generation, gp91(phox) expression, malondialdehyde level, and increased myocardium superoxide dismutase (SOD) level, which indicate that the MI/R-induced oxidative stress was significantly attenuated. However, these protective effects were blocked by EX527 or luzindole, indicating that SIRT1 signaling and melatonin receptor may be specifically involved in these effects. In summary, our results demonstrate that melatonin treatment attenuates MI/R injury by reducing oxidative stress damage via activation of SIRT1 signaling in a receptor-dependent manner.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tosini G, Owino S, Guillaume JL, Jockers R. Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. Bioessays 2014; 36:778-87. [PMID: 24903552 PMCID: PMC4151498 DOI: 10.1002/bies.201400017] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications toward type 2 diabetes development, visual functions, sleep disturbances, and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2 , which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1 /MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models.
Collapse
Affiliation(s)
- Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
36
|
Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 2014; 71:2997-3025. [PMID: 24554058 PMCID: PMC11113552 DOI: 10.1007/s00018-014-1579-2] [Citation(s) in RCA: 756] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Endogenous melatonin is synthesized from tryptophan via 5-hydroxytryptamine. It is considered an indoleamine from a biochemical point of view because the melatonin molecule contains a substituted indolic ring with an amino group. The circadian production of melatonin by the pineal gland explains its chronobiotic influence on organismal activity, including the endocrine and non-endocrine rhythms. Other functions of melatonin, including its antioxidant and anti-inflammatory properties, its genomic effects, and its capacity to modulate mitochondrial homeostasis, are linked to the redox status of cells and tissues. With the aid of specific melatonin antibodies, the presence of melatonin has been detected in multiple extrapineal tissues including the brain, retina, lens, cochlea, Harderian gland, airway epithelium, skin, gastrointestinal tract, liver, kidney, thyroid, pancreas, thymus, spleen, immune system cells, carotid body, reproductive tract, and endothelial cells. In most of these tissues, the melatonin-synthesizing enzymes have been identified. Melatonin is present in essentially all biological fluids including cerebrospinal fluid, saliva, bile, synovial fluid, amniotic fluid, and breast milk. In several of these fluids, melatonin concentrations exceed those in the blood. The importance of the continual availability of melatonin at the cellular level is important for its physiological regulation of cell homeostasis, and may be relevant to its therapeutic applications. Because of this, it is essential to compile information related to its peripheral production and regulation of this ubiquitously acting indoleamine. Thus, this review emphasizes the presence of melatonin in extrapineal organs, tissues, and fluids of mammals including humans.
Collapse
Affiliation(s)
- Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain,
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Expression and putative functions of melatonin receptors in malignant cells and tissues. Wien Med Wochenschr 2014; 164:472-8. [PMID: 25023005 DOI: 10.1007/s10354-014-0289-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/10/2014] [Indexed: 01/20/2023]
Abstract
Melatonin, the popular hormone of the darkness, is primarily synthesized in the pineal gland, and acts classically through the G-protein coupled plasma membrane melatonin receptors MT1 and MT2, respectively. Although some of the receptor mediated functions of melatonin, especially those on the (central) circadian system, have been more or less clarified, the functional meaning of MT-receptors in various peripheral organs are still not sufficiently investigated yet. There is, however, accumulating evidence for oncostatic effects of melatonin with both, antioxidative and MT-receptor mediated mechanisms possibly playing a role. This review briefly summarizes the physiology of melatonin and MT-receptors, and discusses the expression and function of MT-receptors in human cancer cells and tissues.
Collapse
|
38
|
Nishiyama K, Nishikawa H, Kato K, Miyamoto M, Tsukamoto T, Hirai K. Pharmacological Characterization of M-II, the Major Human Metabolite of Ramelteon. Pharmacology 2014; 93:197-201. [DOI: 10.1159/000362459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/25/2014] [Indexed: 12/15/2022]
|
39
|
Synthetic melatoninergic ligands: achievements and prospects. ISRN BIOCHEMISTRY 2014; 2014:843478. [PMID: 25937968 PMCID: PMC4393004 DOI: 10.1155/2014/843478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/16/2014] [Indexed: 01/17/2023]
Abstract
Pineal hormone melatonin is widely used in the treatment of disorders of circadian rhythms. The presence of melatonin receptors in various animal tissues motivates the use of this hormone in some other diseases. For this reason, in recent years investigators continued the search for synthetic analogues of melatonin which are metabolically stable and selective to receptors. This review includes recent information about the most famous melatonin analogues, their structure, properties, and physiological features of the interaction with melatonin receptors.
Collapse
|
40
|
Liu DD, Ren Z, Yang G, Zhao QR, Mei YA. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release. J Cell Mol Med 2014; 18:1060-70. [PMID: 24548607 PMCID: PMC4508145 DOI: 10.1111/jcmm.12250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/18/2014] [Indexed: 01/12/2023] Open
Abstract
Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release.
Collapse
Affiliation(s)
- Dong-Dong Liu
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
41
|
Comai S, Gobbi G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology. J Psychiatry Neurosci 2014; 39:6-21. [PMID: 23971978 PMCID: PMC3868666 DOI: 10.1503/jpn.130009] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Melatonin (MLT) is a pleiotropic neurohormone controlling many physiological processes and whose dysfunction may contribute to several different diseases, such as neurodegenerative diseases, circadian and mood disorders, insomnia, type 2 diabetes and pain. Melatonin is synthesized by the pineal gland during the night and acts through 2 G-protein coupled receptors (GPCRs), MT1 (MEL1a) and MT2 (MEL1b). Although a bulk of research has examined the physiopathological effects of MLT, few studies have investigated the selective role played by MT1 and MT2 receptors. Here we have reviewed current knowledge about the implications of MT2 receptors in brain functions. METHODS We searched PubMed, Web of Science, Scopus, Google Scholar and articles' reference lists for studies on MT2 receptor ligands in sleep, anxiety, neuropsychiatric diseases and psychopharmacology, including genetic studies on the MTNR1B gene, which encodes the melatonin MT2 receptor. RESULTS These studies demonstrate that MT2 receptors are involved in the pathophysiology and pharmacology of sleep disorders, anxiety, depression, Alzheimer disease and pain and that selective MT2 receptor agonists show hypnotic and anxiolytic properties. LIMITATIONS Studies examining the role of MT2 receptors in psychopharmacology are still limited. CONCLUSION The development of novel selective MT2 receptor ligands, together with further preclinical in vivo studies, may clarify the role of this receptor in brain function and psychopharmacology. The superfamily of GPCRs has proven to be among the most successful drug targets and, consequently, MT2 receptors have great potential for pioneer drug discovery in the treatment of mental diseases for which limited therapeutic targets are currently available.
Collapse
Affiliation(s)
| | - Gabriella Gobbi
- Correspondence to: G. Gobbi, Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, 1033 Pine Ave. W, room 220, Montréal QC H3A 1A1;
| |
Collapse
|
42
|
Karamitri A, Jockers R. Exon Sequencing of G Protein-Coupled Receptor Genes and Perspectives for Disease Treatment. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-62703-779-2_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
43
|
Karamitri A, Vincens M, Chen M, Jockers R. [Involvement of melatonin MT2 receptor mutants in type 2 diabetes development]. Med Sci (Paris) 2013; 29:778-84. [PMID: 24005634 DOI: 10.1051/medsci/2013298018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic and environmental factors participate in the development of type 2 diabetes (T2D). Genome-wide association studies have revealed new genetic variants associated with T2D, including the rs10830963 variant located in the intron of the MTNR1B gene. This gene encodes the melatonin MT2 receptor, a member of the family of G protein-coupled receptors involved in the regulation of circadian and seasonal rhythms. This surprising result stimulated new investigations in the field of T2D to better understand the role of MT2 receptors and circadian rhythms in this emerging disease. The current article intends to cover this issue starting from the discovery of the first MTNR1B gene variants until the establishment of a functional link between MTNR1B variants and the risk of developing T2D and finishes by proposing some hypotheses that might potentially explain the importance of impaired MT2 function in T2D development.
Collapse
|
44
|
Niles LP, Pan Y, Kang S, Lacoul A. Melatonin induces histone hyperacetylation in the rat brain. Neurosci Lett 2013; 541:49-53. [DOI: 10.1016/j.neulet.2013.01.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 11/17/2022]
|
45
|
Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32:64-87. [PMID: 22986412 DOI: 10.1016/j.preteyeres.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
46
|
Role of melatonin and its receptors in the vertebrate retina. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:211-42. [PMID: 23273863 DOI: 10.1016/b978-0-12-405210-9.00006-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melatonin is a chemical signal of darkness that is produced by retinal photoreceptors and pinealocytes. In the retina, melatonin diffuses from the photoreceptors to bind to specific receptors on a variety of inner retinal neurons to modify their activity. Potential target cells for melatonin in the inner retina are amacrine cells, bipolar cells, horizontal cells, and ganglion cells. Melatonin inhibits the release of dopamine from amacrine cells and increases the light sensitivity of horizontal cells. Melatonin receptor subtypes show differential, cell-specific patterns of expression that are likely to underlie differential functional modulation of specific retinal pathways. Melatonin potentiates rod signals to ON-type bipolar cells, via activation of the melatonin MT2 (Mel1b) receptor, suggesting that melatonin modulates the function of specific retinal circuits based on the differential distribution of its receptors. The selective and differential expression of melatonin receptor subtypes in cone circuits suggest a conserved function for melatonin in enhancing transmission from rods to second-order neurons and thus promote dark adaptation.
Collapse
|
47
|
Abstract
Melatonin (MEL) is a hormone synthesized and secreted by the pineal gland deep within the brain in response to photoperiodic cues relayed from the retina via an endogenous circadian oscillator within the suprachiasmatic nucleus in the hypothalamus. The circadian rhythm of melatonin production and release, characterized by nocturnal activity and daytime quiescence, is an important temporal signal to the body structures that can read it. Melatonin acts through high-affinity receptors located centrally and in numerous peripheral organs. Different receptor subtypes have been cloned and characterized: MT(1) and MT(2) (transmembrane G-protein-coupled receptors), and MT(3). However, their physiological role remains unelucidated, although livestock management applications already include the control of seasonal breeding and milk production. As for potential therapeutic applications, exogenous melatonin or a melatonin agonist and selective 5-hydroxytrypiamine receptor (5-HT(2c)) antagonist, eg, S 20098, can be used to manipulate circadian processes such as the sleep-vake cycle, which are frequently disrupted in many conditions, most notably seasonal affective disorder.
Collapse
Affiliation(s)
- Paul Pévet
- Laboratoire de Neurobiologie des Rythmes, UMR 7518 CNRS-Université Louis Pasteur, Strasbourg, France
| |
Collapse
|
48
|
Mühlbauer E, Albrecht E, Hofmann K, Bazwinsky-Wutschke I, Peschke E. Melatonin inhibits insulin secretion in rat insulinoma β-cells (INS-1) heterologously expressing the human melatonin receptor isoform MT2. J Pineal Res 2011; 51:361-72. [PMID: 21585522 DOI: 10.1111/j.1600-079x.2011.00898.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melatonin exerts some of its effects via G-protein-coupled membrane receptors. Two membrane receptor isoforms, MT1 and MT2, have been described. The MT1 receptor is known to inhibit second messenger cyclic adenosine monophosphate (cAMP) signaling through receptor-coupling to inhibitory G-proteins (G(i) ). Much less is known about the MT2 receptor, but it has also been implicated in signaling via G(i) -proteins. In rat pancreatic β-cells, it has recently been reported that the MT2 receptor plays an inhibitory role in the cyclic guanosine monophosphate (cGMP) pathway. This study addresses the signaling features of the constitutively expressed human recombinant MT2 receptor (hMT2) and its impact on insulin secretion, using a rat insulinoma β-cell line (INS-1). On the basis of a specific radioimmunoassay, insulin secretion was found to be more strongly reduced in the clones expressing hMT2 than in INS-1 controls, when incubated with 1 or 100 nm melatonin. Similarly, cAMP and cGMP levels, measured by specific enzyme-linked immunosorbent assays (ELISAs), were reduced to a greater extent in hMT2 clones after melatonin treatment. In hMT2-expressing cells, the inhibitory effect of melatonin on insulin secretion was blocked by pretreatment with pertussis toxin, demonstrating the coupling of the hMT2 to G(i) -proteins. These results indicate that functional hMT2 expression leads to the inhibition of cyclic nucleotide signaling and a reduction in insulin release. Because genetic variants of the hMT2 receptor are considered to be risk factors in the development of type 2 diabetes, our results are potentially significant in explaining and preventing the pathogenesis of this disease.
Collapse
|
49
|
Man GCW, Wong JH, Wang WWJ, Sun GQ, Yeung BHY, Ng TB, Lee SKM, Ng BKW, Qiu Y, Cheng JCY. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis. J Pineal Res 2011; 50:395-402. [PMID: 21480980 DOI: 10.1111/j.1600-079x.2011.00857.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melatonin signaling dysfunction has been associated with the etiology of adolescent idiopathic scoliosis (AIS). Genetic analysis has also associated the occurrence of AIS with the MT2 gene. Thus, we determined whether there is abnormality in the protein expression of melatonin receptors (MT) in AIS osteoblasts. In this study, we recruited 11 girls with severe AIS and eight normal subjects for intraoperative bone biopsies. MT1 and MT2 receptor protein expressions in the isolated osteoblasts were detected. Also, cell proliferation assay using different melatonin concentrations (0, 10(-9), 10(-5), 10(-4) m) was carried out. The results showed that both MT1 and MT2 receptors are expressed in osteoblasts of the controls. While MT1 receptors were expressed in osteoblasts of all AIS subjects, osteoblasts of only 7 of 11 AIS showed expression of MT2 receptors. Melatonin stimulated control osteoblasts to proliferate. However, proliferation of AIS osteoblasts without expression of MT2 receptor, after treatment with melatonin, was minimal when compared with control and AIS osteoblasts with MT2 receptor expression. The proliferation of AIS osteoblasts with MT2 receptor was greater than those without. This is the first report demonstrating a difference between AIS and normal osteoblasts in the protein expression of MT2 receptor. The results suggest that there is a possible functional effect of MT2 receptor on osteoblast proliferation. AIS osteoblasts without expression of MT2 receptor showed the lowest percentage of viable cells after melatonin treatment. This possibly indicates the modulating role of melatonin through MT2 receptor on the proliferation of osteoblasts.
Collapse
MESH Headings
- Adolescent
- Adult
- Blotting, Western
- Cell Proliferation
- Cells, Cultured
- Female
- Humans
- Male
- Osteoblasts/metabolism
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Scoliosis/genetics
- Scoliosis/metabolism
- Young Adult
Collapse
Affiliation(s)
- Gene Chi-Wai Man
- Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Girardo M, Bettini N, Dema E, Cervellati S. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20 Suppl 1:S68-74. [PMID: 21416282 PMCID: PMC3087042 DOI: 10.1007/s00586-011-1750-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Indexed: 12/15/2022]
Abstract
The cause of adolescent idiopathic scoliosis (AIS) in humans remains obscure and probably multifactorial. At present, there is no proven method or test available to identify children or adolescent at risk of developing AIS or identify which of the affected individuals are at risk of progression. Reported associations are linked in pathogenesis rather than etiologic factors. Melatonin may play a role in the pathogenesis of scoliosis (neuroendocrine hypothesis), but at present, the data available cannot clearly show the role of melatonin in producing scoliosis in humans. The data regarding human melatonin levels are mixed at best, and the melatonin deficiency as a causative factor in the etiology of scoliosis cannot be supported. It will be an important issue of future research to investigate the role of melatonin in human biology, the clinical efficacy, and safety of melatonin under different pathological situations. Research is needed to better define the role of all factors in AIS development.
Collapse
Affiliation(s)
- M Girardo
- Department of Spine Surgery, CTO/CRF/Maria Adelaide, Turin, Italy.
| | | | | | | |
Collapse
|