1
|
Li YA, Yao J, Li X, Hu KH. Arousal-promoting effect of the parabrachial nucleus and the underlying mechanisms: Recent advances. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111226. [PMID: 39710104 DOI: 10.1016/j.pnpbp.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The parabrachial nucleus (PBN) is responsible for integrating both internal and external sensory information and controlling/regulating a wide range of physiological processes, such as feeding, thermogenesis, nociceptive and pruritic sensations, and respiration. Recently, the PBN has been found to be involved in mediating wakefulness maintenance, sleep-wake transition, exogenous neuromodulation of awakening, and arousal-promoting process triggered by drastic changes in the internal environments, such as hypercapnia, hypoxia, and hypertension. Multiple neural pathways and subpopulations of neurons are responsible for arousal-promoting effects of the PBN. The medial PBN seems to be more important for the maintenance of physiological arousal, while the lateral PBN are more crucial in mediating interoception-driven arousal. Glutamatergic projection from the PBN to the basal forebrain (BF) and GABAergic projection from the BF to the cerebral cortex GABAergic neurons are the most pivotal neural pathways for awareness-promotion. Here, we review the relevant literature in this field in recent years and emphasize the potential prospects of PBN stimulation in translational medicine for the rehabilitation of disorders of consciousness.
Collapse
Affiliation(s)
- Yang-An Li
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing 629000, China
| | - Juan Yao
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Xuan Li
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Ke-Hui Hu
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing 629000, China.
| |
Collapse
|
2
|
Brown PL, Palacorolla H, Cobb-Lewis DE, Jhou TC, McMahon P, Bell D, Elmer GI, Shepard PD. Substantia Nigra Dopamine Neuronal Responses to Habenular Stimulation and Foot Shock Are Altered by Lesions of the Rostromedial Tegmental Nucleus. Neuroscience 2024; 547:56-73. [PMID: 38636897 PMCID: PMC11144098 DOI: 10.1016/j.neuroscience.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area generally respond to aversive stimuli or the absence of expected rewards with transient inhibition of firing rates, which can be recapitulated with activation of the lateral habenula (LHb) and eliminated by lesioning the intermediating rostromedial tegmental nucleus (RMTg). However, a minority of DA neurons respond to aversive stimuli, such as foot shock, with a transient increase in firing rate, an outcome that rarely occurs with LHb stimulation. The degree to which individual neurons respond to these two stimulation modalities with the same response phenotype and the role of the RMTg is not known. Here, we record responses from single SN DA neurons to alternating activation of the LHb and foot shock in male rats. Lesions of the RMTg resulted in a shift away from inhibition to no response during both foot shock and LHb stimulation. Furthermore, lesions unmasked an excitatory response during LHb stimulation. The response correspondence within the same neuron between the two activation sources was no different from chance in sham controls, suggesting that external inputs rather than intrinsic DA neuronal properties are more important to response outcome. These findings contribute to a literature that shows a complex neurocircuitry underlies the regulation of DA activity and, by extension, behaviors related to learning, anhedonia, and cognition.
Collapse
Affiliation(s)
- P Leon Brown
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA.
| | - Heather Palacorolla
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| | - Dana E Cobb-Lewis
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| | - Thomas C Jhou
- Department of Neurobiology, University of Maryland School of Medicine, 620 West Lexington St., Baltimore, MD 21201, USA
| | - Pat McMahon
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| | - Dana Bell
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| | - Greg I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| | - Paul D Shepard
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| |
Collapse
|
3
|
Ritchie JL, Qi S, Christian RJ, Greenwood MJ, Grenz HI, Swatzell SE, Krych PJ, Fuchs RA. Requisite role of dorsal raphé in contextual cocaine-memory reconsolidation. Neuropharmacology 2024; 246:109832. [PMID: 38176535 PMCID: PMC10901441 DOI: 10.1016/j.neuropharm.2023.109832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Memory reconsolidation is a process by which labile drug memories are restabilized in long-term memory stores, permitting their enduring control over drug-seeking behaviors. In the present study, we investigated the involvement of the dorsal raphé nuclei (DRN) in cocaine-memory reconsolidation. Sprague-Dawley rats (male, female) were trained to self-administer cocaine in a distinct environmental context to establish contextual drug memories. They then received extinction training in a different context. Next, the rats were re-exposed to the cocaine-predictive context for 15 min to reactivate their cocaine memories or remained in their home cages (no-reactivation control). Memory reactivation was sufficient to increase c-Fos expression, an index of neuronal activation, in the DRN, but not in the median raphé nuclei, during reconsolidation, compared to no reactivation. To determine whether DRN neuronal activity was necessary for cocaine-memory reconsolidation, rats received intra-DRN baclofen plus muscimol (BM; GABAB/A agonists) or vehicle microinfusions immediately after or 6 h after a memory reactivation session conducted with or without lever access. The effects of DRN functional inactivation on long-term memory strength, as indicated by the magnitude of context-induced cocaine seeking, were assessed 72 h later. Intra-DRN BM treatment immediately after memory reactivation with or without lever access attenuated subsequent context-induced cocaine-seeking behavior, independent of sex. Conversely, BM treatment in the adjacent periaqueductal gray (PAG) immediately after memory reactivation, or BM treatment in the DRN 6 h after memory reactivation, did not alter responding. Together, these findings indicate that the DRN plays a requisite role in maintaining cocaine-memory strength during reconsolidation.
Collapse
Affiliation(s)
- J L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - S Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - R J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - M J Greenwood
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - H I Grenz
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - S E Swatzell
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - P J Krych
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - R A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA; Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA, USA.
| |
Collapse
|
4
|
Reinwald JR, Schmitz CN, Skorodumov I, Kuchar M, Weber-Fahr W, Spanagel R, Meinhardt MW. Psilocybin-induced default mode network hypoconnectivity is blunted in alcohol-dependent rats. Transl Psychiatry 2023; 13:392. [PMID: 38097569 PMCID: PMC10721862 DOI: 10.1038/s41398-023-02690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Alcohol Use Disorder (AUD) adversely affects the lives of millions of people, but still lacks effective treatment options. Recent advancements in psychedelic research suggest psilocybin to be potentially efficacious for AUD. However, major knowledge gaps remain regarding (1) psilocybin's general mode of action and (2) AUD-specific alterations of responsivity to psilocybin treatment in the brain that are crucial for treatment development. Here, we conducted a randomized, placebo-controlled crossover pharmaco-fMRI study on psilocybin effects using a translational approach with healthy rats and a rat model of alcohol relapse. Psilocybin effects were quantified with resting-state functional connectivity using data-driven whole-brain global brain connectivity, network-based statistics, graph theory, hypothesis-driven Default Mode Network (DMN)-specific connectivity, and entropy analyses. Results demonstrate that psilocybin induced an acute wide-spread decrease in different functional connectivity domains together with a distinct increase of connectivity between serotonergic core regions and cortical areas. We could further provide translational evidence for psilocybin-induced DMN hypoconnectivity reported in humans. Psilocybin showed an AUD-specific blunting of DMN hypoconnectivity, which strongly correlated to the alcohol relapse intensity and was mainly driven by medial prefrontal regions. In conclusion, our results provide translational validity for acute psilocybin-induced neural effects in the rodent brain. Furthermore, alcohol relapse severity was negatively correlated with neural responsivity to psilocybin treatment. Our data suggest that a clinical standard dose of psilocybin may not be sufficient to treat severe AUD cases; a finding that should be considered for future clinical trials.
Collapse
Affiliation(s)
- Jonathan R Reinwald
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Research Group Systems Neuroscience and Mental Health, Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Christian N Schmitz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ivan Skorodumov
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic
- Psychedelics Research Centre, National Institute of Mental Health, Klecany, Czech Republic
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Marcus W Meinhardt
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
5
|
Welsch L, Colantonio E, Frison M, Johnson DA, McClain SP, Mathis V, Banghart MR, Ben Hamida S, Darcq E, Kieffer BL. Mu Opioid Receptor-Expressing Neurons in the Dorsal Raphe Nucleus Are Involved in Reward Processing and Affective Behaviors. Biol Psychiatry 2023; 94:842-851. [PMID: 37285896 PMCID: PMC10850692 DOI: 10.1016/j.biopsych.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Mu opioid receptors (MORs) are key for reward processing, mostly studied in dopaminergic pathways. MORs are also expressed in the dorsal raphe nucleus (DRN), which is central for the modulation of reward and mood, but MOR function in the DRN remains underexplored. Here, we investigated whether MOR-expressing neurons of the DRN (DRN-MOR neurons) participate in reward and emotional responses. METHODS We characterized DRN-MOR neurons anatomically using immunohistochemistry and functionally using fiber photometry in responses to morphine and rewarding/aversive stimuli. We tested the effect of opioid uncaging on the DRN on place conditioning. We examined the effect of DRN-MOR neuron optostimulation on positive reinforcement and mood-related behaviors. We mapped their projections and selected DRN-MOR neurons projecting to the lateral hypothalamus for a similar optogenetic experimentation. RESULTS DRN-MOR neurons form a heterogeneous neuronal population essentially composed of GABAergic (gamma-aminobutyric acidergic) and glutamatergic neurons. Calcium activity of DRN-MOR neurons was inhibited by rewarding stimuli and morphine. Local photo-uncaging of oxymorphone in the DRN produced conditioned place preference. DRN-MOR neuron optostimulation triggered real-time place preference and was self-administered, promoted social preference, and reduced anxiety and passive coping. Finally, specific optostimulation of DRN-MOR neurons projecting to the lateral hypothalamus recapitulated the reinforcing effects of total DRN-MOR neuron stimulation. CONCLUSIONS Our data show that DRN-MOR neurons respond to rewarding stimuli and that their optoactivation has reinforcing effects and promotes positive emotional responses, an activity which is partially mediated by their projections to the lateral hypothalamus. Our study also suggests a complex regulation of DRN activity by MOR opioids, involving mixed inhibition/activation mechanisms that fine-tune DRN function.
Collapse
Affiliation(s)
- Lola Welsch
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Esther Colantonio
- INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Mathilde Frison
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Desiree A Johnson
- Neurobiology Department, School of the Biological Sciences, University of California San Diego, La Jolla, California
| | - Shannan P McClain
- Neurobiology Department, School of the Biological Sciences, University of California San Diego, La Jolla, California
| | - Victor Mathis
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212, Strasbourg, France
| | - Matthew R Banghart
- Neurobiology Department, School of the Biological Sciences, University of California San Diego, La Jolla, California
| | - Sami Ben Hamida
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM UMR 1247, Université de Picardie Jules Verne, Amiens, France
| | - Emmanuel Darcq
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
7
|
Müller CP. Serotonin and Consciousness-A Reappraisal. Behav Brain Res 2022; 432:113970. [PMID: 35716774 DOI: 10.1016/j.bbr.2022.113970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
The serotonergic system of the brain is a major modulator of behaviour. Here we describe a re-appraisal of its function for consciousness based on anatomical, functional and pharmacological data. For a better understanding, the current model of consciousness is expanded. Two parallel streams of conscious flow are distinguished. A flow of conscious content and an affective consciousness flow. While conscious content flow has its functional equivalent in the activity of higher cortico-cortical and cortico-thalamic networks, affective conscious flow originates in segregated deeper brain structures for single emotions. It is hypothesized that single emotional networks converge on serotonergic and other modulatory transmitter neurons in the brainstem where a bound percept of an affective conscious flow is formed. This is then dispersed to cortical and thalamic networks, where it is time locked with conscious content flow at the level of these networks. Serotonin acts in concert with other modulatory systems of the brain stem with some possible specialization on single emotions. Together, these systems signal a bound percept of affective conscious flow. Dysfunctions in the serotonergic system may not only give rise to behavioural and somatic symptoms, but also essentially affect the coupling of conscious affective flow with conscious content flow, leading to the affect-stained subjective side of mental disorders like anxiety, depression, or schizophrenia. The present model is an attempt to integrate the growing insights into serotonergic system function. However, it is acknowledged, that several key claims are still at a heuristic level that need further empirical support.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
8
|
Cerebellin-2 regulates a serotonergic dorsal raphe circuit that controls compulsive behaviors. Mol Psychiatry 2021; 26:7509-7521. [PMID: 34158618 PMCID: PMC8692491 DOI: 10.1038/s41380-021-01187-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Cerebellin-1 (Cbln1) and cerebellin-2 (Cbln2) are secreted glycoproteins that are expressed in distinct subsets of neurons throughout the brain. Cbln1 and Cbln2 simultaneously bind to presynaptic neurexins and postsynaptic GluD1 and GluD2, thereby forming trans-synaptic adhesion complexes. Genetic associations link cerebellins, neurexins and GluD's to neuropsychiatric disorders involving compulsive behaviors, such as Tourette syndrome, attention-deficit hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Extensive evidence implicates dysfunction of serotonergic signaling in these neuropsychiatric disorders. Here, we report that constitutive Cbln2 KO mice, but not Cbln1 KO mice, display robust compulsive behaviors, including stereotypic pattern running, marble burying, explosive jumping, and excessive nest building, and exhibit decreased brain serotonin levels. Strikingly, treatment of Cbln2 KO mice with the serotonin precursor 5-hydroxytryptophan or the serotonin reuptake-inhibitor fluoxetine alleviated compulsive behaviors. Conditional deletion of Cbln2 both from dorsal raphe neurons and from presynaptic neurons synapsing onto dorsal raphe neurons reproduced the compulsive behaviors of Cbln2 KO mice. Finally, injection of recombinant Cbln2 protein into the dorsal raphe of Cbln2 KO mice largely reversed their compulsive behaviors. Taken together, our results show that Cbln2 controls compulsive behaviors by regulating serotonergic circuits in the dorsal raphe.
Collapse
|
9
|
Azizi SA. Monoamines: Dopamine, Norepinephrine, and Serotonin, Beyond Modulation, "Switches" That Alter the State of Target Networks. Neuroscientist 2020; 28:121-143. [PMID: 33292070 DOI: 10.1177/1073858420974336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
How do monoamines influence the perceptual and behavioral aspects of brain function? A library of information regarding the genetic, molecular, cellular, and function of monoamines in the nervous system and other organs has accumulated. We briefly review monoamines' anatomy and physiology and discuss their effects on the target neurons and circuits. Monoaminergic cells in the brain stem receive inputs from sensory, limbic, and prefrontal areas and project extensively to the forebrain and hindbrain. We review selected studies on molecular, cellular, and electrophysiological effects of monoamines on the brain's target areas. The idea is that monoamines, by reversibly modulating the "primary" information processing circuits, regulate and switch the functions of brain networks and can reversibly alter the "brain states," such as consciousness, emotions, and movements. Monoamines, as the drivers of normal motor and sensory brain operations, including housekeeping, play essential roles in pathogenesis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sayed Ausim Azizi
- Department of Neurology, Global Neuroscience Institute, Chester, PA, USA
| |
Collapse
|
10
|
Wang L, Han D, Yin P, Teng K, Xu J, Ma Y. Decreased tryptophan hydroxylase 2 mRNA and protein expression, decreased brain serotonin concentrations, and anxiety-like behavioral changes in a rat model of simulated transport stress. Stress 2019; 22:707-717. [PMID: 31184239 DOI: 10.1080/10253890.2019.1625328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transport stress causes not only physiological changes but also behavioral responses, including anxiety-like and depression-like behaviors in animals. The serotonergic system in the brain plays a pivotal role in processing anxiety. This study aimed to explore changes in concentrations of 5-hydroxytryptamine (serotonin), and the expression changes of tryptophan hydroxylase 2 (TPH2) mRNA and protein associated with anxiety-related behavioral responses under transport stress. A model of simulated transport stress was established in 40 adult male Sprague-Dawley rats, including a control group (n = 20) and a transport stress (TS) group (n = 20). The results showed that the rats in the TS group exhibited an increased feeding latency in the novelty-suppressed feeding test and a reduced frequency and dwelling time in the central area in the open-field test (OFT). Two hours following the final behavioral test, blood samples were collected. Creatine kinase (CK) activities and glucose and corticosterone concentrations in serum were significantly higher in the rats in the TS group than in the control group. Transport stress also significantly reduced the concentrations of 5-hydroxytryptamine in the hippocampus, striatum, and raphe nuclei and also reduced the expression levels of mRNA and protein for TPH2 in the raphe nuclei. Notably, the number of Fos-immunoreactive neurons was higher in the dorsal raphe nucleus under transport stress, whereas the number of 5-hydroxytryptamine-positive neurons was significantly lower. These findings are consistent with the hypothesis that the 5-hydroxytryptamine transmitter in the hippocampus, striatum, and raphe nuclei is involved in processing anxiety-related behavioral responses under transport stress. Lay summary Physiological and psychological stress responses were induced in a rat model of simulated transport stress. We examined whether serotonin in the brain may be involved in mediating behavioral responses following exposure to transport stress. Tissue concentrations of serotonin in rat brain regions, including the hippocampus, striatum, and raphe nuclei, were reduced following exposure to transport stress. Expression of tryptophan hydroxylase 2 mRNA and protein, which catalyses serotonin synthesis, as well as numbers of serotonin-immunoreactive neurons, were decreased in the brainstem raphe nuclei.
Collapse
Affiliation(s)
- Lili Wang
- College of Veterinary Medicine, China Agricultural University , Beijing , China
| | - Deping Han
- College of Veterinary Medicine, China Agricultural University , Beijing , China
| | - Peng Yin
- Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| | - Kedao Teng
- College of Veterinary Medicine, China Agricultural University , Beijing , China
| | - Jianqin Xu
- College of Veterinary Medicine, China Agricultural University , Beijing , China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University , Beijing , China
| |
Collapse
|
11
|
Lateral parabrachial neurons innervate orexin neurons projecting to brainstem arousal areas in the rat. Sci Rep 2019; 9:2830. [PMID: 30808976 PMCID: PMC6391479 DOI: 10.1038/s41598-019-39063-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/16/2019] [Indexed: 01/31/2023] Open
Abstract
Orexin (ORX) neurons in the hypothalamus send their axons to arousal-promoting areas. We have previously shown that glutamatergic neurons in the lateral parabrachial nucleus (LPB) innervate ORX neurons. In this study, we examined potential pathways from the LPB to ORX neurons projecting to arousal-promoting areas in the brainstem by a combination of tract-tracing techniques in male Wistar rats. We injected the anterograde tracer biotinylated dextranamine (BDA) into the LPB and the retrograde tracer cholera toxin B subunit (CTb) into the ventral tegmental area, dorsal raphe nucleus, pedunculopontine tegmental nucleus, laterodorsal tegmental area, or locus coeruleus (LC). We then analyzed the BDA-labeled fibers and ORX-immunoreactive neurons in the hypothalamus. We found that double-labeled ORX and CTb neurons were the most abundant after CTb was injected into the LC. We also observed prominently overlapping distribution of BDA-labeled fibers, arising from neurons located in the lateral-most part of the dorsomedial nucleus and adjacent dorsal perifornical area. In these areas, we confirmed by confocal microscopy that BDA-labeled synaptophysin-immunoreactive axon terminals were in contiguity with cell bodies and dendrites of CTb-labeled ORX-immunoreactive neurons. These results suggest that the LPB innervates arousal-promoting areas via ORX neurons and is likely to promote arousal responses to stimuli.
Collapse
|
12
|
Sclocco R, Garcia RG, Kettner NW, Isenburg K, Fisher HP, Hubbard CS, Ay I, Polimeni JR, Goldstein J, Makris N, Toschi N, Barbieri R, Napadow V. The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study. Brain Stimul 2019; 12:911-921. [PMID: 30803865 DOI: 10.1016/j.brs.2019.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Brainstem-focused mechanisms supporting transcutaneous auricular VNS (taVNS) effects are not well understood, particularly in humans. We employed ultrahigh field (7T) fMRI and evaluated the influence of respiratory phase for optimal targeting, applying our respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) technique. HYPOTHESIS We proposed that targeting of nucleus tractus solitarii (NTS) and cardiovagal modulation in response to taVNS stimuli would be enhanced when stimulation is delivered during a more receptive state, i.e. exhalation. METHODS Brainstem fMRI response to auricular taVNS (cymba conchae) was assessed for stimulation delivered during exhalation (eRAVANS) or inhalation (iRAVANS), while exhalation-gated stimulation over the greater auricular nerve (GANctrl, i.e. earlobe) was included as control. Furthermore, we evaluated cardiovagal response to stimulation by calculating instantaneous HF-HRV from cardiac data recorded during fMRI. RESULTS Our findings demonstrated that eRAVANS evoked fMRI signal increase in ipsilateral pontomedullary junction in a cluster including purported NTS. Brainstem response to GANctrl localized a partially-overlapping cluster, more ventrolateral, consistent with spinal trigeminal nucleus. A region-of-interest analysis also found eRAVANS activation in monoaminergic source nuclei including locus coeruleus (LC, noradrenergic) and both dorsal and median raphe (serotonergic) nuclei. Response to eRAVANS was significantly greater than iRAVANS for all nuclei, and greater than GANctrl in LC and raphe nuclei. Furthermore, eRAVANS, but not iRAVANS, enhanced cardiovagal modulation, confirming enhanced eRAVANS response on both central and peripheral neurophysiological levels. CONCLUSION 7T fMRI localized brainstem response to taVNS, linked such response with autonomic outflow, and demonstrated that taVNS applied during exhalation enhanced NTS targeting.
Collapse
Affiliation(s)
- Roberta Sclocco
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Logan University, Chesterfield, MO, USA.
| | - Ronald G Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Norman W Kettner
- Department of Radiology, Logan University, Chesterfield, MO, USA
| | - Kylie Isenburg
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Harrison P Fisher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Catherine S Hubbard
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jill Goldstein
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Riccardo Barbieri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Logan University, Chesterfield, MO, USA
| |
Collapse
|
13
|
Boukersi H, Lebaili N, Samson N, Granon S. Implication of regional brain serotonergic neurons in dorsal and median Raphé nuclei in adaptation to water lacking in Gerbillus tarabuli. J Chem Neuroanat 2018. [DOI: 10.1016/j.jchemneu.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|
15
|
Sowa J, Kusek M, Siwiec M, Sowa JE, Bobula B, Tokarski K, Hess G. The 5-HT 7 receptor antagonist SB 269970 ameliorates corticosterone-induced alterations in 5-HT 7 receptor-mediated modulation of GABAergic transmission in the rat dorsal raphe nucleus. Psychopharmacology (Berl) 2018; 235:3381-3390. [PMID: 30267130 PMCID: PMC6267141 DOI: 10.1007/s00213-018-5045-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/19/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Chronic stress and corticosterone have been shown to affect serotonin (5-HT) neurotransmission; however, the influence of stress on the activity of the dorsal raphe nucleus (DRN), the main source of 5-HT in the forebrain, is not well understood. In particular, it is unknown if and how stress modifies DRN 5-HT7 receptors, which are involved in the modulation of the firing of local inhibitory interneurons responsible for regulating the activity of DRN projection cells. OBJECTIVES Our study aimed to investigate the effect of repeated corticosterone injections on the modulation of the inhibitory transmission within the DRN by 5-HT7 receptors and whether it could be reversed by treatment with a 5-HT7 receptor antagonist. METHODS Male Wistar rats received corticosterone injections repeated twice daily for 14 days. Spontaneous inhibitory postsynaptic currents (sIPSCs) were then recorded from DRN projection cells in ex vivo slice preparations obtained 24 h after the last injection. RESULTS Repeated corticosterone administration resulted in decreased frequency, but not amplitude, of sIPSCs in DRN projection cells. There were no changes in the excitability of these cells; however, corticosterone treatment suppressed the 5-HT7 receptor-mediated increase in sIPSC frequency. Administration of the 5-HT7 receptor antagonist SB 269970 for 7 days beginning on the eighth day of corticosterone treatment reversed the detrimental effects of corticosterone on 5-HT7 receptor reactivity and GABAergic transmission in the DRN. CONCLUSIONS Elevated corticosterone level reduces DRN 5HT7 receptor reactivity and decreases GABAergic transmission within the DRN, which can be reversed by the 5-HT7 receptor antagonist SB 269970.
Collapse
Affiliation(s)
- Joanna Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Magdalena Kusek
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Marcin Siwiec
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Joanna Ewa Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Bartosz Bobula
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Grzegorz Hess
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland.
| |
Collapse
|
16
|
GluA2-Lacking AMPA Receptors and Nitric Oxide Signaling Gate Spike-Timing-Dependent Potentiation of Glutamate Synapses in the Dorsal Raphe Nucleus. eNeuro 2017; 4:eN-NWR-0116-17. [PMID: 28580416 PMCID: PMC5454404 DOI: 10.1523/eneuro.0116-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
The dorsal raphe nucleus (DRn) receives glutamatergic inputs from numerous brain areas that control the function of DRn serotonin (5-HT) neurons. By integrating these synaptic inputs, 5-HT neurons modulate a plethora of behaviors and physiological functions. However, it remains unknown whether the excitatory inputs onto DRn 5-HT neurons can undergo activity-dependent change of strength, as well as the mechanisms that control their plasticity. Here, we describe a novel form of spike-timing–dependent long-term potentiation (tLTP) of glutamate synapses onto rat DRn 5-HT neurons. This form of synaptic plasticity is initiated by an increase in postsynaptic intracellular calcium but is maintained by a persistent increase in the probability of glutamate release. The tLTP of glutamate synapses onto DRn 5-HT is independent of NMDA receptors but requires the activation of calcium-permeable AMPA receptors and voltage-dependent calcium channels. The presynaptic expression of the tLTP is mediated by the retrograde messenger nitric oxide (NO) and activation of cGMP/PKG pathways. Collectively, these results indicate that glutamate synapses in the DRn undergo activity-dependent synaptic plasticity gated by NO signaling and unravel a previously unsuspected role of NO in controlling synaptic function and plasticity in the DRn.
Collapse
|
17
|
Yamashita PS, Spiacci A, Hassel JE, Lowry CA, Zangrossi H. Disinhibition of the rat prelimbic cortex promotes serotonergic activation of the dorsal raphe nucleus and panicolytic-like behavioral effects. J Psychopharmacol 2017; 31:704-714. [PMID: 28071216 DOI: 10.1177/0269881116684334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Several studies have shown that serotonin plays a dual role in the modulation of defensive behaviors related to anxiety and panic. A major source of serotonergic projections to limbic structures responsible for this modulation is the dorsal raphe nucleus (DR). Anatomical studies indicate that the prelimbic (PL) cortex sends dense glutamatergic projections to the DR, leading to stimulation or inhibition of serotonin release in structures innervated by the DR. The objective of the present study was to investigate if GABAergic disinhibition of the PL by means of local administration of picrotoxin (PIC), a chloride channel blocker, can affect serotonergic tone and the expression of defensive behaviors related to anxiety and panic. We used the elevated T-maze model and Vogel conflict test to evaluate defensive responses associated with anxiety or panic. The results showed that intra-PL PIC caused an increase in c-Fos activation in serotonergic cells in DR subregions. Furthermore, the intra-PL injection of PIC induced a panicolytic-like effect without affecting behaviors associated with anxiety. Our findings suggest that the PL-DR pathway, through DR serotonergic stimulation, is involved in the control of panic-related behaviors by control of serotonin release in structures that modulate panic responses, such as the dorsal periaqueductal gray.
Collapse
Affiliation(s)
- Paula Sm Yamashita
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.,2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ailton Spiacci
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - James E Hassel
- 2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- 2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Helio Zangrossi
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
18
|
McCue DL, Kasper JM, Hommel JD. Regulation of motivation for food by neuromedin U in the paraventricular nucleus and the dorsal raphe nucleus. Int J Obes (Lond) 2017; 41:120-128. [PMID: 27748746 PMCID: PMC5209284 DOI: 10.1038/ijo.2016.178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND Motivation for high-fat food is thought to contribute to excess caloric intake in obese individuals. A novel regulator of motivation for food may be neuromedin U (NMU), a highly-conserved neuropeptide that influences food intake. Although these effects of NMU have primarily been attributed to signaling in the paraventricular nucleus of the hypothalamus (PVN), NMU has also been found in other brain regions involved in both feeding behavior and motivation. We investigate the effects of NMU on motivation for food and food intake, and identify the brain regions mediating these effects. METHODS The motivational state for a particular reinforcer (e.g., high-fat food) can be assessed using a progressive-ratio schedule of reinforcement under which an increasing number of lever presses are required to obtain subsequent reinforcers. Here, we have used a progressive-ratio operant responding paradigm in combination with an assessment of cumulative food intake to evaluate the effects of NMU administration in rats, and identify the brain regions mediating these effects. RESULTS We found that peripheral administration of NMU decreases operant responding for high-fat food in rats. Evaluation of Fos-like immunoreactivity in response to peripheral NMU indicated the PVN and dorsal raphe nucleus (DRN) as sites of action for NMU. NMU infusion into either region mimics the effects of peripheral NMU on food intake and operant responding for food. NMU-containing projections from the lateral hypothalamus (LH) to the PVN and DRN were identified as an endogenous source of NMU. CONCLUSIONS These results identify the DRN as a site of action for NMU, demonstrate that the LH provides endogenous NMU to the PVN and DRN and implicate NMU signaling in the PVN and DRN as a novel regulator of motivation for high-fat foods.
Collapse
Affiliation(s)
- David L. McCue
- Department of Neuroscience, University of Texas Medical Branch, Galveston, TX 77555-0615
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
| | - James M. Kasper
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-0615
| | - Jonathan D. Hommel
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-0615
| |
Collapse
|
19
|
Dolzani SD, Baratta MV, Amat J, Agster KL, Saddoris MP, Watkins LR, Maier SF. Activation of a Habenulo-Raphe Circuit Is Critical for the Behavioral and Neurochemical Consequences of Uncontrollable Stress in the Male Rat. eNeuro 2016; 3:ENEURO.0229-16.2016. [PMID: 27785462 PMCID: PMC5066263 DOI: 10.1523/eneuro.0229-16.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Exposure to uncontrollable stress [inescapable tailshock (IS)] produces behavioral changes that do not occur if the stressor is controllable [escapable tailshock (ES)] an outcome that is mediated by greater IS-induced dorsal raphe nucleus (DRN) serotonin [5-hydroxytryptamine (5-HT)] activation. It has been proposed that this differential activation occurs because the presence of control leads to top-down inhibition of the DRN from medial prefrontal cortex (mPFC), not because uncontrollability produces greater excitatory input. Although mPFC inhibitory regulation over DRN 5-HT activation has received considerable attention, the relevant excitatory inputs that drive DRN 5-HT during stress have not. The lateral habenula (LHb) provides a major excitatory input to the DRN, but very little is known about the role of the LHb in regulating DRN-dependent behaviors. Here, optogenetic silencing of the LHb during IS blocked the typical anxiety-like behaviors produced by IS in male rats. Moreover, LHb silencing blocked the increase in extracellular basolateral amygdala 5-HT during IS and, surprisingly, during behavioral testing the following day. We also provide evidence that LHb-DRN pathway activation is not sensitive to the dimension of behavioral control. Overall, these experiments highlight a critical role for LHb in driving DRN activation and 5-HT release into downstream circuits that mediate anxiety-like behavioral outcomes of IS and further support the idea that behavioral control does not modulate excitatory inputs to the DRN.
Collapse
Affiliation(s)
- Samuel D. Dolzani
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80309
| | - Michael V. Baratta
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Jose Amat
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Kara L. Agster
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Michael P. Saddoris
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Linda R. Watkins
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Steven F. Maier
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
20
|
Wang P, Li H, Barde S, Zhang MD, Sun J, Wang T, Zhang P, Luo H, Wang Y, Yang Y, Wang C, Svenningsson P, Theodorsson E, Hökfelt TGM, Xu ZQD. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc Natl Acad Sci U S A 2016; 113:E4726-35. [PMID: 27457954 PMCID: PMC4987783 DOI: 10.1073/pnas.1609198113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuropeptide galanin coexists in rat brain with serotonin in the dorsal raphe nucleus and with noradrenaline in the locus coeruleus (LC), and it has been suggested to be involved in depression. We studied rats exposed to chronic mild stress (CMS), a rodent model of depression. As expected, these rats showed several endophenotypes relevant to depression-like behavior compared with controls. All these endophenotypes were normalized after administration of a selective serotonin reuptake inhibitor. The transcripts for galanin and two of its receptors, galanin receptor 1 (GALR1) and GALR2, were analyzed with quantitative real-time PCR using laser capture microdissection in the following brain regions: the hippocampal formation, LC, and ventral periaqueductal gray (vPAG). Only Galr1 mRNA levels were significantly increased, and only in the latter region. After knocking down Galr1 in the vPAG with an siRNA technique, all parameters of the depressive behavioral phenotype were similar to controls. Thus, the depression-like behavior in rats exposed to CMS is likely related to an elevated expression of Galr1 in the vPAG, suggesting that a GALR1 antagonist could have antidepressant effects.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; Division of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Jing Sun
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tong Wang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Pan Zhang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hanjiang Luo
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yongjun Wang
- Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yutao Yang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Chuanyue Wang
- Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linkoping University, SE-58183 Linkoping, Sweden
| | - Tomas G M Hökfelt
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
21
|
Glover ME, Clinton SM. Of rodents and humans: A comparative review of the neurobehavioral effects of early life SSRI exposure in preclinical and clinical research. Int J Dev Neurosci 2016; 51:50-72. [PMID: 27165448 PMCID: PMC4930157 DOI: 10.1016/j.ijdevneu.2016.04.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been a mainstay pharmacological treatment for women experiencing depression during pregnancy and postpartum for the past 25 years. SSRIs act via blockade of the presynaptic serotonin transporter and result in a transient increase in synaptic serotonin. Long-lasting changes in cellular function such as serotonergic transmission, neurogenesis, and epigenetics, are thought to underlie the therapeutic benefits of SSRIs. In recent years, though, growing evidence in clinical and preclinical settings indicate that offspring exposed to SSRIs in utero or as neonates exhibit long-lasting behavioral adaptions. Clinically, children exposed to SSRIs in early life exhibit increased internalizing behavior reduced social behavior, and increased risk for depression in adolescence. Similarly, rodents exposed to SSRIs perinatally exhibit increased traits of anxiety- or depression-like behavior. Furthermore, certain individuals appear to be more susceptible to early life SSRI exposure than others, suggesting that perinatal SSRI exposure may pose greater risks for negative outcome within certain populations. Although SSRIs trigger a number of intracellular processes that likely contribute to their therapeutic effects, early life antidepressant exposure during critical neurodevelopmental periods may elicit lasting negative effects in offspring. In this review, we cover the basic development and structure of the serotonin system, how the system is affected by early life SSRI exposure, and the behavioral outcomes of perinatal SSRI exposure in both clinical and preclinical settings. We review recent evidence indicating that perinatal SSRI exposure perturbs the developing limbic system, including altered serotonergic transmission, neurogenesis, and epigenetic processes in the hippocampus, which may contribute to behavioral domains (e.g., sociability, cognition, anxiety, and behavioral despair) that are affected by perinatal SSRI treatment. Identifying the molecular mechanisms that underlie the deleterious behavioral effects of perinatal SSRI exposure may highlight biological mechanisms in the etiology of mood disorders. Moreover, because recent studies suggest that certain individuals may be more susceptible to the negative consequences of early life SSRI exposure than others, understanding mechanisms that drive such susceptibility could lead to individualized treatment strategies for depressed women who are or plan to become pregnant.
Collapse
Affiliation(s)
| | - Sarah M Clinton
- Department of Psychiatry, University of Alabama-Birmingham, USA.
| |
Collapse
|
22
|
Keil J, Roa Romero Y, Balz J, Henjes M, Senkowski D. Positive and Negative Symptoms in Schizophrenia Relate to Distinct Oscillatory Signatures of Sensory Gating. Front Hum Neurosci 2016; 10:104. [PMID: 27014035 PMCID: PMC4789458 DOI: 10.3389/fnhum.2016.00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/25/2016] [Indexed: 02/02/2023] Open
Abstract
Oscillatory activity in neural populations and temporal synchronization within these populations are important mechanisms contributing to perception and cognition. In schizophrenia, perception and cognition are impaired. Aberrant gating of irrelevant sensory information, which has been related to altered oscillatory neural activity, presumably contributes to these impairments. However, the link between schizophrenia symptoms and sensory gating deficits, as reflected in oscillatory activity, is not clear. In this electroencephalography study, we used a paired-stimulus paradigm to investigate frequency-resolved oscillatory activity in 22 schizophrenia patients and 22 healthy controls. We found sensory gating deficits in patients compared to controls, as reflected in reduced gamma-band power and alpha-band phase synchrony difference between the first and the second auditory stimulus. We correlated these markers of neural activity with a five-factor model of the Positive and Negative Syndrome Scale. Gamma-band power sensory gating was positively correlated with positive symptoms. Moreover, alpha-band phase synchrony sensory gating was negatively correlated with negative symptoms. A cluster analysis revealed three schizophrenia phenotypes, characterized by (i) aberrant gamma-band power and high positive symptoms, (ii) aberrant alpha-band phase synchrony, low positive, and low negative symptom scores or (iii) by intact sensory gating and high negative symptoms. Our study demonstrates that aberrant neural synchronization, as reflected in gamma-band power and alpha-band phase synchrony, relates to the schizophrenia psychopathology. Different schizophrenia phenotypes express distinct levels of positive and negative symptoms as well as varying degrees of aberrant oscillatory neural activity. Identifying the individual phenotype might improve therapeutic interventions in schizophrenia.
Collapse
Affiliation(s)
- Julian Keil
- Multisensory Integration Group, Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Yadira Roa Romero
- Multisensory Integration Group, Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Johanna Balz
- Multisensory Integration Group, Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Melissa Henjes
- Multisensory Integration Group, Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Daniel Senkowski
- Multisensory Integration Group, Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
23
|
Abstract
UNLABELLED Adaptive decision making to eat is crucial for survival, but in anorexia nervosa, the brain persistently supports reduced food intake despite a growing need for energy. How the brain persists in reducing food intake, sometimes even to the point of death and despite the evolution of multiple mechanisms to ensure survival by governing adaptive eating behaviors, remains mysterious. Neural substrates belong to the reward-habit system, which could differ among the eating disorders. The present review provides an overview of neural circuitry of restrictive food choice, binge eating, and the contribution of specific serotonin receptors. One possibility is that restrictive food intake critically engages goal-directed (decision making) systems and "habit," supporting the view that persistent caloric restriction mimics some aspects of addiction to drugs of abuse. SIGNIFICANCE STATEMENT An improved understanding of the neural basis of eating disorders is a timely challenge because these disorders can be deadly. Up to 70 million of people in the world suffer from eating disorders. Anorexia nervosa affects 1-4% of women in United States and is the first cause of death among adolescents in Europe. Studies relying on animal models suggest that decision making to eat (or not) can prevail over actual energy requirements due to emotional disturbances resulting in abnormal habitual behavior, mimicking dependence. These recent studies provide a foundation for developing more specific and effective interventions for these disorders.
Collapse
|
24
|
Krzyżanowska M, Steiner J, Karnecki K, Kaliszan M, Brisch R, Wiergowski M, Braun K, Jankowski Z, Gos T. Decreased ribosomal DNA transcription in dorsal raphe nucleus neurons differentiates between suicidal and non-suicidal death. Eur Arch Psychiatry Clin Neurosci 2016; 266:217-24. [PMID: 26590846 PMCID: PMC4819736 DOI: 10.1007/s00406-015-0655-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022]
Abstract
An involvement of the central serotonergic system has been implicated in the pathogenesis of suicide. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in suicidal behaviour. The study was carried out on paraffin-embedded brainstem blocks containing the DRN obtained from 27 suicide completers (predominantly violent) with unknown psychiatric diagnosis and 30 non-suicidal controls. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons as a surrogate marker of protein biosynthesis was evaluated by the AgNOR silver staining method. Significant decreases in AgNOR parameters suggestive of attenuated rDNA activity were found in the cumulative analysis of all DRN subnuclei in suicide victims versus controls (U test P values < 0.00001). Our findings suggest that the decreased activity of rDNA transcription in DRN neurons plays an important role in suicide pathogenesis. The method accuracy represented by the area under receiver operating characteristic curve (>80 %) suggests a diagnostic value of the observed effect. However, the possible application of the method in forensic differentiation diagnostics between suicidal and non-suicidal death needs further research.
Collapse
Affiliation(s)
- Marta Krzyżanowska
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Johann Steiner
- />Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Karol Karnecki
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Michał Kaliszan
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Ralf Brisch
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Marek Wiergowski
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Katharina Braun
- />Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Zbigniew Jankowski
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204, Gdańsk, Poland. .,Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany. .,Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
25
|
Lopes DA, Lemes JA, Melo-Thomas L, Schor H, de Andrade JS, Machado CM, Horta-Júnior JA, Céspedes IC, Viana MB. Unpredictable chronic mild stress exerts anxiogenic-like effects and activates neurons in the dorsal and caudal region and in the lateral wings of the dorsal raphe nucleus. Behav Brain Res 2016; 297:180-6. [DOI: 10.1016/j.bbr.2015.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
|
26
|
Krzyżanowska M, Steiner J, Brisch R, Mawrin C, Busse S, Braun K, Jankowski Z, Bernstein HG, Bogerts B, Gos T. Ribosomal DNA transcription in dorsal raphe nucleus neurons is increased in residual schizophrenia compared to depressed patients with affective disorders. Psychiatry Res 2015; 230:233-41. [PMID: 26350704 DOI: 10.1016/j.psychres.2015.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/13/2015] [Accepted: 08/30/2015] [Indexed: 11/15/2022]
Abstract
The central serotonergic system is implicated differentially in the pathogenesis of depression and schizophrenia. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in both disorders. The study was carried out on paraffin-embedded brains from 27 depressed (15 major depressive disorder, MDD and 12 bipolar disorder, BD) and 17 schizophrenia (9 residual and 8 paranoid) patients and 28 matched controls without mental disorders. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons was evaluated by the AgNOR silver staining method. A significant effect of diagnosis on rDNA activity was found in the cumulative analysis of all DRN subnuclei. Further analysis revealed an increase in this activity in residual (but not paranoid) schizophrenia compared to depressed (both MDD and BD) patients. The effect was most probably neither confounded by suicide nor related to antidepressant and antipsychotic medication. Our findings suggest that increased activity of rDNA in DRN neurons is a distinct phenomenon in residual schizophrenia, related presumably to differentially disturbed inputs to the DRN and/or their local transformation compared with depressive episodes in patients with affective disorders.
Collapse
Affiliation(s)
- Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Christian Mawrin
- Institute of Neuropathology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Stefan Busse
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | | | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland; Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
27
|
Glutamate input in the dorsal raphe nucleus as a determinant of escalated aggression in male mice. J Neurosci 2015; 35:6452-63. [PMID: 25904796 DOI: 10.1523/jneurosci.2450-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the dorsal raphe nucleus (DRN) has long been linked to neural control of aggression, little is known about the regulatory influences of the DRN when an animal engages in either adaptive species-typical aggressive behavior or escalated aggression. Therefore it is important to explore which neurotransmitter inputs into the DRN determine the escalation of aggression in male mice. Previously, we observed that microinjection of the GABAB receptor agonist baclofen into the DRN escalates aggressive behavior in male mice. Here, we used a serotonin (5-HT) neuron-specific GABAB receptor knock-out mouse to demonstrate that baclofen acts on nonserotonergic neurons to escalate aggression. Intra-DRN baclofen administration increased glutamate release, but did not alter GABA release, within the DRN. Microinjection of l-glutamate into the DRN escalated dose-dependently attack bites toward an intruder. In vivo microdialysis showed that glutamate release increased in the DRN during an aggressive encounter, and the level of glutamate was further increased when the animal was engaged in escalated aggressive behavior after social instigation. Finally, 5-HT release was increased within the DRN and also in the medial prefrontal cortex when animals were provoked by social instigation, and during escalated aggression after social instigation, but this increase in 5-HT release was not observed when animals were engaged in species-typical aggression. In summary, glutamate input into the DRN is enhanced during escalated aggression, which causes a phasic increase of 5-HT release from the DRN 5-HT neurons.
Collapse
|
28
|
Srejic LR, Hamani C, Hutchison WD. High-frequency stimulation of the medial prefrontal cortex decreases cellular firing in the dorsal raphe. Eur J Neurosci 2015; 41:1219-26. [PMID: 25712703 DOI: 10.1111/ejn.12856] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/22/2015] [Indexed: 12/16/2022]
Abstract
High-frequency deep brain stimulation (HFS-DBS) of the subcallosal cingulate (SCC) region has been investigated as a treatment for refractory forms of depression with a ~50% remission rate in open label studies. However, the therapeutic mechanisms of DBS are still largely unknown. Using anaesthetized Sprague Dawley rats, we recorded neuronal spiking activity in 102 neurons of the dorsal raphe (DR) before, during and after the induction of a 5-min HFS train in the infralimbic region (IL) of the medial prefrontal cortex (mPFC), the rodent homologue of the human SCC. The majority of DR cells (82%) significantly decreased firing rate during HFS (P < 0.01, 55.7 ± 4.5% of baseline, 35 rats). To assess whether mPFC-HFS mediates inhibition of DR cellular firing by stimulating local GABAergic interneurons, the GABAA antagonist bicuculline (Bic, 100 μm) was injected directly into the DR during HFS. Neurons inhibited by HFS recovered their firing rate during Bic+HFS (P < 0.01, n = 15, seven rats) to levels not different from baseline. Cells that were not affected by HFS did not change firing rate during Bic+HFS (P = 0.968, n = 7, three rats). These results indicate that blocking GABAA reverses HFS-mediated inhibition of DR neurons. As the cells that were not inhibited by HFS were also unaffected by HFS+Bic, they are probably not innervated by local GABA. Taken together, our results suggest that mPFC-HFS may exert a preferential effect on DR neurons with GABAA receptors.
Collapse
Affiliation(s)
- Luka R Srejic
- Institute of Medical Science, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
29
|
Rapp PE, Keyser DO, Albano A, Hernandez R, Gibson DB, Zambon RA, Hairston WD, Hughes JD, Krystal A, Nichols AS. Traumatic brain injury detection using electrophysiological methods. Front Hum Neurosci 2015; 9:11. [PMID: 25698950 PMCID: PMC4316720 DOI: 10.3389/fnhum.2015.00011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/07/2015] [Indexed: 11/20/2022] Open
Abstract
Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test-retest reliability. To date, very few test-retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system.
Collapse
Affiliation(s)
- Paul E. Rapp
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | - David O. Keyser
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | | | - Rene Hernandez
- US Navy Bureau of Medicine and Surgery, Frederick, MD, USA
| | | | | | - W. David Hairston
- U. S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
| | | | | | | |
Collapse
|
30
|
Raison CL, Hale MW, Williams LE, Wager TD, Lowry CA. Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems. Front Psychol 2015; 5:1580. [PMID: 25628593 PMCID: PMC4292224 DOI: 10.3389/fpsyg.2014.01580] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
Current theories suggest that the brain is the sole source of mental illness. However, affective disorders, and major depressive disorder (MDD) in particular, may be better conceptualized as brain-body disorders that involve peripheral systems as well. This perspective emphasizes the embodied, multifaceted physiology of well-being, and suggests that afferent signals from the body may contribute to cognitive and emotional states. In this review, we focus on evidence from preclinical and clinical studies suggesting that afferent thermosensory signals contribute to well-being and depression. Although thermoregulatory systems have traditionally been conceptualized as serving primarily homeostatic functions, increasing evidence suggests neural pathways responsible for regulating body temperature may be linked more closely with emotional states than previously recognized, an affective warmth hypothesis. Human studies indicate that increasing physical warmth activates brain circuits associated with cognitive and affective functions, promotes interpersonal warmth and prosocial behavior, and has antidepressant effects. Consistent with these effects, preclinical studies in rodents demonstrate that physical warmth activates brain serotonergic neurons implicated in antidepressant-like effects. Together, these studies suggest that (1) thermosensory pathways interact with brain systems that control affective function, (2) these pathways are dysregulated in affective disorders, and (3) activating warm thermosensory pathways promotes a sense of well-being and has therapeutic potential in the treatment of affective disorders.
Collapse
Affiliation(s)
- Charles L. Raison
- Department of Psychiatry, Norton School of Family and Consumer Sciences, College of Medicine, College of Agriculture and Life Sciences, University of ArizonaTucson, AZ, USA
| | - Matthew W. Hale
- Department of Psychology, School of Psychological Science, La Trobe UniversityBundoora, Australia
| | - Lawrence E. Williams
- Marketing Division, Leeds School of Business, University of Colorado BoulderBoulder, CO, USA
| | - Tor D. Wager
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulder, CO, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado BoulderBoulder, CO, USA
| |
Collapse
|
31
|
Ribosomal DNA transcription in the dorsal raphe nucleus is increased in residual but not in paranoid schizophrenia. Eur Arch Psychiatry Clin Neurosci 2015; 265:117-26. [PMID: 25091423 PMCID: PMC4339493 DOI: 10.1007/s00406-014-0518-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/23/2014] [Indexed: 01/28/2023]
Abstract
The central serotonergic system is implicated in the pathogenesis of schizophrenia, where the imbalance between dopamine, serotonin and glutamate plays a key pathophysiological role. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in schizophrenia patients. The study was carried out on paraffin-embedded brains from 17 (8 paranoid and 9 residual) schizophrenia patients and 28 matched controls without mental disorders. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons was evaluated by the AgNOR silver-staining method. An increased rDNA transcriptional activity was found in schizophrenia patients in the cumulative analysis of all DRN subnuclei (t test, P = 0.02). Further subgroup analysis revealed that it was an effect specific for residual schizophrenia versus paranoid schizophrenia or control groups (ANOVA, P = 0.002). This effect was confounded neither by suicide nor by antipsychotic medication. Our findings suggest that increased activity of rDNA in DRN neurons is a distinct phenomenon in schizophrenia, particularly in residual patients. An activation of the rDNA transcription in DRN neurons may represent a compensatory mechanism to overcome the previously described prefrontal serotonergic hypofunction in this diagnostic subgroup.
Collapse
|
32
|
Pollak Dorocic I, Fürth D, Xuan Y, Johansson Y, Pozzi L, Silberberg G, Carlén M, Meletis K. A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 2014; 83:663-78. [PMID: 25102561 DOI: 10.1016/j.neuron.2014.07.002] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2014] [Indexed: 01/02/2023]
Abstract
The serotonin system is proposed to regulate physiology and behavior and to underlie mood disorders; nevertheless, the circuitry controlling serotonergic neurons remains uncharacterized. We therefore generated a comprehensive whole-brain atlas defining the monosynaptic inputs onto forebrain-projecting serotonergic neurons of dorsal versus median raphe based on a genetically restricted transsynaptic retrograde tracing strategy. We identified discrete inputs onto serotonergic neurons from forebrain and brainstem neurons, with specific inputs from hypothalamus, cortex, basal ganglia, and midbrain, displaying a greater than anticipated complexity and diversity in cell-type-specific connectivity. We identified and functionally confirmed monosynaptic glutamatergic inputs from prefrontal cortex and lateral habenula onto serotonergic neurons as well as a direct GABAergic input from striatal projection neurons. In summary, our findings emphasize the role of hyperdirect inputs to serotonergic neurons. Cell-type-specific classification of connectivity patterns will allow for further functional analysis of the diverse but specific inputs that control serotonergic neurons during behavior.
Collapse
Affiliation(s)
| | - Daniel Fürth
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yang Xuan
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yvonne Johansson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Laura Pozzi
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
33
|
Sego C, Gonçalves L, Lima L, Furigo IC, Donato J, Metzger M. Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. J Comp Neurol 2014; 522:1454-84. [PMID: 24374795 DOI: 10.1002/cne.23533] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 02/06/2023]
Abstract
The lateral habenula (LHb) is an epithalamic structure differentiated in a medial (LHbM) and a lateral division (LHbL). Together with the rostromedial tegmental nucleus (RMTg), the LHb has been implicated in the processing of aversive stimuli and inhibitory control of monoamine nuclei. The inhibitory LHb influence on midbrain dopamine neurons has been shown to be mainly mediated by the RMTg, a mostly GABAergic nucleus that receives a dominant input from the LHbL. Interestingly, the RMTg also projects to the dorsal raphe nucleus (DR), which also receives direct LHb projections. To compare the organization and transmitter phenotype of LHb projections to the DR, direct and indirect via the RMTg, we first placed injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin into the LHb or the RMTg. We then confirmed our findings by retrograde tracing and investigated a possible GABAergic phenotype of DR-projecting RMTg neurons by combining retrograde tracing with in situ hybridization for GAD67. We found only moderate direct LHb projections to the DR, which mainly emerged from the LHbM and were predominantly directed to the serotonin-rich caudal DR. In contrast, RMTg projections to the DR were more robust, emerged from RMTg neurons enriched in GAD67 mRNA, and were focally directed to a distinctive DR subdivision immunohistochemically characterized as poor in serotonin and enriched in presumptive glutamatergic neurons. Thus, besides its well-acknowledged role as a GABAergic control center for the ventral tegmental area (VTA)-nigra complex, our findings indicate that the RMTg is also a major GABAergic relay between the LHb and the DR.
Collapse
Affiliation(s)
- Chemutai Sego
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep 2014; 8:1857-1869. [PMID: 25242321 DOI: 10.1016/j.celrep.2014.08.037] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/22/2014] [Accepted: 08/15/2014] [Indexed: 12/20/2022] Open
Abstract
The dorsal raphe nucleus (DRN) contains the largest group of serotonin-producing neurons in the brain and projects to regions controlling reward. Although pharmacological studies suggest that serotonin inhibits reward seeking, electrical stimulation of the DRN strongly reinforces instrumental behavior. Here, we provide a targeted assessment of the behavioral, anatomical, and electrophysiological contributions of serotonergic and nonserotonergic DRN neurons to reward processes. To explore DRN heterogeneity, we used a simultaneous two-vector knockout/optogenetic stimulation strategy, as well as cre-induced and cre-silenced vectors in several cre-expressing transgenic mouse lines. We found that the DRN is capable of reinforcing behavior primarily via nonserotonergic neurons, for which the main projection target is the ventral tegmental area (VTA). Furthermore, these nonserotonergic projections provide glutamatergic excitation of VTA dopamine neurons and account for a large majority of the DRN-VTA pathway. These findings help to resolve apparent discrepancies between the roles of serotonin versus the DRN in behavioral reinforcement.
Collapse
|
35
|
Soiza-Reilly M, Commons KG. Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy. Front Neural Circuits 2014; 8:105. [PMID: 25206323 PMCID: PMC4143723 DOI: 10.3389/fncir.2014.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/11/2014] [Indexed: 01/05/2023] Open
Abstract
The dorsal raphe nucleus (DRN), representing the main source of brain’s serotonin, is implicated in the pathophysiology and therapeutics of several mental disorders that can be debilitating and life-long including depression, anxiety and autism. The activity of DRN neurons is precisely regulated, both phasically and tonically, by excitatory glutamate and inhibitory GABAergic axons arising from extra-raphe areas as well as from local sources within the nucleus. Changes in serotonin neurotransmission associated with pathophysiology may be encoded by alterations within this network of regulatory afferents. However, the complex organization of the DRN circuitry remains still poorly understood. Using a recently developed high-resolution immunofluorescence technique called array tomography (AT) we quantitatively analyzed the relative contribution of different populations of glutamate axons originating from different brain regions to the excitatory drive of the DRN. Additionally, we examined the presence of GABA axons within the DRN and their possible association with glutamate axons. In this review, we summarize our findings on the architecture of the rodent DRN synaptic neuropil using high-resolution neuroanatomy, and discuss possible functional implications for the nucleus. Understanding of the synaptic architecture of neural circuits at high resolution will pave the way to understand how neural structure and function may be perturbed in pathological states.
Collapse
Affiliation(s)
- Mariano Soiza-Reilly
- Institut du Fer à Moulin, INSERM, UMR-S 839 Paris, France ; Université Pierre et Marie Curie Paris, France
| | - Kathryn G Commons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital Boston, MA, USA ; Department of Anaesthesia, Harvard Medical School Boston, MA, USA
| |
Collapse
|
36
|
Tuckwell HC, Penington NJ. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Prog Neurobiol 2014; 118:59-101. [PMID: 24784445 DOI: 10.1016/j.pneurobio.2014.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 01/14/2023]
Abstract
Serotonergic neurons of the dorsal raphe nucleus, with their extensive innervation of limbic and higher brain regions and interactions with the endocrine system have important modulatory or regulatory effects on many cognitive, emotional and physiological processes. They have been strongly implicated in responses to stress and in the occurrence of major depressive disorder and other psychiatric disorders. In order to quantify some of these effects, detailed mathematical models of the activity of such cells are required which describe their complex neurochemistry and neurophysiology. We consider here a single-compartment model of these neurons which is capable of describing many of the known features of spike generation, particularly the slow rhythmic pacemaking activity often observed in these cells in a variety of species. Included in the model are 11 kinds of ion channels: a fast sodium current INa, a delayed rectifier potassium current IKDR, a transient potassium current IA, a slow non-inactivating potassium current IM, a low-threshold calcium current IT, two high threshold calcium currents IL and IN, small and large conductance potassium currents ISK and IBK, a hyperpolarization-activated cation current IH and a leak current ILeak. In Sections 3-8, each current type is considered in detail and parameters estimated from voltage clamp data where possible. Three kinds of model are considered for the BK current and two for the leak current. Intracellular calcium ion concentration Cai is an additional component and calcium dynamics along with buffering and pumping is discussed in Section 9. The remainder of the article contains descriptions of computed solutions which reveal both spontaneous and driven spiking with several parameter sets. Attention is focused on the properties usually associated with these neurons, particularly long duration of action potential, steep upslope on the leading edge of spikes, pacemaker-like spiking, long-lasting afterhyperpolarization and the ramp-like return to threshold after a spike. In some cases the membrane potential trajectories display doublets or have humps or notches as have been reported in some experimental studies. The computed time courses of IA and IT during the interspike interval support the generally held view of a competition between them in influencing the frequency of spiking. Spontaneous activity was facilitated by the presence of IH which has been found in these neurons by some investigators. For reasonable sets of parameters spike frequencies between about 0.6Hz and 1.2Hz are obtained, but frequencies as high as 6Hz could be obtained with special parameter choices. Topics investigated and compared with experiment include shoulders, notches, anodal break phenomena, the effects of noradrenergic input, frequency versus current curves, depolarization block, effects of cell size and the effects of IM. The inhibitory effects of activating 5-HT1A autoreceptors are also investigated. There is a considerable discussion of in vitro versus in vivo firing behavior, with focus on the roles of noradrenergic input, corticotropin-releasing factor and orexinergic inputs. Location of cells within the nucleus is probably a major factor, along with the state of the animal.
Collapse
Affiliation(s)
- Henry C Tuckwell
- Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany; School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Nicholas J Penington
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA; Program in Neural and Behavioral Science and Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| |
Collapse
|
37
|
Challis C, Beck SG, Berton O. Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Front Behav Neurosci 2014; 8:43. [PMID: 24596546 PMCID: PMC3925846 DOI: 10.3389/fnbeh.2014.00043] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/29/2014] [Indexed: 12/31/2022] Open
Abstract
It has been well established that modulating serotonin (5-HT) levels in humans and animals affects perception and response to social threats, however the circuit mechanisms that control 5-HT output during social interaction are not well understood. A better understanding of these systems could provide groundwork for more precise and efficient therapeutic interventions. Here we examined the organization and plasticity of microcircuits implicated in top-down control of 5-HT neurons in the dorsal raphe nucleus (DRN) by excitatory inputs from the ventromedial prefrontal cortex (vmPFC) and their role in social approach-avoidance decisions. We did this in the context of a social defeat model that induces a long lasting form of social aversion that is reversible by antidepressants. We first used viral tracing and Cre-dependent genetic identification of vmPFC glutamatergic synapses in the DRN to determine their topographic distribution in relation to 5-HT and GABAergic subregions and found that excitatory vmPFC projections primarily localized to GABA-rich areas of the DRN. We then used optogenetics in combination with cFos mapping and slice electrophysiology to establish the functional effects of repeatedly driving vmPFC inputs in DRN. We provide the first direct evidence that vmPFC axons drive synaptic activity and immediate early gene expression in genetically identified DRN GABA neurons through an AMPA receptor-dependent mechanism. In contrast, we did not detect vmPFC-driven synaptic activity in 5-HT neurons and cFos induction in 5-HT neurons was limited. Finally we show that optogenetically increasing or decreasing excitatory vmPFC input to the DRN during sensory exposure to an aggressor's cues enhances or diminishes avoidance bias, respectively. These results clarify the functional organization of vmPFC-DRN pathways and identify GABAergic neurons as a key cellular element filtering top-down vmPFC influences on affect-regulating 5-HT output.
Collapse
Affiliation(s)
- Collin Challis
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA ; Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| | - Sheryl G Beck
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA ; Department of Anesthesiology, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| | - Olivier Berton
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA ; Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| |
Collapse
|
38
|
Fox JH, Lowry CA. Corticotropin-releasing factor-related peptides, serotonergic systems, and emotional behavior. Front Neurosci 2013; 7:169. [PMID: 24065880 PMCID: PMC3778254 DOI: 10.3389/fnins.2013.00169] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/30/2013] [Indexed: 12/01/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino acid neuropeptide that is involved in stress-related physiology and behavior, including control of the hypothalamic-pituitary-adrenal (HPA) axis. Members of the CRF family of neuropeptides, including urocortin 1 (UCN 1), UCN 2, and UCN 3, bind to the G protein-coupled receptors, CRF type 1 (CRF1) and CRF2 receptors. In addition, CRF binding protein (CRFBP) binds both CRF and UCN 1 and can modulate their activities. There are multiple mechanisms through which CRF-related peptides may influence emotional behavior, one of which is through altering the activity of brainstem neuromodulatory systems, including serotonergic systems. CRF and CRF-related peptides act within the dorsal raphe nucleus (DR), the major source for serotonin (5-HT) in the brain, to alter the neuronal activity of specific subsets of serotonergic neurons and to influence stress-related behavior. CRF-containing axonal fibers innervate the DR in a topographically organized manner, which may contribute to the ability of CRF to alter the activity of specific subsets of serotonergic neurons. CRF and CRF-related peptides can either increase or decrease serotonergic neuronal firing rates and serotonin release, depending on their concentrations and on the specific CRF receptor subtype(s) involved. This review aims to describe the interactions between CRF-related peptides and serotonergic systems, the consequences for stress-related behavior, and implications for vulnerability to anxiety and affective disorders.
Collapse
Affiliation(s)
- James H Fox
- Behavioral Neuroendocrinology Laboratory, Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder Boulder, CO, USA
| | | |
Collapse
|
39
|
Abstract
The dorsal raphe nucleus (DR) controls forebrain serotonin neurotransmission to influence emotional states. GABA neurotransmission in the DR has been implicated in regulating sleep/wake states and influencing anxiety and aggression. To gain insight into how GABA regulates DR activity, we analyzed the organization of both GABA and glutamate axons in the rat DR using a high-resolution immunofluorescence technique, array tomography, as well as EM. This analysis revealed that a third or more of GABA-containing axons are organized in synaptic triads with a glutamatergic axon and a common postsynaptic target. Electrophysiological recordings showed that GABA has the capacity to presynaptically gate glutamate release in the DR through a combination of GABA-A and GABA-B receptor-mediated effects. Thus, GABA-glutamate synaptic triads are a common feature of the network architecture of the DR with the potential to regulate excitation of the nucleus.
Collapse
|
40
|
Grégoire S, Neugebauer V. 5-HT2CR blockade in the amygdala conveys analgesic efficacy to SSRIs in a rat model of arthritis pain. Mol Pain 2013; 9:41. [PMID: 23937887 PMCID: PMC3751088 DOI: 10.1186/1744-8069-9-41] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pain, including arthritic pain, has a negative affective component and is often associated with anxiety and depression. However, selective serotonin reuptake inhibitor antidepressants (SSRIs) show limited effectiveness in pain. The amygdala plays a key role in the emotional-affective component of pain, pain modulation and affective disorders. Neuroplasticity in the basolateral and central amygdala (BLA and CeA, respectively) correlate positively with pain behaviors. Evidence suggests that serotonin receptor subtype 5-HT2CR in the amygdala contributes critically to anxiogenic behavior and anxiety disorders. In this study, we tested the hypothesis that 5-HT2CR in the amygdala accounts for the limited effectiveness of SSRIs in reducing pain behaviors and that 5-HT2CR blockade in the amygdala renders SSRIs effective. RESULTS Nocifensive reflexes, vocalizations and anxiety-like behavior were measured in adult male Sprague-Dawley rats. Behavioral experiments were done in sham controls and in rats with arthritis induced by kaolin/carrageenan injections into one knee joint. Rats received a systemic (i.p.) administration of an SSRI (fluvoxamine, 30 mg/kg) or vehicle (sterile saline) and stereotaxic application of a selective 5-HT2CR antagonist (SB242084, 10 μM) or vehicle (ACSF) into BLA or CeA by microdialysis. Compared to shams, arthritic rats showed decreased hindlimb withdrawal thresholds (increased reflexes), increased duration of audible and ultrasonic vocalizations, and decreased open-arm choices in the elevated plus maze test suggesting anxiety-like behavior. Fluvoxamine (i.p.) or SB242084 (intra-BLA) alone had no significant effect, but their combination inhibited the pain-related increase of vocalizations and anxiety-like behavior without affecting spinal reflexes. SB242084 applied into the CeA in combination with systemic fluvoxamine had no effect on vocalizations and spinal reflexes. CONCLUSIONS The data suggest that 5-HT2CR in the amygdala, especially in the BLA, limits the effectiveness of SSRIs to inhibit pain-related emotional-affective behaviors.
Collapse
Affiliation(s)
- Stéphanie Grégoire
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston Texas 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston Texas 77555-1069, USA
| |
Collapse
|
41
|
Martelli D, Stanić D, Dutschmann M. The emerging role of the parabrachial complex in the generation of wakefulness drive and its implication for respiratory control. Respir Physiol Neurobiol 2013; 188:318-23. [PMID: 23816598 DOI: 10.1016/j.resp.2013.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 12/22/2022]
Abstract
The parabrachial complex is classically seen as a major neural knot that transmits viscero- and somatosensory information toward the limbic and thalamic forebrain. In the present review we summarize recent findings that imply an emerging role of the parabrachial complex as an integral part of the ascending reticular arousal system, which promotes wakefulness and cortical activation. The ascending parabrachial projections that target wake-promoting hypothalamic areas and the basal forebrain are largely glutamatergic. Such fast synaptic transmission could be even more significant in promoting wakefulness and its characteristic pattern of cortical activation than the cholinergic or mono-aminergic ascending pathways that have been emphasized extensively in the past. A similar role of the parabrachial complex could also apply for its more established function in control of breathing. Here the parabrachial respiratory neurons may modulate and adapt breathing via the control of respiratory phase transition and upper airway patency, particularly during respiratory and non-respiratory behavior associated with wakefulness.
Collapse
Affiliation(s)
- Davide Martelli
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
42
|
Neonatal hypoxia-ischaemia disrupts descending neural inputs to dorsal raphé nuclei. Neuroscience 2013; 248:427-35. [PMID: 23806712 DOI: 10.1016/j.neuroscience.2013.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/15/2013] [Accepted: 06/13/2013] [Indexed: 11/23/2022]
Abstract
Neuronal losses have been shown to occur in the brainstem following a neonatal hypoxic-ischaemic (HI) insult. In particular serotonergic neurons, situated in the dorsal raphé nuclei, appear to be vulnerable to HI injury. Nonetheless the mechanisms contributing to losses of serotonergic neurons in the brainstem remain to be elucidated. One possible mechanism is that disruption of neural projections from damaged forebrain areas to dorsal raphé nuclei may play a role in the demise of serotonergic neurons. To test this, postnatal day 3 (P3) rat pups underwent unilateral common carotid artery ligation followed by hypoxia (6% O₂ for 30 min). On P38 a retrograde tracer, fluorescent-coupled choleratoxin b, was deposited in the dorsal raphé dorsal (DR dorsal) nucleus or the dorsal raphé ventral (DR ventral) nucleus. Compared to control animals, P3 HI animals had significant losses of retrogradely labelled neurons in the medial prefrontal cortex, preoptic area and lateral habenula after tracer deposit in the DR dorsal nucleus. On the other hand, after tracer deposit in the DR ventral nucleus, we found significant reductions in numbers of retrogradely labelled neurons in the hypothalamus, preoptic area and medial amygdala in P3 HI animals compared to controls. Since losses of descending inputs are associated with decreases in serotonergic neurons in the brainstem raphé nuclei, we propose that disruption of certain descending neural inputs from the forebrain to the DR dorsal and the DR ventral nuclei may contribute to losses of serotonergic neurons after P3 HI. It is important to delineate the phenotypes of different neuronal networks affected by neonatal HI, and the mechanisms underpinning this damage, so that interventions can be devised to target and protect axons from the harmful effects of neonatal HI.
Collapse
|
43
|
Ji G, Fu Y, Adwanikar H, Neugebauer V. Non-pain-related CRF1 activation in the amygdala facilitates synaptic transmission and pain responses. Mol Pain 2013; 9:2. [PMID: 23410057 PMCID: PMC3583817 DOI: 10.1186/1744-8069-9-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/13/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) plays an important role in affective states and disorders. CRF is not only a "stress hormone" but also a neuromodulator outside the hypothalamic-pituitary-adrenocortical (HPA) axis. The amygdala, a brain center for emotions, is a major site of extrahypothalamic expression of CRF and its G-protein-coupled receptors. Our previous studies showed that endogenous activation of CRF1 receptors in an arthritis pain model contributes to amygdala hyperactivity and pain-related behaviors. Here we examined the synaptic and behavioral effects of CRF in the amygdala of normal animals in the absence of tissue injury or disease. RESULTS Whole-cell patch-clamp recordings of neurons in the latero-capsular division of the central nucleus of the amygdala (CeLC) in brain slices from normal rats showed that CRF (0.1-10 nM) increased excitatory postsynaptic currents (EPSCs) at the "nociceptive" parabrachio-amygdaloid (PB-CeLC) synapse and also increased neuronal output. Synaptic facilitation involved a postsynaptic action and was blocked by an antagonist for CRF1 (NBI27914, 1 μM) but not CRF2 (astressin-2B, 1 μM) and by an inhibitor of PKA (KT5720, 1 μM) but not PKC (GF109203X, 1 μM). CRF increased a latent NMDA receptor-mediated EPSC, and this effect also required CRF1 and PKA but not CRF2 and PKC. Stereotaxic administration of CRF (10 μM, concentration in microdialysis probe) into the CeLC by microdialysis in awake rats increased audible and ultrasonic vocalizations and decreased hindlimb withdrawal thresholds. Behavioral effects of CRF were blocked by a NBI27914 (100 μM) and KT5720 (100 μM) but not GF109203x (100 μM). CRF effects persisted when HPA axis function was suppressed by pretreatment with dexamethasone (50 μg/kg, subcutaneously). CONCLUSIONS Non-pain-related activation of CRF1 receptors in the amygdala can trigger pain-responses in normal animals through a mechanism that involves PKA-dependent synaptic facilitation in CeLC neurons independent of HPA axis function. The results suggest that conditions of increased amygdala CRF levels can contribute to pain in the absence of tissue pathology or disease state.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| | - Yu Fu
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| | - Hita Adwanikar
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| |
Collapse
|
44
|
Tan SKH, Hartung H, Schievink S, Sharp T, Temel Y. High-frequency stimulation of the substantia nigra induces serotonin-dependent depression-like behavior in animal models. Biol Psychiatry 2013; 73:e1-3. [PMID: 22939751 DOI: 10.1016/j.biopsych.2012.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 10/27/2022]
|
45
|
Newman EL, Chu A, Bahamón B, Takahashi A, DeBold JF, Miczek KA. NMDA receptor antagonism: escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology (Berl) 2012; 224:167-77. [PMID: 22588250 PMCID: PMC3694321 DOI: 10.1007/s00213-012-2734-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/24/2012] [Indexed: 01/09/2023]
Abstract
RATIONALE Memantine is a potential treatment for alcoholic patients, yet few studies investigate the effect of concurrent treatment with memantine and ethanol on aggression. We evaluated aggressive behavior following ethanol consumption and treatment with glutamatergic drugs to characterize interactions between these compounds. OBJECTIVE This study aimed to use rodent models of aggression to examine interactions between glutamatergic compounds and ethanol. MATERIALS AND METHODS Once male CFW mice reliably self-administered 1 g/kg ethanol or water, they were assessed for aggression in resident-intruder confrontations. Alternatively, aggression was evaluated following a social-instigation procedure. Animals were then injected with memantine, ketamine, neramexane, MTEP, or LY379268 before aggressive confrontations. Effects of the pharmacological manipulations on salient aggressive and non-aggressive behaviors were analyzed. RESULTS Moderate doses of memantine, neramexane, and MTEP interacted with ethanol to increase the frequency of attack bites while ketamine did not. The highest dose of LY379268, an mGluR(2/3) agonist, reduced both aggressive and non-aggressive behaviors after water and ethanol self-administration. Attack bites increased with social instigation and decreased with administration of high doses of MTEP and LY379268. Memantine and MTEP both reduced attack bite frequency in the instigation condition without reducing locomotor behavior. CONCLUSIONS Memantine and neramexane interacted with ethanol to heighten aggression. The binding characteristics of these compounds allow for 'partial trapping' by which some NMDARs are unblocked between depolarizations. We propose that this feature may contribute to the differential aggression-heightening interactions between these compounds and ethanol. MTEP also interacted with ethanol to escalate aggression, possibly through inhibition of mGluR(5) modulation of NMDARs.
Collapse
Affiliation(s)
| | - Adam Chu
- Tufts University Psychology Dept, Medford, MA 02144
| | | | | | | | - Klaus A. Miczek
- Tufts University Psychology Dept, Medford, MA 02144,Tufts University Neuroscience Dept, Boston, MA 02111
| |
Collapse
|
46
|
Kerman IA, Bernard R, Bunney WE, Jones EG, Schatzberg AF, Myers RM, Barchas JD, Akil H, Watson SJ, Thompson RC. Evidence for transcriptional factor dysregulation in the dorsal raphe nucleus of patients with major depressive disorder. Front Neurosci 2012; 6:135. [PMID: 23087602 PMCID: PMC3475304 DOI: 10.3389/fnins.2012.00135] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/30/2012] [Indexed: 12/22/2022] Open
Abstract
Extensive evidence implicates dysfunction in serotonin (5-HT) signaling in the etiology of major depressive disorder (MDD). Dorsal raphe nucleus (DR) is a major source of serotonin in the brain, and previous studies have reported within it alterations in 5-HT-related gene expression, protein levels, receptor binding, and morphological organization in mood disorders. In the present study, we utilized in situ hybridization-guided laser capture microdissection to harvest tissue samples from the middle-caudal subregion of the human DR post-mortem from MDD patients and from psychiatrically normal comparison subjects. Extracted RNA was prepared for gene expression profiling, and subsequent confirmation of select targets with quantitative real-time PCR. Our data indicate expression changes in functional gene families that regulate: (1) cellular stress and energy balance, (2) intracellular signaling and transcriptional regulation, and (3) cell proliferation and connectivity. The greatest changes in expression were observed among transcriptional regulators, including downregulation in the expression of TOB1, EGR1, and NR4A2 and their downstream targets. Previous studies have implicated these gene products in the regulation of functional domains impacted by MDD, including cognitive function, affective regulation, and emotional memory formation. These observations indicate altered function of several transcriptional regulators and their downstream targets, which may lead to the dysregulation of multiple cellular functions that contribute to the pathophysiology of MDD. Future studies will require single cell analyses in the DR to determine potential impact of these changes on its cellular functions and related circuits.
Collapse
Affiliation(s)
- Ilan A Kerman
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hale MW, Raison CL, Lowry CA. Integrative physiology of depression and antidepressant drug action: implications for serotonergic mechanisms of action and novel therapeutic strategies for treatment of depression. Pharmacol Ther 2012; 137:108-18. [PMID: 23017938 DOI: 10.1016/j.pharmthera.2012.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 11/15/2022]
Abstract
Major depressive disorder (MDD) is predicted to be the second leading cause of disability worldwide by the year 2020. Currently available treatments for MDD are suboptimal. Only 50% of MDD patients recover in less than 12 weeks with adequate treatment, and up to 20% of patients will fail to adequately respond to all currently available interventions. Moreover, current treatments come at the cost of significant central nervous system (CNS) side effects, further highlighting the need for more effective treatments with fewer side effects. A greater mechanistic understanding of MDD and the actions of antidepressant drugs would provide opportunities for development of novel therapeutic approaches to treatment. With this aim in mind, we explore the novel, but empirically supported, hypothesis that an evolutionarily ancient thermoafferent pathway, signaling via the spinoparabrachial pathway from serotonergic sensory cells in the skin and other epithelial linings to serotonergic neurons and depression-related circuits in the brain, is dysfunctional in MDD and that antidepressant therapies, including antidepressant drugs and exercise, act by restoring its function.
Collapse
Affiliation(s)
- Matthew W Hale
- School of Psychological Science, La Trobe University, Melbourne 3086, Australia
| | | | | |
Collapse
|
48
|
Hurley LM, Sullivan MR. From behavioral context to receptors: serotonergic modulatory pathways in the IC. Front Neural Circuits 2012; 6:58. [PMID: 22973195 PMCID: PMC3434355 DOI: 10.3389/fncir.2012.00058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022] Open
Abstract
In addition to ascending, descending, and lateral auditory projections, inputs extrinsic to the auditory system also influence neural processing in the inferior colliculus (IC). These types of inputs often have an important role in signaling salient factors such as behavioral context or internal state. One route for such extrinsic information is through centralized neuromodulatory networks like the serotonergic system. Serotonergic inputs to the IC originate from centralized raphe nuclei, release serotonin in the IC, and activate serotonin receptors expressed by auditory neurons. Different types of serotonin receptors act as parallel pathways regulating specific features of circuitry within the IC. This results from variation in subcellular localizations and effector pathways of different receptors, which consequently influence auditory responses in distinct ways. Serotonin receptors may regulate GABAergic inhibition, influence response gain, alter spike timing, or have effects that are dependent on the level of activity. Serotonin receptor types additionally interact in nonadditive ways to produce distinct combinatorial effects. This array of effects of serotonin is likely to depend on behavioral context, since the levels of serotonin in the IC transiently increase during behavioral events including stressful situations and social interaction. These studies support a broad model of serotonin receptors as a link between behavioral context and reconfiguration of circuitry in the IC, and the resulting possibility that plasticity at the level of specific receptor types could alter the relationship between context and circuit function.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
49
|
Hale MW, Shekhar A, Lowry CA. Stress-related serotonergic systems: implications for symptomatology of anxiety and affective disorders. Cell Mol Neurobiol 2012; 32:695-708. [PMID: 22484834 PMCID: PMC3378822 DOI: 10.1007/s10571-012-9827-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/07/2012] [Indexed: 11/30/2022]
Abstract
Previous studies have suggested that serotonergic neurons in the midbrain raphe complex have a functional topographic organization. Recent studies suggest that stimulation of a bed nucleus of the stria terminalis-dorsal raphe nucleus pathway by stress- and anxiety-related stimuli modulates a subpopulation of serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD) and caudal part of the dorsal raphe nucleus (DRC) that participates in facilitation of anxiety-like responses. In contrast, recent studies suggest that activation of a spinoparabrachial pathway by peripheral thermal or immune stimuli excites subpopulations of serotonergic neurons in the ventrolateral part of the dorsal raphe nucleus/ventrolateral periaqueducal gray (DRVL/VLPAG) region and interfascicular part of the dorsal raphe nucleus (DRI). Studies support a role for serotonergic neurons in the DRVL/VLPAG in inhibition of panic-like responses, and serotonergic neurons in the DRI in antidepressant-like effects. Thus, data suggest that while some subpopulations of serotonergic neurons in the dorsal raphe nucleus play a role in facilitation of anxiety-like responses, others play a role in inhibition of anxiety- or panic-like responses, while others play a role in antidepressant-like effects. Understanding the anatomical and functional properties of these distinct serotonergic systems may lead to novel therapeutic strategies for the prevention and/or treatment of affective and anxiety disorders. In this review, we describe the anatomical and functional properties of subpopulations of serotonergic neurons in the dorsal raphe nucleus, with a focus on those implicated in symptoms of anxiety and affective disorders, the DRD/DRC, DRVL/VLPAG, and DRI.
Collapse
Affiliation(s)
- Matthew W. Hale
- School of Psychological Science, La Trobe University, Melbourne, 3086 Australia
| | - Anantha Shekhar
- Department of Psychiatry and Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354 USA
| |
Collapse
|
50
|
Jasinska AJ, Lowry CA, Burmeister M. Serotonin transporter gene, stress and raphe-raphe interactions: a molecular mechanism of depression. Trends Neurosci 2012; 35:395-402. [PMID: 22301434 DOI: 10.1016/j.tins.2012.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 12/02/2011] [Accepted: 01/01/2012] [Indexed: 12/16/2022]
Abstract
Reports of gene-environment interactions (GxE) between the serotonin transporter gene and stress on risk of depression have generated both excitement and controversy. The controversy persists in part because a mechanistic account of this GxE on serotonergic neurotransmission and risk of depression has been lacking. In this Opinion, we draw on recent discoveries in the functional neuroanatomy of the serotonergic dorsal raphe nucleus (DR) to propose such a mechanistic account. We argue that genetically produced variability in serotonin reuptake during stressor-induced raphe-raphe interactions alters the balance in the amygdala-ventromedial prefrontal cortex (VMPFC)-DR circuitry underlying stressor reactivity and emotion regulation. In particular, the recently characterized stressor-responsive serotonergic interneurons originating from the dorsolateral DR may hold a key to unlocking the GxE mechanism of depression.
Collapse
Affiliation(s)
- Agnes J Jasinska
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|