1
|
Oluwagbenga EM, Bergman M, Ajuwon KM, Fraley GS. Sex differences in intestinal morphology and increase in diencephalic neuropeptide Y gene expression in female but not male Pekin ducks exposed to chronic heat stress. J Neuroendocrinol 2024:e13424. [PMID: 38960698 DOI: 10.1111/jne.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
The impact of heat stress (HS) on production is intricately linked with feed intake. We investigated the effects of HS on intestines and diencephalic genes in Pekin ducks. One hundred and sixty adult ducks were allocated to two treatment rooms. The control room was maintained at 22°C and the HS room at 35°C for the first 10 h of the day then reduced to 29.5°C. After 3 weeks, 10 hens and 5 drakes were euthanized from each room and jejunum and ileum collected for histology. Brains were collected for gene expression analysis using qRT-PCR. Intestinal morphology data were analyzed with two-way ANOVA and diencephalic gene data were analyzed with Kruskal-Wallis test. There was an increase in villi width in the ileum (p = .0136) and jejunum (p = .0019) of HS hens compared to controls. HS drakes showed a higher crypt depth (CD) in the jejunum (p = .0198) compared to controls. There was an increase in crypt goblet cells (GC) count in the ileum (p = .0169) of HS drakes compared to HS hens. There was higher villi GC count (p = .07) in the jejunum of HS drakes compared to controls. There was an increase in the crypt GC density (p = .0054) in the ileum, not jejunum, of HS drakes compared to HS hens. Further, there were no differences in the proopiomelanocortin gene expression in either sex but there was an increase in the expression of neuropeptide Y (NPY) gene in HS hens (p = .031) only and a decrease in the corticotropin releasing hormone gene in the HS drakes (p = .037) compared to controls. These data show that there are sex differences in the effect of HS on gut morphology while the upregulation in NPY gene may suggest a role in mediating response to chronic HS.
Collapse
Affiliation(s)
- E M Oluwagbenga
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - M Bergman
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - K M Ajuwon
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Huang TW, Li ST, Chen DY, Young TH. Neuropeptide Y increases differentiation of human olfactory receptor neurons through the Y1 receptor. Neuropeptides 2019; 78:101964. [PMID: 31526523 DOI: 10.1016/j.npep.2019.101964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
Olfactory dysfunction significantly impedes the life quality of patients. Neuropeptide Y (NPY) is not only a neurotrophic factor in the rodent olfactory system but also an orexigenic peptide that regulates feeding behavior. NPY increases the olfactory receptor neurons (ORNs) responsivity during starvation; however, whether NPY can promote differentiation of human ORNs remains unexplored. This study investigates the effect of NPY on the differentiation of human olfactory neuroepithelial cells in vitro. Human olfactory neuroepithelium explants were cultured on tissue culture polystyrene dishes for 21 days. Then, cells were cultured with or without NPY at the concentration of 0.5 ng/mℓ for 7 days. The effects of treatment were assessed by phase contrast microscopy, immunocytochemistry and western blot analysis. The further mechanism was evaluated with NPY Y1 receptor-selected antagonist BIBP3226. NPY-treated olfactory neuroepithelial cells exhibited thin bipolar shape, low circularity, low spread area, and long processes. The expression levels of Ascl1, βIII tubulin, GAP43 and OMP were significantly higher in NPY-treated cells than in controls (p < 0.05). NPY-treated olfactory neuroepithelial cells expressed more components of signal transduction apparatuses, Golf and ADCY3, than those without NPY treatment. Western blot analysis also further confirmed these findings (p < 0.05). Additionally, the expression levels of Ascl1, βIII2 tubulin, GAP43, OMP, ADCY3, and Golf in BIBP3226 + NPY and controls were comparable (p > 0.05). NPY not only increases expressions of protein markers of human olfactory neuronal progenitor cells, but also promotes differentiation of ORN and enhances formation of components of olfactory-specific signal transduction pathway through Y1 receptors.
Collapse
Affiliation(s)
- Tsung-Wei Huang
- Department of Electrical Engineering, College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan, Taiwan; Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan.
| | - Sheng-Tien Li
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Duan-Yu Chen
- Department of Electrical Engineering, College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Martins J, Elvas F, Brudzewsky D, Martins T, Kolomiets B, Tralhão P, Gøtzsche CR, Cavadas C, Castelo-Branco M, Woldbye DPD, Picaud S, Santiago AR, Ambrósio AF. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro. ASN Neuro 2015; 7:7/4/1759091415598292. [PMID: 26311075 PMCID: PMC4552225 DOI: 10.1177/1759091415598292] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)−NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)−NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases.
Collapse
Affiliation(s)
- João Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal
| | - Filipe Elvas
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal
| | - Dan Brudzewsky
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal
| | - Tânia Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal
| | - Bogdan Kolomiets
- Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, UMR_S968, 75012 Paris, France
| | - Pedro Tralhão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal
| | - Casper R Gøtzsche
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cláudia Cavadas
- CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, UMR_S968, 75012 Paris, France
| | - Ana R Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - António F Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
4
|
Neigh GN, Ritschel LA, Kilpela LS, Harrell CS, Bourke CH. Translational reciprocity: bridging the gap between preclinical studies and clinical treatment of stress effects on the adolescent brain. Neuroscience 2013; 249:139-53. [PMID: 23069751 PMCID: PMC6528486 DOI: 10.1016/j.neuroscience.2012.09.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/24/2012] [Accepted: 09/28/2012] [Indexed: 01/12/2023]
Abstract
The genetic, biological, and environmental backgrounds of an organism fundamentally influence the balance between risk and resilience to stress. Sex, age, and environment transact with responses to trauma in ways that can mitigate or exacerbate the likelihood that post-traumatic stress disorder will develop. Translational approaches to modeling affective disorders in animals will ultimately provide novel treatments and a better understanding of the neurobiological underpinnings behind these debilitating disorders. The extant literature on trauma/stress has focused predominately on limbic and cortical structures that innervate the hypothalamic-pituitary-adrenal axis and influence glucocorticoid-mediated negative feedback. It is through these neuroendocrine pathways that a self-perpetuating fear memory can propagate the long-term effects of early life trauma. Recent work incorporating translational approaches has provided novel pathways that can be influenced by early life stress, such as the glucocorticoid receptor chaperones, including FKBP51. Animal models of stress have differing effects on behavior and endocrine pathways; however, complete models replicating clinical characteristics of risk and resilience have not been rigorously studied. This review discusses a four-factor model that considers the importance of studying both risk and resilience in understanding the developmental response to trauma/stress. Consideration of the multifactorial nature of clinical populations in the design of preclinical models and the application of preclinical findings to clinical treatment approaches comprise the core of translational reciprocity, which is discussed in the context of the four-factor model.
Collapse
Affiliation(s)
- G N Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University, 101 Woodruff Circle, Suite 4000, Atlanta, GA 30322, United States.
| | | | | | | | | |
Collapse
|
5
|
La Sala MS, Hurtado MD, Brown AR, Bohórquez DV, Liddle RA, Herzog H, Zolotukhin S, Dotson CD. Modulation of taste responsiveness by the satiation hormone peptide YY. FASEB J 2013; 27:5022-33. [PMID: 24043261 DOI: 10.1096/fj.13-228064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.
Collapse
Affiliation(s)
- Michael S La Sala
- 1Department of Neuroscience, University of Florida McKnight Brain Institute, 1149 Newell Dr., Box 100244, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Dotson CD, Geraedts MCP, Munger SD. Peptide regulators of peripheral taste function. Semin Cell Dev Biol 2013; 24:232-9. [PMID: 23348523 DOI: 10.1016/j.semcdb.2013.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/10/2013] [Indexed: 12/25/2022]
Abstract
The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode those stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization.
Collapse
Affiliation(s)
- Cedrick D Dotson
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
7
|
Reaux-Le Goazigo A, Bodineau L, De Mota N, Jeandel L, Chartrel N, Knauf C, Raad C, Valet P, Llorens-Cortes C. Apelin and the proopiomelanocortin system: a new regulatory pathway of hypothalamic α-MSH release. Am J Physiol Endocrinol Metab 2011; 301:E955-66. [PMID: 21846903 DOI: 10.1152/ajpendo.00090.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal networks originating in the hypothalamic arcuate nucleus (Arc) play a fundamental role in controlling energy balance. In the Arc, neuropeptide Y (NPY)-producing neurons stimulate food intake, whereas neurons releasing the proopiomelanocortin (POMC)-derived peptide α-melanocyte-stimulating hormone (α-MSH) strongly decrease food intake. There is growing evidence to suggest that apelin and its receptor may play a role in the central control of food intake, and both are concentrated in the Arc. We investigated the presence of apelin and its receptor in Arc NPY- and POMC-containing neurons and the effects of apelin on α-MSH release in the hypothalamus. We showed, by immunofluorescence and confocal microscopy, that apelin-immunoreactive (IR) neuronal cell bodies were distributed throughout the rostrocaudal extent of the Arc and that apelin was strongly colocalized with POMC, but weakly colocalized with NPY. However, there were numerous NPY-IR nerve fibers close to the apelin-IR neuronal cell bodies. By combining in situ hybridization with immunohistochemistry, we demonstrated the presence of apelin receptor mRNA in Arc POMC neurons. Moreover, using a perifusion technique for hypothalamic explants, we demonstrated that apelin-17 (K17F) increased α-MSH release, suggesting that apelin released somato-dendritically or axonally from POMC neurons may stimulate α-MSH release in an autocrine manner. Consistent with these data, hypothalamic apelin levels were found to be higher in obese db/db mice and fa/fa Zucker rats than in wild-type animals. These findings support the hypothesis that central apelin is involved in regulating body weight and feeding behavior through the direct stimulation of α-MSH release.
Collapse
Affiliation(s)
- Annabelle Reaux-Le Goazigo
- Institut National de Santé et de Recherche Médicale, Unité Mixte de Recherche S 691, Centre for Interdisciplinary Research in Biology, Collège de France, and Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Katayama S, Tomonaga S, Sato M, Yamane H, Tsuneyoshi Y, Denbow DM, Furuse M. Norepinephrine does not alter NPY and POMC mRNA expression in neonatal chicks. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:143-6. [DOI: 10.1016/j.cbpa.2010.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/14/2010] [Accepted: 01/17/2010] [Indexed: 11/30/2022]
|
9
|
Mano-Otagiri A, Iwasaki-Sekino A, Ohata H, Arai K, Shibasaki T. Nicotine suppresses energy storage through activation of sympathetic outflow to brown adipose tissue via corticotropin-releasing factor type 1 receptor. Neurosci Lett 2009; 455:26-9. [PMID: 19429100 DOI: 10.1016/j.neulet.2009.03.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 01/28/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
Abstract
Nicotine is known to stimulate energy expenditure, although the precise mechanism is unclear. To clarify the involvement of corticotropin-releasing factor (CRF) in the mechanism by which nicotine increases energy expenditure, the effect of intraperitoneal injection of nicotine (0.1 or 0.5mg/kg) on the release of noradrenaline (NA), a stimulator of thermogenesis, in brown adipose tissue (BAT) important for energy expenditure was examined in rats. We also examined the effects of CRF receptor subtype antagonists on the nicotine-induced change in BAT NA release. Nicotine significantly increased BAT NA release at a dose of 0.5mg/kg, and the increase was completely blocked by antalarmin, a CRF type 1 receptor antagonist, but not by antisauvagine-30, a CRF type 2 receptor antagonist. These results suggest that nicotine increases energy expenditure by activating BAT function, and that CRF type 1 receptors are involved in the mechanism by which nicotine affects energy balance.
Collapse
Affiliation(s)
- Asuka Mano-Otagiri
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | | | | | | | |
Collapse
|
10
|
Nikolaeva AA, Koroleva SV, Ashmarin IP. Construction of a generalized scheme of inductive connections between norepinephrine and regulatory peptides. NEUROCHEM J+ 2008. [DOI: 10.1134/s1819712408030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Baltatzi M, Hatzitolios A, Tziomalos K, Iliadis F, Zamboulis C. Neuropeptide Y and alpha-melanocyte-stimulating hormone: interaction in obesity and possible role in the development of hypertension. Int J Clin Pract 2008; 62:1432-1440. [PMID: 18793378 DOI: 10.1111/j.1742-1241.2008.01823.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM Obesity and hypertension frequently coexist and both represent important risk factors for cardiovascular disease. The mechanisms implicated in the regulation of food intake have not been completely elucidated. Recent data suggests that peripheral and central neuropeptides play an important role in the maintenance of energy balance. More specifically, leptin, neuropeptide Y (NPY) and alpha-melanocyte-stimulating hormone (a-MSH) appear to be implicated in the pathogenesis of obesity and also contribute to the development of hypertension in obesity. METHODS Analysis of the pertinent bibliography published in PubMed database. RESULTS Leptin is produced in the adipose tissue directly correlated with fat tissue mass. Leptin acts on two distinct neural populations in the hypothalamus: the first expresses the orexigenic peptides NPY and agouti-related protein (AgRP), the second pro-opiomelanocortin (POMC). The activation of POMC neurons increases the production of the anorexigenic hormone a-MSH and inhibits the release of NPY and AgRP. In addition, the hypothalamus integrates the neuroendocrine systems with the autonomic nervous system and controls the activity of the latter. Stimulation of hypothalamic nuclei elicits sympathetic responses including blood pressure elevation. Both NPY and a-MSH appears to be implicated in the hypothalamic regulation of sympathetic nervous system (SNS) activity. CONCLUSION Alterations in leptin, NPY and a-MSH are frequently observed in obesity and might stimulate SNS activity, contributing to the development of hypertension in obese patients. These neuropeptides might provide a pathophysiologic link between excess weight and hypertension. However, more research is needed before the pharmacologic manipulation of these complex neuroendocrine systems can be applied in the treatment of obesity and hypertension.
Collapse
Affiliation(s)
- M Baltatzi
- 1st Propedeutic Medical Department, AXEPA Hospital, Aristotles University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
12
|
Heberlein A, Bleich S, Kornhuber J, Hillemacher T. Neuroendocrine pathways in benzodiazepine dependence: new targets for research and therapy. Hum Psychopharmacol 2008; 23:171-81. [PMID: 18088080 DOI: 10.1002/hup.911] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Benzodiazepines are known to modulate the activity of the hypothalamo-pituitary-adrenocortical (HPA) axis by antagonizing the effects of corticotropin-releasing factor (CRH). Besides regulating the HPA axis CRH evolves properties of a neurotransmitter in the limbic system that is closely involved in the delivery of the emotional consequences of the stress response. At a superordinated level Neuropeptide Y (NPY) and Cholecystokinin (CCK) affect the release of CRH and modulate thereby the intensity of the physiological stress response. Benzodiazepine treatment interferes not only with the release of CRH but also with the release of NPY and CCK. Alterations in the intracortical ratio of NPY, CCK and CRH are correlated with behavioural changes like increased respectively decreased anxiety and subsequent alterations in the activity of the HPA axis. Recent research offers the possibility that the alterations of plasma levels of these neuropeptides are not only a secondary phenomenon due to drug intake, but that low levels of those neuropeptides that modulate anxiety and fear can possibly explain addiction to substances that counterbalance these deficits. Depending on the available results possible implications of NPY and CCK on benzodiazepine addiction and withdrawal symptoms are reviewed, thereby providing topics for further research.
Collapse
Affiliation(s)
- Annemarie Heberlein
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Germany.
| | | | | | | |
Collapse
|
13
|
Dimitrov EL, DeJoseph MR, Brownfield MS, Urban JH. Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity. Endocrinology 2007; 148:3666-73. [PMID: 17463058 DOI: 10.1210/en.2006-1730] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuroendocrine parvocellular CRH neurons in the paraventricular nucleus (PVN) of the hypothalamus are the main integrators of neural inputs that initiate hypothalamic-pituitary-adrenal (HPA) axis activation. Neuropeptide Y (NPY) expression is prominent within the PVN, and previous reports indicated that NPY stimulates CRH mRNA levels. The purpose of these studies was to examine the participation of NPY receptors in HPA axis activation and determine whether neuroendocrine CRH neurons express NPY receptor immunoreactivity. Infusion of 0.5 nmol NPY into the third ventricle increased plasma corticosterone levels in conscious rats, with the peak of hormone levels occurring 30 min after injection. This increase was prevented by pretreatment with the Y1 receptor antagonist BIBP3226. Immunohistochemistry showed that CRH-immunoreactive neurons coexpressed Y1 receptor immunoreactivity (Y1r-ir) in the PVN, and a majority of these neurons (88.8%) were neuroendocrine as determined by ip injections of FluoroGold. Bilateral infusion of the Y1/Y5 agonist, [leu(31)pro(34)]NPY (110 pmol), into the PVN increased c-Fos and phosphorylated cAMP response element-binding protein expression and elevated plasma corticosterone levels. Increased expression of c-Fos and phosphorylated cAMP response element-binding protein was observed in populations of CRH/Y1r-ir cells. The current findings present a comprehensive study of NPY Y1 receptor distribution and activation with respect to CRH neurons in the PVN. The expression of NPY Y1r-ir by neuroendocrine CRH cells suggests that alterations in NPY release and subsequent activation of NPY Y1 receptors plays an important role in the regulation of the HPA.
Collapse
Affiliation(s)
- Eugene L Dimitrov
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | | | | | |
Collapse
|
14
|
Tóth A, Hajnik T, Záborszky L, Détári L. Effect of basal forebrain neuropeptide Y administration on sleep and spontaneous behavior in freely moving rats. Brain Res Bull 2007; 72:293-301. [PMID: 17452289 DOI: 10.1016/j.brainresbull.2007.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/17/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Neuropeptide Y (NPY) is present both in local neurons as well as in fibers in the basal forebrain (BF), an area that plays an important role in the regulation of cortical activation. In our previous experiments in anaesthetized rats, significant EEG changes were found after NPY injections to BF. EEG delta power increased while power in theta, alpha, and beta range decreased. The aim of the present experiments was to determine whether NPY infusion to BF can modulate sleep and behavior in freely moving rats. In this study, microinjections were made into the BF. Saline was injected to the control side, while either saline or one of two doses of NPY (0.5 microl, 300-500 pmol) to the treated side. EEG as well as behavioral changes were recorded. Behavioral elements after the NPY injections changed in a characteristic fashion in time and three consecutive phases were defined. In phase I (half hour 2), activated behavioral items (moving, rearing, grooming) appeared frequently. In phase II (half hours 3 and 4) activity decreased, while motionless state increased. Reappearance of activity was seen in phase III (half hours 5 and 6). NPY injections caused sleep-wake changes. The three phases described for behavioral changes were also reflected in the sleep data. During phase I, lower NPY dose increased wakefulness and decreased deep sleep. Reduced behavioral activity seen in phase II was partially reflected in the sleep. In this phase, wakefulness tended to increase in the third half hour, while decreased in the 4th half hour. Deep sleep and total slow wave sleep non-significantly decreased in the third and increased in the 4th half hour. In most cases, wakefulness was elevated again during Phase III, while sleep decreased. Length of single sleep-wake epochs did not change after NPY injections. Our results suggest a role for NPY in the integration of sleep and behavioral stages via the BF.
Collapse
Affiliation(s)
- Attila Tóth
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | | | | | | |
Collapse
|
15
|
Eva C, Serra M, Mele P, Panzica G, Oberto A. Physiology and gene regulation of the brain NPY Y1 receptor. Front Neuroendocrinol 2006; 27:308-39. [PMID: 16989896 DOI: 10.1016/j.yfrne.2006.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide Y (NPY) is one of the most prominent and abundant neuropeptides in the mammalian brain where it interacts with a family of G-protein coupled receptors, including the Y(1) receptor subtype (Y(1)R). NPY-Y(1)R signalling plays a prominent role in the regulation of several behavioural and physiological functions including feeding behaviour and energy balance, sexual hormone secretion, stress response, emotional behaviour, neuronal excitability and ethanol drinking. Y(1)R expression is regulated by neuronal activity and peripheral hormones. The Y(1)R gene has been isolated from rodents and humans and it contains multiple regulatory elements that may participate in the regulation of its expression. Y(1)R expression in the hypothalamus is modulated by changes in energetic balance induced by a wide variety of conditions (fasting, pregnancy, hyperglycaemic challenge, hypophagia, diet induced obesity). Estrogens up-regulate responsiveness to NPY to stimulate preovulatory GnRH and gonadotropin surges by increasing Y(1)R gene expression both in the hypothalamus and the pituitary. Y(1)R expression is modulated by different kinds of brain insults, such as stress and seizure activity, and alteration in its expression may contribute to antidepressant action. Chronic modulation of GABA(A) receptor function by benzodiazepines or neuroactive steroids also affects Y(1)R expression in the amygdala, suggesting that a functional interaction between the GABA(A) receptor and Y(1)R mediated signalling may contribute to the regulation of emotional behaviour. In this paper, we review the state of the art concerning Y(1)R function and gene expression, including our personal contribution to many of the subjects mentioned above.
Collapse
Affiliation(s)
- Carola Eva
- Sezione di Farmacologia, Dipartimento di Anatomia, Farmacologia e Medicina Legale, Università di Torino, Italy; Centro Rita Levi Montalcini, Università di Torino, Italy.
| | | | | | | | | |
Collapse
|
16
|
Yehuda R, Flory JD, Southwick S, Charney DS. Developing an Agenda for Translational Studies of Resilience and Vulnerability Following Trauma Exposure. Ann N Y Acad Sci 2006; 1071:379-96. [PMID: 16891584 DOI: 10.1196/annals.1364.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Here we outline a translational research agenda for studies of resilience, defined as the process of adapting well in the face of adversity or trauma. We argue that an individual differences approach to the study of resilience, in which the full range of behavioral and biological responses to stress exposure is examined can be applied across human samples (e.g., people who have developed psychopathology versus those who have not; people who have been exposed to trauma versus those who have not) and even, in some cases, across species. We delineate important psychological resilience-related factors including positive affectivity and optimism, cognitive flexibility, coping, social support, emotion regulation, and mastery. Key brain regions associated with stress-related psychopathology have been identified with animal models of fear (e.g., extinction and fear conditioning; memory reconsolidation) and we describe how these regions can be studied in humans using neuroimaging technology. Finally, we cite recent research identifying neuroendocrine markers of resilience and recovery in humans (e.g., neuropeptide Y [NPY], dehydroepiandrosterone [DHEA]) that can also be measured, in some cases, in other species. That exposure to adversity or trauma does not necessarily lead to impairment and the development of psychopathology in all people is an important observation. Understanding why this is so will provide clues for the development of therapeutic interventions for those people who do develop stress-related psychopathology, or even for the prevention of adverse outcomes.
Collapse
Affiliation(s)
- Rachel Yehuda
- Bronx VA OOMH, 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| | | | | | | |
Collapse
|
17
|
Adewale AS, Macarthur H, Westfall TC. Neuropeptide Y induced modulation of dopamine synthesis in the striatum. ACTA ACUST UNITED AC 2005; 129:73-8. [PMID: 15927700 DOI: 10.1016/j.regpep.2005.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 01/07/2005] [Indexed: 11/27/2022]
Abstract
The purpose of the present study was to determine whether the activation of NPY receptors alters catecholamines (CA) synthesis in the central nervous system and, if so, to identify the NPY receptor subtype(s) mediating this effect. Tyrosine hydroxylation, the rate-limiting step in CA synthesis, was assessed by measuring the accumulation of 3,4-dihydroxyphenyalanine (DOPA) by high pressure liquid chromatography coupled to electrochemical detection (HPLC-EC) in rat striatal dices following incubation of the tissue with the aromatic L-amino acid decarboxylase inhibitor m-hydroxybenzyl hydrazine (NSD 1015). Treatment with NSD 1015 resulted in an increase in DOPA accumulation that was increased even further following depolarization with a high potassium (KCl) buffer. PYY13-36 and NPY13-36 both produced a significant enhancement of the KCl-induced increase in DOPA accumulation. The effect of PYY13-36 was completely attenuated by the selective Y2 antagonist BIIE0246 suggesting that activation of Y2 receptors enhanced the synthesis of dopamine. In contrast to the effects of NPY13-36 and PYY13-36; NPY, PYY and PYY3-36 all produced a significant attenuation of the KCl-induced increase in DOPA accumulation. The Y1 antagonist BIBO3304 and the Y5-antagonist CGP71683A, both prevented the inhibitory effect of NPY converting it to a stimulatory effect. The enhancement of the NPY induced increase in DOPA accumulation observed by BIBO3304 was attenuated when examined in the presence of the Y2 antagonist BIIE0246. These results suggest that activation of NPY receptors can modulate the synthesis of CA in the rat striatum. The Y1 and Y5 receptor appear to be involved in attenuation, while Y2 receptors are involved in the stimulation of synthesis.
Collapse
Affiliation(s)
- Adepero Shola Adewale
- Saint Louis University School of Medicine, Department of Pharmacological and Physiological Science, 1402 South Grand Blvd, Saint Louis, MO 63104, USA
| | | | | |
Collapse
|
18
|
Tebbe JJ, Pasat IR, Mönnikes H, Ritter M, Kobelt P, Schäfer MKH. Excitatory stimulation of neurons in the arcuate nucleus initiates central CRF-dependent stimulation of colonic propulsion in rats. Brain Res 2005; 1036:130-8. [PMID: 15725410 DOI: 10.1016/j.brainres.2004.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 09/29/2004] [Accepted: 12/11/2004] [Indexed: 12/16/2022]
Abstract
It is well established that autonomic control of digestive function is modulated by central autonomic neurotransmission. In this context it has been shown that digestive function can be modulated by exogenous neuropeptides microinjected into specific brain sides. Furthermore, there is considerable evidence suggesting that neurons projecting from the arcuate nucleus (ARC) to the PVN may be the source of endogenous neuropeptide release in the PVN. Neuronal projections from the ARC have been proposed to target corticotropin-releasing factor (CRF)-positive neurons in the PVN. Exogenous CRF in the PVN has been shown to modulate digestive function like gastric acid secretion and GI motility. Recently we have demonstrated that activation of ARC neurons inhibits gastric acid secretion via central CRF receptor dependent mechanisms. This poses the question whether neuronal activation of the ARC alters digestive function beside gastric acid secretion. In the present study we investigated whether CRF pathways in the ARC-PVN axis are involved in the modulation of colonic motility. First we examined the effect of an excitatory amino acid, kainate, microinjected into the ARC on colonic motility in anesthetized rats. Colonic motility was measured with a non-absorbable radioactive marker using the geometric center method. Kainate (120 pmol/rat) bilaterally microinjected into the ARC induced a significant stimulation of colonic propulsion. To assess the contribution of hypothalamic CRF to the effects of neuronal stimulation in the ARC on colonic motility we performed consecutive bilateral microinjections of an antagonist to CRF receptors into the PVN and the excitatory amino acid kainate into the ARC. Microinjection of the non-selective CRF receptor antagonist, astressin (100 ng), into the PVN abolished the stimulatory effect of neuronal activation in the ARC by kainate on colonic motor function. The data indicate that activation of neurons in the ARC stimulates colonic motility via CRF-receptor-mediated mechanism in the PVN and underlines the important role of the ARC-PVN circuit for the integrative CNS regulation of GI function.
Collapse
Affiliation(s)
- Johannes J Tebbe
- Department of Internal Medicine, Division Gastroenterology and Endocrinology, Philipps-Universität Marburg, Baldinger Strasse 1, 35033 Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Ramos EJB, Meguid MM, Campos ACL, Coelho JCU. Neuropeptide Y, alpha-melanocyte-stimulating hormone, and monoamines in food intake regulation. Nutrition 2005; 21:269-79. [PMID: 15723758 DOI: 10.1016/j.nut.2004.06.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2004] [Revised: 01/25/2004] [Accepted: 06/08/2004] [Indexed: 11/26/2022]
Abstract
Obesity is increasing in severity and prevalence in the United States and represents a major public health issue. No effective pharmacologic treatment leading to sustained weight loss currently exists. The growing interest in the regulation of food intake stems from the current drug treatments for obesity, almost all of which interfere with the monoamine system. Our knowledge of potential interactions between the orexigenic and anorexigenic pathways is limited and fragmented, making the development of targeted drug therapy for obesity difficult. The present review of the interaction of neuropeptides and monoamines emphasizes the complexity of the central mechanisms that regulate feeding behavior. Two main systems are implicated in food intake regulation: neuropeptide Y (NPY) and pro-opiomelanocortin. alpha-Melanocyte-stimulating hormone is a tridecapeptide cleaved from pro-opiomelanocortin that acts to inhibit food intake. The predominant NPY orexigenic receptors are NPY-Y1 and NPY-Y5, and the two anorexigenic melanocortin receptors involved in hypothalamic food intake control are MC3-R and MC4-R. Both neuropeptides interact with monoamines in the hypothalamus to control physiologic states such as hunger, satiation, and satiety. Serotonin suppresses food intake and body weight, acting mainly through the serotonin 1B receptor. Dopamine regulates hunger and satiety by acting in specific hypothalamic areas, through the D1 and D2 receptors. Noradrenaline activation of alpha1- and beta2-adrenoceptors decreases food intake, and stimulation of the alpha2-adrenoceptor increases food intake. A better understanding of the detailed mechanisms underlying the pathogenesis of hyperphagia and hypophagia is needed to develop new therapeutic approaches to obesity.
Collapse
Affiliation(s)
- Eduardo J B Ramos
- Surgical Metabolism and Nutrition Laboratory, Department of Surgery, University Hospital, Upstate Medical University, Syracuse, New York, USA
| | | | | | | |
Collapse
|
20
|
Hastings JA, Morris MJ, Lambert G, Lambert E, Esler M. NPY and NPY Y1 receptor effects on noradrenaline overflow from the rat brain in vitro. ACTA ACUST UNITED AC 2005; 120:107-12. [PMID: 15177927 DOI: 10.1016/j.regpep.2004.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/18/2004] [Accepted: 02/25/2004] [Indexed: 11/24/2022]
Abstract
Neurotransmitters and neuropeptides play important roles in the regulation of various neuroendocrine functions particularly feeding. The aim of this study was to investigate whether a functional interaction occurs among neuropeptide Y (NPY) at NPY Y1 receptors and noradrenaline overflow, as this may contribute to the regulation of appetite. The release of endogenous noradrenaline and its metabolite 3,4-dihydroxyphenylglycol (DHPG) were examined from hypothalamic and medullary prisms using the technique of in vitro superfusion and high performance liquid chromatography (HPLC) with coulometric detection. Noradrenaline and DHPG overflow was investigated at rest, in response to NPY (0.1 microM) and in response to the NPY Y1 receptor agonist, [Leu31,Pro34]NPY (0.1 microM). Perfusion with NPY and [Leu31,Pro34]NPY significantly reduced noradrenaline overflow from the hypothalamus and medulla. Perfusion with NPY and [Leu31,Pro34]NPY was without significant effect on hypothalamic DHPG overflow, while medullary DHPG overflow was significantly reduced by NPY and [Leu31,Pro34]NPY. Results from this study provide evidence of NPY Y1 receptor-mediated inhibition of noradrenaline release in the hypothalamus and medulla, further illustrating a complex interaction between neurotransmitters and neuropeptides within the rat brain.
Collapse
Affiliation(s)
- Jacqueline A Hastings
- Baker Heart Research Institute, Human Neurotransmitter Laboratory, P.O. Box 6492, St. Kilda Rd. Central, Melbourne, Victoria 8008, Australia.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Neuropeptide Y (NPY) is one of the most abundant peptides in the central nervous system and currently there are four known receptor subtypes Y1, Y2, Y4 and Y5. Central NPY and its receptors have been implicated in a variety of physiological processes such as epilepsy, sleep, obesity, learning and memory, gastrointestinal regulation, alcoholism, depression and anxiety. The localization of these receptors within the brain is consistent with the roles mentioned, as they are found in varying density within the limbic structures, such as the hippocampal formation, amygdala, hypothalamus and septum. It is well understood that NPY produces anxiolytic responses following central administration under stressful or anxiety-provoking situations. In contrast, central administration of the neuropeptide corticotropin-releasing factor (CRF) produces anxiogenic behaviors. It has been proposed that NPY counteracts the effects of CRF to maintain no net change in emotional state, e.g., emotional homeostasis. In this article, we review the scientific literature describing the NPY-CRF relationship, specifically as it relates to the modulation of the CRF-mediated stress responses via the amygdala, a key forebrain structure involved in the regulation of emotional states.
Collapse
Affiliation(s)
- Tammy J Sajdyk
- Department of Psychiatry, Indiana University Medical School, 791 Union Drive, Rm M119, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
22
|
Morris MJ, Pavia JM. Increased endogenous noradrenaline and neuropeptide Y release from the hypothalamus of streptozotocin diabetic rats. Brain Res 2004; 1006:100-6. [PMID: 15047028 DOI: 10.1016/j.brainres.2004.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2004] [Indexed: 11/28/2022]
Abstract
Noradrenaline and neuropeptide Y (NPY) in the hypothalamus regulate a number of important endocrine and autonomic functions. Alterations in brain neurotransmitter content have been described in type 1 diabetes but there is little understanding of whether these changes affect neurotransmitter release. This study examined for the first time, region-specific co-release of NPY and noradrenaline from the hypothalamus of male Sprague-Dawley rats treated intravenously with 48 mg/kg streptozotocin (STZ) or vehicle. Five weeks later, the release of endogenous noradrenaline and NPY was monitored by in vitro superfusion of ventral and dorsal hypothalamus slices under basal and potassium-stimulated conditions. STZ-diabetes induced significant increases in basal noradrenaline and NPY overflow from the ventral hypothalamus (P<0.05); only NPY overflow was increased in the dorsal hypothalamus (P<0.05). Noradrenaline overflow increased similarly to potassium depolarisation in vehicle and STZ-diabetic rats, whereas diabetic rats showed a significantly increased NPY overflow response to potassium depolarisation compared to vehicle rats. These region-specific increases in endogenous noradrenaline and NPY overflow from the hypothalamus in diabetes suggest increased neuronal activity at rest and enhanced responses under some conditions. Increased hypothalamic NPY and noradrenaline overflow most likely contributes to diabetic hyperphagia.
Collapse
Affiliation(s)
- Margaret J Morris
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
23
|
Tebbe JJ, Mronga S, Schäfer MKH, Rüter J, Kobelt P, Mönnikes H. Stimulation of neurons in rat ARC inhibits gastric acid secretion via hypothalamic CRF1/2- and NPY-Y1 receptors. Am J Physiol Gastrointest Liver Physiol 2003; 285:G1075-83. [PMID: 12855401 DOI: 10.1152/ajpgi.00125.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuropeptide Y (NPY) neuronal projections from the arcuate nucleus (ARC) have been proposed to target corticotropin-releasing factor (CRF)-positive neurons in the paraventricular nucleus (PVN) as part of the ARC-PVN axis. The existence of a positive feedback loop involving CRF receptors in the PVN has been suggested. Exogenous NPY and CRF in the PVN have been shown to inhibit gastric acid secretion. Recently, we have demonstrated that activation of ARC neurons inhibits gastric acid secretion via vagal pathways. To what extent NPY- and CRF-mediated mechanisms in the PVN contribute to the CNS modulation of gastric acid secretion is still an open question. In the present study, we performed consecutive bilateral microinjections of antagonists to NPY receptor subtypes Y1 and Y2 and to CRF1/2 receptors in the PVN and of the excitatory amino acid kainate in the ARC to assess the role of NPY- and CRF-mediated mechanisms in the kainate-induced effects on gastric acid secretion. Gastric acid secretion was measured at the basal condition and during pentagastrin (16 microg/kg body wt) stimulation. Microinjection of vehicle in the PVN and kainate in the ARC decreased gastric acid secretion. Microinjection of the specific NPY-Y1 receptor antagonist BIBP-3226 (200 pmol) and the nonspecific CRF1/2 antagonist astressin (30 pmol) in the PVN abolished the inhibitory effect of neuronal activation in the ARC by kainate on gastric acid secretion. The CRF antagonist astressin was more effective. Pretreatment with the NPY-Y2 receptor antagonist BIIE-0246 (120 pmol) in the PVN had no significant effect. Our results indicate that activation of neurons in the ARC inhibits gastric acid secretion via CRF1/2 and NPY-Y1 receptor-mediated pathways in the PVN.
Collapse
Affiliation(s)
- Johannes J Tebbe
- Division of Gastroenterology and Endocrinology, Department of Internal Medicine, Philipps Universität Marburg, 35033 Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Wolak ML, DeJoseph MR, Cator AD, Mokashi AS, Brownfield MS, Urban JH. Comparative distribution of neuropeptide Y Y1 and Y5 receptors in the rat brain by using immunohistochemistry. J Comp Neurol 2003; 464:285-311. [PMID: 12900925 DOI: 10.1002/cne.10823] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuropeptide Y (NPY) Y1 and Y5 receptor subtypes mediate many of NPY's diverse actions in the central nervous system. The present studies use polyclonal antibodies directed against the Y1 and Y5 receptors to map and compare the relative distribution of these NPY receptor subtypes within the rat brain. Antibody specificity was assessed by using Western analysis, preadsorption of the antibody with peptide, and preimmune serum controls. Immunostaining for the Y1 and Y5 receptor subtypes was present throughout the rostral-caudal aspect of the brain with many regions expressing both subtypes: cerebral cortex, hippocampus, hypothalamus, thalamus, amygdala, and brainstem. Further studies using double-label immunocytochemistry indicate that Y1R immunoreactivity (-ir) and Y5R-ir are colocalized in the cerebral cortex and caudate putamen. Y1 receptor ir was evident in the central amygdala, whereas both Y1- and Y5-immunoreactive cells and fibers were present in the basolateral amygdala. Corresponding with the physiology of NPY in the hypothalamus, both Y1R- and Y5R-ir was present within the paraventricular (PVN), supraoptic, arcuate nuclei, and lateral hypothalamus. In the PVN, Y5R-ir and Y1R-ir were detected in cells and fibers of the parvo- and magnocellular divisions. Intense immunostaining for these receptors was observed within the locus coeruleus, A1-5 and C1-3 nuclei, subnuclei of the trigeminal nerve and nucleus tractus solitarius. These data provide a detailed and comparative mapping of Y1 and Y5 receptor subtypes within cell bodies and nerve fibers in the brain which, together with physiological and electrophysiological studies, provide a better understanding of NPY neural circuitries.
Collapse
Affiliation(s)
- Michael L Wolak
- Department of Physiology and Biophysics, Finch University of Health Sciences/Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hastings JA, Wiesner G, Lambert G, Morris MJ, Head G, Esler M. Influence of leptin on neurotransmitter overflow from the rat brain in vitro. REGULATORY PEPTIDES 2002; 103:67-74. [PMID: 11786145 DOI: 10.1016/s0167-0115(01)00332-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The 16-kDa polypeptide hormone, leptin along with the neurotransmitters noradrenaline and serotonin (5-HT) have important physiological roles in the regulation of a number of neuroendocrine actions particularly feeding. Leptin receptor mRNA and immunoreactivity has been reported in various brain regions, while recent studies suggest that leptin is released from the human brain. This study investigated the interactions between leptinergic and neurotransmitter systems of the rat brain in vitro. Techniques were established to simultaneously monitor the release of endogenous noradrenaline and its metabolite 3,4 dihydroxyphenylglycol (DHPG), and 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) from the rat brain. The neuromodulatory action of leptin (0.2 and 3 nM) on the overflow of noradrenaline and DHPG from the medulla and hypothalamus was examined. The effect of leptin on 5-HT and 5-HIAA overflow from the hypothalamus was also investigated. Administration of 0.2 and 3 nM leptin significantly increased medullary noradrenaline overflow to 172% and 174% of basal levels, respectively. Leptin had no significant effect on hypothalamic noradrenaline overflow, while leptin perfusion induced a significant increase in 5-HIAA overflow from the hypothalamus. This study lends support to the notion of a complex interaction of the leptinergic and brain neurotransmitters involved in the control of feeding and energy metabolism.
Collapse
Affiliation(s)
- Jacqueline A Hastings
- Baker Medical Research Institute, Human Neurotransmitter Laboratory, P.O. Box 6492, Victoria 8008, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Knowledge of the genetic and molecular events underlying the neuroendocrine and behavioural sequelae of the response to stress has advanced rapidly over recent years. The response of an individual to a stressful experience is a polygenic trait, but also involves non-genetic sources of variance. Using a combination of top-down (quantitative trait locus [QTL] and microarray analysis) and bottom-up (gene targeting, transgenesis, antisense technology and random mutagenesis) strategies, we are beginning to dissect the molecular players in the mediation of the stress response. Given the wealth of the data obtained from mouse mutants, this review will primarily focus on the contributions made by transgenesis and knockout studies, but the relative contribution of QTL studies and microarray studies will also be briefly addressed. From these studies it is evident that several neuroendocrine and behavioural alterations induced by stress can be modelled in mouse mutants with alterations in hypothalamic-pituitary-adrenal axis activity or other, extrahypothalamic, neurotransmitter systems known to be involved in the stress response. The relative contribution of these models to understanding the stress response and their limitations will be discussed.
Collapse
Affiliation(s)
- T Steckler
- CNS Discovery, Janssen Research Foundation, Turnhioutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|