1
|
Colangelo AM, Cirillo G, Alberghina L, Papa M, Westerhoff HV. Neural plasticity and adult neurogenesis: the deep biology perspective. Neural Regen Res 2019; 14:201-205. [PMID: 30530998 PMCID: PMC6301164 DOI: 10.4103/1673-5374.244775] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The recognition that neurogenesis does not stop with adolescence has spun off research towards the reduction of brain disorders by enhancing brain regeneration. Adult neurogenesis is one of the tougher problems of developmental biology as it requires the generation of complex intracellular and pericellular anatomies, amidst the danger of neuroinflammation. We here review how a multitude of regulatory pathways optimized for early neurogenesis has to be revamped into a new choreography of time dependencies. Distinct pathways need to be regulated, ranging from neural growth factor induced differentiation to mitochondrial bioenergetics, reactive oxygen metabolism, and apoptosis. Requiring much Gibbs energy consumption, brain depends on aerobic energy metabolism, hence on mitochondrial activity. Mitochondrial fission and fusion, movement and perhaps even mitoptosis, thereby come into play. All these network processes are interlinked and involve a plethora of molecules. We recommend a deep thinking approach to adult neurobiology.
Collapse
Affiliation(s)
- Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Dept. of Biotechnology and Biosciences; SYSBIO Centre of Systems Biology; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Giovanni Cirillo
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Lilia Alberghina
- SYSBIO Centre of Systems Biology; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Michele Papa
- SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milano; Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, University of Amsterdam, Molecular Cell Physiology, VU University Amsterdam, and Infrastructure Systems Biology at NL (ISBE.NL), Amsterdam, NL, and Systems Biology, School for Chemical Engineering and Analytical Science, University of Manchester, UK
| |
Collapse
|
2
|
Martorana F, Gaglio D, Bianco MR, Aprea F, Virtuoso A, Bonanomi M, Alberghina L, Papa M, Colangelo AM. Differentiation by nerve growth factor (NGF) involves mechanisms of crosstalk between energy homeostasis and mitochondrial remodeling. Cell Death Dis 2018. [PMID: 29523844 PMCID: PMC5844953 DOI: 10.1038/s41419-018-0429-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuronal differentiation involves extensive modification of biochemical and morphological properties to meet novel functional requirements. Reorganization of the mitochondrial network to match the higher energy demand plays a pivotal role in this process. Mechanisms of neuronal differentiation in response to nerve growth factor (NGF) have been largely characterized in terms of signaling, however, little is known about its impact on mitochondrial remodeling and metabolic function. In this work, we show that NGF-induced differentiation requires the activation of autophagy mediated by Atg9b and Ambra1, as it is disrupted by their genetic knockdown and by autophagy blockers. NGF differentiation involves the induction of P-AMPK and P-CaMK, and is prevented by their pharmacological inhibition. These molecular events correlate with modifications of energy and redox homeostasis, as determined by ATP and NADPH changes, higher oxygen consumption (OCR) and ROS production. Our data indicate that autophagy aims to clear out exhausted mitochondria, as determined by enhanced localization of p62 and Lysotracker-red to mitochondria. In addition, we newly demonstrate that NGF differentiation is accompanied by increased mitochondrial remodeling involving higher levels of fission (P-Drp1) and fusion proteins (Opa1 and Mfn2), as well as induction of Sirt3 and the transcription factors mtTFA and PPARγ, which regulate mitochondria biogenesis and metabolism to sustain increased mitochondrial mass, potential, and bioenergetics. Overall, our data indicate a new NGF-dependent mechanism involving mitophagy and extensive mitochondrial remodeling, which plays a key role in both neurogenesis and nerve regeneration.
Collapse
Affiliation(s)
- Francesca Martorana
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy.,SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Daniela Gaglio
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, MI, Italy
| | - Maria Rosaria Bianco
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Federica Aprea
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy.,SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Assunta Virtuoso
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Marcella Bonanomi
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy.,SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy.,NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Michele Papa
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy.,Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy. .,SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy. .,NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
3
|
Zhou X, Chen R, Yu Z, Li R, Li J, Zhao X, Song S, Liu J, Huang G. Dichloroacetate restores drug sensitivity in paclitaxel-resistant cells by inducing citric acid accumulation. Mol Cancer 2015; 14:63. [PMID: 25888721 PMCID: PMC4379549 DOI: 10.1186/s12943-015-0331-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/03/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The Warburg effect describes the increased reliance of tumor cells on glycolysis for ATP generation. Mitochondrial respiratory defect is thought to be an important factor leading to the Warburg effect in some types of tumor cells. Consequently, there is growing interest in developing anti-cancer drugs that target mitochondria. One example is dichloroacetate (DCA) that stimulates mitochondria through inhibition of pyruvate dehydrogenase kinase. METHODS We investigated the anti-cancer activity of DCA using biochemical and isotopic tracing methods. RESULTS We observed that paclitaxel-resistant cells contained decreased levels of citric acid and sustained mitochondrial respiratory defect. DCA specifically acted on cells with mitochondrial respiratory defect to reverse paclitaxel resistance. DCA could not effectively activate oxidative respiration in drug-resistant cells, but induced higher levels of citrate accumulation, which led to inhibition of glycolysis and inactivation of P-glycoprotein. CONCLUSIONS The abilityof DCA to target cells with mitochondrial respiratory defect and restore paclitaxel sensitivity by inducing citrate accumulation supports further preclinical development.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Zhenhai Yu
- School of biomedical engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Rui Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Jiajin Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China. .,Department of Cancer Metabolism, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School Medicine, Shanghai, China.
| |
Collapse
|
4
|
O'Brien RN, Shen Z, Tachikawa K, Lee PA, Briggs SP. Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals post-transcriptional regulation of proteins required for ES cell self-renewal. Mol Cell Proteomics 2010; 9:2238-51. [PMID: 20513800 DOI: 10.1074/mcp.m110.000281] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Embryonic stem cells and embryonal carcinoma cells share two key characteristics: pluripotency (the ability to differentiate into endoderm, ectoderm, and mesoderm) and self-renewal (the ability to grow without change in an untransformed, euploid state). Much has been done to identify and characterize transcription factors that are necessary or sufficient to maintain these characteristics. Oct-4 and Nanog are necessary to maintain pluripotency; they are down-regulated at the mRNA level by differentiation. There may be additional regulatory genes whose mRNA levels are unchanged but whose proteins are destabilized during differentiation. We generated proteome-wide, quantitative profiles of ES and embryonal carcinoma cells during differentiation, replicating a microarray-based study by Aiba et al. (Aiba, K., Sharov, A. A., Carter, M. G., Foroni, C., Vescovi, A. L., and Ko, M. S. (2006) Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells. Stem Cells 24, 889-895) who triggered differentiation by treatment with 1 μM all-trans-retinoic acid. We identified several proteins whose levels decreased during differentiation in both cell types but whose mRNA levels were unchanged. We confirmed several of these cases by RT-PCR and Western blot. Racgap1 (also known as mgcRacgap) was particularly interesting because it is required for viability of preimplantation embryos and hematopoietic stem cells, and it is also required for differentiation. To confirm our observation that RACGAP-1 declines during retinoic acid-mediated differentiation, we used multiple reaction monitoring, a targeted mass spectrometry-based quantitation method, and determined that RACGAP-1 levels decline by half during retinoic acid-mediated differentiation. We knocked down Racgap-1 mRNA levels using a panel of five shRNAs. This resulted in a loss of self-renewal that correlated with the level of knockdown. We conclude that RACGAP-1 is post-transcriptionally regulated during blastocyst development to enable differentiation by inhibiting ES cell self-renewal.
Collapse
Affiliation(s)
- Robert N O'Brien
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0380, USA
| | | | | | | | | |
Collapse
|
5
|
Protective effect of serotonin derivatives on glucose-induced damage in PC12 rat pheochromocytoma cells. Br J Nutr 2009; 103:25-31. [DOI: 10.1017/s0007114509991486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative damage is believed to be associated with ageing, cancer and several degenerative diseases. Previous reports have shown that safflower-seed extract and its major antioxidant constituents, serotonin hydroxycinnamic amides, possess a powerful free radical-scavenging and antioxidative activity, paying particular attention to atherosclerotic reactive oxygen species (ROS)-related dysfunctions. In the present report, we examined a still unknown cell-based mechanism of serotonin derivatives against ROS-related neuronal damage, phenomena that represent a crucial event in neurodegenerative diseases. Serotonin derivatives N-(p-coumaroyl)serotonin and N-feruloylserotonin exerted a protective effect on high glucose-induced cell death, inhibited the activation of caspase-3 which represents the last and crucial step within the cascade of events leading to apoptosis, and inhibited the overproduction of the mitochondrial superoxide, which represents the most dangerous radical produced by hyperglycaemia, by acting as scavengers of the superoxide radical. In addition, serotonin derivative concentration inside the cells and inside the mitochondria was increased in a time-dependent manner. Since recent studies support the assertion that mitochondrial dysfunctions related to oxidative damage are the major contributors to neurodegenerative diseases, these preliminary cell-based results identify a mitochondria-targeted antioxidant property of serotonin derivatives that could represent a novel therapeutic approach against the neuronal disorders and complications related to ROS.
Collapse
|
6
|
Arboleda G, Morales LC, Benítez B, Arboleda H. Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration. ACTA ACUST UNITED AC 2008; 59:333-46. [PMID: 18996148 DOI: 10.1016/j.brainresrev.2008.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 12/14/2022]
Abstract
The present review explores the role of ceramides in neuronal apoptosis, as well as the recent discovery of the signaling pathways involved in this process placing particular emphasis on the correlation between cellular metabolism and neuronal death. Endogenous levels of ceramides are increased following various pro-apoptotic stimuli which have been identified as potential causes of chronic and acute neurodegenerative diseases. Ceramides induce changes in multiple enzymes and cell signaling components. The early inhibition of the neuronal survival pathway regulated by phosphatidil-inositol-3-kinase/protein kinase B or AKT mediated by ceramide may be a relevant early event in the decision of neuronal survival/death. It may perturb several molecular and metabolic functions. In particular it might decrease glycolysis through rapid modulation of hexokinase activity. This would in turn generate limited amounts of mitochondrial substrates leading to mitochondrial dysfunction and neuronal apoptosis. Subtle and early metabolic alterations caused by inhibition of the PI3K/AKT pathway mediated by ceramide may potentially work with genes associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Together they may be determinant steps in downstream events leading to neuronal apoptosis. Therefore, reinforcement of the PI3K/AKT pathway could constitute an important neuroprotective strategy.
Collapse
Affiliation(s)
- Gonzalo Arboleda
- Grupo de Neurociencias, Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | | | |
Collapse
|
7
|
Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 2008; 3:e1451. [PMID: 18197261 PMCID: PMC2180192 DOI: 10.1371/journal.pone.0001451] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 12/20/2007] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is a widespread interest in developing renewable sources of islet-replacement tissue for type I diabetes mellitus. Human mesenchymal cells isolated from the Wharton's jelly of the umbilical cord (HUMSCs), which can be easily obtained and processed compared with embryonic and bone marrow stem cells, possess stem cell properties. HUMSCs may be a valuable source for the generation of islets. METHODOLOGY AND PRINCIPAL FINDINGS HUMSCs were induced to transform into islet-like cell clusters in vitro through stepwise culturing in neuron-conditioned medium. To assess the functional stability of the islet-like cell clusters in vivo, these cell clusters were transplanted into the liver of streptozotocin-induced diabetic rats via laparotomy. Glucose tolerance was measured on week 12 after transplantation accompanied with immunohistochemistry and electron microscopy analysis. These islet-like cell clusters were shown to contain human C-peptide and release human insulin in response to physiological glucose levels. Real-time RT-PCR detected the expressions of insulin and other pancreatic beta-cell-related genes (Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2) in these islet-like cell clusters. The hyperglycemia and glucose intolerance in streptozotocin-induced diabetic rats was significantly alleviated after xenotransplantation of islet-like cell clusters, without the use of immunosuppressants. In addition to the existence of islet-like cell clusters in the liver, some special fused liver cells were also found, which characterized by human insulin and nuclei-positive staining and possessing secretory granules. CONCLUSIONS AND SIGNIFICANCE In this study, we successfully differentiate HUMSCs into mature islet-like cell clusters, and these islet-like cell clusters possess insulin-producing ability in vitro and in vivo. HUMSCs in Wharton's Jelly of the umbilical cord seem to be the preferential source of stem cells to convert into insulin-producing cells, because of the large potential donor pool, its rapid availability, no risk of discomfort for the donor, and low risk of rejection.
Collapse
|
8
|
Dwyer DS, Dickson A. Neuroprotection and Enhancement of Neurite Outgrowth With Small Molecular Weight Compounds From Screens of Chemical Libraries. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 77:247-89. [PMID: 17178477 DOI: 10.1016/s0074-7742(06)77008-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Donard S Dwyer
- Department of Psychiatry, Louisiana State University Health Sciences Center Shreveport, Louisiana 71130, USA
| | | |
Collapse
|
9
|
Sharma NS, Shikhanovich R, Schloss R, Yarmush ML. Sodium butyrate-treated embryonic stem cells yield hepatocyte-like cells expressing a glycolytic phenotype. Biotechnol Bioeng 2006; 94:1053-63. [PMID: 16604521 DOI: 10.1002/bit.20936] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Embryonic stem cells serve as a promising technology to obtain specific cell types for a number of biomedical applications. Because traditional techniques, such as embryoid body formation result in a wide array of differentiated cells such as hepatic, neuronal, and cardiac lineages, strategies have been utilized which favor cell-specific differentiation to generate more uniformity. In the present study, we have investigated the use of sodium butyrate in a monolayer culture configuration to mediate hepatocyte differentiation of murine embryonic stem cells. Several functional assays used to characterize hepatocyte function (viz. urea secretion, intracellular albumin content, cytokeratin 18, and glycogen staining) were used to analyze the differentiating cell population, suggesting the presence of an enriched population of hepatocyte-like cells. Since mature hepatocytes mediate energy metabolism predominantly through oxidative means as opposed to hepatocyte precursors, which are primarily glycolytic, we have performed a kinetic analysis of glycolytic and functional capacity to characterize the differentiated cells. In conjunction with mitochondrial mass and activity measurements, we show that Na-butyrate-mediated differentiated cells mediate energy metabolism predominantly through glycolysis. This metabolic and mitochondrial characterization can assist in evaluating stem cell differentiation and may prove useful in identifying key regulatory molecules in mediating further differentiation.
Collapse
Affiliation(s)
- N S Sharma
- Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
10
|
Yamada K, Brink I, Bissé E, Epting T, Engelhardt R. Factors influencing [F-18] 2-fluoro-2-deoxy-D-glucose (F-18 FDG) uptake in melanoma cells: the role of proliferation rate, viability, glucose transporter expression and hexokinase activity. J Dermatol 2005; 32:316-34. [PMID: 16043894 DOI: 10.1111/j.1346-8138.2005.tb00903.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 01/11/2005] [Indexed: 11/26/2022]
Abstract
Using human (SK-MEL 23, SK-MEL 24 and G361) and murine (B16) melanoma cell lines, the coregulatory potential of the uptake of the positron emission tomography (PET) tracer, [Fluorine-18] 2-fluoro-2-deoxy-D-glucose (F-18 FDG) has been investigated in relationship to tumor characteristics. Comparative studies among the four melanoma cell lines demonstrated that the lowest FDG uptake in SK-MEL 24 corresponded strongly to the data for DT (population doubling time) and MTT (tetrazolium salt) cell viability as well as hexokinase (HK) activity, but was not related to the glucose transporter 1 (GLUT 1) expression level. Furthermore, the FDG uptake in each melanoma cell line measured by cell cycle kinetics was significantly positively correlated to both the proliferation index (PI=S/G2M phase fractions) and the cell viability, though with one exception relating to the PI of the lowest FDG uptake cell line, SK-MEL 24. No positive correlation was found between the expression of GLUT 1 and FDG uptake in any individual cell line. However, the HK activities in SK-MEL 23 and 24 showed considerable positive relationships with FDG uptake. Our present study suggests that both the proliferation rate and the cell viability of melanoma cells may be key factors for FDG uptake and that HK activity, rather than GLUT 1 expression, seems to be a major factor.
Collapse
Affiliation(s)
- Kiyoshi Yamada
- Department of Internal Medicine 1, Hematology/Oncology, Freiburg University Medical Center, Hugstetter str. 55, 79106 Freiburg i Br., Germany
| | | | | | | | | |
Collapse
|
11
|
Mautes AEM, Liu J, Brandewiede J, Manville J, Snyder E, Schachner M. Regional energy metabolism following short-term neural stem cell transplantation into the injured spinal cord. J Mol Neurosci 2005; 24:227-36. [PMID: 15456936 DOI: 10.1385/jmn:24:2:227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 01/04/2004] [Indexed: 11/11/2022]
Abstract
Stem cells have been shown to partly restore central nervous system (CNS) function after transplantation into the injured CNS. However, little is known about their influence on acute energy metabolism after spinal cord injury. The present study was designed to analyze regional changes in energy metabolites. Young adult mice were subjected to laminectomy with subsequent hemisection at the L2/3 vertebral level. Immediately thereafter a stable clone of murine neural stem cells (NSCs) was injected into the lesion site. After 4 and 24 h, spinal cords were removed and ATP, glucose, and lactate were analyzed by a bioluminescence approach in serial sections and compared to a laminectomized (intact control), hemisected-only or hemisected vehicle-injected control group. At both time points, ATP content of the hemisected group in the tissue segments adjacent to the lesion was increased when compared to the laminectomized control. At the lesion site ATP content decreased significantly at 24 h in the cell-transplanted group when compared to the laminectomized control group. Glucose content decreased at the lesion site and in segments adjacent to the lesion at both time points and in all experimental groups when compared to the laminectomized control group. Lactate content decreased significantly at 4 h in the caudal segments of the vehicle-injected group and in both adjacent segments of the transplanted group when compared to the laminectomized control. At the lesion site, lactate content decreased significantly at 4 and 24 h in the cell-transplanted group, when compared to the laminectomized control. The area of ATP decline at the lesion site 24 h postinjury was significantly lower in the vehicle control group as compared to the hemisected or transplanted group. The decrease in glucose combined with an increase in ATP in the lesion-adjacent segments may indicate that the tissue responds with an increased use of glucose to support itself with sufficient ATP. The significant decrease in glucose, lactate, and ATP in the cell-transplanted group at 24 h may indicate a high metabolic need of the stem cells. The lower area of ATP decline 24 h after vehicle administration suggests that the vehicle solution washes out toxic mediators, thus ameliorating hemisection-dependent secondary tissue damage.
Collapse
Affiliation(s)
- Angelika E M Mautes
- Neurochirurgisches Forschungslabor Universität des Saarlandes, Homburg/Saar, Universität Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Hori Y, Gu X, Xie X, Kim SK. Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med 2005; 2:e103. [PMID: 15839736 PMCID: PMC1087208 DOI: 10.1371/journal.pmed.0020103] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 02/24/2005] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs). During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.
Collapse
Affiliation(s)
- Yuichi Hori
- 1Department of Developmental Biology, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Xueying Gu
- 1Department of Developmental Biology, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Xiaodong Xie
- 1Department of Developmental Biology, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Seung K Kim
- 1Department of Developmental Biology, Stanford University School of MedicineStanford, CaliforniaUnited States of America
- 2Department of Medicine, Oncology DivisionStanford University School of Medicine, Stanford, CaliforniaUnited States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Horie N, Moriya T, Mitome M, Kitagawa N, Nagata I, Shinohara K. Lowered glucose suppressed the proliferation and increased the differentiation of murine neural stem cells in vitro. FEBS Lett 2004; 571:237-42. [PMID: 15280049 DOI: 10.1016/j.febslet.2004.06.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Accepted: 06/26/2004] [Indexed: 11/22/2022]
Abstract
Cerebral ischemia is known to activate endogenous neural stem cells (NSCs), but its mechanisms remain unknown. Since lowered glucose supply seems to mediate ischemic actions, we examined the effect of low glucose on NSC activities in vitro. Low glucose applied during the proliferation period diminished EGF-induced proliferation of NSCs without affecting subsequent differentiation, but low glucose directly exposed during the differentiation period facilitated the differentiation of NSCs into neurons and astrocytes. These findings suggest that low glucose facilitated NSC differentiation, but it diminished NSC proliferation. Moreover, the effect of low glucose may be dependent on the timing of application.
Collapse
Affiliation(s)
- Nobutaka Horie
- Division of Neurobiology and Behavior, Department of Translational Medical Science, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | |
Collapse
|