1
|
An J, Liu Z, Wang Y, Meng K, Wang Y, Sun H, Li M, Tang Z. Drug delivery strategy of hemostatic drugs for intracerebral hemorrhage. J Control Release 2025; 379:202-220. [PMID: 39793654 DOI: 10.1016/j.jconrel.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Intracerebral hemorrhage (ICH) is associated with high rates of mortality and disability, underscoring an urgent need for effective therapeutic interventions. The clinical prognosis of ICH remains limited, primarily due to the absence of targeted, precise therapeutic options. Advances in novel drug delivery platforms, including nanotechnology, gel-based systems, and exosome-mediated therapies, have shown potential in enhancing ICH management. This review delves into the pathophysiological mechanisms of ICH and provides a thorough analysis of existing treatment strategies, with an emphasis on innovative drug delivery approaches designed to address critical pathological pathways. We assess the benefits and limitations of these therapies, offering insights into future directions in ICH research and highlighting the transformative potential of next-generation drug delivery systems in improving patient outcomes.
Collapse
Affiliation(s)
- Junyan An
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Ke Meng
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Yixuan Wang
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Miao Li
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
2
|
Wu G, Ren Z, Hao Q, Wong Y, Zha D, Cao X, Liu R. The mechanism of Zhenzhu Pills treating intracerebral hemorrhage secondary injury based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e36837. [PMID: 38363944 PMCID: PMC10869077 DOI: 10.1097/md.0000000000036837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) secondary injury is serious and affects patient's prognosis. The Zhenzhu Pills used to treat subacute ICH in Tibet has shown to have a certain curative effect. Network pharmacology and molecular docking technology are employed to explore the potential mechanism of Zhenzhu Pills. The components and potential targets of Zhenzhu Pills were screened from the Traditional Chinese Medicine Systems Pharmacology database. The Gene Expression Omnibus Series 24265 was used to screen differentially expressed genes between perihematomal tissue and normal brain. METHODS The herbs-components-targets network was established, with weighted eigenvalue to identify the core components and targets of Zhenzhu Pills treatment of ICH secondary injury. Targets' bioinformatics enrichment was proceeded by gene ontology and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis. Finally, molecular docking was used to identify the hydrogen bonding activity between the key components and action targets. RESULTS Five herbal drugs were screened from Traditional Chinese Medicine Systems Pharmacology database, with a total of 48 components and 234 targets. The Gene Expression Omnibus Series 24265 dataset was evaluated and 920 differentially expressed genes were identified. A total of 29 intersection targets of Zhenzhu Pills were explored in the treatment of ICH secondary injury. Drugs-components-targets network analysis showed that the pivotal targets were prostaglandin G/H synthase 2, interleukin 6, heme oxygenase-1, vascular endothelial growth factor, and vascular cell adhesion molecule 1, and the core components were quercetin, luteolin, and kaempferol. Gene ontology and KEGG pathway enrichment analysis showed that biological processes such as cell chemotaxis, wound healing, leukocyte migration, and regulation of body fluid levels played an important role in the secondary injury of ICH. The results of KEGG pathway analysis were mainly related to advanced glycation end products-receptor for advanced glycation end products signal pathway and tumor necrosis factor signal pathway. Molecular docking of 3 flavonoids with 5 core targets with the results also showed active hydrogen bonding. CONCLUSIONS This study provides insights into the potential mechanisms of Zhenzhu Pills in the treatment of secondary injuries resulting from ICH and highlights specific components, targets, and molecular pathways involved in this therapeutic effect. These possible therapeutic mechanisms include inhibiting inflammation, edema, oxidative stress, and so on.
Collapse
Affiliation(s)
- Gang Wu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, P.R. China
| | - Zeng Ren
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Qingpei Hao
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, P.R. China
| | - Yu Wong
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Duo Zha
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Xudong Cao
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, P.R. China
| |
Collapse
|
3
|
Aronowski J, Sansing LH, Xi G, Zhang JH. Mechanisms of Damage After Cerebral Hemorrhage. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
5
|
Neuroprotective Therapies for Spontaneous Intracerebral Hemorrhage. Neurocrit Care 2021; 35:862-886. [PMID: 34341912 DOI: 10.1007/s12028-021-01311-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/25/2021] [Indexed: 12/15/2022]
Abstract
Patients who survive the initial ictus of spontaneous intracerebral hemorrhage (ICH) remain vulnerable to subsequent injury of the perilesional parenchyma by molecular and cellular responses to the hematoma. Secondary brain injury after ICH, which contributes to long-term functional impairment and mortality, has emerged as an attractive therapeutic target. This review summarizes preclinical and clinical evidence for neuroprotective therapies targeting secondary injury pathways following ICH. A focus on therapies with pleiotropic antiinflammatory effects that target thrombin-mediated chemotaxis and inflammatory cell migration has led to studies investigating statins, anticholinergics, sphingosine-1-phosphate receptor modulators, peroxisome proliferator activated receptor gamma agonists, and magnesium. Attempts to modulate ICH-induced blood-brain barrier breakdown and perihematomal edema formation has prompted studies of nonsteroidal antiinflammatory agents, matrix metalloproteinase inhibitors, and complement inhibitors. Iron chelators, such as deferoxamine and albumin, have been used to reduce the free radical injury that ensues from erythrocyte lysis. Stem cell transplantation has been assessed for its potential to enhance subacute neurogenesis and functional recovery. Despite promising preclinical results of numerous agents, their outcomes have not yet translated into positive clinical trials in patients with ICH. Further studies are necessary to improve our understanding of the molecular events that promote damage and inflammation of the perihematomal parenchyma after ICH. Elucidating the temporal and pathophysiologic features of this secondary brain injury could enhance the clinical efficacy of neuroprotective therapies for ICH.
Collapse
|
6
|
Hsueh PJ, Wang MH, Hsiao CJ, Chen CK, Lin FL, Huang SH, Yen JL, Tsai PH, Kuo YH, Hsiao G. Ergosta-7,9(11),22-trien-3β-ol Alleviates Intracerebral Hemorrhage-Induced Brain Injury and BV-2 Microglial Activation. Molecules 2021; 26:molecules26102970. [PMID: 34067678 PMCID: PMC8156058 DOI: 10.3390/molecules26102970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating neurological disorder characterized by an exacerbation of neuroinflammation and neuronal injury, for which few effective therapies are available at present. Inhibition of excessive neuroglial activation has been reported to alleviate ICH-related brain injuries. In the present study, the anti-ICH activity and microglial mechanism of ergosta-7,9(11),22-trien-3β-ol (EK100), a bioactive ingredient from Asian medicinal herb Antrodia camphorate, were evaluated. Post-treatment of EK100 significantly attenuated neurobehavioral deficit and MRI-related brain lesion in the mice model of collagenase-induced ICH. Additionally, EK100 alleviated the inducible expression of cyclooxygenase (COX)-2 and the activity of matrix metalloproteinase (MMP)-9 in the ipsilateral brain regions. Consistently, it was shown that EK100 concentration-dependently inhibited the expression of COX-2 protein in Toll-like receptor (TLR)-4 activator lipopolysaccharide (LPS)-activated microglial BV-2 and primary microglial cells. Furthermore, the production of microglial prostaglandin E2 and reactive oxygen species were attenuated by EK100. EK100 also attenuated the induction of astrocytic MMP-9 activation. Among several signaling pathways, EK100 significantly and concentration-dependently inhibited activation of c-Jun N-terminal kinase (JNK) MAPK in LPS-activated microglial BV-2 cells. Consistently, ipsilateral JNK activation was markedly inhibited by post-ICH-treated EK100 in vivo. In conclusion, EK100 exerted the inhibitory actions on microglial JNK activation, and attenuated brain COX-2 expression, MMP-9 activation, and brain injuries in the mice ICH model. Thus, EK100 may be proposed and employed as a potential therapeutic agent for ICH.
Collapse
Affiliation(s)
- Po-Jen Hsueh
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Mong-Heng Wang
- Department of Physiology, Medical College of Georgia, Augusta University, GA 30912, USA;
| | - Che-Jen Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
- Laboratory of Neural Repair, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Kuang Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Tayouan, Taoyuan 33378, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia;
| | - Shu-Hsien Huang
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Ping-Huei Tsai
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Medical Imaging and Radiological Sciences, Chung Shang Medical University, Taichung 40201, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Correspondence: (Y.-H.K.); (G.H.); Tel./Fax: +886-2-23778620 (G.H.)
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
- Correspondence: (Y.-H.K.); (G.H.); Tel./Fax: +886-2-23778620 (G.H.)
| |
Collapse
|
7
|
Ironside N, Chen CJ, Dreyer V, Ding D, Buell TJ, Connolly ES. History of Nonsteroidal Anti-inflammatory Drug Use and Functional Outcomes After Spontaneous Intracerebral Hemorrhage. Neurocrit Care 2021; 34:566-580. [PMID: 32676872 DOI: 10.1007/s12028-020-01022-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Preclinical and clinical studies have suggested a potential benefit from COX-2 inhibition on secondary injury activation after spontaneous intracerebral hemorrhage (ICH). The aim of this study was to investigate the effect of pre-admission NSAID use on functional recovery in spontaneous ICH patients. METHODS Consecutive adult ICH patients enrolled in the Intracerebral Hemorrhage Outcomes Project (2009-2018) with available 90-day follow-up data were included. Patients were categorized as NSAID (daily COX inhibitor use ≤ 7 days prior to ICH) and non-NSAID users (no daily COX inhibitor use ≤ 7 days prior to ICH). Primary outcome was the ordinal 90-day modified Rankin Scale (mRS) score. Outcomes were compared between cohorts using multivariable regression and propensity score-matched analyses. A secondary analysis excluding aspirin users was performed. RESULTS The NSAID and non-NSAID cohorts comprised 228 and 361 patients, respectively. After 1:1 matching, the matched cohorts each comprised 140 patients. The 90-day mRS were comparable between the NSAID and non-NSAID cohorts in both the unmatched (aOR = 0.914 [0.626-1.336], p = 0.644) and matched (aOR = 0.650 [0.392-1.080], p = 0.097) analyses. The likelihood of recurrent ICH at 90 days was also comparable between the NSAID and non-NSAID cohorts in both the unmatched (aOR = 0.845 [0.359-1.992], p = 0.701) and matched analyses (aOR = 0.732 [0.241-2.220], p = 0.581). In the secondary analysis, the non-aspirin NSAID and non-NSAID cohorts comprised 38 and 361 patients, respectively. After 1:1 matching, the matched cohorts each comprised 38 patients. The 90-day mRS were comparable between the non-aspirin NSAID and non-NSAID cohorts in both the unmatched (aOR = 0.615 [0.343-1.101], p = 0.102) and matched (aOR = 0.525 [0.219-1.254], p = 0.147) analyses. The likelihood of recurrent ICH at 90 days was also comparable between the non-aspirin NSAID and non-NSAID cohorts in both the unmatched (aOR = 2.644 [0.258-27.091], p = 0.413) and matched (aOR = 2.586 [0.228-29.309], p = 0.443) analyses. After the exclusion of patients with DNR or withdrawal of care status, NSAID use was associated with lower mRS at 90 days (aOR = 0.379 [0.212-0.679], p = 0.001), lower mRS at hospital discharge (aOR = 0.505 [0.278-0.919], p = 0.025) and lower 90-day mortality rates (aOR = 0.309 [0.108-0.877], p = 0.027). CONCLUSIONS History of nonselective COX inhibition may affect functional outcomes in ICH patients. Pre-admission NSAID use did not appear to worsen the severity of presenting ICH or increase the risk of recurrent ICH. Additional clinical studies may be warranted to investigate the effects of pre-admission NSAID use on ICH outcomes.
Collapse
Affiliation(s)
- Natasha Ironside
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Neurological Surgery, Columbia University Medical Center, 710 W. 168th St., New York, NY, 10032, USA.
| | - Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Victoria Dreyer
- Department of Neurological Surgery, Columbia University Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Dale Ding
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Thomas J Buell
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Edward Sander Connolly
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
8
|
Stokum JA, Gerzanich V, Sheth KN, Kimberly WT, Simard JM. Emerging Pharmacological Treatments for Cerebral Edema: Evidence from Clinical Studies. Annu Rev Pharmacol Toxicol 2020; 60:291-309. [PMID: 31914899 DOI: 10.1146/annurev-pharmtox-010919-023429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral edema, a common and often fatal companion to most forms of acute central nervous system disease, has been recognized since the time of ancient Egypt. Unfortunately, our therapeutic armamentarium remains limited, in part due to historic limitations in our understanding of cerebral edema pathophysiology. Recent advancements have led to a number of clinical trials for novel therapeutics that could fundamentally alter the treatment of cerebral edema. In this review, we discuss these agents, their targets, and the data supporting their use, with a focus on agents that have progressed to clinical trials.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
| | - Kevin N Sheth
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - W Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; .,Departments of Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
9
|
Li Y, Wang J, Chen S, Wu P, Xu S, Wang C, Shi H, Bihl J. miR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway. Stem Cell Res Ther 2020; 11:330. [PMID: 33100224 PMCID: PMC7586676 DOI: 10.1186/s13287-020-01836-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Background We have previously verified the beneficial effects of exosomes from endothelial progenitor cells (EPC-EXs) in ischemic stroke. However, the effects of EPC-EXs in hemorrhagic stroke have not been investigated. Additionally, miR-137 is reported to regulate ferroptosis and to be involved in the neuroprotection against ischemic stroke. Hence, the present work explored the effects of miR-137-overexpressing EPC-EXs on apoptosis, mitochondrial dysfunction, and ferroptosis in oxyhemoglobin (oxyHb)-injured SH-SY5Y cells. Methods The lentiviral miR-137 was transfected into EPCs and then the EPC-EXs were collected. RT-PCR was used to detect the miR-137 level in EPCs, EXs, and neurons. The uptake mechanisms of EPC-EXs in SH-SY5Y cells were explored by the co-incubation of Dynasore, Pitstop 2, Ly294002, and Genistein. After the transfection of different types of EPC-EXs, flow cytometry and expression of cytochrome c and cleaved caspase-3 were used to detect the apoptosis of oxyHb-injured neurons. Neuronal mitochondrial function was assessed by reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP) depolarization, and cellular ATP content. Cell ferroptosis was measured by lipid peroxidation, iron overload, degradation of glutathione, and glutathione peroxidase 4. Additionally, recombinational PGE2 was used to detect if activation of COX2/PGE2 pathway could reverse the protection of miR-137 overexpression. Results The present work showed (1) EPC-EXs could be taken in by SH-SY5Y cells via caveolin-/clathrin-mediated pathways and macropinocytosis; (2) miR-137 was decreased in neurons after oxyHb treatment, and EXsmiR-137 could restore the miR-137 levels; (3) EXsmiR-137 worked better than EXs in reducing the number of apoptotic neurons and pro-apoptotic protein expression after oxyHb treatment; (4) EXsmiR-137 are more effective in improving the cellular MMP, ROS, and ATP level; (5) EXsmiR-137, but not EXs, protected oxyHb-treated SH-SY5Y cells against lipid peroxidation, iron overload, degradation of glutathione, and glutathione peroxidase 4; and (6) EXsmiR-137 suppressed the expression of the COX2/PGE2 pathway, and activation of the pathway could partially reverse the neuroprotective effects of EXsmiR-137. Conclusion miR-137 overexpression boosts the neuroprotective effects of EPC-EXs against apoptosis and mitochondrial dysfunction in oxyHb-treated SH-SY5Y cells. Furthermore, EXsmiR-137 rather than EXs can restore the decrease in miR-137 levels and inhibit ferroptosis, and the protection mechanism might involve the miR-137-COX2/PGE2 signaling pathway.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA.,Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Jinju Wang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Shuzhen Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Shancai Xu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| | - Ji Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA. .,Department of Biomedical Science, Joan C. Edwards School of Medicine, Marshall University, Huntingto, WV, 25755, China.
| |
Collapse
|
10
|
Shen L, Lin D, Li X, Wu H, Lenahan C, Pan Y, Xu W, Chen Y, Shao A, Zhang J. Ferroptosis in Acute Central Nervous System Injuries: The Future Direction? Front Cell Dev Biol 2020; 8:594. [PMID: 32760721 PMCID: PMC7373735 DOI: 10.3389/fcell.2020.00594] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Acute central nervous system (CNS) injuries, such as stroke, traumatic brain injury (TBI), and spinal cord injury (SCI) present a grave health care challenge worldwide due to high morbidity and mortality, as well as limited clinical therapeutic strategies. Established literature has shown that oxidative stress (OS), inflammation, excitotoxicity, and apoptosis play important roles in the pathophysiological processes of acute CNS injuries. Recently, there have been many studies on the topic of ferroptosis, a form of regulated cell death characterized by the accumulation of iron-dependent lipid peroxidation. Some studies have revealed an emerging connection between acute CNS injuries and ferroptosis. Ferroptosis, induced by the abnormal metabolism of lipids, glutathione (GSH), and iron, can accelerate acute CNS injuries. However, pharmaceutical agents, such as iron chelators, ferrostatin-1 (Fer-1), and liproxstatin-1 (Lip-1), can inhibit ferroptosis and may have neuroprotective effects after acute CNS injuries. However, the specific mechanisms underlying this connection has not yet been clearly elucidated. In this paper, we discuss the general mechanisms of ferroptosis and its role in stroke, TBI, and SCI. We also summarize ferroptosis-related drugs and highlight the potential therapeutic strategies in treating various acute CNS injuries. Additionally, this paper suggests a testable hypothesis that ferroptosis may be a novel direction for further research of acute CNS injuries by providing corresponding evidence.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyi Li
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yuanbo Pan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Weilin Xu
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Iwuchukwu I, Nguyen D, Beavers M, Tran V, Sulaiman W, Fannin E, Lasseigne L, Ramsay E, Wilson J, Bazan NG. MicroRNA Regulatory Network as Biomarkers of Late Seizure in Patients with Spontaneous Intracerebral Hemorrhage. Mol Neurobiol 2020; 57:2346-2357. [PMID: 32040835 DOI: 10.1007/s12035-020-01872-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022]
Abstract
Approximately 15% of patients experience seizures after spontaneous intracerebral hemorrhage (ICH). The pathogenesis of seizures post-ICH is not well-known; however, iron deposition-related neuronal injury following hemoglobin breakdown may contribute. Profiling known miRNAs to identify biomarkers for post-ICH late seizures, we found 64 differentially expressed miRNA: 32 upregulated and 32 downregulated in seizure vs. non-seizure. Functional classification of upregulated miRNA for KEGG pathways and biological processes identified enrichment for cell cycle, protein modifications, and FoxO neurotrophin signaling pathways. No significant enrichment was found for downregulated miRNA. Molecular functions Gene Ontology (GO) terms enriched for upregulated miRNA are numerous, while downregulated miRNAs were associated with ion channel activity. RT-PCR confirmed two miRNAs, 4317 and 4325, were differentially expressed in patients who developed seizures at 1 year. MiR-4317 regulates SLC38A1, a glutamine-glutamate transporter. Integrated miRNA-mRNA network analysis identified COMMD6, APOBEC2, and RASSF6-involved in NF-kB regulation. Two miRNAs (miR-4317 and 4325) differentiated post-ICH late seizures vs. non-seizures at 1 year. The results suggest functional and miRNA-mRNA networks as potential biomarkers for post-ICH late seizures.
Collapse
Affiliation(s)
- Ifeanyi Iwuchukwu
- Neurocritical Care and Neurology, University of Queensland, Ochsner Clinical School, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA. .,Institute of Translational Research, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA. .,Neuroscience Center of Excellence, Louisiana State University Health New Orleans, School of Medicine, 2020 Gravier Street, 8th Floor, New Orleans, LA, 70112, USA.
| | - Doan Nguyen
- Institute of Translational Research, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Michelle Beavers
- Institute of Translational Research, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Vi Tran
- Institute of Translational Research, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Wale Sulaiman
- Neurosurgery, Ochsner Neuroscience Institute, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Erin Fannin
- Department of Neurosurgery, Louisiana State University Health New Orleans, School of Medicine, 2020 Gravier Street, 7th Floor, New Orleans, LA, 70112, USA
| | - Lindsay Lasseigne
- Department of Neurosurgery, Louisiana State University Health New Orleans, School of Medicine, 2020 Gravier Street, 7th Floor, New Orleans, LA, 70112, USA
| | - Eugene Ramsay
- Neurocritical Care and Neurology, University of Queensland, Ochsner Clinical School, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Jason Wilson
- Department of Neurosurgery, Louisiana State University Health New Orleans, School of Medicine, 2020 Gravier Street, 7th Floor, New Orleans, LA, 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health New Orleans, School of Medicine, 2020 Gravier Street, 8th Floor, New Orleans, LA, 70112, USA
| |
Collapse
|
12
|
Karuppagounder SS, Alin L, Chen Y, Brand D, Bourassa MW, Dietrich K, Wilkinson CM, Nadeau CA, Kumar A, Perry S, Pinto JT, Darley-Usmar V, Sanchez S, Milne GL, Pratico D, Holman TR, Carmichael ST, Coppola G, Colbourne F, Ratan RR. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E 2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol 2018; 84:854-872. [PMID: 30294906 PMCID: PMC6519209 DOI: 10.1002/ana.25356] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 01/23/2023]
Abstract
Objectives N‐acetylcysteine (NAC) is a clinically approved thiol‐containing redox modulatory compound currently in trials for many neurological and psychiatric disorders. Although generically labeled as an “antioxidant,” poor understanding of its site(s) of action is a barrier to its use in neurological practice. Here, we examined the efficacy and mechanism of action of NAC in rodent models of hemorrhagic stroke. Methods Hemin was used to model ferroptosis and hemorrhagic stroke in cultured neurons. Striatal infusion of collagenase was used to model intracerebral hemorrhage (ICH) in mice and rats. Chemical biology, targeted lipidomics, arachidonate 5‐lipoxygenase (ALOX5) knockout mice, and viral‐gene transfer were used to gain insight into the pharmacological targets and mechanism of action of NAC. Results NAC prevented hemin‐induced ferroptosis by neutralizing toxic lipids generated by arachidonate‐dependent ALOX5 activity. NAC efficacy required increases in glutathione and is correlated with suppression of reactive lipids by glutathione‐dependent enzymes such as glutathione S‐transferase. Accordingly, its protective effects were mimicked by chemical or molecular lipid peroxidation inhibitors. NAC delivered postinjury reduced neuronal death and improved functional recovery at least 7 days following ICH in mice and can synergize with clinically approved prostaglandin E2 (PGE2). Interpretation NAC is a promising, protective therapy for ICH, which acted to inhibit toxic arachidonic acid products of nuclear ALOX5 that synergized with exogenously delivered protective PGE2 in vitro and in vivo. The findings provide novel insight into a target for NAC, beyond the generic characterization as an antioxidant, resulting in neuroprotection and offer a feasible combinatorial strategy to optimize efficacy and safety in dosing of NAC for treatment of neurological disorders involving ferroptosis such as ICH. Ann Neurol 2018;84:854–872
Collapse
Affiliation(s)
- Saravanan S Karuppagounder
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY.,Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - Lauren Alin
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY.,Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - Yingxin Chen
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY.,Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - David Brand
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY.,Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - Megan W Bourassa
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY.,Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - Kristen Dietrich
- Neuroscience and Mental Health Institute, Edmonton, Alberta, Canada
| | | | - Colby A Nadeau
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Amit Kumar
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY.,Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY
| | - Steve Perry
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA
| | - John T Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Stephanie Sanchez
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN
| | - Ginger L Milne
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN
| | - Domenico Pratico
- Alzheimer's Center at Temple University, Lewis Katz School of Medicine, Philadelphia, PA
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, Edmonton, Alberta, Canada.,Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Rajiv R Ratan
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY.,Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
13
|
Wu H, Wu T, Han X, Wan J, Jiang C, Chen W, Lu H, Yang Q, Wang J. Cerebroprotection by the neuronal PGE2 receptor EP2 after intracerebral hemorrhage in middle-aged mice. J Cereb Blood Flow Metab 2017; 37:39-51. [PMID: 26746866 PMCID: PMC5363749 DOI: 10.1177/0271678x15625351] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022]
Abstract
Inflammatory responses mediated by prostaglandins such as PGE2 may contribute to secondary brain injury after intracerebral hemorrhage (ICH). However, the cell-specific signaling by PGE2 receptor EP2 differs depending on whether the neuropathic insult is acute or chronic. Using genetic and pharmacologic approaches, we investigated the role of EP2 receptor in two mouse models of ICH induced by intrastriatal injection of collagenase or autologous arterial whole blood. We used middle-aged male mice to enhance the clinical relevance of the study. EP2 receptor was expressed in neurons but not in astrocytes or microglia after collagenase-induced ICH. Brain injury after collagenase-induced ICH was associated with enhanced cellular and molecular inflammatory responses, oxidative stress, and matrix metalloproteinase (MMP)-2/9 activity. EP2 receptor deletion exacerbated brain injury, brain swelling/edema, neuronal death, and neurobehavioral deficits, whereas EP2 receptor activation by the highly selective agonist AE1-259-01 reversed these outcomes. EP2 receptor deletion also exacerbated brain edema and neurologic deficits in the blood ICH model. These findings support the premise that neuronal EP2 receptor activation by PGE2 protects brain against ICH injury in middle-aged mice through its anti-inflammatory and anti-oxidant effects and anti-MMP-2/9 activity. PGE2/EP2 signaling warrants further investigation for potential use in ICH treatment.
Collapse
Affiliation(s)
- He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Tao Wu
- Stroke Center, Stroke Screening and Intervention Base, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Xiaoning Han
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jieru Wan
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Chao Jiang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Wenwu Chen
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jian Wang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Zheng J, Liu Z, Li W, Tang J, Zhang D, Tang X. Lithium posttreatment confers neuroprotection through glycogen synthase kinase-3β inhibition in intracerebral hemorrhage rats. J Neurosurg 2016; 127:716-724. [PMID: 27739937 DOI: 10.3171/2016.7.jns152995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Inflammation and apoptosis are two key factors contributing to secondary brain injury after intracerebral hemorrhage (ICH). The objective of this study was to evaluate the effects of lithium posttreatment on behavior, brain atrophy, inflammation, and perihematomal cell death. Furthermore, the authors aimed to determine the role of the pro-apoptotic glycogen synthase kinase-3β (GSK-3β) after experimental ICH. METHODS Male Sprague-Dawley rats (n = 108) were subjected to intracerebral infusion of semicoagulated autologous blood. Window of opportunity and dose optimization studies of lithium on ICH-induced injury were performed by measuring neurological deficits. Animals with ICH received vehicle administration or lithium posttreatment (60 mg/kg) for up to 21 days. Hemispheric atrophy was evaluated. Perihematomal cell death was quantified through terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL). The number of myeloperoxidase (MPO)-positive neutrophils and OX42-positive microglia in the perihematomal areas were calculated. Western blotting was used for the quantification of GSK-3β, heat shock protein 70 (HSP70), nuclear factor-κB p65 (NF-κB p65), and cy-clooxygenase-2 (COX-2). RESULTS Lithium, at a dose of 60 mg/kg initiated from 2 hours after injury, exhibited the best effects of improving neurological outcomes 3, 5, 7, 14, 21, and 28 days after ICH, reduced the hemispheric atrophy at 42 days after surgery, and reduced the number of TUNEL-positive cells, MPO-positive neutrophils, and OX42-positive microglia in the perihematomal areas. Furthermore, lithium posttreatment modulated GSK-3β, increased HSP70, and decreased NF-κB p65 and COX-2 expression in the ipsilateral hemisphere. CONCLUSIONS Lithium posttreatment at a dose of 60 mg/kg, initiated beginning 2 hours after injury, improves functional and morphological outcomes, and inhibits inflammation and perihematomal cell death in a rat model of semicoagulated autologous blood ICH through inactivation of GSK-3β.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Heilongjiang
| | - Zhen Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Heilongjiang
| | - Weishan Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Heilongjiang
| | - Jiaxin Tang
- The Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai; and
| | - Dongwei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Xiaobo Tang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Heilongjiang
| |
Collapse
|
15
|
Mechanisms of Cerebral Hemorrhage. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Leclerc JL, Lampert AS, Diller MA, Doré S. Genetic deletion of the prostaglandin E2 E prostanoid receptor subtype 3 improves anatomical and functional outcomes after intracerebral hemorrhage. Eur J Neurosci 2015; 41:1381-91. [PMID: 25847406 PMCID: PMC4696550 DOI: 10.1111/ejn.12909] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype associated with high mortality and morbidity. Following ICH, excitotoxicity and inflammation significantly contribute to secondary brain injury and poor outcomes. Prostaglandin E2 (PGE2 ) levels rise locally with insult to the nervous system, and PGE2 is known to modulate these processes mainly through its E prostanoid (EP) receptors, EP1-4. EP receptor subtype 3 (EP3) is the most abundant EP receptor in the brain and we have previously shown that signaling through the PGE2 -EP3 axis exacerbates excitotoxicity and ischemic stroke outcomes. This study aimed to investigate the contribution of this pathway in modulating anatomical outcomes and functional recovery following ICH. Genetic deletion of EP3 resulted in 48.2 ± 7.3% less ICH-induced brain injury (P < 0.005) and improved functional recovery (P < 0.05), as identified by neurological deficit scoring. To start investigating the mechanisms involved in neuroprotection with impaired PGE2 -EP3 signaling, histological staining was performed to evaluate blood and ferric iron accumulation, neuroinflammation, blood-brain barrier dysfunction, and peripheral neutrophil infiltration. After ICH, EP3 knockout mice demonstrated 49.5 ± 8.8% and 42.8 ± 13.1% less blood (P < 0.01) and ferric iron (P < 0.05), respectively. Furthermore, EP3 knockout mice had significantly reduced astrogliosis, microglial activation, blood-brain barrier breakdown, and neutrophil infiltration. Collectively, these results suggest an injurious role for the PGE2 -EP3 signaling axis in modulating brain injury, inflammation, and neurological functional recovery after ICH. Modulation of the PGE2 -EP3 signaling axis may represent a putative therapeutic avenue for the treatment of ICH.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Andrew S Lampert
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Matthew A Diller
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Departments of Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Toxic role of prostaglandin E2 receptor EP1 after intracerebral hemorrhage in mice. Brain Behav Immun 2015; 46:293-310. [PMID: 25697396 PMCID: PMC4422065 DOI: 10.1016/j.bbi.2015.02.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/28/2015] [Accepted: 02/08/2015] [Indexed: 02/07/2023] Open
Abstract
Inflammatory mechanisms mediated by prostaglandins may contribute to the progression of intracerebral hemorrhage (ICH)-induced brain injury, but they are not fully understood. In this study, we examined the effect of prostaglandin E2 receptor EP1 (EP1R) activation and inhibition on brain injury in mouse models of ICH and investigated the underlying mechanism of action. ICH was induced by injecting collagenase, autologous blood, or thrombin into the striatum of middle-aged male and female mice and aged male mice. Effects of selective EP1R agonist ONO-DI-004, antagonist SC51089, and nonspecific Src family kinase inhibitor PP2 were evaluated by a combination of histologic, magnetic resonance imaging (MRI), immunofluorescence, molecular, cellular, and behavioral assessments. EP1R was expressed primarily in neurons and axons but not in astrocytes or microglia after ICH induced by collagenase. In middle-aged male mice subjected to collagenase-induced ICH, EP1R inhibition mitigated brain injury, brain edema, cell death, neuronal degeneration, neuroinflammation, and neurobehavioral deficits, whereas its activation exacerbated these outcomes. EP1R inhibition also was protective in middle-aged female mice and aged male mice after collagenase-induced ICH and in middle-aged male mice after blood- or thrombin-induced ICH. EP1R inhibition also reduced oxidative stress, white matter injury, and brain atrophy and improved functional outcomes. Histologic results were confirmed by MRI. Src kinase phosphorylation and matrix metalloproteinase-9 activity were increased by EP1R activation and decreased by EP1R inhibition. EP1R regulated matrix metalloproteinase-9 activity through Src kinase signaling, which mediated EP1R toxicity after collagenase-induced ICH. We conclude that prostaglandin E2 EP1R activation plays a toxic role after ICH through mechanisms that involve the Src kinases and the matrix metalloproteinase-9 signaling pathway. EP1R inhibition could be a novel therapeutic strategy to improve outcomes after ICH.
Collapse
|
18
|
PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice. Neurobiol Aging 2015; 36:1439-50. [PMID: 25623334 DOI: 10.1016/j.neurobiolaging.2014.12.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 12/16/2014] [Accepted: 12/26/2014] [Indexed: 11/23/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke. Misoprostol, a synthetic prostaglandin E1 (PGE1) analog and PGE2 receptor agonist, has shown protection against cerebral ischemia. In this study, we tested the efficacy of misoprostol in the 12-month-old mice subjected to 1 of 2 complementary ICH models, the collagenase model (primary study) and blood model (secondary study, performed in an independent laboratory). We also investigated its potential mechanism of action. Misoprostol posttreatment decreased brain lesion volume, edema, and brain atrophy and improved long-term functional outcomes. In the collagenase-induced ICH model, misoprostol decreased cellular inflammatory response; attenuated oxidative brain damage and gelatinolytic activity; and decreased high-mobility group box 1 (HMGB1) expression, Src kinase activity, and interleukin-1β expression without affecting cyclooxygenase-2 expression. Furthermore, HMGB1 inhibition with glycyrrhizin decreased Src kinase activity, gelatinolytic activity, neuronal death, and brain lesion volume. Src kinase inhibition with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) decreased gelatinolytic activity and brain edema and improved neurologic function but did not decrease HMGB1 protein level. These results indicate that misoprostol protects brain against ICH injury through mechanisms that may involve the HMGB1, Src kinase, and matrix metalloproteinase-2/9 pathways.
Collapse
|
19
|
Roy SS, Kirma NB, Santhamma B, Tekmal RR, Agyin JK. Effects of a novel proteasome inhibitor BU-32 on multiple myeloma cells. Cancer Chemother Pharmacol 2014; 73:1263-71. [PMID: 24728817 DOI: 10.1007/s00280-014-2463-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/31/2014] [Indexed: 11/28/2022]
Abstract
Proteasome inhibition is associated with substantial antitumor effects in preclinical models of multiple myeloma (MM) as well as in patients. However, results of recent clinical trials to evaluate the effect of the proteasome inhibitor Bortezomib (Velcade(®), also called PS-341) in MM patients have shown limited activity when used as a single agent. This underscores the need to find new efficacious and less toxic proteasome inhibitors. Recently, carfilzomib was approved for the treatment of refractory/relapsed MM and several new agents have been introduced into the clinic, including marizomib and MLN9708, and trials investigating these second-generation proteasome inhibitors have demonstrated promising results. We have recently synthesized a novel proteasome inhibitor, BU-32, and tested its growth inhibitory effects in different human MM cells including RPMI8226, MM.1S, MM.1R, and U266. In this study, we evaluate the efficacy of the novel proteasome inhibitor BU-32 (NSC D750499) using an in vitro MM model. BU-32 exhibits strong cytotoxicity in a panel of MM cell lines--RPMI8226, MM1S, MM1R, and U266. In addition, we demonstrate by proteasome inhibition assay that BU-32 potently inhibits the chymotryptic- and caspase-like activities of the 26S proteasome. We further show from Annexin V-FITC binding studies that BU-32, like Bortezomib, induces apoptosis in a panel of MM cell lines but the effect is more pronounced with BU-32-treated cells. Invasion assay with the MM.1S cell line indicates that BU-32 inhibits the invasiveness of myeloma cells. Results from our studies using real-time PCR array analyses show that BU-32 effectively downregulates an array of angiogenesis and inflammatory markers. Our results suggest that BU-32 might be a potential chemotherapeutic agent with promising antitumor activity for the treatment of MM.
Collapse
Affiliation(s)
- Sudipa S Roy
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | | | | | | | | |
Collapse
|
20
|
Kang K, Kim YJ, Kim YH, Roh JN, Nam JM, Kim PY, Ryu WS, Lee SH, Yoon BW. Lithium pretreatment reduces brain injury after intracerebral hemorrhage in rats. Neurol Res 2013; 34:447-54. [DOI: 10.1179/1743132812y.0000000015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- K Kang
- Department of NeurologyEulji General Hospital, Seoul, Korea
| | - Y-J Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Y-H Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - J N Roh
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - J-M Nam
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - P-Y Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - W-S Ryu
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - S-H Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - B-W Yoon
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
21
|
Effects of selective and non-selective cyclooxygenase inhibition against neurological deficit and brain oedema following closed head injury in mice. Brain Res 2013; 1491:78-87. [DOI: 10.1016/j.brainres.2012.10.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 11/23/2022]
|
22
|
Wu T, Wu H, Wang J, Wang J. Expression and cellular localization of cyclooxygenases and prostaglandin E synthases in the hemorrhagic brain. J Neuroinflammation 2011; 8:22. [PMID: 21385433 PMCID: PMC3062590 DOI: 10.1186/1742-2094-8-22] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 03/08/2011] [Indexed: 01/05/2023] Open
Abstract
Background Although cyclooxygenases (COX) and prostaglandin E synthases (PGES) have been implicated in ischemic stroke injury, little is known about their role in intracerebral hemorrhage (ICH)-induced brain damage. This study examines the expression and cellular localization of COX-1, COX-2, microsomal PGES-1 (mPGES-1), mPGES-2, and cytosolic PGES (cPGES) in mice that have undergone hemorrhagic brain injury. Methods ICH was induced in C57BL/6 mice by intrastriatal injection of collagenase. Expression and cellular localization of COX-1, COX-2, mPGES-1, mPGES-2, and cPGES were examined by immunofluorescence staining. Results In the hemorrhagic brain, COX-1, mPGES-2, and cPGES were expressed constitutively in neurons; COX-1 was also constitutively expressed in microglia. The immunoreactivity of COX-2 was increased in neurons and astrocytes surrounding blood vessels at 5 h and then tended to decrease in neurons and increase in astrocytes at 1 day. At 3 days after ICH, COX-2 was observed primarily in astrocytes but was absent in neurons. Interestingly, the immunoreactivity of mPGES-1 was increased in neurons in the ipsilateral cortex and astrocytes in the ipsilateral striatum at 1 day post-ICH; the immunoreactivity of astrocytic mPGES-1 further increased at 3 days. Conclusion Our data suggest that microglial COX-1, neuronal COX-2, and astrocytic COX-2 and mPGES-1 may work sequentially to affect ICH outcomes. These findings have implications for efforts to develop anti-inflammatory strategies that target COX/PGES pathways to reduce ICH-induced secondary brain damage.
Collapse
Affiliation(s)
- Tao Wu
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
23
|
Kellermann K, Gordan ML, Nollert G, Blobner M, Kochs EF, Jungwirth B. Long-term assessment of NFkappaB expression in the brain and neurologic outcome following deep hypothermic circulatory arrest in rats. Perfusion 2010; 24:429-36. [PMID: 20093339 DOI: 10.1177/0267659109358655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Inflammatory response is discussed as a contributor to neurologic deficits following cardiac surgery using deep hypothermic circulatory arrest (DHCA). Nuclear Factor Kappa B (NFkappaB) presents a central transcription factor whose expression pattern and subsequent role very much depend on the type and manner of cerebral injury. This study was designed to assess the time course of cerebral NFkappaB expression in relation to neurologic performance over 28 days following 45min of DHCA in rats. METHODS With Institutional Review Board approval, 30 rats were subjected to cardiopulmonary bypass (CPB) with 45min of DHCA (rectal temperature 15-18 degrees Celsius) and randomly assigned to 1, 3, 7, 14 and 28 days of postoperative survival. Untreated animals served as control (n=6). Cerebral NFkappaB expression was analyzed immunohistochemically, cyclooxygenase-2 (COX-2) and inhibitor of kappa B-alpha (IkappaBalpha) using Western Blot and the number of eosinophilic neurons with hematoxylin and eosin (HE) staining. Neurologic outcome was assessed pre- and postoperatively. RESULTS Neuronal expression of NFkappaB in the hippocampus peaked at day one, remaining elevated in the motor cortex until day 28. Rats showed neurologic deficits on postoperative day one. Cerebral COX-2 was increased during the first postoperative week and IkappaBalpha peaked on day 14. Histologic damage in the motor cortex and hippocampus persisted until day 28. No systemic inflammation was detectable postoperatively. CONCLUSIONS Postoperative day one presents with the highest NFkappaB-expression in the ischemia-sensitive hippocampus, accompanied by neurologic dysfunction and histologic damage following 45min of DHCA in rats.
Collapse
Affiliation(s)
- Kristine Kellermann
- Klinik für Anesthesiologie, Technische Universität München, Klinikum rechts der Isar, Ismaningerstrasse 22, 81675 München, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Sinn DI, Lee ST, Chu K, Jung KH, Kim EH, Kim JM, Park DK, Song EC, Kim BS, Yoon SS, Kim M, Roh JK. Proteasomal inhibition in intracerebral hemorrhage: Neuroprotective and anti-inflammatory effects of bortezomib. Neurosci Res 2007; 58:12-8. [PMID: 17328981 DOI: 10.1016/j.neures.2007.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/14/2006] [Accepted: 01/09/2007] [Indexed: 11/21/2022]
Abstract
Inflammation is an important pathophysiologic mechanism of injury induced by intracerebral hemorrhage (ICH). The ubiquitin-proteasome system (UPS) regulates the inflammatory responses via the up-regulation of several pro-inflammatory molecules. In this study, we determined that a potent proteasome inhibitor, bortezomib, exerted therapeutic effects in experimental model of ICH. Either bortezomib (0.05, 0.2, 0.5, 1mg/kg) or vehicle was intravenously administered 2h after ICH induction. The high doses of bortezomib caused high mortality rates. Bortezomib at 0.2 mg/kg reduced the early hematoma growth and alleviated hematoma volume and brain edema at 3 days after ICH, compared with the ICH-vehicle group. The numbers of myeloperoxidase(+) neutrophils, Ox42(+) microglia, and TUNEL(+) cells in the perihematomal regions were decreased by bortezomib. Bortezomib induced significant decrements of mRNA expression of TNF-alpha and IL-6. The production of iNOS and COX2 was also reduced significantly by bortezomib. We concluded that the early treatment with bortezomib induced a reduction in the early hematoma growth and mitigated the development of brain edema, coupled with a marked inhibitory effect on inflammation in ICH.
Collapse
Affiliation(s)
- Dong-In Sinn
- Stroke & Neural Stem Cell Laboratory in Clinical Research Institute, Department of Neurology, Seoul National University Hospital, Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sinn DI, Lee ST, Chu K, Jung KH, Song EC, Kim JM, Park DK, Kim M, Roh JK. Combined neuroprotective effects of celecoxib and memantine in experimental intracerebral hemorrhage. Neurosci Lett 2007; 411:238-42. [PMID: 17123715 DOI: 10.1016/j.neulet.2006.10.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/13/2006] [Accepted: 10/13/2006] [Indexed: 11/18/2022]
Abstract
Memantine, a N-methyl-D-aspartate (NMDA) receptor antagonist, inhibits hematoma expansion and celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, reduces perihematomal inflammation in intracerebral hemorrhage. We examined whether the combination treatment has additive effects in experimental intracerebral hemorrhage (ICH). ICH was induced using stereotaxic infusion of collagenase into brains of adult rats. After the induction of ICH, rats were treated with intraperitoneal injection of memantine (20 mg/kg), celecoxib (20 mg/kg) or both agents. Only vehicles were administrated in rats of the control group. Results showed that the combination treatment of memantine and celecoxib reduced both hematoma volume and brain edema. Combination treatment also induced the better functional recovery with further attenuation of cerebral inflammation and apoptosis compared to the control group. When compared to the single agent groups, the combination treatment showed better effects in neuroprotection and anti-inflammation. These results suggest the feasible combined application of memantine and celecoxib in ICH treatment.
Collapse
Affiliation(s)
- Dong-In Sinn
- Stroke & Neural Stem Cell Laboratory in the Clinical Research Institute, Stem Cell Research Center, Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao X, Zhang Y, Strong R, Zhang J, Grotta JC, Aronowski J. Distinct patterns of intracerebral hemorrhage-induced alterations in NF-κB subunit, iNOS, and COX-2 expression. J Neurochem 2006; 101:652-63. [PMID: 17250675 DOI: 10.1111/j.1471-4159.2006.04414.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription factor nuclear factor-kappaB (NF-kappaB), plays a key role in regulating inflammation in brain pathologies. The goal of this study was to characterize temporal changes in NF-kappaB activation, NF-kappaB subunit expression, and expression of selected NF-kappaB-regulated gene products [inducible form of nitric oxide synthase (iNOS) and cyclooxygenase-2], at the transcriptional and translational level in the brain after intracerebral hemorrhage (ICH). Employing the intrastriatal injection of autologous blood in rats to model ICH, we demonstrated, using NF-kappaB-DNA binding assay, a robust and prolonged NF-kappaB activation, starting as early as 15 min after the onset of ICH. Consequently, we demonstrated that the mRNA and protein for p50, p52, p65, c-Rel, and RelB NF-kappaB subunits, as well as IkappaBalpha were all up-regulated, with a time course ranging from minutes to days following ICH, depending on the subunit. Using reverse transcription-polymerase chain reaction to analyze mRNA and immunoblotting to analyze protein in ICH-affected tissue, we found robust induction of iNOS at both mRNA and protein levels that followed a time-course similar to changes in p65, p52, and RelB mRNA. Oddly, in contrast to iNOS, cyclooxygenase-2 mRNA and protein following an early transient increase demonstrated significant reduction in response to ICH. In summary, NF-kappaB activation occurs within minutes and persists for at least a week in response to ICH. This reaction utilizes different NF-kappaB regulatory subunits and is associated with the expression of selected target genes.
Collapse
Affiliation(s)
- Xiurong Zhao
- Department of Neurology, Stroke Program, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
27
|
de Meira Santos Lima M, Braga Reksidler A, Marques Zanata S, Bueno Machado H, Tufik S, Vital MABF. Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats. Brain Res 2006; 1101:117-25. [PMID: 16781689 DOI: 10.1016/j.brainres.2006.05.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/02/2006] [Accepted: 05/07/2006] [Indexed: 11/25/2022]
Abstract
The present study investigated the effects on general activity, COX-2 and TH protein expression of intranigral neurotoxins LPS, MPTP or 6-OHDA infusion in rats. Results indicate that LPS produced an increase in locomotion frequency (3 and 7 days after surgery) and a strong up-regulation of COX-2 protein 16 and 24 h after surgery, as observed in the substantia nigra (SN). The MPTP model generated impairment in locomotion frequency 24 h after surgery. Besides, MPTP caused a marked up-regulation in COX-2 protein observed in the SN 16 h after surgery. Moreover, the 6-OHDA model produced severe motor impairment indicated by the decrease in locomotion (24 h) and rearing (24 h, 3 and 7 days) frequencies and also an increase in latency (24 h, 3 and 7 days) and immobility (24 h and 3 days) times. We also demonstrated an up-regulation of COX-2, which occurred in the SN 4-24 h after surgery. TH protein did not appear to be reduced in the striatum in the groups lesioned with the neurotoxins. In contrast, the TH content of SN was significantly reduced in the groups lesioned with the very same neurotoxins. For all the models analyzed, we observed no statistical differences in the expression of COX-2 in the striatum along the time-points. The results of the present study suggest that COX-2 induction patterns differ in function of the neurotoxin tested. Such time-dependent induction has been found to be relatively constant, a fact of great significance considering the importance of the neuroinflammatory process in Parkinson's disease.
Collapse
Affiliation(s)
- Marcelo de Meira Santos Lima
- Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Caixa Postal 19031, 81531-980 Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Moochhala SM, Lu J, Xing MCK, Anuar F, Ng KC, Yang KLS, Whiteman M, Atan S. Mercaptoethylguanidine Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Expressions Induced in Rats After Fluid-Percussion Brain Injury. ACTA ACUST UNITED AC 2005; 59:450-7. [PMID: 16294091 DOI: 10.1097/01.ta.0000174858.79847.6d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study examined the temporal expression of nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 in rat brains after traumatic brain injury (TBI). We studied the effects of mercaptoethylguanidine (MEG), a dual inhibitor of the inducible iNOS and COX with scavenging effect on peroxynitrite, on physiologic variables, brain pathogenesis, and neurologic performance in rats after a lateral fluid percussive-induced TBI. Mean arterial blood pressure and percentage cerebral tissue perfusion in MEG-treated TBI rats showed significant improvement when compared with TBI rats. Immunohistochemical analysis showed a marked number of iNOS and COX-2 immunopositive cells in the cerebral cortex ipsilateral to the injury in TBI rats when compared with MEG-treated TBI rats. MEG also significantly decreased the number of hyperchromatic and shrunken cortical neurons when compared with TBI rats' brain nitrate/nitrite, and prostaglandin E2 levels were attenuated in MEG-treated TBI rats when compared with TBI rats. It is therefore suggested that treatment of MEG via inhibition of iNOS and COX-2 might contribute to improved physiologic variables, neuronal cell survival, and neurologic outcome after TBI.
Collapse
|
29
|
Md S, Moochhala SM, Siew Yang KL, Lu J, Anuar F, Mok P, Ng KC. The role of selective nitric oxide synthase inhibitor on nitric oxide and PGE2 levels in refractory hemorrhagic-shocked rats. J Surg Res 2005; 123:206-14. [PMID: 15680380 DOI: 10.1016/j.jss.2004.07.243] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Indexed: 01/22/2023]
Abstract
BACKGROUND The up-regulation of nitric oxide (NO) and cyclooxgenase-2 (COX-2) has been implicated in the pathophysiology of hemorrhagic shock. We examined the effects of aminoguanidine (AG), which is a known inducible nitric oxide synthase (iNOS) inhibitor, and NS-398, a known COX-2 inhibitor, in our rat model of refractory hemorrhagic shock (RHS). MATERIAL AND METHODS We measured tissue iNOS and COX-2 protein expression, brain and plasma nitrate/nitrite and prostaglandin E2 (PGE2) levels, plasma creatinine and glutamic oxalacetic transaminase (GOT) levels, quantified the histological damages in kidney, liver, lung, and brain, survival rate, and mean arterial blood pressure (MABP) in RHS rats. RESULTS Semiquantitative analysis of tissues showed iNOS protein was not detected in AG + RHS rats but was detected in normal saline and NS-398 RHS rats. Tissue COX-2 protein was not detected in AG and NS-398 RHS rats but was detected in normal saline + RHS rats. The levels of brain and plasma nitrate/nitrite and PGE2 and plasma creatinine and GOT were significantly lower in the AG + RHS rat group when compared with the normal saline RHS rat group. Histological examinations also showed a reduction in organ damage for AG + RHS rats when compared with treated RHS rats. AG + RHS rats showed significantly increased survival and MABP level when compared with treated RHS rats. CONCLUSION Our present findings suggest that NO produced by iNOS might result in organ damages. This in turn might lead to COX-2 up-regulation, and it increases the production of reactive oxygen species and toxic prostanoids. NO-mediated organ damage might be one way in which toxic products of COX-2 might further contribute to NO's deleterious effect in the later stages of RHS. It is therefore suggested that treatment of AG via inhibition of NO might contribute to improved physiological parameters and survival rates following RHS.
Collapse
Affiliation(s)
- Shirhan Md
- Department of Pharmacology, National University of Singapore
| | | | | | | | | | | | | |
Collapse
|
30
|
Chu K, Jeong SW, Jung KH, Han SY, Lee ST, Kim M, Roh JK. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J Cereb Blood Flow Metab 2004; 24:926-33. [PMID: 15362723 DOI: 10.1097/01.wcb.0000130866.25040.7d] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The selective cyclooxygenase-2 (COX-2) inhibitor has been reported to have antiinflammatory, neuroprotective, and antioxidant effects in ischemia models. In this study, the authors examined whether a selective COX-2 inhibitor (celecoxib) reduces cerebral inflammation and edema after intracerebral hemorrhage (ICH), and whether functional recovery is sustained with longer treatment. ICH was induced using collagenase in adult rats. Celecoxib (10 or 20 mg/kg) was administered intraperitoneally 20 minutes, 6 hours, and 24 hours after ICH and then daily thereafter. Seventy-two hours after ICH induction, the rats were killed for histologic assessment and measurement of brain edema and prostaglandin E2. Behavioral tests were performed before and 1, 7, 14, 21, and 28 days after ICH. The brain water content of celecoxib-treated rats decreased both in lesioned and nonlesioned hemispheres in a dose-dependent manner. Compared with the ICH-only group, the number of TUNEL-positive, myeloperoxidase-positive, or OX42-positive cells was decreased in the periphery of hematoma and brain prostaglandin E2 level was reduced in the celecoxib-treated group. Celecoxib-treated rats recovered better by the behavioral tests at 7 days after ICH throughout the 28-day period, and the earlier the drug was administered, the better the functional recovery. Evidence of similar effects in an autologous blood-injected model showed that direct collagenase toxicity was not the major cause of inflammation or cell death. These data suggest that celecoxib treatment after ICH reduces prostaglandin E2 production, brain edema, inflammation, and perihematomal cell death in the perihematomal zone and induces better functional recovery.
Collapse
Affiliation(s)
- Kon Chu
- Stroke and Neural Stem Cell Laboratory, Clinical Research Institute, Department of Neurology, Seoul National University Hospital, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Moore AH, Olschowka JA, Williams JP, Paige SL, O'Banion MK. Radiation-induced edema is dependent on cyclooxygenase 2 activity in mouse brain. Radiat Res 2004; 161:153-60. [PMID: 14731075 DOI: 10.1667/rr3116] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cerebrovascular dysfunction, characterized by compromise of the blood-brain barrier and formation of cerebral edema, is common during the acute period after brain irradiation and may contribute to delayed pathology (e.g. vascular collapse, white matter necrosis) that leads to functional deficits. Another response of normal brain tissue to radiation is the induction of inflammatory markers, such as cytokine expression and glial activation. In particular, radiation-induced neuroinflammation is associated with an elevation in cyclooxygenase 2 (COX2), one of two isoforms of the obligate enzyme in prostanoid synthesis and the principal target of non-steroid anti-inflammatory drugs. Since prostanoids serve as autocrine and paracrine mediators in numerous physiological and pathological processes, including vasoregulation, we investigated COX2 protein expression and COX2-mediated prostanoid production in radiation-induced cerebral edema in male C57/BL6 mice. We found that radiation induces COX2 protein that is accompanied by specific increases in prostaglandin E(2) and thromboxane A(2) within 4 and 24 h after brain irradiation. Furthermore, we showed that treatment with NS-398, a selective COX2 inhibitor, attenuated prostanoid induction and edema formation. These results suggest that radiation-induced changes in vascular permeability are dependent on COX2 activity, implicating this enzyme and its products as targets for potential therapeutic treatment/protection from the effects of radiation on normal brain tissue.
Collapse
Affiliation(s)
- Amy H Moore
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
32
|
Madrigal JLM, García-Bueno B, Moro MA, Lizasoain I, Lorenzo P, Leza JC. Relationship between cyclooxygenase-2 and nitric oxide synthase-2 in rat cortex after stress. Eur J Neurosci 2003; 18:1701-5. [PMID: 14511348 DOI: 10.1046/j.1460-9568.2003.02888.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many studies have focused on the relationships between distinct enzymatic sources of oxidative mediators. Recently, we have shown that cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (NOS-2) isoforms are up-regulated and account for oxidative damage in brain after stress. To assess the time course of these events, we have used adult male Wistar rats, some of which were immobilized for 6 h. Whereas pretreatment with the specific COX-2 inhibitor NS-398 (5 mg/kg i.p.) decreased Ca2+-independent NOS activity after 6 h of stress, pretreatment with the specific NOS-2 inhibitor 1400 W (4 mg/kg i.p.) did not decrease prostaglandin E2 (PGE2) accumulation induced by stress after 6 h. The observed effects of NS-398 and 1400 W were independent of the general response to stress--neither drug modified stress-induced corticosterone response--which might indicate a possible adaptive role for COX-2 and NOS-2 pathways in this situation. These findings are discussed as possible therapeutic targets in the context of neuropsychiatric disorders related to stress.
Collapse
Affiliation(s)
- José L M Madrigal
- Department of Pharmacology, Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Madrigal JLM, Moro MA, Lizasoain I, Lorenzo P, Fernández AP, Rodrigo J, Boscá L, Leza JC. Induction of cyclooxygenase-2 accounts for restraint stress-induced oxidative status in rat brain. Neuropsychopharmacology 2003; 28:1579-1588. [PMID: 12784118 DOI: 10.1038/sj.npp.1300187] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase (COX) is the rate-limiting enzyme in the metabolism of arachidonic acid into prostanoids. Although it is constitutively expressed in brain neurons, the inducible isoform (COX-2) is also upregulated in pathological conditions such as seizures, ischemia or some degenerative diseases. To assess whether COX-2 is regulated after stress, we have used adult male Wistar rats, some of which were immobilized during 6 h. An increase in PGE2 concentration occurs in brain cortex after 2-6 h of the onset of stress as well as an enhancement of COX-2 protein. Immunohistochemical studies indicate that COX-2 is expressed in the cortex and hippocampus after stress in cells with morphology of neurons. Administration of PDTC (150 mg/kg), an inhibitor of the transcription factor NF-kappaB or MK-801 (0.2 mg/kg), an N-methyl-D-aspartate receptor blocker, prevents both stress-induced increase in COX-2 activity and protein levels, suggesting an implication of these factors in the mechanism by which stress induces COX-2 in brain. To assess if COX-2 accounts for the oxidative status seen in brain after stress, a group of animals were i.p. injected with NS-398, a specific COX-2 inhibitor 1 h prior to the onset of stress. NS-398 (5 mg/kg) decreases stress-induced malondialdehyde accumulation in cortex as well as prevents the stress-induced oxidation of glutathione. Finally, NS-398 reduced Ca2+-independent inducible nitric oxide synthase (iNOS, NOS-2) activity and lowered the stress-induced accumulation of NO metabolite levels in cortex. These effects of NS-398 seem to be due to the specific inhibition of COX-2, since it has no effect on stress-induced corticosterone release, glutamate release, and NF-kappaB activation. These findings are discussed as possible damaging and/or adaptive roles for stress-induced COX-2 in the brain.
Collapse
Affiliation(s)
- José L M Madrigal
- Department of Pharmacology, Faculty of Medicine, University of Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sandrini G, Tassorelli C, Cecchini AP, Alfonsi E, Nappi G. Effects of nimesulide on nitric oxide-induced hyperalgesia in humans--a neurophysiological study. Eur J Pharmacol 2002; 450:259-62. [PMID: 12208318 DOI: 10.1016/s0014-2999(02)02188-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce analgesia mainly via the inhibition of cyclo-oxygenase. Several reports suggest that chronic pain is mediated by central sensitization, an N-methyl-D-aspartate (NMDA)-mediated phenomenon influenced by cyclo-oxygenase activity and nitric oxide (NO). In this double-blind study, we evaluated the effects of a preferential inhibitor of the inducible isoform of cyclo-oxygenase-2, nimesulide, on the spinal nociceptive flexion reflex (RIII reflex) before and after administration of an NO donor in healthy volunteers. Nimesulide caused a reduction of the RIII reflex area, which persisted after NO donor administration. Conversely, in the placebo group the RIII reflex area significantly increased following the administration of the NO donor. These data suggest a central effect for nimesulide, possibly related to a reduction of nociceptive activity at spinal level.
Collapse
Affiliation(s)
- Giorgio Sandrini
- Psychophysiology of Pain Laboratory, University Center for Adaptive Disorders and Headache, University of Pavia, Via Palestro 3, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
35
|
Kulkarni M, Armstead WM. Relationship between NOC/oFQ, dynorphin, and COX-2 activation in impaired NMDA cerebrovasodilation after brain injury. J Neurotrauma 2002; 19:965-73. [PMID: 12225656 DOI: 10.1089/089771502320317113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies have observed that the recently described endogenous opioid, nociceptin/orphanin FQ (NOC/oFQ), contributes to impairment of N-methyl-D-aspartate (NMDA)-induced cerebrovasodilation following fluid percussion brain injury (FPI) via a cyclooxygenase (COX)-dependent generation of superoxide anion (O(2)(-)). This study was designed to investigate the relationship between NOC/oFQ, another opioid, dynorphin, and activation of the COX-2 isoform of the enzyme in such impaired dilation to NMDA after FPI in piglets equipped with a closed cranial window. Superoxide dismutase (SOD)-inhibitable nitroblue tetrazolium (NBT) reduction was determined as an index of O(-)(2) generation. Under non-brain injury conditions, NOC/oFQ (10(-10) M), the CSF concentration observed after FPI, increased CSF dynorphin, while the NOC/oFQ antagonist [F/G] NOC/oFQ (1-13) NH(2) attenuated the stimulated release of dynorphin following FPI (34 +/- 3 and 97 +/- 6 vs. 36 +/- 3 and 68 +/- 8 pg/mol for CSF dynorphin before and after FPI in untreated and NOC/oFQ antagonist-pretreated animals). FPI increased SOD-inhibitable NBT reduction, but pretreatment with norbinaltorphimine, a dynorphin antagonist, or NS398, a COX-2 inhibitor, blunted such reduction (1 +/- 1 vs. 19 +/- 3 vs. 4 +/- 1 vs. 4 +/- 1 pmol/mm(2) for control, FPI, FPI-norbinaltorphimine and FPI-NS398, respectively). Under non-brain injury conditions, dynorphin, in a concentration observed in CSF after FPI, also increased SOD-inhibitable NBT reduction, which was blunted by NS398. NMDA-induced pial artery dilation was reversed to vasoconstriction following FPI, but pretreatment with norbinaltorphimine or NS398 partially protected such responses (9 +/- 1 and 16 +/- 1, control; - 8 +/- 1 and - 13 +/- 2, FPI; 6 +/- 1 and 12 +/- 1% FPI-norbinaltorphimine for NMDA 10(-8), 10(-6) M, respectively). These data show that NOC/oFQ modulates the CSF release of dynorphin after FPI. These data also show that dynorphin contributes to O(2)(-) generation after FPI via COX-2 activation. These data additionally indicate that dynorphin and COX-2 activation contribute to impairment of NMDA pial artery dilation after FPI. Finally, these data suggest that NOC/oFQ impairs NMDA dilation postinsult via the sequential release of dynorphin, activation of COX-2, and generation of O(2)(-).
Collapse
Affiliation(s)
- Miriam Kulkarni
- Department of Anesthesia, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | |
Collapse
|