1
|
Dong M, Maturana AD. Effects of aging on calcium channels in skeletal muscle. Front Mol Biosci 2025; 12:1558456. [PMID: 40177518 PMCID: PMC11961898 DOI: 10.3389/fmolb.2025.1558456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
In skeletal muscle, calcium is not only essential to stimulate and sustain their contractions but also for muscle embryogenesis, regeneration, energy production in mitochondria, and fusion. Different ion channels contribute to achieving the various functions of calcium in skeletal muscles. Muscle contraction is initiated by releasing calcium from the sarcoplasmic reticulum through the ryanodine receptor channels gated mechanically by four dihydropyridine receptors of T-tubules. The calcium influx through store-operated calcium channels sustains the contraction and stimulates muscle regeneration. Mitochondrial calcium uniporter allows the calcium entry into mitochondria to stimulate oxidative phosphorylation. Aging alters the expression and activity of these different calcium channels, resulting in a reduction of skeletal muscle force generation and regeneration capacity. Regular physical training and bioactive molecules from nutrients can prevent the effects of aging on calcium channels. This review focuses on the current knowledge of the effects of aging on skeletal muscles' calcium channels.
Collapse
Affiliation(s)
| | - Andrés Daniel Maturana
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Takagi R, Tabuchi A, Hayakawa K, Osana S, Yabuta H, Hoshino D, Poole DC, Kano Y. Chronic repetitive cooling and caffeine-induced intracellular Ca 2+ elevation differentially impact adaptations in slow- and fast-twitch rat skeletal muscles. Am J Physiol Regul Integr Comp Physiol 2023; 325:R172-R180. [PMID: 37335015 DOI: 10.1152/ajpregu.00063.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Intracellular Ca2+ concentration ([Ca2+]i) is considered important in the regulation of skeletal muscle mass. This study tested the hypothesis that chronic repeated cooling and/or caffeine ingestion would acutely increase [Ca2+]i and hypertrophy muscles potentially in a fiber-type-dependent manner. Control rats and those fed caffeine were subjected to repeated bidiurnal treatments of percutaneous icing, under anesthesia, to reduce the muscle temperature below ∼5°C. The predominantly fast-twitch tibialis anterior (TA) and slow-twitch soleus (SOL) muscles were evaluated after 28 days of intervention. The [Ca2+]i elevating response to icing was enhanced by caffeine loading only in the SOL muscle, with the response present across a significantly higher temperature range than in the TA muscle under caffeine-loading conditions. In both the TA and SOL muscles, myofiber cross-sectional area (CSA) was decreased by chronic caffeine treatment (mean reductions of 10.5% and 20.4%, respectively). However, in the TA, but not the SOL, CSA was restored by icing (+15.4 ± 4.3% vs. noniced, P < 0.01). In the SOL, but not TA, icing + caffeine increased myofiber number (20.5 ± 6.7%, P < 0.05) and satellite cell density (2.5 ± 0.3-fold) in cross sections. These contrasting muscle responses to cooling and caffeine may reflect fiber-type-specific [Ca2+]i responses and/or differential responses to elevated [Ca2+]i.
Collapse
Affiliation(s)
- Ryo Takagi
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
| | - Ayaka Tabuchi
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Kosei Hayakawa
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Shion Osana
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
- Department of Sport and Medical Science, Kokushikan University, Tokyo, Japan
| | - Hiroya Yabuta
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Daisuke Hoshino
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
3
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Abstract
Ryanodine-sensitive intracellular Ca2+ channels (RyRs) open upon binding Ca2+ at cytosolic-facing sites. This results in concerted, self-reinforcing opening of RyRs clustered in specialized regions on the membranes of Ca2+ storage organelles (endoplasmic reticulum and sarcoplasmic reticulum), a process that produces Ca2+-induced Ca2+ release (CICR). The process is optimized to achieve large but brief and localized increases in cytosolic Ca2+ concentration, a feature now believed to be critical for encoding the multiplicity of signals conveyed by this ion. In this paper, I trace the path of research that led to a consensus on the physiological significance of CICR in skeletal muscle, beginning with its discovery. I focus on the approaches that were developed to quantify the contribution of CICR to the Ca2+ increase that results in contraction, as opposed to the flux activated directly by membrane depolarization (depolarization-induced Ca2+ release [DICR]). Although the emerging consensus is that CICR plays an important role alongside DICR in most taxa, its contribution in most mammalian muscles appears to be limited to embryogenesis. Finally, I survey the relevance of CICR, confirmed or plausible, to pathogenesis as well as the multiple questions about activation of release channels that remain unanswered after 50 years.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Physiology and Biophysics, Rush University School of Medicine, Chicago, IL
| |
Collapse
|
5
|
Perni S, Marsden KC, Escobar M, Hollingworth S, Baylor SM, Franzini-Armstrong C. Structural and functional properties of ryanodine receptor type 3 in zebrafish tail muscle. ACTA ACUST UNITED AC 2015; 145:173-84. [PMID: 25667412 PMCID: PMC4338155 DOI: 10.1085/jgp.201411303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ryanodine receptor (RyR)1 isoform of the sarcoplasmic reticulum (SR) Ca(2+) release channel is an essential component of all skeletal muscle fibers. RyR1s are detectable as "junctional feet" (JF) in the gap between the SR and the plasmalemma or T-tubules, and they are required for excitation-contraction (EC) coupling and differentiation. A second isoform, RyR3, does not sustain EC coupling and differentiation in the absence of RyR1 and is expressed at highly variable levels. Anatomically, RyR3 expression correlates with the presence of parajunctional feet (PJF), which are located on the sides of the SR junctional cisternae in an arrangement found only in fibers expressing RyR3. In frog muscle fibers, the presence of RyR3 and PJF correlates with the occurrence of Ca(2+) sparks, which are elementary SR Ca(2+) release events of the EC coupling machinery. Here, we explored the structural and functional roles of RyR3 by injecting zebrafish (Danio rerio) one-cell stage embryos with a morpholino designed to specifically silence RyR3 expression. In zebrafish larvae at 72 h postfertilization, fast-twitch fibers from wild-type (WT) tail muscles had abundant PJF. Silencing resulted in a drop of the PJF/JF ratio, from 0.79 in WT fibers to 0.03 in the morphants. The frequency with which Ca(2+) sparks were detected dropped correspondingly, from 0.083 to 0.001 sarcomere(-1) s(-1). The few Ca(2+) sparks detected in morphant fibers were smaller in amplitude, duration, and spatial extent compared with those in WT fibers. Despite the almost complete disappearance of PJF and Ca(2+) sparks in morphant fibers, these fibers looked structurally normal and the swimming behavior of the larvae was not affected. This paper provides important evidence that RyR3 is the main constituent of the PJF and is the main contributor to the SR Ca(2+) flux underlying Ca(2+) sparks detected in fully differentiated frog and fish fibers.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kurt C Marsden
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Matias Escobar
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Stephen Hollingworth
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Stephen M Baylor
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
6
|
Hanson MG, Wilde JJ, Moreno RL, Minic AD, Niswander L. Potassium dependent rescue of a myopathy with core-like structures in mouse. eLife 2015; 4. [PMID: 25564733 PMCID: PMC4309926 DOI: 10.7554/elife.02923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 01/07/2015] [Indexed: 01/24/2023] Open
Abstract
Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations.
Collapse
Affiliation(s)
- M Gartz Hanson
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Jonathan J Wilde
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Rosa L Moreno
- Department of Physiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Angela D Minic
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Lee Niswander
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
7
|
Myoplasmic resting Ca2+ regulation by ryanodine receptors is under the control of a novel Ca2+-binding region of the receptor. Biochem J 2014; 460:261-71. [PMID: 24635445 PMCID: PMC4019983 DOI: 10.1042/bj20131553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Passive SR (sarcoplasmic reticulum) Ca2+ leak through the RyR (ryanodine receptor) plays a critical role in the mechanisms that regulate [Ca2+]rest (intracellular resting myoplasmic free Ca2+ concentration) in muscle. This process appears to be isoform-specific as expression of either RyR1 or RyR3 confers on myotubes different [Ca2+]rest. Using chimaeric RyR3–RyR1 receptors expressed in dyspedic myotubes, we show that isoform-dependent regulation of [Ca2+]rest is primarily defined by a small region of the receptor encompassing amino acids 3770–4007 of RyR1 (amino acids 3620–3859 of RyR3) named as the CLR (Ca2+ leak regulatory) region. [Ca2+]rest regulation by the CLR region was associated with alteration of RyRs’ Ca2+-activation profile and changes in SR Ca2+-leak rates. Biochemical analysis using Tb3+-binding assays and intrinsic tryptophan fluorescence spectroscopy of purified CLR domains revealed that this determinant of RyRs holds a novel Ca2+-binding domain with conformational properties that are distinctive to each isoform. Our data suggest that the CLR region provides channels with unique functional properties that modulate the rate of passive SR Ca2+ leak and confer on RyR1 and RyR3 distinctive [Ca2+]rest regulatory properties. The identification of a new Ca2+-binding domain of RyRs with a key modulatory role in [Ca2+]rest regulation provides new insights into Ca2+-mediated regulation of RyRs. This paper reports the finding of a new class of Ca2+-binding domain of intracellular Ca2+ channels from muscle cells. This domain provides channels with distinctive properties that result in channel-specific modulation of the intracellular resting Ca2+ concentration.
Collapse
|
8
|
BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms. Arch Toxicol 2014; 88:1537-48. [PMID: 24599297 DOI: 10.1007/s00204-014-1217-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/19/2014] [Indexed: 02/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants found in rising concentrations in human tissue. Epidemiological and animal studies have raised concern for their potential to induce developmental neurotoxicity (DNT). Considering the essential role of calcium homeostasis in neurodevelopment, PBDE-induced disturbance of intracellular calcium concentration ([Ca(2+)]i) may underlie PBDE-induced DNT. To test this hypothesis, we investigated acute effects of BDE-47 and 6-OH-BDE-47 on [Ca(2+)]i in human neural progenitor cells (hNPCs) and unraveled involved signaling pathways. Short-time differentiated hNPCs were exposed to BDE-47, 6-OH-BDE-47, and multiple inhibitors/stimulators of presumably involved signaling pathways to determine possible effects on [Ca(2+)]i by single-cell microscopy with the fluorescent dye Fura-2. Initial characterization of calcium signaling pathways confirmed the early developmental stage of hNPCs. In these cells, BDE-47 (2 μM) and 6-OH-BDE-47 (0.2 μM) induce [Ca(2+)]i transients. This increase in [Ca(2+)]i is due to extracellular Ca(2+) influx and intracellular release of Ca(2+), mainly from the endoplasmic reticulum (ER). While extracellular Ca(2+) seems to enter the cytoplasm upon 6-OH-BDE-47 by interfering with the cell membrane and independent of Ca(2+) ion channels, ER-derived Ca(2+) is released following activation of protein lipase C and inositol 1,4,5-trisphosphate receptor, but independently of ryanodine receptors. These findings illustrate that immature developing hNPCs respond to low concentrations of 6-OH-BDE-47 by an increase in [Ca(2+)]i and provide new mechanistic explanations for such BDE-induced calcium disruption. Thus, these data support the possibility of a critical window of PBDE exposure, i.e., early human brain development, which has to be acknowledged in risk assessment.
Collapse
|
9
|
Altomare C, Barile L, Rocchetti M, Sala L, Crippa S, Sampaolesi M, Zaza A. Altered functional differentiation of mesoangioblasts in a genetic myopathy. J Cell Mol Med 2013; 17:419-28. [PMID: 23387296 PMCID: PMC3823023 DOI: 10.1111/jcmm.12023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022] Open
Abstract
Mutations underlying genetic cardiomyopathies might affect differentiation commitment of resident progenitor cells. Cardiac mesoangioblasts (cMabs) are multipotent progenitor cells resident in the myocardium. A switch from cardiac to skeletal muscle differentiation has been recently described in cMabs from β-sarcoglycan-null mice (βSG−/−), a murine model of genetic myopathy with early myocardial involvement. Although complementation with βSG gene was inconsequential, knock-in of miRNA669a (missing in βSG−/− cMabs) partially rescued the mutation-induced molecular phenotype. Here, we undertook a detailed evaluation of functional differentiation of βSG−/− cMabs and tested the effects of miRNA669a-induced rescue in vitro. To this end, cMabs were compared with neonatal cardiomyocytes (CMs) and skeletal muscle C2C12 cells, representative of cardiac and skeletal muscle respectively. Consistent with previous data on molecular patterns, electrophysiological and Ca2+-handling properties of βSG−/− cMabs were closer to C2C12 cells than to CM ones. Nevertheless, subtler aspects, including action potential contour, Ca2+-spark properties and RyR isoform expression, distinguished βSG−/− cMabs from C2C12 cells. Contrary to previous reports, wild-type cMabs failed to show functional differentiation towards either cell type. Knock-in of miRNA669a in βSG−/− cMabs rescued the wild-type functional phenotype, i.e. it completely prevented development of skeletal muscle functional responses. We conclude that miRNA669a expression, ablated by βSG deletion, may prevent functional differentiation of cMabs towards the skeletal muscle phenotype.
Collapse
Affiliation(s)
- Claudia Altomare
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Orthograde dihydropyridine receptor signal regulates ryanodine receptor passive leak. Proc Natl Acad Sci U S A 2011; 108:7046-51. [PMID: 21482776 DOI: 10.1073/pnas.1018380108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The skeletal muscle dihydropyridine receptor (DHPR) and ryanodine receptor (RyR1) are known to engage a form of conformation coupling essential for muscle contraction in response to depolarization, referred to as excitation-contraction coupling. Here we use WT and Ca(V)1.1 null (dysgenic) myotubes to provide evidence for an unexplored RyR1-DHPR interaction that regulates the transition of the RyR1 between gating and leak states. Using double-barreled Ca(2+)-selective microelectrodes, we demonstrate that the lack of Ca(V)1.1 expression was associated with an increased myoplasmic resting [Ca(2+)] ([Ca(2+)](rest)), increased resting sarcolemmal Ca(2+) entry, and decreased sarcoplasmic reticulum (SR) Ca(2+) loading. Pharmacological control of the RyR1 leak state, using bastadin 5, reverted the three parameters to WT levels. The fact that Ca(2+) sparks are not more frequent in dysgenic than in WT myotubes adds support to the hypothesis that the leak state is a conformation distinct from gating RyR1s. We conclude from these data that this orthograde DHPR-to-RyR1 signal inhibits the transition of gated RyR1s into the leak state. Further, it suggests that the DHPR-uncoupled RyR1 population in WT muscle has a higher propensity to be in the leak conformation. RyR1 leak functions are to keep [Ca(2+)](rest) and the SR Ca(2+) content in the physiological range and thus maintain normal intracellular Ca(2+) homeostasis.
Collapse
|
11
|
Lee EH. Ca2+ channels and skeletal muscle diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:35-43. [DOI: 10.1016/j.pbiomolbio.2010.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 03/09/2010] [Accepted: 05/19/2010] [Indexed: 11/29/2022]
|
12
|
Eltit JM, Yang T, Li H, Molinski TF, Pessah IN, Allen PD, Lopez JR. RyR1-mediated Ca2+ leak and Ca2+ entry determine resting intracellular Ca2+ in skeletal myotubes. J Biol Chem 2010; 285:13781-7. [PMID: 20207743 DOI: 10.1074/jbc.m110.107300] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The control of resting free Ca(2+) in skeletal muscle is thought to be a balance of channels, pumps, and exchangers in both the sarcolemma and sarcoplasmic reticulum. We explored these mechanisms using pharmacologic and molecular perturbations of genetically engineered (dyspedic) muscle cells that constitutively lack expression of the skeletal muscle sarcoplasmic reticulum Ca(2+) release channels, RyR1 and RyR3. We demonstrate here that expression of RyR1 is responsible for more than half of total resting Ca(2+) concentration ([Ca(2+)](rest)) measured in wild type cells. The elevated [Ca(2+)](rest) in RyR1-expressing cells is not a result of active gating of the RyR1 channel but instead is accounted for by the RyR1 ryanodine-insensitive Ca(2+) leak conformation. In addition, we demonstrate that basal sarcolemmal Ca(2+) influx is also governed by RyR1 expression and contributes in the regulation of [Ca(2+)](rest) in skeletal myotubes.
Collapse
Affiliation(s)
- José M Eltit
- Department of Anesthesiology Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The calcium ion (Ca(2+)) is the simplest and most versatile intracellular messenger known. The discovery of Ca(2+) sparks and a related family of elementary Ca(2+) signaling events has revealed fundamental principles of the Ca(2+) signaling system. A newly appreciated "digital" subsystem consisting of brief, high Ca(2+) concentration over short distances (nanometers to microns) comingles with an "analog" global Ca(2+) signaling subsystem. Over the past 15 years, much has been learned about the theoretical and practical aspects of spark formation and detection. The quest for the spark mechanisms [the activation, coordination, and termination of Ca(2+) release units (CRUs)] has met unexpected challenges, however, and raised vexing questions about CRU operation in situ. Ample evidence shows that Ca(2+) sparks catalyze many high-threshold Ca(2+) processes involved in cardiac and skeletal muscle excitation-contraction coupling, vascular tone regulation, membrane excitability, and neuronal secretion. Investigation of Ca(2+) sparks in diseases has also begun to provide novel insights into hypertension, cardiac arrhythmias, heart failure, and muscular dystrophy. An emerging view is that spatially and temporally patterned activation of the digital subsystem confers on intracellular Ca(2+) signaling an exquisite architecture in space, time, and intensity, which underpins signaling efficiency, stability, specificity, and diversity. These recent advances in "sparkology" thus promise to unify the simplicity and complexity of Ca(2+) signaling in biology.
Collapse
Affiliation(s)
- Heping Cheng
- Institute of Molecular Medicine, National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, China.
| | | |
Collapse
|
14
|
Dabertrand F, Mironneau J, Macrez N, Morel JL. Full length ryanodine receptor subtype 3 encodes spontaneous calcium oscillations in native duodenal smooth muscle cells. Cell Calcium 2008; 44:180-9. [PMID: 18207571 DOI: 10.1016/j.ceca.2007.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/12/2007] [Accepted: 11/04/2007] [Indexed: 10/22/2022]
Abstract
Two isoforms of the ryanodine receptor subtype 3 (RYR3) have been described in smooth muscle. The RYR3 short isoform (RYR3S) negatively regulates the calcium-induced calcium release mechanism encoded by the RYR2, whereas the role of the full length isoform of RYR3 (RYR3L) was still unclear. Here, we describe RYR-dependent spontaneous Ca(2+) oscillations measured in 10% of native duodenum myocytes. We investigated the role of RYR3 isoforms in these spontaneous Ca(2+) signals. Inhibition of RYR3S expression by antisense oligonucleotides revealed that both RYR2 and RYR3L were able to propagate spontaneous Ca(2+) waves that were distinguishable by frequency analysis. When RYR3L expression was inhibited, the spontaneous Ca(2+) oscillations were never observed, indicating that RYR3S inhibited the function of RYR2. RYR2 expression inhibition led to Ca(2+) oscillations identical to those observed in control cells suggesting that RYR3S did not functionally interact with RYR3L. The presence and frequency of RYR3L-dependent Ca(2+) oscillations were dependent on sarcoplasmic reticulum Ca(2+) content as revealed by long-term changes of the extracellular Ca(2+) concentration. Our study shows that, in native duodenal myocytes, the spontaneous Ca(2+) waves are encoded by the RYR3L alone, which activity is regulated by sarcoplasmic reticulum Ca(2+) loading.
Collapse
Affiliation(s)
- Fabrice Dabertrand
- Centre de Neurosciences Intégratives et Cognitives, CNRS UMR5228, Universités de Bordeaux, avenue des facultés, 33405 Talence, France
| | | | | | | |
Collapse
|
15
|
Legrand C, Giacomello E, Berthier C, Allard B, Sorrentino V, Jacquemond V. Spontaneous and voltage-activated Ca2+ release in adult mouse skeletal muscle fibres expressing the type 3 ryanodine receptor. J Physiol 2008; 586:441-57. [PMID: 18006577 PMCID: PMC2375597 DOI: 10.1113/jphysiol.2007.145862] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/01/2007] [Accepted: 11/09/2007] [Indexed: 11/08/2022] Open
Abstract
The physiological properties and role of the type 3 ryanodine receptor (RyR3), a calcium release channel expressed in a wide variety of cell types, remain mysterious. We forced, in vivo, the expression of RyR3 in adult mouse skeletal muscle fibres using a GFP-RyR3 DNA construct. GFP fluorescence was found within spatially restricted regions of muscle fibres where it exhibited a sarcomere-related banded pattern consistent with a localization within or near the junctional sarcoplasmic reticulum membrane. Immunostaining confirmed the presence of RyR3 together with RyR1 within the GFP-positive areas. In approximately 90% of RyR3-positive fibres microinjected with the calcium indicator fluo-3, we detected repetitive spontaneous transient elevations of intracellular Ca2+ that persisted when fibres were voltage-clamped at -80 mV. These Ca2+ transients remained essentially confined to the RyR3 expression region. They ranged from wide local events to propagating Ca2+ waves and were in some cases associated with local contractile activity. When voltage-clamp depolarizations were applied while fluo-3 or rhod-2 fluorescence was measured within the RyR3-expressing region, no voltage-evoked 'spark-like' elementary Ca2+ release event could be detected. Still global voltage-activated Ca2+ release exhibited a prominent early peak within the RyR3-expressing regions. Measurements were also taken from muscles fibres expressing a GFP-RyR1 construct; positive fibres also yielded a local banded pattern of GFP fluorescence but exhibited no spontaneous Ca2+ release. Results demonstrate that RyR3 is a very potent source of voltage-independent Ca2+ release activity. Conversely we find no evidence that it could contribute to the production of discrete voltage-activated Ca2+ release events in differentiated mammalian skeletal muscle.
Collapse
Affiliation(s)
- Claude Legrand
- Physiologie Intégrative Cellulaire et Moléculaire, Université Lyon 1, UMR CNRS 5123, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
16
|
Lorenzon NM, Beam KG. Accessibility of targeted DHPR sites to streptavidin and functional effects of binding on EC coupling. ACTA ACUST UNITED AC 2007; 130:379-88. [PMID: 17893191 PMCID: PMC2151652 DOI: 10.1085/jgp.200609730] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In skeletal muscle, the dihydropyridine receptor (DHPR) in the plasma membrane (PM) serves as a Ca(2+) channel and as the voltage sensor for excitation-contraction (EC coupling), triggering Ca(2+) release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) membrane. In addition to being functionally linked, these two proteins are also structurally linked to one another, but the identity of these links remains unknown. As an approach to address this issue, we have expressed DHPR alpha(1S) or beta(1a) subunits, with a biotin acceptor domain fused to targeted sites, in myotubes null for the corresponding, endogenous DHPR subunit. After saponin permeabilization, the approximately 60-kD streptavidin molecule had access to the beta(1a) N and C termini and to the alpha(1S) N terminus and proximal II-III loop (residues 671-686). Steptavidin also had access to these sites after injection into living myotubes. However, sites of the alpha(1S) C terminus were either inaccessible or conditionally accessible in saponin- permeabilized myotubes, suggesting that these C-terminal regions may exist in conformations that are occluded by other proteins in PM/SR junction (e.g., RyR1). The binding of injected streptavidin to the beta(1a) N or C terminus, or to the alpha(1S) N terminus, had no effect on electrically evoked contractions. By contrast, binding of streptavidin to the proximal alpha(1S) II-III loop abolished such contractions, without affecting agonist-induced Ca(2+) release via RyR1. Moreover, the block of EC coupling did not appear to result from global distortion of the DHPR and supports the hypothesis that conformational changes of the alpha(1S) II-III loop are necessary for EC coupling in skeletal muscle.
Collapse
Affiliation(s)
- Nancy M Lorenzon
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | |
Collapse
|
17
|
Yang T, Esteve E, Pessah IN, Molinski TF, Allen PD, López JR. Elevated resting [Ca2+]iin myotubes expressing malignant hyperthermia RyR1 cDNAs is partially restored by modulation of passive calcium leak from the SR. Am J Physiol Cell Physiol 2007; 292:C1591-8. [PMID: 17182726 DOI: 10.1152/ajpcell.00133.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle triggered in susceptible individuals by inhalation anesthetics and depolarizing skeletal muscle relaxants. This syndrome has been linked to a missense mutation in the type 1 ryanodine receptor (RyR1) in more than 50% of cases studied to date. Using double-barreled Ca2+microelectrodes in myotubes expressing wild-type RyR1 (WTRyR1) or RyR1 with one of four common MH mutations (MHRyR1), we measured resting intracellular Ca2+concentration ([Ca2+]i). Changes in resting [Ca2+]iproduced by several drugs known to modulate the RyR1 channel complex were investigated. We found that myotubes expressing any of theMHRyR1s had a 2.0- to 3.7-fold higher resting [Ca2+]ithan those expressingWTRyR1. Exposure of myotubes expressingMHRyR1s to ryanodine (500 μM) or (2,6-dichloro-4-aminophenyl)isopropylamine (FLA 365; 20 μM) had no effects on their resting [Ca2+]i. However, when myotubes were exposed to bastadin 5 alone or to a combination of ryanodine and bastadin 5, the resting [Ca2+]iwas significantly reduced ( P < 0.01). Interestingly, the percent decrease in resting [Ca2+]iin myotubes expressingMHRyR1s was significantly greater than that forWTRyR1. From these data, we propose that the high resting myoplasmic [Ca2+]iinMHRyR1 expressing myotubes is due in part to a related structural conformation ofMHRyR1s that favors “passive” calcium leak from the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Tianzhong Yang
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
18
|
Pouvreau S, Royer L, Yi J, Brum G, Meissner G, Ríos E, Zhou J. Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc Natl Acad Sci U S A 2007; 104:5235-40. [PMID: 17360329 PMCID: PMC1829292 DOI: 10.1073/pnas.0700748104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stimuli are translated to intracellular calcium signals via opening of inositol trisphosphate receptor and ryanodine receptor (RyR) channels of the sarcoplasmic reticulum or endoplasmic reticulum. In cardiac and skeletal muscle of amphibians the stimulus is depolarization of the transverse tubular membrane, transduced by voltage sensors at tubular-sarcoplasmic reticulum junctions, and the unit signal is the Ca(2+) spark, caused by concerted opening of multiple RyR channels. Mammalian muscles instead lose postnatally the ability to produce sparks, and they also lose RyR3, an isoform abundant in spark-producing skeletal muscles. What does it take for cells to respond to membrane depolarization with Ca(2+) sparks? To answer this question we made skeletal muscles of adult mice expressing exogenous RyR3, demonstrated as immunoreactivity at triad junctions. These muscles showed abundant sparks upon depolarization. Sparks produced thusly were found to amplify the response to depolarization in a manner characteristic of Ca(2+)-induced Ca(2+) release processes. The amplification was particularly effective in responses to brief depolarizations, as in action potentials. We also induced expression of exogenous RyR1 or yellow fluorescent protein-tagged RyR1 in muscles of adult mice. In these, tag fluorescence was present at triad junctions. RyR1-transfected muscle lacked voltage-operated sparks. Therefore, the voltage-operated sparks phenotype is specific to the RyR3 isoform. Because RyR3 does not contact voltage sensors, their opening was probably activated by Ca(2+), secondarily to Ca(2+) release through junctional RyR1. Physiologically voltage-controlled Ca(2+) sparks thus require a voltage sensor, a master junctional RyR1 channel that provides trigger Ca(2+), and a slave parajunctional RyR3 cohort.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Leandro Royer
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Jianxun Yi
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Gustavo Brum
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, Uruguay; and
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | - Eduardo Ríos
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
- To whom correspondence may be addressed. E-mail: or
| | - Jingsong Zhou
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
19
|
Brown LD, Rodney GG, Hernández-Ochoa E, Ward CW, Schneider MF. Ca2+ sparks and T tubule reorganization in dedifferentiating adult mouse skeletal muscle fibers. Am J Physiol Cell Physiol 2006; 292:C1156-66. [PMID: 17065203 PMCID: PMC2654399 DOI: 10.1152/ajpcell.00397.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+) sparks are rare in healthy adult mammalian skeletal muscle but may appear when adult fiber integrity is compromised, and occur in embryonic muscle but decline as the animal develops. Here we used cultured adult mouse flexor digitorum brevis muscle fibers to monitor occurrence of Ca(2+) sparks during maintenance of adult fiber morphology and during eventual fiber morphological dedifferentiation after various times in culture. Fibers cultured for up to 3 days retain normal morphology and striated appearance. Ca(2+) sparks were rare in these fibers. At 5-7 days in culture, many of the original muscle fibers exhibit sprouting and loss of striations, as well as the occurrence of spontaneous Ca(2+) sparks. The average rate of occurrence of Ca(2+) sparks is >10-fold higher after 5-7 days in culture than in days 1-3. With the use of fibers cultured for 7 days, application of the Ca(2+) channel blockers Co(2+) or nifedipine almost completely suppressed the occurrence of Ca(2+) sparks, as previously shown in embryonic fibers, suggesting that Ca(2+) sparks may be generated by similar mechanisms in dedifferentiating cultured adult fibers and in embryonic fibers before final differentiation. The sarcomeric disruption observed under transmitted light microscopy in dedifferentiating fibers was accompanied by morphological changes in the transverse (T) tubular system, as observed by fluorescence confocal imaging of both an extracellular marker dye and membrane staining dyes. Changes in T tubule morphology coincided with the appearance of Ca(2+) sparks, suggesting that Ca(2+) sparks may either be a signal for, or the result of, disruption of DHPR-ryanodine receptor 1 coupling.
Collapse
Affiliation(s)
- Lisa D Brown
- Biology Department, Morgan State University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
20
|
Dabertrand F, Morel JL, Sorrentino V, Mironneau J, Mironneau C, Macrez N. Modulation of calcium signalling by dominant negative splice variant of ryanodine receptor subtype 3 in native smooth muscle cells. Cell Calcium 2006; 40:11-21. [PMID: 16678258 DOI: 10.1016/j.ceca.2006.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/21/2005] [Accepted: 03/16/2006] [Indexed: 11/19/2022]
Abstract
The ryanodine receptor subtype 3 (RYR3) is expressed ubiquitously but its physiological function varies from cell to cell. Here, we investigated the role of a dominant negative RYR3 isoform in Ca2+ signalling in native smooth muscle cells. We used intranuclear injection of antisense oligonucleotides to specifically inhibit endogenous RYR3 isoform expression. In mouse duodenum myocytes expressing RYR2 subtype and both spliced and non-spliced RYR3 isoforms, RYR2 and non-spliced RYR3 were activated by caffeine whereas the spliced RYR3 was not. Only RYR2 was responsible for the Ca2+-induced Ca2+ release mechanism that amplified Ca2+ influx- or inositol 1,4,5-trisphosphate-induced Ca2+ signals. However, the spliced RYR3 negatively regulated RYR2 leading to the decrease of amplitude and upstroke velocity of Ca2+ signals. Immunostaining in injected cells showed that the spliced RYR3 was principally expressed near the plasma membrane whilst the non-spliced isoform was revealed around the nucleus. This study shows for the first time that the short isoform of RYR3 controls Ca2+ release through RYR2 in native smooth muscle cells.
Collapse
Affiliation(s)
- Fabrice Dabertrand
- Laboratoire de Signalisation et Interactions Cellulaires, CNRS UMR5017, Université Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
21
|
Campbell NR, Podugu SP, Ferrari MB. Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis. Dev Biol 2006; 292:253-64. [PMID: 16460724 DOI: 10.1016/j.ydbio.2005.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 11/10/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Intracellular calcium (Ca(2+)) signals are essential for several aspects of muscle development, including myofibrillogenesis-the terminal differentiation of the sarcomeric lattice. Ryanodine receptor (RyR) Ca(2+) stores must be operative during this period and contribute to the production of spontaneous global Ca(2+) transients of long duration (LDTs; mean duration approximately 80 s). In this study, high-speed confocal imaging of intracellular Ca(2+) in embryonic myocytes reveals a novel class of spontaneous Ca(2+) transient. These short duration transients (SDTs; mean duration approximately 2 s) are blocked by ryanodine, independent of extracellular Ca(2+), insensitive to changes in membrane potential, and propagate in the subsarcolemmal space. SDTs arise from RyR stores localized to the subsarcolemmal space during myofibrillogenesis. While both LDTs and SDTs occur prior to myofibrillogenesis, LDT production ceases and only SDTs persist during a period of rapid sarcomere assembly. However, eliminating SDTs during this period results in only minor myofibril disruption. On the other hand, artificial extension of LDT production completely inhibits sarcomere assembly. In conjunction with earlier work, these results suggest that LDTs have at least two roles during myofibrillogenesis-activation of sarcoplasmic regulatory cascades and regulation of gene expression. The distinct spatiotemporal patterns of LDTs versus SDTs may be utilized for differential regulation of cytosolic cascades, control of nuclear gene expression, and localized activation of assembly events at the sarcolemma.
Collapse
Affiliation(s)
- Nolan R Campbell
- School of Biological Sciences, University of Missouri, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA.
| | | | | |
Collapse
|
22
|
Zhou J, Yi J, Royer L, Launikonis BS, González A, García J, Ríos E. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Am J Physiol Cell Physiol 2005; 290:C539-53. [PMID: 16148029 DOI: 10.1152/ajpcell.00592.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To activate skeletal muscle contraction, action potentials must be sensed by dihydropyridine receptors (DHPRs) in the T tubule, which signal the Ca(2+) release channels or ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) to open. We demonstrate here an inhibitory effect of the T tubule on the production of sparks of Ca(2+) release. Murine primary cultures were confocally imaged for Ca(2+) detection and T tubule visualization. After 72 h of differentiation, T tubules extended from the periphery for less than one-third of the myotube radius. Spontaneous Ca(2+) sparks were found away from the region of cells where tubules were found. Immunostaining showed RyR1 and RyR3 isoforms in all areas, implying inhibition of both isoforms by a T tubule component. To test for a role of DHPRs in this inhibition, we imaged myotubes from dysgenic mice (mdg) that lack DHPRs. These exhibited T tubule development similar to that of normal myotubes, but produced few sparks, even in regions where tubules were absent. To increase spark frequency, a high-Ca(2+) saline with 1 mM caffeine was used. Wild-type cells in this saline plus 50 microM nifedipine retained the topographic suppression pattern of sparks, but dysgenic cells in high-Ca(2+) saline did not. Shifted excitation and emission ratios of indo-1 in the cytosol or mag-indo-1 in the SR were used to image [Ca(2+)] in these compartments. Under the conditions of interest, wild-type and mdg cells had similar levels of free [Ca(2+)] in cytosol and SR. These data suggest that DHPRs play a critical role in reducing the rate of spontaneous opening of Ca(2+) release channels and/or their susceptibility to Ca(2+)-induced activation, thereby suppressing the production of Ca(2+) sparks.
Collapse
Affiliation(s)
- Jingsong Zhou
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Ca(2+) sparks monitor transient local releases of Ca(2+) from the sarcoplasmic reticulum (SR) into the myoplasm. The release takes place through ryanodine receptors (RYRs), the Ca(2+)-release channels of the SR. In intact fibers from frog skeletal muscle, the temporal and spatial properties of voltage-activated Ca(2+) sparks are well simulated by a model that assumes that the Ca(2+) flux underlying a spark is 2.5 pA (units of Ca(2+) current) for 4.6 ms (18 degrees C). This flux amplitude suggests that 1-5 active RYRs participate in the generation of a typical voltage-activated spark under physiological conditions. A major goal of future experiments is to estimate this number more precisely and, if it is two or more, to investigate the communication mechanism that allows multiple RYRs to be co-activated in a rapid but self-limited fashion.
Collapse
Affiliation(s)
- Stephen M Baylor
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6085, USA.
| |
Collapse
|
24
|
Zhou J, Launikonis BS, Ríos E, Brum G. Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation-contraction coupling? ACTA ACUST UNITED AC 2005; 124:409-28. [PMID: 15452201 PMCID: PMC2233900 DOI: 10.1085/jgp.200409105] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 μM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4–40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10−7 in the frog or 10−8 in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which increased SR load increases spark frequency.
Collapse
Affiliation(s)
- Jingsong Zhou
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
25
|
Sebille S, Cantereau A, Vandebrouck C, Balghi H, Constantin B, Raymond G, Cognard C. Calcium sparks in muscle cells: interactive procedures for automatic detection and measurements on line-scan confocal images series. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2005; 77:57-70. [PMID: 15639710 DOI: 10.1016/j.cmpb.2004.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 06/15/2004] [Indexed: 05/24/2023]
Abstract
In muscle cells, force development is controlled by Ca2+ ions, which are rapidly released from the sarcoplasmic reticulum (SR) during sarcolemmal depolarization. In addition to this synchronized spatially homogeneous calcium signal, localized quantal Ca2+ release events (sparks) have been recorded using laser scanning confocal fluorescence microscopy. Previously, algorithms without user intervention have been developed to automatically detect and analyse sparks on confocal line-scan (space-time: 512 x 512 pixels) single images. Here we present a computer program that we called "HARVest of Elementary Events" (HARVELE) developed to both analyse events on series of confocal images and follow sparks morphology from one site during several seconds. HARVELE, coded in the image-processing language IDL 5.3., can be applied on series of n images (512 x 512 x n) obtained from the same scanning line. Computing simultaneously entire series of images allows to measure, for each release site, the frequency and the morphology of release with the conventional amplitude, size, time and duration parameters defined for sparks analysis. The use of these procedures rapidly provides much information about the properties of calcium release sites in muscle cells population and can be applied on any elementary calcium events whatever the type of cell.
Collapse
Affiliation(s)
- S Sebille
- Institut de Physiologie et Biologie Cellulaires, UMR CNRS 6187, Université de Poitiers, F-86022 Poitiers cedex, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Perez CF, López JR, Allen PD. Expression levels of RyR1 and RyR3 control resting free Ca2+ in skeletal muscle. Am J Physiol Cell Physiol 2004; 288:C640-9. [PMID: 15548569 DOI: 10.1152/ajpcell.00407.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the role of the transient expression of ryanodine receptor (RyR) type 3 (RyR3) on Ca(2+) homeostasis during the development of skeletal muscle, we have analyzed the effect of expression levels of RyR3 and RyR1 on the overall physiology of cultured myotubes and muscle fibers. Dyspedic myotubes were infected with RyR1 or RyR3 containing virions at 0.2, 0.4, 1.0, and 4.0 moieties of infection (MOI), and analysis of their pattern of expression, caffeine sensitivity, and resting free Ca(2+) concentration ([Ca(2+)](r)) was performed. Although increased MOI resulted in increased expression of each receptor isoform, it did not significantly affect the immunopattern of RyRs or the expression levels of calsequestrin, triadin, or FKBP-12. Interestingly, myotubes expressing RyR3 always had significantly higher [Ca(2+)](r) and lower caffeine EC(50) than did cells expressing RyR1. Although some of the increased sensitivity of RyR3 to caffeine could be attributed to the higher [Ca(2+)](r) in RyR3-expressing cells, studies of [(3)H]ryanodine binding demonstrated intrinsic differences in caffeine sensitivity between RyR1 and RyR3. Tibialis anterior (TA) muscle fibers at different stages of postnatal development exhibited a transient increase in [Ca(2+)](r) coordinately with their level of RyR3 expression. Similarly, adult soleus fibers, which also express RyR3, had higher [Ca(2+)](r) than did adult TA fibers, which exclusively express RyR1. These data show that in skeletal muscle, RyR3 increases [Ca(2+)](r) more than RyR1 does at any expression level. These data suggest that the coexpression of RyR1 and RyR3 at different levels may constitute a novel mechanism by which to regulate [Ca(2+)](r) in skeletal muscle.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biomarkers
- Caffeine/pharmacology
- Calcium/metabolism
- Cell Membrane/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Homeostasis
- Humans
- Mice
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Myoblasts/cytology
- Myoblasts/drug effects
- Myoblasts/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Ryanodine/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum/metabolism
- Virion/genetics
- Virion/metabolism
Collapse
Affiliation(s)
- Claudio F Perez
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 20 Shattuck St., Rm. SR 153, Boston, MA 02115, USA.
| | | | | |
Collapse
|
27
|
Protasi F, Shtifman A, Julian FJ, Allen PD. All three ryanodine receptor isoforms generate rapid cooling responses in muscle cells. Am J Physiol Cell Physiol 2003; 286:C662-70. [PMID: 14592807 DOI: 10.1152/ajpcell.00081.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rapid cooling (RC) response in muscle is an increase in cytoplasmic Ca2+ concentration ([Ca2+]i) that is probably caused by Ca2+ release from the sarcoplasmic reticulum (SR). However, the molecular bases of this response have not been completely elucidated. Three different isoforms of the SR Ca2+ release channels, or ryanodine receptors (RyRs), have been isolated (RyR1, RyR2, and RyR3). In the current investigation, the RC response was studied in RyR-null muscle cells (1B5) before and after transduction with HSV-1 virions containing the cDNAs encoding for RyR1, RyR2, or RyR3. Cells were loaded with fluo 4-AM to monitor changes in [Ca2+]i and perfused with either cold ( approximately 0 degrees C), room temperature (RT), or RT buffer containing 40 mM caffeine. Control cells showed no significant response to cold or caffeine, whereas robust Ca2+ transients were recorded in response to both RC and caffeine in transduced cells expressing any one of the three RyR isoforms. Our data demonstrate directly that RyRs are responsible for the RC response and that all three isoforms respond in a similar manner. Ca2+ release from RyRs is likely caused by a RC-induced conformational change of the channel from the closed to the open state.
Collapse
Affiliation(s)
- Feliciano Protasi
- Department of Anesthesia Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachussetts 02115, USA.
| | | | | | | |
Collapse
|
28
|
Chun LG, Ward CW, Schneider MF. Ca2+ sparks are initiated by Ca2+ entry in embryonic mouse skeletal muscle and decrease in frequency postnatally. Am J Physiol Cell Physiol 2003; 285:C686-97. [PMID: 12724135 DOI: 10.1152/ajpcell.00072.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
"Spontaneous" Ca2+ sparks and ryanodine receptor type 3 (RyR3) expression are readily detected in embryonic mammalian skeletal muscle but not in adult mammalian muscle, which rarely exhibits Ca2+ sparks and expresses predominantly RyR1. We have used confocal fluorescence imaging and systematic sampling of enzymatically dissociated single striated muscle fibers containing the Ca2+ indicator dye fluo 4 to show that the frequency of spontaneous Ca2+ sparks decreases dramatically from embryonic day 18 (E18) to postnatal day 14 (P14) in mouse diaphragm and from P1 to P14 in mouse extensor digitorum longus fibers. In contrast, the relative levels of RyR3 to RyR1 protein remained constant in diaphragm muscles from E18 to P14, indicating that changes in relative levels of RyR isoform expression did not cause the decline in Ca2+ spark frequency. E18 diaphragm fibers were used to investigate possible mechanisms underlying spark initiation in embryonic fibers. Spark frequency increased or decreased, respectively, when E18 diaphragm fibers were exposed to 8 or 0 mM Ca2+ in the extracellular Ringer solution, with no change in either the average resting fiber fluo 4 fluorescence or the average properties of the sparks. Either CoCl2 (5 mM) or nifedipine (30 microM) markedly decreased spark frequency in E18 diaphragm fibers. These results indicate that Ca2+ sparks may be triggered by locally elevated [Ca2+] due to Ca2+ influx via dihydropyridine receptor L-type Ca2+ channels in embryonic mammalian skeletal muscle.
Collapse
Affiliation(s)
- Lois G Chun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
29
|
Abstract
The family of ryanodine receptor (RyR) genes encodes three highly related Ca(2+)-release channels: RyR1, RyR2 and RyR3. RyRs are known as the Ca(2+)-release channels that participate to the mechanism of excitation-contraction coupling in striated muscles, but they are also expressed in many other cell types. Actually, in several cells two or three RyR isoforms can be co-expressed and interactive feedbacks among them may be important for generation of intracellular Ca(2+) signals and regulation of specific cellular functions. Important developments have been obtained in understanding the biochemical complexity underlying the process of Ca(2+) release through RyRs. The 3-D structure of these large molecules has been obtained and some regulatory regions have been mapped within these 3-D reconstructions. Recent studies have clarified the role of protein kinases and phosphatases that, by physically interacting with RyRs, appear to play a role in the regulation of these Ca(2+)-release channels. These and other recent advancements in understanding RyR biology will be the object of this review.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Neuroscience, University of Siena, via Aldo Moro 5, Siena, Italy
| | | |
Collapse
|
30
|
Abstract
Ryanodine receptor (RyR) is a Ca(2)(+) release channel in the sarcoplasmic reticulum and plays an important role in excitation-contraction coupling in skeletal muscle. The Ca(2)(+) release through the RyR channel can be gated by two distinct modes: depolarization-induced Ca(2)(+) release (DICR) and Ca(2)(+)-induced Ca(2)(+) release (CICR). Two different RyR isoforms, RyR1 (or alpha-RyR) and RyR3 (or beta-RyR), have been found to be expressed in skeletal muscle. Most adult mammalian muscles express primarily RyR1, whereas almost equal amounts of the two RyR isoforms exist in many nonmammalian vertebrate muscles. RyR1 is believed to be responsible for both DICR and CICR, whereas RyR3 may function as the CICR channel. Recent findings demonstrate that alpha-RyR is selectively and markedly suppressed in CICR activity in frog skeletal muscle. This selective suppression of RyR1, although to a lesser extent, also was found to occur in mammalian skeletal muscle. This short review describes the biological meanings of this selective suppression and discusses physiological roles and significance of the two RyR isoforms in vertebrate skeletal muscle.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
31
|
Rossi D, Simeoni I, Micheli M, Bootman M, Lipp P, Allen PD, Sorrentino V. RyR1 and RyR3 isoforms provide distinct intracellular Ca2+ signals in HEK 293 cells. J Cell Sci 2002; 115:2497-504. [PMID: 12045220 DOI: 10.1242/jcs.115.12.2497] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ryanodine receptors (RyRs) are expressed on the endoplasmic reticulum of many cells, where they form intracellular Ca2+-release channels that participate in the generation of intracellular Ca2+ signals. Here we report studies on the intracellular localisation and functional properties of transfected RyR1 or RyR3 channels in HEK 293 cells. Immunofluorescence studies indicated that both RyR1 and RyR3 did not form clusters but were homogeneously distributed throughout the endoplasmic reticulum. Ca2+ release experiments showed that transfected RyR1 and RyR3 channels responded to caffeine, although with different sensitivity, generating a global release of Ca2+ from the entire endoplasmic reticulum. However, video imaging and confocal microscopy analysis revealed that, in RyR3-expressing cells, local spontaneous Ca2+ release events were observed. No such spontaneous activity was observed in RyR1-expressing cells or in control cells. Interestingly, the spontaneous release events observed in RyR3-expressing cells were restricted to one or two regions of the endoplasmic reticulum, suggesting the formation of a further subcellular organisation of RyR3 in Ca2+ release units. These results demonstrate that different RyR isoforms can engage in the generation of distinct intracellular Ca2+ signals in HEK 293 cells.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Neuroscience, University of Siena, via Aldo Moro 5, Italy
| | | | | | | | | | | | | |
Collapse
|