1
|
Radin DP, Zhong S, Cerne R, Witkin JM, Lippa A. High Impact AMPAkines Induce a Gq-Protein Coupled Endoplasmic Calcium Release in Cortical Neurons: A Possible Mechanism for Explaining the Toxicity of High Impact AMPAkines. Synapse 2024; 78:e22310. [PMID: 39304968 DOI: 10.1002/syn.22310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) positive allosteric modulators (AMPAkines) have a multitude of promising therapeutic properties. The pharmaceutical development of high impact AMPAkines has, however, been limited by the appearance of calcium-dependent neuronal toxicity and convulsions in vivo. Such toxicity is not observed at exceptionally high concentrations of low impact AMPAkines. Because most AMPAR are somewhat impermeable to calcium, the current study sought to examine the extent to which different mechanisms contribute to the rise in intracellular calcium in the presence of high impact ampakines. In the presence of AMPA alone, cytosolic calcium elevation is shown to be sodium-dependent. In the presence of high impact AMPAkines such as cyclothiazide (CTZ) or CX614, however, AMPAR potentiation also activates an additional mechanism that induces calcium release from endoplasmic reticular (ER) stores. The pathway that connects AMPAR to the ER system involves a Gq-protein, phospholipase Cβ-mediated inositol triphosphate (InsP3) formation, and ultimately stimulation of InsP3-receptors located on the ER. The same linkage was not observed using high concentrations of the low impact AMPAkines, CX516 (Ampalex), and CX717. We also demonstrate that CX614 produces neuronal hyper-excitability at therapeutic doses, whereas the newer generation low impact AMPAkine CX1739 is safe at exceedingly high doses. Although earlier studies have demonstrated a functional linkage between AMPAR and G-proteins, this report demonstrates that in the presence of high impact AMPAkines, AMPAR also couple to a Gq-protein, which triggers a secondary calcium release from the ER and provides insight into the disparate actions of high and low impact AMPAkines.
Collapse
Affiliation(s)
- Daniel P Radin
- RespireRx Pharmaceuticals, Inc., Glen Rock, New Jersey, USA
| | - Sheng Zhong
- RespireRx Pharmaceuticals, Inc., Glen Rock, New Jersey, USA
| | - Rok Cerne
- RespireRx Pharmaceuticals, Inc., Glen Rock, New Jersey, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals, Inc., Glen Rock, New Jersey, USA
| |
Collapse
|
2
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
3
|
Vezzani B, Carinci M, Patergnani S, Pasquin MP, Guarino A, Aziz N, Pinton P, Simonato M, Giorgi C. The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules 2020; 10:E1437. [PMID: 33066071 PMCID: PMC7600410 DOI: 10.3390/biom10101437] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Marianna Carinci
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Matteo P. Pasquin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Annunziata Guarino
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Nimra Aziz
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy
| | - Michele Simonato
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| |
Collapse
|
4
|
Rose CR, Ziemens D, Verkhratsky A. On the special role of NCX in astrocytes: Translating Na +-transients into intracellular Ca 2+ signals. Cell Calcium 2019; 86:102154. [PMID: 31901681 DOI: 10.1016/j.ceca.2019.102154] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
As a solute carrier electrogenic transporter, the sodium/calcium exchanger (NCX1-3/SLC8A1-A3) links the trans-plasmalemmal gradients of sodium and calcium ions (Na+, Ca2+) to the membrane potential of astrocytes. Classically, NCX is considered to serve the export of Ca2+ at the expense of the Na+ gradient, defined as a "forward mode" operation. Forward mode NCX activity contributes to Ca2+ extrusion and thus to the recovery from intracellular Ca2+ signals in astrocytes. The reversal potential of the NCX, owing to its transport stoichiometry of 3 Na+ to 1 Ca2+, is, however, close to the astrocytes' membrane potential and hence even small elevations in the astrocytic Na+ concentration or minor depolarisations switch it into the "reverse mode" (Ca2+ import/Na+ export). Notably, transient Na+ elevations in the millimolar range are induced by uptake of glutamate or GABA into astrocytes and/or by the opening of Na+-permeable ion channels in response to neuronal activity. Activity-related Na+ transients result in NCX reversal, which mediates Ca2+ influx from the extracellular space, thereby generating astrocyte Ca2+ signalling independent from InsP3-mediated release from intracellular stores. Under pathological conditions, reverse NCX promotes cytosolic Ca2+ overload, while dampening Na+ elevations of astrocytes. This review provides an overview on our current knowledge about this fascinating transporter and its special functional role in astrocytes. We shall delineate that Na+-driven, reverse NCX-mediated astrocyte Ca2+ signals are involved neurone-glia interaction. Na+ transients, translated by the NCX into Ca2+ elevations, thereby emerge as a new signalling pathway in astrocytes.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany.
| | - Daniel Ziemens
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| |
Collapse
|
5
|
Hu HJ, Song M. Disrupted Ionic Homeostasis in Ischemic Stroke and New Therapeutic Targets. J Stroke Cerebrovasc Dis 2017; 26:2706-2719. [PMID: 29054733 DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Stroke is a leading cause of long-term disability. All neuroprotectants targeting excitotoxicity have failed to become stroke medications. In order to explore and identify new therapeutic targets for stroke, we here reviewed present studies of ionic transporters and channels that are involved in ischemic brain damage. METHOD We surveyed recent literature from animal experiments and clinical reports in the databases of PubMed and Elsevier ScienceDirect to analyze ionic mechanisms underlying ischemic cell damage and suggest promising ideas for stroke therapy. RESULTS Dysfunction of ionic transporters and disrupted ionic homeostasis are most early changes that underlie ischemic brain injury, thus receiving sustained attention in translational stroke research. The Na+/K+-ATPase, Na+/Ca2+ Exchanger, ionotropic glutamate receptor, acid-sensing ion channels (ASICs), sulfonylurea receptor isoform 1 (SUR1)-regulated NCCa-ATP channels, and transient receptor potential (TRP) channels are critically involved in ischemia-induced cellular degenerating processes such as cytotoxic edema, excitotoxicity, necrosis, apoptosis, and autophagic cell death. Some ionic transporters/channels also act as signalosomes to regulate cell death signaling. For acute stroke treatment, glutamate-mediated excitotoxicity must be interfered within 2 hours after stroke. The SUR1-regulated NCCa-ATP channels, Na+/K+-ATPase, ASICs, and TRP channels have a much longer therapeutic window, providing new therapeutic targets for developing feasible pharmacological treatments toward acute ischemic stroke. CONCLUSION The next generation of stroke therapy can apply a polypharmacology strategy for which drugs are designed to target multiple ion transporters/channels or their interaction with neurotoxic signaling pathways. But a successful translation of neuroprotectants relies on in-depth analyses of cell death mechanisms and suitable animal models resembling human stroke.
Collapse
Affiliation(s)
- Hui-Jie Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingke Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Boscia F, Begum G, Pignataro G, Sirabella R, Cuomo O, Casamassa A, Sun D, Annunziato L. Glial Na(+) -dependent ion transporters in pathophysiological conditions. Glia 2016; 64:1677-97. [PMID: 27458821 DOI: 10.1002/glia.23030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Medical School
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical School.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania, 15213
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
7
|
Cabrera-Pastor A, Taoro L, Llansola M, Felipo V. Roles of the NMDA Receptor and EAAC1 Transporter in the Modulation of Extracellular Glutamate by Low and High Affinity AMPA Receptors in the Cerebellum in Vivo: Differential Alteration in Chronic Hyperammonemia. ACS Chem Neurosci 2015; 6:1913-21. [PMID: 26428532 DOI: 10.1021/acschemneuro.5b00212] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The roles of high- and low-affinity AMPA receptors in modulating extracellular glutamate in the cerebellum remain unclear. Altered glutamatergic neurotransmission is involved in neurological alterations in hyperammonemia, which differently affects high- and low-affinity AMPA receptors. The aims were to assess by in vivo microdialysis (a) the effects of high- and low-affinity AMPA receptor activation on extracellular glutamate in the cerebellum; (b) whether chronic hyperammonemia alters extracellular glutamate modulation by high- and/or low-affinity AMPA receptors; and (c) the contribution of NMDA receptors and EAAC1 transporter to AMPA-induced changes in extracellular glutamate. In control rats, high affinity receptor activation does not affect extracellular glutamate but increases glutamate if NMDA receptors are blocked. Low affinity AMPA receptor activation increases transiently extracellular glutamate followed by reduction below basal levels and return to basal values. The reduction is associated with transient increased membrane expression of EAAC1 and is prevented by blocking NMDA receptors. Blocking NMDA receptors with MK-801 induces a transient increase in extracellular glutamate which is associated with reduced membrane expression of EAAC1 followed by increased membrane expression of the glutamate transporter GLT-1. Chronic hyperammonemia does not affect responses to activation of low affinity AMPA receptors. Activation of high affinity AMPA receptors increases extracellular glutamate in hyperammonemic rats by an NMDA receptor-dependent mechanism. In conclusion, these results show that there is a tightly controlled interplay between AMPA and NMDA receptors and an EAAC1 transporter in controlling extracellular glutamate. Hyperammonemia alters high- but not low-affinity AMPA receptors.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Lucas Taoro
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| |
Collapse
|
8
|
Liu Y, Liu XJ, Sun D. Ion transporters and ischemic mitochondrial dysfunction. Cell Adh Migr 2009; 3:94-8. [PMID: 19276659 PMCID: PMC2675155 DOI: 10.4161/cam.3.1.7516] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/02/2008] [Indexed: 11/19/2022] Open
Abstract
Ischemia-induced ionic imbalance leads to the activation of numerous events including mitochondrial dysfunction and eventual cell death. Dysregulation of mitochondrial Ca(2+) (Ca(2+)(m)) plays a critical role in cell damage under pathological conditions including traumatic brain injury and stroke. High Ca(2+)(m) levels can induce the persistent opening of the mitochondrial permeability transition pore and trigger mitochondrial membrane depolarization, Ca(2+) release, cessation of oxidative phosphorylation, matrix swelling and eventually outer membrane rupture with release of cytochrome c and other apoptogenic proteins. Thus, the dysregulation of mitochondrial Ca(2+) homeostasis is now recognized to play a crucial role in triggering mitochondrial dysfunction and subsequent apoptosis. Recent studies show that some secondary active transport proteins, such as Na(+)-dependent chloride transporter and Na(+)/Ca(2+) exchanger, contribute to ischemia-induced dissipation of ion homeostasis including Ca(2+)(m).
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurological Surgery; University of Wisconsin School of Medicine and Public Health; Madison, WI USA
- Department of Biological Sciences and Biotechnology; Institute of Biomedical Informatics; School of Medicine; Tsinghua University; Beijing, China
| | - Xiang-jun Liu
- Department of Biological Sciences and Biotechnology; Institute of Biomedical Informatics; School of Medicine; Tsinghua University; Beijing, China
| | - Dandan Sun
- Department of Neurological Surgery; University of Wisconsin School of Medicine and Public Health; Madison, WI USA
| |
Collapse
|
9
|
Ammori JB, Zhang W, Newman EA, Mulholland MW. Glutamate-induced calcium transients in rat neurons of the dorsal motor nucleus of the vagus. J Gastrointest Surg 2007; 11:1016-24. [PMID: 17549578 DOI: 10.1007/s11605-007-0176-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The dorsal motor nucleus of the vagus (DMNV) integrates peripheral and central signals and sends efferent output to the gastrointestinal system. Glutamate, the major excitatory neurotransmitter of the central nervous system, causes increases in intracellular calcium in DMNV neurons. The mechanisms by which glutamate activates calcium signaling in the DMNV were examined. DMNV neurons were isolated from neonatal rat brainstem using microdissection and enzymatic digestion. Exposure to glutamate caused intracellular Ca(2+) increments in greater than 80% of cells. Removal of extracellular Ca(2+) abolished intracellular Ca(2+) transients. Kynurenic acid, a nonspecific glutamate receptor antagonist, abolished intracellular Ca(2+) transients. Exposure to glutamate while blocking AMPA receptors with GYKI 52466 abolished the Ca(2+) response. Exposure to (S)AMPA, an AMPA receptor agonist, caused intracellular Ca(2+) increments in 97% of cells. Activation and antagonism of NMDA and kainate receptors produced no changes compared to control experiments. NiCl, a nonspecific Ca(2+) channel blocker, abolished intracellular Ca(2+) transients. Blocking T-type Ca(2+) channels with mibefradil abolished the Ca(2+) response in 76% of cells. Blockade of L-type and N-type Ca(2+) channels did not affect the Ca(2+) response. Glutamate mediates intracellular Ca(2+) currents in DMNV neurons via the AMPA receptor and T-type Ca(2+) channels, allowing influx of extracellular Ca(2+).
Collapse
Affiliation(s)
- John B Ammori
- Department of Surgery, The University of Michigan Medical Center, 2101 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109-0346, USA
| | | | | | | |
Collapse
|
10
|
Werry EL, Liu GJ, Bennett MR. Glutamate-stimulated ATP release from spinal cord astrocytes is potentiated by substance P. J Neurochem 2006; 99:924-36. [PMID: 17076659 DOI: 10.1111/j.1471-4159.2006.04133.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ATP has recently emerged as a key molecule mediating pathological pain. The aim of this study was to examine whether spinal cord astrocytes could be a source of ATP in response to the nociceptive neurotransmitters glutamate and substance P. Glutamate stimulated ATP release from these astrocytes and this release was greatly potentiated by substance P, even though substance P alone did not elicit ATP release. Substance P also potentiated glutamate-induced inward currents, but did not cause such currents alone. When glutamate was applied alone it acted exclusively through alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptors to stimulate Ca(2+) influx-dependent ATP release. However, when substance P was co-applied with glutamate, ATP release could be elicited by activation of NMDA and metabotropic glutamate receptors. Activation of neurokinin receptor subtypes, protein kinase C and phospholipases A(2), C and D were needed for substance P to bring about its effects. These results suggest that astrocytes may be a major source of ATP in the spinal cord on activation of nerve fibres that release substance P and glutamate.
Collapse
Affiliation(s)
- Eryn L Werry
- Neurobiology Laboratory, Discipline of Physiology, Bosch Institute, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
11
|
Platel JC, Boisseau S, Dupuis A, Brocard J, Poupard A, Savasta M, Villaz M, Albrieux M. Na+ channel-mediated Ca2+ entry leads to glutamate secretion in mouse neocortical preplate. Proc Natl Acad Sci U S A 2005; 102:19174-9. [PMID: 16357207 PMCID: PMC1323152 DOI: 10.1073/pnas.0504540102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Before synaptogenesis, early excitability implicating voltage-dependent and transmitter-activated channels is known to be crucial for neuronal development. We previously showed that preplate (PP) neurons of the mouse neocortex express functional Na(+) channels as early as embryonic day 12. In this study, we investigated the role of these Na(+) channels in signaling during early development. In the neocortex of embryonic-day-13 mice, activation of Na(+) channels with veratridine induced a large Ca(2+) response throughout the neocortex, even in cell populations that lack the Na(+) channel. This Na(+)-dependent Ca(2+) activity requires external Ca(2+) and is completely blocked by inhibitors of Na(+)/Ca(2+) exchangers. Moreover, veratridine-induced Ca(2+) increase coincides with a burst of exocytosis in the PP. In parallel, we show that Na(+) channel stimulation enhances glutamate secretion in the neocortical wall. Released glutamate triggers further Ca(2+) response in PP and ventricular zone, as indicated by the decreased response to veratridine in the presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and NMDA-receptor inhibitors. Therefore, the combined activation of the Na(+) channel and the Na(+)/Ca(2+) exchanger triggers Ca(2+) signaling in the PP neurons, leading to glutamate secretion, which amplifies the signal and serves as an autocrine/paracrine transmitter before functional synapses are formed in the neocortex. Membrane depolarization induced by glycine receptors activation could be one physiological activator of this Na(+) channel-dependent pathway.
Collapse
Affiliation(s)
- J-C Platel
- Laboratoire Canaux Ioniques et Signalisation, Institut National de la Santé et de la Recherche Médicale E9931, Département de Réponse et Dynamique Cellulaires-Commissariat à l'Energie Atomique, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Caccamo D, Campisi A, Currò M, Bramanti V, Tringali M, Li Volti G, Vanella A, Ientile R. Antioxidant Treatment Inhibited Glutamate-Evoked NF-κB Activation in Primary Astroglial Cell Cultures. Neurotoxicology 2005; 26:915-21. [PMID: 15894376 DOI: 10.1016/j.neuro.2005.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 01/24/2005] [Accepted: 01/27/2005] [Indexed: 11/16/2022]
Abstract
In glial cells, glutamate exposure causes alterations in cell redox status, mainly mediated by glutathione depletion and reactive oxygen species generation. These effects finally lead to astrocyte dysfunction which contributes to the pathogenesis of several neurological disorders. This study was aimed to investigate the involvement of the NF-kappaB pathway in oxidative stress induced by glutamate exposure in primary cultures of astrocytes. Further, we evaluated the power of the antioxidants genistein (0.1-10 microM) and IRFI 016 (20-80 microM), a synthetic tocopherol analogue, compared with glutathione ethyl ester (10-50 microM) and cysteamine-HCl (100-500 microM), to antagonize the effects elicited by glutamate (500 microM). Alterations of cell redox status were reduced, in a dose-dependent way, by antioxidants; in particular, 80 microM IRFI 016 and 10 microM genistein almost completely restored glutathione basal levels and significantly diminished ROS production, as well as 100 microM glutathione ethyl ester. These antioxidant effects were stronger than those caused by 500 microM cysteamine-HCl. Further, glutamate promoted the up-regulation of p50 and p65 NF-kappaB subunits and their nuclear translocation, as revealed by Western blot analysis and electrophoretic mobility shift assay of both subunits. The activation of p50 and p65 NF-kappaB subunits induced by glutamate exposure was significantly reduced by IRFI 016, acting in a dose-dependent manner. Altogether, these data confirm that the NF-kappaB pathway is involved in cell response to oxidative stress induced by glutamate injury in primary astrocyte cultures, and suggest that the use of antioxidants, such as IRFI 016, may be a helpful pharmacological strategy for neuroprotection.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Via Consolare Valeria, Policlinico Universitario, 98125 Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim YT, Park YJ, Jung SY, Seo WS, Suh CK. Effects of Na+-Ca2+ exchanger activity on the alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-induced Ca2+ influx in cerebellar Purkinje neurons. Neuroscience 2005; 131:589-99. [PMID: 15730865 DOI: 10.1016/j.neuroscience.2004.11.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2004] [Indexed: 11/18/2022]
Abstract
Variations in intracellular calcium activity ([Ca2+]i) play crucial roles in information processing in Purkinje neurons such as synaptic plasticity. Although Na+-Ca2+ exchanger (NCX) has been shown to participate in the regulation of homeostasis and secretion in neuronal cells, the physiological role of NCX in Purkinje neurons, such as a role in cerebellar synaptic plasticity, is not well understood. NCX in acutely dissociated rat Purkinje neurons was identified by double staining with anti-calbindin D-28k antibody and anti-NCX antibody. The physiological activity of NCX was examined by measuring transient intracellular Ca2+ changes resulting from the Ca2+ influx via reverse mode of NCX (with 0 mM Na+/2.5 mM Ca2+ solutions) and the efflux via the forward mode of NCX (with 140 mM Na+/0 mM Ca2+ solutions). This transient increase in Ca2+ concentration was not elicited in the cells pretreated with NCX antisense oligodeoxynucleotides. And the Ca2+ influx resulting from the reverse mode of NCX was significantly reduced by 2-[2-[4-(4-nitrobenyloxy) phenyl] ethyl] isothiourea methanesulfonate, while the Ca2+ efflux via forward mode was inhibited by bepridil. The physiological role of NCX in synaptic function was studied by measuring Ca2+ transients induced by alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate (AMPA) receptor activation. This AMPA-evoked response was decreased with the inhibition of NCX forward mode and also, to less degree, with the inhibition of reverse mode. In antisense oligodeoxynucleotides pretreated cells, the AMPA-evoked response was also reduced, as was the case in NCX-inhibitor treated cells. The inhibition of NCX activity had depressant effects on Ca2+ transients induced by AMPA receptor activation. These results suggest that NCX plays a physiological role in modulating the activity of cerebellar Purkinje neurons, such as synaptic plasticity, via interaction with AMPA receptors in Purkinje neurons.
Collapse
Affiliation(s)
- Y T Kim
- Department of Physiology and Biophysics, College of Medicine, Inha University, 253, Yonghyun-Dong, Nam-Ku, Incheon, 402-751 Korea
| | | | | | | | | |
Collapse
|
14
|
Caccamo D, Campisi A, Marini H, Adamo EB, Li Volti G, Squadrito F, Ientile R. Glutamate promotes NF-κB pathway in primary astrocytes: protective effects of IRFI 016, a synthetic vitamin E analogue. Exp Neurol 2005; 193:377-83. [PMID: 15869940 DOI: 10.1016/j.expneurol.2005.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 01/11/2005] [Accepted: 01/19/2005] [Indexed: 11/22/2022]
Abstract
Oxidative stress has been implicated in several neurodegenerative diseases affecting both neuronal and glial cells. The aim of this study was to investigate the involvement of reactive oxygen species in glutamate-evoked activation of NF-kappaB in primary astrocytes. A prolonged exposure to glutamate (24 h) caused a depletion of intracellular glutathione that, in astroglial cells, has been considered a biochemical change typical of early astrocyte dysfunction, leading to cell alterations occurring in the gliosis. These effects were initiated by AMPA/KA receptor activation and almost completely blocked by anti-oxidants. Indeed, we provide evidence that the incubation of primary astrocytes with a hydrophilic derivative of tocopherol, such as IRFI 016, was useful to reduce glutamate-induced oxidative effects. This agent also reduced in a dose-dependent manner the nuclear translocation of both p50 and p65 subunits of NF-kappaB. Altogether, these data confirm that GSH content plays a pivotal role to determine oxidative response to glutamate injury in primary astrocyte cultures and that NF-kappaB pathway is involved in this response. Furthermore, the positive effects obtained by IRFI 016 to prevent nuclear translocation of NF-kappaB may suggest new pharmacological strategies for antioxidant therapy and neuroprotection.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Via Consolare Valeria, Policlinico Universitario, 98125 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Lenart B, Kintner DB, Shull GE, Sun D. Na-K-Cl cotransporter-mediated intracellular Na+ accumulation affects Ca2+ signaling in astrocytes in an in vitro ischemic model. J Neurosci 2005; 24:9585-97. [PMID: 15509746 PMCID: PMC6730155 DOI: 10.1523/jneurosci.2569-04.2004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Na-K-Cl cotransporter isoform 1 (NKCC1) plays an important role in maintenance of intracellular Na+, K+, and Cl- levels in astrocytes. We propose that NKCC1 may contribute to perturbations of ionic homeostasis in astrocytes under ischemic conditions. After 3-8 hr of oxygen and glucose deprivation (OGD), NKCC1-mediated 86Rb influx was significantly increased in astrocytes from NKCC1 wild-type (NKCC1+/+) and heterozygous mutant (NKCC1+/-) mice. Phosphorylated NKCC1 protein was increased in NKCC1+/+ astrocytes at 2 hr of OGD. Two hours of OGD and 1 hr of reoxygenation (OGD/REOX) triggered an 3.6-fold increase in intracellular Na+ concentration ([Na+]i) in NKCC1+/+ astrocytes. Inhibition of NKCC1 activity by bumetanide or ablation of the NKCC1 gene significantly attenuated the rise in [Na+]i. Moreover, NKCC1+/+ astrocytes swelled by 10-30% during 20-60 min of OGD. Either genetic ablation of NKCC1 or inhibition of NKCC1 by bumetanide-attenuated OGD-mediated swelling. An NKCC1-mediated increase in [Na+]i may subsequently affect Ca2+ signaling through the Na+/Ca2+ exchanger (NCX). A rise in [Ca2+]i was detected after OGD/REOX in the presence of a sarcoplasmic-endoplasmic reticulum (ER) Ca2+-ATPase inhibitor thapsigargin. Moreover, OGD/REOX led to a significant increase in Ca2+ release from ER Ca2+ stores. Furthermore, KB-R7943 (2-[2-[4(4-nitrobenzyloxy)phenyl]ethyl]isothiourea mesylate), an inhibitor of reverse-mode operation of NCX, abolished the OGD/REOX-induced enhancement in filling of ER Ca2+ stores. OGD/REOX-mediated Ca2+ accumulation in ER Ca2+ stores was absent when NKCC1 activity was ablated or pharmacologically inhibited. These findings imply that stimulation of NKCC1 activity leads to Na+ accumulation after OGD/REOX and that subsequent reverse-mode operation of NCX contributes to increased Ca2+ accumulation by intracellular Ca2+ stores.
Collapse
Affiliation(s)
- Brett Lenart
- Department of Neurosurgery, University of Wisconsin Medical School, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
16
|
Osborne NN, Wood JPM, Chidlow G, Casson R, DeSantis L, Schmidt KG. Effectiveness of levobetaxolol and timolol at blunting retinal ischaemia is related to their calcium and sodium blocking activities: relevance to glaucoma. Brain Res Bull 2004; 62:525-8. [PMID: 15036567 DOI: 10.1016/s0361-9230(03)00070-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 02/17/2003] [Indexed: 01/04/2023]
Abstract
Glaucoma is a chronic optic neuropathy in which retinal ganglion cells die over a number of years. The initiation of the disease and its progression may involve an ischaemic-like insult to the ganglion cell axons caused by an alteration in the quality of blood flow. Thus, to effectively treat glaucoma it may be necessary to counteract the ischaemic-like insult to the region of the optic nerve head. Studies on the isolated optic nerve suggest that substances that reduce the influx of sodium would be particularly effective neuroprotectants. Significantly, of the presently used antiglaucoma substances, only beta-blockers can reduce sodium influx into cells. Moreover, they also reduce the influx of calcium and this would be expected to benefit the survival of insulted neurones. Betaxolol is the most effective antiglaucoma drug at reducing sodium/calcium influx. Our electroretinographic data indicated that topical application of levobetaxolol to rats attenuated the effects of ischaemia/reperfusion injury. Timolol was also effective but to a lesser extent. Based on these data we conclude that beta-blockers may be able to blunt ganglion cell death in glaucoma, and that levobetaxolol may be a more effective neuroprotectant than timolol because of its greater capacity to block sodium and calcium influx.
Collapse
Affiliation(s)
- N N Osborne
- Nuffield Laboratory of Ophthalmology, Oxford University, Walton Street, Oxford OX2 6AW, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Oliveira A, Hodges H, Rezaie P. Excitotoxic lesioning of the rat basal forebrain with S-AMPA: consequent mineralization and associated glial response. Exp Neurol 2003; 179:127-38. [PMID: 12618119 DOI: 10.1016/s0014-4886(02)00012-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regional depositions of calcium within the basal ganglia, cortex, cerebellum, and white matter and at perivascular sites have been observed in several pathological conditions. These generally indicate signs of ongoing apoptosis or necrotic processes, whereby the activation of glutamate receptors causes a rise in intracellular calcium levels leading to mineralization of neurons, and ultimately to cell death. The selective degeneration of cholinergic neurons in the basal forebrain is a major neuropathological component of Alzheimer's disease, and may result in abnormal deposition of calcium. In experimental models, selective lesions of the basal forebrain can be induced by intraparenchymal infusions of excito- or immunotoxins targeting cholinergic neurons. Excitotoxic lesions are often accompanied by calcium deposition within affected areas. In a previous study we also noted the presence of unusual deposition in areas close to the site of injections following unilateral S-AMPA-induced lesions of the basal forebrain (T. Perry, H. Hodges, and J. A. Gray, 2001, Brain Res. Bull. 54, 29-48). In this paper, we have characterized these deposits histologically and evaluated the microglial (CD11b) and astrocytic (GFAP) responses at 8 and 16 weeks following lesioning of the nucleus basalis magnocellularis with S-AMPA. The resulting deposits were heterogeneous in morphology and composed primarily of calcium. Small granular deposits were detected around blood vessels, whereas larger calcospherites were situated within the parenchyma. These deposits were more widely dispersed at 16 weeks postlesioning, affected neighboring nuclei, and displayed a progressive increase in size and frequency of occurrence. However, calcification within these regions was differentially associated with microglial and astrocytic reactivity at the two time points. Both microglial and astrocytic responses were pronounced at 8 weeks, whereas at 16 weeks, astrocytic reactivity prevailed and the microglial response was markedly attenuated. Importantly, the pattern of reactivity for microglia detected at 8 weeks was specifically localized to vulnerable nucleated areas prior to their substantial accumulation of calcium deposits, which was clearly evident by 16 weeks. We suggest that the initial microglial response could be used as a selective predictor of tissue necrosis and subsequent calcification, and that astrocytes, which form a glial scar in the affected tissues, may contribute toward the buildup of calcium deposits. The functional relevance of these findings is discussed.
Collapse
Affiliation(s)
- Alcyr Oliveira
- Department of Psychology, Institute of Psychiatry, King's College London, DeCrespigny Park, London, UK.
| | | | | |
Collapse
|
18
|
Zhang Q, Hu B, Sun S, Tong E. Induction of increased intracellular calcium in astrocytes by glutamate through activating NMDA and AMPA receptors. Curr Med Sci 2003; 23:254-7. [PMID: 14526426 DOI: 10.1007/bf02829506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Indexed: 10/19/2022]
Abstract
To study the effect of glutamate on the intracellular calcium signal of pure cultured rat astrocytes and the role of NMDA and AMPA receptors in the procedure, the change of calcium signal was investigated by monitoring the fluctuation of intracellular Ca2+ concentration ([Ca2+]i) on the basis of Fura-2 single cell fluorescent ratio (F345/F380). The changes in the effect of glutamate on the intracellular calcium signal were observed after blockage of NMDA and (or) AMPA receptors. It was found that L-glutamate could induce an increased [Ca2+]i in most of the cells in concentration- and time-dependent manner. D-(-)-2-amino-5-phosphonopentanoic acid (D-AP-5, a selective antagonist of the NMDA receptor) and 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX, a selective antagonist of the AMPA receptor) could abolish the effects of NMDA and AMPA respectively. The treatment of D-AP-5 and CNQX simultaneously or respectively could attenuate the effect of L-glutamate at varying degrees. All these indicated that glutamate could modulate intracellular Ca2+ of pure cultured rat astrocytes through different pathways. The activation of NMDA and AMPA receptors took part in the complex mechanisms.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030
| | | | | | | |
Collapse
|