1
|
Peart DR, Nolan CJ, Stone AP, Williams MA, Karlovcec JM, Murray JE. Disruption of positive- and negative-feature morphine interoceptive occasion setters by dopamine receptor agonism and antagonism in male and female rats. Psychopharmacology (Berl) 2024; 241:1597-1615. [PMID: 38580732 DOI: 10.1007/s00213-024-06584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
RATIONALE Internally perceived stimuli evoked by morphine administration can form Pavlovian associations such that they can function as occasion setters (OSs) for externally perceived reward cues in rats, coming to modulate reward-seeking behaviour. Though much research has investigated mechanisms underlying opioid-related reinforcement and analgesia, neurotransmitter systems involved in the functioning of opioids as Pavlovian interoceptive discriminative stimuli remain to be disentangled despite documented differences in the development of tolerance to analgesic versus discriminative stimulus effects. OBJECTIVES Dopamine has been implicated in many opioid-related behaviours, so we aimed to investigate the role of this neurotransmitter in expression of morphine occasion setting. METHODS Male and female rats were assigned to positive- (FP) or negative-feature (FN) groups and received an injection of morphine or saline before each training session. A 15-s white noise conditioned stimulus (CS) was presented 8 times during every training session; offset of this stimulus was followed by 4-s access to liquid sucrose on morphine, but not saline, sessions for FP rats. FN rats learned the reverse contingency. Following stable discrimination, rats began generalization testing for expression of morphine-guided sucrose seeking after systemic pretreatment with different doses of the non-selective dopamine receptor antagonist, flupenthixol, and the non-selective dopamine receptor agonist, apomorphine, combined with training doses of morphine or saline in a Latin-square design. RESULTS The morphine discrimination was acquired under both FP and FN contingencies by males and females. Neither flupenthixol nor apomorphine at any dose substituted for morphine, but both apomorphine and flupenthixol disrupted expression of the morphine OS. This inhibition was specific to sucrose seeking during CS presentations rather than during the period before CS onset and, in the case of apomorphine more so than flupenthixol, to trials on which access to sucrose was anticipated. CONCLUSIONS Our findings lend support to a mechanism of occasion setting involving gating of CS-induced dopamine release rather than by direct dopaminergic modulation by the morphine stimulus.
Collapse
Affiliation(s)
- Davin R Peart
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Caitlin J Nolan
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Adiia P Stone
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mckenna A Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jessica M Karlovcec
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jennifer E Murray
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
2
|
Japarin RA, Harun N, Hassan Z, Müller CP. The dopamine D1 receptor antagonist SCH-23390 blocks the acquisition, but not expression of mitragynine-induced conditioned place preference in rats. Behav Brain Res 2023; 453:114638. [PMID: 37619769 DOI: 10.1016/j.bbr.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Mitragynine (MG) is the primary active constituent of Mitragyna speciosa Korth (kratom), a psychoactive Southeast Asian plant with potential therapeutic use. Numerous studies support roles of dopaminergic system in drug reward. However, the involvement of the dopaminergic system in mediating MG reward and drug-seeking is poorly understood. Using conditioned place preference (CPP) paradigm, the present study aims to evaluate the roles of the dopamine (DA) D1 receptor in the acquisition and expression of MG-induced CPP in rats. The effects of SCH-23390, a selective DA D1 receptor antagonist, on the acquisition of MG-induced CPP were first investigated. Rats were pre-treated systemically with SCH-23390 (0, 0.1 and 0.3 mg/kg, i.p.) prior to MG (10 mg/kg) conditioning sessions. Next, we tested the effects of the DA D1 receptor antagonist on the expression of MG-induced CPP. Furthermore, the effects of a MG-priming dose (5 mg/kg) on the reinstatement of extinguished CPP were tested. The results showed that SCH-23390 dose-dependently suppressed the acquisition of a MG-induced CPP. In contrast, SCH-23390 had no effect on the expression of a MG-induced CPP. The findings of this study suggested a crucial role of the DA D1 receptor in the acquisition, but not the expression of the rewarding effects of MG in a CPP test. Furthermore, blockade of the D1-like receptor during conditioning did not prevent MG priming effects on CPP reinstatement test, suggesting no role for the DA D1 receptor in reinstatement sensitivity.
Collapse
Affiliation(s)
- Rima Atria Japarin
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Jokar Z, Khatamsaz S, Alaei H, Shariati M. The electrical stimulation of the central nucleus of the amygdala in combination with dopamine receptor antagonist reduces the acquisition phase of morphine-induced conditioned place preference in male rat. Res Pharm Sci 2023; 18:430-438. [PMID: 37614617 PMCID: PMC10443671 DOI: 10.4103/1735-5362.378089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 05/06/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose The central nucleus of the amygdala (CeA) is one of the nuclei involved in the reward system. The aim of the current study was to investigate the electrical stimulation (e-stim) effect of the CeA in combination with dopamine D1 receptor antagonist on morphine-induced conditioned place preference (CPP) in male rats. Experimental approach A 5-day procedure of CPP was used in this study. Morphine was administered at an effective dose of 5 mg/kg, and SCH23390 as a selective D1 receptor antagonist was administrated into the CeA. In addition, the CeA was stimulated with an intensity of the current of 150 μA. Finally, the dependence on morphine was evaluated in all experimental groups. Findings/Results Morphine significantly increased CPP. While the blockade of the D1 receptor of the CeA reduced the acquisition phase of morphine-induced CPP. Moreover, the combination of D1 receptor antagonist and e-stim suppressed morphine-induced CPP, even it induced an aversion. Conclusion and implication The current study suggests that the administration of dopamine D1 receptor antagonist into the CeA in combination with e-stim could play a prominent role in morphine dependence.
Collapse
Affiliation(s)
- Zahra Jokar
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Saeed Khatamsaz
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Shariati
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
4
|
McKendrick G, McDevitt DS, Shafeek P, Cottrill A, Graziane NM. Anterior cingulate cortex and its projections to the ventral tegmental area regulate opioid withdrawal, the formation of opioid context associations and context-induced drug seeking. Front Neurosci 2022; 16:972658. [PMID: 35992922 PMCID: PMC9388764 DOI: 10.3389/fnins.2022.972658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical evidence suggests that there are correlations between activity within the anterior cingulate cortex (ACC) following re-exposure to drug-associated contexts and drug craving. However, there are limited data contributing to our understanding of ACC function at the cellular level during re-exposure to drug-context associations as well as whether the ACC is directly related to context-induced drug seeking. Here, we addressed this issue by employing our novel behavioral procedure capable of measuring the formation of drug-context associations as well as context-induced drug-seeking behavior in male mice (8-12 weeks of age) that orally self-administered oxycodone. We found that mice escalated oxycodone intake during the long-access training sessions and that conditioning with oxycodone was sufficient to evoke conditioned place preference (CPP) and drug-seeking behaviors. Additionally, we found that thick-tufted, but not thin-tufted pyramidal neurons (PyNs) in the ACC as well as ventral tegmental area (VTA)-projecting ACC neurons had increased intrinsic membrane excitability in mice that self-administered oxycodone compared to controls. Moreover, we found that global inhibition of the ACC or inhibition of VTA-projecting ACC neurons was sufficient to significantly reduce oxycodone-induced CPP, drug seeking, and spontaneous opioid withdrawal. These results demonstrate a direct role of ACC activity in mediating context-induced opioid seeking among other behaviors, including withdrawal, that are associated with the DSM-V criteria of opioid use disorder.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Dillon S. McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Peter Shafeek
- Medicine Program, Penn State College of Medicine, Hershey, PA, United States
| | - Adam Cottrill
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M. Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Custodio RJP, Kim M, Sayson LV, Ortiz DM, Buctot D, Lee HJ, Cheong JH, Kim HJ. Regulation of clock and clock-controlled genes during morphine reward and reinforcement: Involvement of the period 2 circadian clock. J Psychopharmacol 2022; 36:875-891. [PMID: 35486444 DOI: 10.1177/02698811221089040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Morphine abuse is a devastating disorder that affects millions of people worldwide, and literature evidence indicates a relationship between opioid abuse and the circadian clock. AIM We explored morphine reward and reinforcement using mouse models with Per2 gene modifications (knockout (KO); overexpression (OE)). METHODS Mice were exposed to various behavioral, electroencephalographic, pharmacological, and molecular tests to assess the effects of morphine and identify the underlying mechanisms with a focus on reward and reinforcement and the corresponding involvement of circadian and clock-controlled gene regulation. RESULTS Per2 deletion enhances morphine-induced analgesia, locomotor sensitization, conditioned place preference (CPP), and self-administration (SA) in mice, whereas its overexpression attenuated these effects. In addition, reduced withdrawal was observed in Per2 KO mice, whereas an augmented withdrawal response was observed in Per2 OE mice. Moreover, naloxone and SCH 23390 blocked morphine CPP in Per2 KO and wild-type (WT) mice. The rewarding (CPP) and reinforcing effects (SA) observed in morphine-conditioned and morphine self-administered Per2 KO and WT mice were accompanied by activated μ-opioid and dopamine D1 receptors and TH in the mesolimbic (VTA/NAcc) system. Furthermore, genetic modifications of Per2 in mice innately altered some clock genes in response to morphine. CONCLUSION These findings improve our understanding of the role of Per2 in morphine-induced psychoactive effects. Our data and those obtained in previous studies indicate that targeting Per2 may have applicability in the treatment of substance abuse.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- School of Pharmacy, Jeonbuk National University, Jeonju-si, Republic of Korea.,Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Danilo Buctot
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- School of Pharmacy, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Shahzadi A, Yunusoglu O, Karabulut E, Sonmez H, Yazici Z. Influence of Selective Dopamine Agonist Ropinirole on Conditioned Place Preference and Somatic Signs of Morphine Withdrawal in Rats. Front Behav Neurosci 2022; 16:855241. [PMID: 35733518 PMCID: PMC9207507 DOI: 10.3389/fnbeh.2022.855241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The underlying mechanism of dependence and rewarding effects of morphine is imperative to understand. The primary aim of this study was to investigate whether ropinirole D2/3 agonist affects the rewarding and reinforcing properties of morphine-induced conditioned place preference (CPP) and withdrawal syndromes in rats. On day one, the animals were randomly divided to conduct the pre-test. The morphine (10 mg/kg, i.p.) and/or saline was administered on alternate days in an 8-day CPP session. On day 10, 15 min prior to the post-conditioning test (expression), a single dose of ropinirole (1, 2, and 5 mg/kg, i.p.) was given to rats. In extinction session, ropinirole was injected daily, and CPP was extinguished by repeated testing, with intervals of 3 days. Finally, reinstatement was assessed by administering ropinirole (1, 2, and 5 mg/kg) 15 min before the morphine injection. Morphine dependence was developed by administering increasing doses of morphine (10–50 mg/kg, i.p.). To assess withdrawal symptoms, ropinirole (1, 2, and 5 mg/kg) was injected 15 min before naloxone (2 mg/kg, s.c.) administration. The present study confirms that ropinirole attenuates expression and reinstatement of CPP, while it precipitates the extinction of morphine-induced CPP. Naloxone-precipitated morphine withdrawal symptoms, including wet dog shakes and weight loss, were attenuated although jumping was increased by a single ropinirole injection. Thus, ropinirole was influential in attenuating expression, reducing drug seeking and weakening reinstatement via the dopaminergic system. These findings show that ropinirole might affect neuro-adaptive changes related to dependence.
Collapse
Affiliation(s)
- Andleeb Shahzadi
- Department of Medical Pharmacology, Faculty of Medicine-Cerrahpasa, Istanbul University-Cerrahpasa, Istanbul, Turkey
- *Correspondence: Andleeb Shahzadi,
| | - Oruc Yunusoglu
- Department of Medical Pharmacology, Faculty of Medicine-Cerrahpasa, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Enes Karabulut
- Department of Medical Pharmacology, Faculty of Medicine-Cerrahpasa, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Haktan Sonmez
- Department of Medical Pharmacology, Faculty of Medicine-Cerrahpasa, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeliha Yazici
- Department of Medical Pharmacology, Faculty of Medicine-Cerrahpasa, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Biruni University, Istanbul, Turkey
- Zeliha Yazici, ;
| |
Collapse
|
7
|
Topiramate-chitosan nanoparticles prevent morphine reinstatement with no memory impairment: Dopaminergic and glutamatergic molecular aspects in rats. Neurochem Int 2021; 150:105157. [PMID: 34390773 DOI: 10.1016/j.neuint.2021.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
Besides their clinical application, chronic misuse of opioids has often been associated to drug addiction due to their addictive properties, underlying neuroadaptations of AMPA glutamate-receptor-dependent synaptic plasticity. Topiramate (TPM), an AMPAR antagonist, has been used to treat psychostimulants addiction, despite its harmful effects on memory. This study aimed to evaluate the effects of a novel topiramate nanosystem on molecular changes related to morphine reinstatement. Rats were previously exposed to morphine in conditioned place preference (CPP) paradigm and treated with topiramate-chitosan nanoparticles (TPM-CS-NP) or non-encapsulated topiramate in solution (S-TPM) during CPP extinction; following memory performance evaluation, they were re-exposed to morphine reinstatement. While morphine-CPP extinction was comparable among all experimental groups, TPM-CS-NP treatment prevented morphine reinstatement, preserving memory performance, which was impaired by both morphine-conditioning and S-TPM treatment. In the NAc, morphine increased D1R, D2R, D3R, DAT, GluA1 and MOR immunoreactivity. It also increased D1R, DAT, GluA1 and MOR in the dorsal hippocampus. TPM-CS-NP treatment decreased D1R, D3R and GluA1 and increased DAT in the NAc, decreasing GluA1 and increasing D2 and DAT in the dorsal hippocampus. Taken together, we may infer that TPM-CS-NP treatment was able to prevent the morphine reinstatement without memory impairment. Therefore, TPM-CS-NP may be considered an innovative therapeutic tool due to its property to prevent opioid reinstatement because it acts modifying both dopaminergic and glutamatergic neurotransmission, which are commonly related to morphine addiction.
Collapse
|
8
|
Heinsbroek JA, De Vries TJ, Peters J. Glutamatergic Systems and Memory Mechanisms Underlying Opioid Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039602. [PMID: 32341068 DOI: 10.1101/cshperspect.a039602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain and is of critical importance for the synaptic and circuit mechanisms that underlie opioid addiction. Opioid memories formed over the course of repeated drug use and withdrawal can become powerful stimuli that trigger craving and relapse, and glutamatergic neurotransmission is essential for the formation and maintenance of these memories. In this review, we discuss the mechanisms by which glutamate, dopamine, and opioid signaling interact to mediate the primary rewarding effects of opioids, and cover the glutamatergic systems and circuits that mediate the expression, extinction, and reinstatement of opioid seeking over the course of opioid addiction.
Collapse
Affiliation(s)
- Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Taco J De Vries
- Amsterdam Neuroscience, Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, VU University, 1081HV Amsterdam, The Netherlands.,Amsterdam Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center, 1081HZ Amsterdam, The Netherlands
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
9
|
McKendrick G, Graziane NM. Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front Behav Neurosci 2020; 14:582147. [PMID: 33132862 PMCID: PMC7550834 DOI: 10.3389/fnbeh.2020.582147] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
The conditioned place preference (CPP) paradigm is a well-established model utilized to study the role of context associations in reward-related behaviors, including both natural rewards and drugs of abuse. In this review article, we discuss the basic history, various uses, and considerations that are tied to this technique. There are many potential takeaway implications of this model, including negative affective states, conditioned drug effects, memory, and motivation, which are all considered here. We also discuss the neurobiology of CPP including relevant brain regions, molecular signaling cascades, and neuromodulatory systems. We further examine some of our prior findings and how they integrate CPP with self-administration paradigms. Overall, by describing the fundamentals of CPP, findings from the past few decades, and implications of using CPP as a research paradigm, we have endeavored to support the case that the CPP method is specifically advantageous for studying the role of a form of Pavlovian learning that associates drug use with the surrounding environment.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States.,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
10
|
László K, Péczely L, Géczi F, Kovács A, Zagoracz O, Ollmann T, Kertes E, Kállai V, László B, Berta B, Karádi Z, Lénárd L. The role of D2 dopamine receptors in oxytocin induced place preference and anxiolytic effect. Horm Behav 2020; 124:104777. [PMID: 32439347 DOI: 10.1016/j.yhbeh.2020.104777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/01/2022]
Abstract
Neuropeptide oxytocin (OT) is involved in the regulation of social and non-social behaviour. The central nucleus of amygdala (CeA), part of the limbic system, plays an important role in learning, memory, anxiety and reinforcing mechanisms. CeA has been shown to be rich in OT receptors in rodents. Our previous findings indicated that OT in the rat CeA has a dose dependent rewarding and anxiolytic effect. The aim of our present study was to examine in the CeA the possible interaction of OT and D2 dopamine (DA) receptor antagonist Sulpiride on reinforcement in place preference test and on anxiety in elevated plus maze test. Wistar rats were microinjected bilaterally with 10 ng OT. In different group of animals 4 μg D2 DA receptor antagonist was applied. Other animals received D2 DA receptor antagonist 15 min before 10 ng OT treatment or vehicle solution into the CeA. Rats receiving 10 ng OT spent significantly longer time in the treatment quadrant during the test session in conditioned place preference test. Prior treatment with D2 DA receptor antagonist blocked the rewarding effects of OT. Antagonist in itself did not influence the time rats spent in the treatment quadrant. In elevated plus maze test, rats receiving 10 ng OT spent significantly longer time on the open arms. Prior treatment with D2 DA receptor antagonist blocked the effects of OT. Our results show that DA system plays a role in positive reinforcing and anxiolytic effects of OT because D2 DA receptor antagonist can block these actions.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/metabolism
- Animals
- Anti-Anxiety Agents/pharmacology
- Anxiety/drug therapy
- Behavior, Animal/drug effects
- Conditioning, Classical/drug effects
- Dopamine D2 Receptor Antagonists/pharmacology
- Fear/drug effects
- Freezing Reaction, Cataleptic/drug effects
- Male
- Maze Learning/drug effects
- Oxytocin/pharmacology
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D2/physiology
- Receptors, Oxytocin/metabolism
- Receptors, Oxytocin/physiology
- Reinforcement, Psychology
- Reward
- Spatial Behavior/drug effects
- Sulpiride/pharmacology
Collapse
Affiliation(s)
- K László
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary.
| | - L Péczely
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary
| | - F Géczi
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary
| | - A Kovács
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary
| | - O Zagoracz
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary
| | - T Ollmann
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary
| | - E Kertes
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary
| | - V Kállai
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary
| | - B László
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary
| | - B Berta
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary
| | - Z Karádi
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary; Molecular Endocrinology and Neurophysiology Research Group, University of Pécs, Szentágothai Center, Pécs, Hungary
| | - L Lénárd
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Neuroscience Center, University of Pécs, Pécs, Hungary; Molecular Endocrinology and Neurophysiology Research Group, University of Pécs, Szentágothai Center, Pécs, Hungary
| |
Collapse
|
11
|
Lin R, Liang J, Wang R, Yan T, Zhou Y, Liu Y, Feng Q, Sun F, Li Y, Li A, Gong H, Luo M. The Raphe Dopamine System Controls the Expression of Incentive Memory. Neuron 2020; 106:498-514.e8. [PMID: 32145184 DOI: 10.1016/j.neuron.2020.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The brain dopamine (DA) system participates in forming and expressing memory. Despite a well-established role of DA neurons in the ventral tegmental area in memory formation, the exact DA circuits that control memory expression remain unclear. Here, we show that DA neurons in the dorsal raphe nucleus (DRN) and their medulla input control the expression of incentive memory. DRN DA neurons are activated by both rewarding and aversive stimuli in a learning-dependent manner and exhibit elevated activity during memory recall. Disrupting their physiological activity or DA synthesis blocks the expression of natural appetitive and aversive memories as well as drug memories associated with opioids. Moreover, a glutamatergic pathway from the lateral parabrachial nucleus to the DRN selectively regulates the expression of reward memories associated with opioids or foods. Our study reveals a specialized DA subsystem important for memory expression and suggests new targets for interventions against opioid addiction.
Collapse
Affiliation(s)
- Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing 102206, China.
| | - Jingwen Liang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruiyu Wang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Ting Yan
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Youtong Zhou
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Yang Liu
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiru Feng
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fangmiao Sun
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215100, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215100, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
12
|
Grenier P, Mailhiot MC, Cahill CM, Olmstead MC. Blockade of dopamine D1 receptors in male rats disrupts morphine reward in pain naïve but not in chronic pain states. J Neurosci Res 2019; 100:297-308. [PMID: 31721270 DOI: 10.1002/jnr.24553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
The rewarding effect of opiates is mediated through dissociable neural systems in drug naïve and drug-dependent states. Neuroadaptations associated with chronic drug use are similar to those produced by chronic pain, suggesting that opiate reward could also involve distinct mechanisms in chronic pain and pain-naïve states. We tested this hypothesis by examining the effect of dopamine (DA) antagonism on morphine reward in a rat model of neuropathic pain.Neuropathic pain was induced in male Sprague-Dawley rats through chronic constriction (CCI) of the sciatic nerve; reward was assessed in the conditioned place preference (CPP) paradigm in separate groups at early (4-8 days post-surgery) and late (11-15 days post-surgery) phases of neuropathic pain. Minimal effective doses of morphine that produced a CPP in early and late phases of neuropathic pain were 6 mg/kg and 2 mg/kg respectively. The DA D1 receptor antagonist, SCH23390, blocked a morphine CPP in sham, but not CCI, rats at a higher dose (0.5 mg/kg), but had no effect at a lower dose (0.1 mg/kg). The DA D2 receptor antagonist, eticlopride (0.1 and 0.5 mg/kg), had no effect on a morphine CPP in sham or CCI rats, either in early or late phases of neuropathic pain. In the CPP paradigm, morphine reward involves DA D1 mechanisms in pain-naïve but not chronic pain states. This could reflect increased sensitivity to drug effects in pain versus no pain conditions and/or differential mediation of opiate reward in these two states.
Collapse
Affiliation(s)
- Patrick Grenier
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | | | - Catherine M Cahill
- Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Mary C Olmstead
- Department of Psychology, Queen's University, Kingston, ON, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
13
|
Zarrindast MR, Khakpai F. The modulatory role of nicotine on cognitive and non-cognitive functions. Brain Res 2019; 1710:92-101. [DOI: 10.1016/j.brainres.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
|
14
|
Sadat-Shirazi MS, Zarrindast MR, Daneshparvar H, Ziaie A, Fekri M, Abbasnezhad E, Ashabi G, Khalifeh S, Vousooghi N. Alteration of dopamine receptors subtypes in the brain of opioid abusers: A postmortem study in Iran. Neurosci Lett 2018; 687:169-176. [DOI: 10.1016/j.neulet.2018.09.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/30/2018] [Accepted: 09/21/2018] [Indexed: 01/11/2023]
|
15
|
The role of intraamygdaloid neurotensin and dopamine interaction in conditioned place preference. Behav Brain Res 2018; 344:85-90. [DOI: 10.1016/j.bbr.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/21/2023]
|
16
|
Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder. Neurosci Biobehav Rev 2018; 89:13-28. [PMID: 29577963 DOI: 10.1016/j.neubiorev.2018.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022]
Abstract
In the search for efficacious pharmacotherapies to treat cocaine addiction much attention has been given to agents targeting dopamine D1 or D3 receptors because of the involvement of these receptors in drug-related behaviors. D1-like and D3 receptor partial agonists and antagonists have been shown to reduce drug reward, reinstatement of drug seeking and conditioned place preference in rodents and non-human primates. However, translation of these encouraging results to clinical settings has been limited due to a number of factors including toxicity, poor pharmacokinetic properties and extrapyramidal and sedative side effects. This review highlights the role of D1 and D3 receptors in drug reward and seeking, the discovery of D1-D3 heteromers and their potential as targets in the treatment of addiction.
Collapse
|
17
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
18
|
Ng KH, Pollock MW, Urbanczyk PJ, Sangha S. Altering D1 receptor activity in the basolateral amygdala impairs fear suppression during a safety cue. Neurobiol Learn Mem 2018; 147:26-34. [DOI: 10.1016/j.nlm.2017.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/09/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
|
19
|
PARP-1 is required for retrieval of cocaine-associated memory by binding to the promoter of a novel gene encoding a putative transposase inhibitor. Mol Psychiatry 2017; 22:570-579. [PMID: 27595592 DOI: 10.1038/mp.2016.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022]
Abstract
Reward-related memory is an important factor in cocaine seeking. One necessary signaling mechanism for long-term memory formation is the activation of poly(ADP-ribose) polymerase-1 (PARP-1), via poly(ADP-ribosyl)ation. We demonstrate herein that auto-poly(ADP-ribosyl)ation of activated PARP-1 was significantly pronounced during retrieval of cocaine-associated contextual memory, in the central amygdala (CeA) of rats expressing cocaine-conditioned place preference (CPP). Intra-CeA pharmacological and short hairpin RNA depletion of PARP-1 activity during cocaine-associated memory retrieval abolished CPP. In contrast, PARP-1 inhibition after memory retrieval did not affect CPP reconsolidation process and subsequent retrievals. Chromatin immunoprecipitation sequencing revealed that PARP-1 binding in the CeA is highly enriched in genes involved in neuronal signaling. We identified among PARP targets in CeA a single gene, yet uncharacterized and encoding a putative transposase inhibitor, at which PARP-1 enrichment markedly increases during cocaine-associated memory retrieval and positively correlates with CPP. Our findings have important implications for understanding drug-related behaviors, and suggest possible future therapeutic targets for drug abuse.
Collapse
|
20
|
Assar N, Mahmoudi D, Farhoudian A, Farhadi MH, Fatahi Z, Haghparast A. D1- and D2-like dopamine receptors in the CA1 region of the hippocampus are involved in the acquisition and reinstatement of morphine-induced conditioned place preference. Behav Brain Res 2016; 312:394-404. [DOI: 10.1016/j.bbr.2016.06.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023]
|
21
|
Kim J, Ham S, Hong H, Moon C, Im HI. Brain Reward Circuits in Morphine Addiction. Mol Cells 2016; 39:645-53. [PMID: 27506251 PMCID: PMC5050528 DOI: 10.14348/molcells.2016.0137] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/30/2022] Open
Abstract
Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate's innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences.
Collapse
Affiliation(s)
- Juhwan Kim
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186,
Korea
| | - Suji Ham
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113,
Korea
| | - Heeok Hong
- Department of Medical Science, Konkuk University School of Medicine, Seoul 05029,
Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186,
Korea
| | - Heh-In Im
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113,
Korea
| |
Collapse
|
22
|
A Nonrewarding NMDA Receptor Antagonist Impairs the Acquisition, Consolidation, and Expression of Morphine Conditioned Place Preference in Mice. Mol Neurobiol 2016; 54:710-721. [PMID: 26768427 DOI: 10.1007/s12035-015-9678-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/23/2015] [Indexed: 02/03/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists block morphine-induced conditioned place preference (CPP). Although polyamines are endogenous modulators of the NMDA receptor, it is not known whether polyaminergic agents induce CPP or modulate morphine-induced CPP. Here, we examined whether polyamine ligands modify morphine CPP acquisition, consolidation, and expression. Adult male albino Swiss mice received saline (0.9 % NaCl, intraperitoneally (i.p.)) or morphine (5 mg/kg, i.p.) and were respectively confined to a black or a white compartment for 30 min for four consecutive days for CPP induction. The effect of arcaine (3 mg/kg, i.p.) or spermidine (30 mg/kg, i.p.), respectively, an antagonist and an agonist of the polyamine-binding site at the NMDA receptor, on the acquisition, consolidation, and expression of morphine CPP was studied. In those experiments designed to investigate whether spermidine prevented or reversed the effect of arcaine, spermidine (30 mg/kg, i.p.) was administered 15 min before or 15 min after arcaine, respectively. Arcaine and spermidine did not induce CPP or aversion per se. Arcaine (3 mg/kg, i.p.) impaired the acquisition, consolidation, and expression of morphine CPP. Spermidine prevented the impairing effect of arcaine on the acquisition of morphine CPP but not the impairing effect of arcaine on consolidation or expression of morphine CPP. These results suggest that arcaine may impair morphine CPP acquisition by modulating the polyamine-binding site at the NMDA receptor. However, the arcaine-induced impairment of consolidation and expression of morphine CPP seems to involve other mechanisms.
Collapse
|
23
|
Yun J, Jung YS. A Scutellaria baicalensis radix water extract inhibits morphine-induced conditioned place preference. PHARMACEUTICAL BIOLOGY 2014; 52:1382-1387. [PMID: 25068674 DOI: 10.3109/13880209.2014.892514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Scutellaria baicalensis Georgi (Lamiaceae) has been used as a traditional herbal preparation for the treatment of neuropsychiatric disorders in Asian countries for centuries. OBJECTIVE To evaluate the effects of S. baicalensis on morphine-induced drug dependence in rats. MATERIALS AND METHODS In order to evaluate the effect of S. baicalensis and baicalin on morphine-induced dependence-like behavior, a water extract of S. baicalensis [500 mg/kg, intraperitoneally (i.p.)] or baicalin (50 mg/kg, i.p., a flavonoid found in S. baicalensis) was administered prior to morphine injection [5 and 2.5 mg/kg, respectively, subcutaneously (s.c.)] to rats for 8 and 4 d, respectively. Morphine-induced conditioned place preference was assessed by measuring the time spent in a drug-paired chamber. The effect of S. baicalensis on dopamine receptor supersensitivity (locomotor activity) and dopamine agonist-induced climbing behavior due to a single apomorphine treatment (2 mg/kg, s.c.) was also measured. RESULTS At 50 mg/kg, a water extract of S. baicalensis decreased morphine (5 mg/kg)-induced conditioned place preference by 86% in rats. Apomorphine (2 mg/kg)-induced locomotor activity (dopamine receptor supersensitivity) in rats and climbing behavior in mice were attenuated after pretreatment with 500 mg/kg of S. baicalensis water extract by 41% and 56%, respectively. In addition, baicalin-reduced morphine-induced conditioned places preference by 86% in rats at 50 mg/kg. DISCUSSION AND CONCLUSION These results suggest that S. baicalensis can ameliorate drug addiction-related behavior through functional regulation of dopamine receptors.
Collapse
Affiliation(s)
- Jaesuk Yun
- Pharmaceutical Standardization Research and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Busan , Republic of Korea and
| | | |
Collapse
|
24
|
Withania somnifera prevents acquisition and expression of morphine-elicited conditioned place preference. Behav Pharmacol 2013; 24:133-43. [PMID: 23455447 DOI: 10.1097/fbp.0b013e32835f3d15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous studies have reported that some of the central effects of morphine are counteracted by the administration of the methanolic extract of the root of Indian ginseng, Withania somnifera Dunal (WSE). The present study sought to determine whether WSE affects acquisition and expression of morphine-elicited conditioned place preference (CPP) in CD-1 mice. In CPP acquisition experiments, WSE (0, 25, 50, and 100 mg/kg) was administered, during conditioning, 30 min before morphine (10 mg/kg), whereas in expression experiments, WSE (0, 25, 50, and 100 mg/kg) was administered 30 min before the postconditioning test. The results demonstrate (i) that WSE was devoid of motivational properties; (ii) that WSE (100 mg/kg) was devoid of effects on spontaneous and morphine-stimulated motor activity and on spatial memory; and (iii) that WSE (50 and 100 mg/kg) significantly prevented the acquisition and expression of CPP. Further, to characterize the receptor(s) involved in these effects, we studied, by receptor-binding assay, the affinity of WSE for µ-opioid and γ-aminobutyric acid B receptors. These experiments revealed a higher affinity of WSE for γ-aminobutyric acid B than for µ-opioid receptors. Overall, these results point to WSE as an interesting alternative tool, worthy of further investigation, to study opiate addiction.
Collapse
|
25
|
Luo YX, Xue YX, Shen HW, Lu L. Role of amygdala in drug memory. Neurobiol Learn Mem 2013; 105:159-73. [PMID: 23831499 DOI: 10.1016/j.nlm.2013.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/16/2013] [Accepted: 06/25/2013] [Indexed: 12/11/2022]
Abstract
Drug addiction is a chronic brain disorder with the hallmark of a high rate of relapse to compulsive drug seeking and drug taking even after long-term abstinence. Addiction has been considered as an aberrant memory that has been termed "addiction memory." Drug-related memory plays a critical role in the maintenance of learned addictive behaviors and emergence of relapse. Disrupting these long-lasting memories by administering amnestic agents or other manipulations during specific phases of drug memory is a promising strategy for relapse prevention. Recent studies on the processes of drug addiction and relapse have demonstrated that the amygdala is involved in associative drug addiction learning processes. In this review, we focus on preclinical studies that used conditioned place preference and self-administration models to investigate the differential roles of the amygdala in each phase of drug-related memory, including acquisition, consolidation, retrieval, reconsolidation, and extinction. These studies indicate that the amygdala plays a critical role in both cue-associative learning and the expression of cue-induced relapse to drug-seeking behavior.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | | | | | | |
Collapse
|
26
|
Cai YQ, Wang W, Hou YY, Zhang Z, Xie J, Pan ZZ. Central amygdala GluA1 facilitates associative learning of opioid reward. J Neurosci 2013; 33:1577-88. [PMID: 23345231 PMCID: PMC3711547 DOI: 10.1523/jneurosci.1749-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 12/11/2022] Open
Abstract
GluA1 subunits of AMPA glutamate receptors are implicated in the synaptic plasticity induced by drugs of abuse for behaviors of drug addiction, but GluA1 roles in emotional learning and memories of drug reward in the development of drug addiction remain unclear. In this study of the central nucleus of the amygdala (CeA), which is critical in emotional learning of drug reward, we investigated how adaptive changes in the expression of GluA1 subunits affected the learning process of opioid-induced context-reward association (associative learning) for the acquisition of reward-related behavior. In CeA neurons, we found that CeA GluA1 expression was significantly increased 2 h after conditioning treatment with morphine, but not 24 h after the conditioning when the behavior of conditioned place reference (CPP) was fully established in rats. Adenoviral overexpression of GluA1 subunits in CeA accelerated associative learning, as shown by reduced minimum time of morphine conditioning required for CPP acquisition and by facilitated CPP extinction through extinction training with no morphine involved. Adenoviral shRNA-mediated downregulation of CeA GluA1 produced opposite effects, inhibiting the processes of both CPP acquisition and CPP extinction. Adenoviral knockdown of CeA GluA2 subunits facilitated CPP acquisition, but did not alter CPP extinction. Whole-cell recording revealed enhanced electrophysiological properties of postsynaptic GluA2-lacking AMPA receptors in adenoviral GluA1-infected CeA neurons. These results suggest that increased GluA1 expression of CeA AMPA receptors facilitates the associative learning of context-drug reward, an important process in both development and relapse of drug-seeking behaviors in drug addiction.
Collapse
Affiliation(s)
- You-Qing Cai
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Wei Wang
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuan-Yuan Hou
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jun Xie
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
27
|
Abstract
As the major excitatory neurotransmitter in the brain, glutamate plays an undisputable integral role in opiate addiction. This relates, in part, to the fact that addiction is a disorder of learning and memory, and glutamate is required for most types of memory formation. As opiate addiction develops, the addict becomes conditioned to engage in addictive behaviors, and these behaviors can be triggered by opiate-associated cues during abstinence, resulting in relapse. Some medications for opiate addiction exert their therapeutic effects at glutamate receptors, especially the NMDA receptor. Understanding the neural circuits controlling opiate addiction, and the locus of glutamate's actions within these circuits, will help guide the development of targeted pharmacotherapeutics for relapse.
Collapse
Affiliation(s)
- Jamie Peters
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, 1081BT Amsterdam, The Netherlands
| | | |
Collapse
|
28
|
Different current intensities electrical stimulation of prelimbic cortex of mPFC produces different effects on morphine-induced conditioned place preference in rats. Behav Brain Res 2012; 231:187-92. [DOI: 10.1016/j.bbr.2012.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 11/17/2022]
|
29
|
Bananej M, Karimi-Sori A, Zarrindast MR, Ahmadi S. D1 and D2 dopaminergic systems in the rat basolateral amygdala are involved in anxiogenic-like effects induced by histamine. J Psychopharmacol 2012; 26:564-74. [PMID: 21628344 DOI: 10.1177/0269881111405556] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Involvement of the dopamine receptors in the basolateral amygdala (BLA) in the effects of histamine on anxiety-like behaviors of the elevated plus maze in male Wistar rats was investigated. The results showed that bilateral intra-BLA injections of histamine (2.5, 5 and 7.5 µg/rat) induced an anxiogenic-like effect, revealed by decreases in percentage of open arm time (%OAT) and open arm entries (%OAE). Intra-BLA administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/rat), and dopamine D2 receptor agonist, quinpirole (0.03 and 0.05 µg/rat), decreased %OAT but not %OAE. Conversely, intra-BLA administration of dopamine D1 receptor antagonist, SCH23390 (0.5 and 1 µg/rat), and dopamine D2 receptor antagonist, sulpiride (0.3 and 0.5 µg/rat), increased %OAT and %OAE, suggesting an anxiolytic-like effect for both drugs. Interestingly, co-administration of a silent dose of SCH23390 or sulpiride prevented anxiogenic-like effects of SKF38393 and quinpirole, respectively. Conjoint administration of a sub-effective dose of SKF38393 (0.125 µg/rat) or quinpirole (0.01 µg/rat) along with lower doses of histamine (1 and 2.5 µg/rat) induced anxiolytic-like effects. On the other hand, intra-BLA pretreatment with a silent dose of SCH23390 (0.25 µg/rat) or sulpiride (0.1 µg/rat) prevented the anxiogenic-like effect of higher doses of histamine (5 and 7.5 µg/rat). No significant change was observed in total closed arm entries, as an index for motor activity of the animals. It can be concluded that the dopamine D1 and D2 receptors in the BLA may be involved in the anxiogenic-like effects induced by histamine.
Collapse
Affiliation(s)
- Maryam Bananej
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | | |
Collapse
|
30
|
The activation of NMDA receptor-ERK pathway in the central amygdala is required for the expression of morphine-conditioned place preference in the rat. Neurotox Res 2011; 20:362-71. [PMID: 21681580 DOI: 10.1007/s12640-011-9250-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/30/2022]
Abstract
Reinforcing effects of addictive drugs can be evaluated with the conditioned place preference (CPP) test which involves both the action of drugs and environmental cues. However, the encoded neural circuits and underlying signaling mechanism are not fully understood. In this study, we have used morphine-CPP model in the rat and characterized the role of N-methyl-D: -aspartate (NMDA) receptor and the phosphorylation of extracellular signal-regulated kinase (ERK) in the central nuclei of amygdala (CeA) in the expression of morphine-induced CPP. We have found that morphine repeated pairing treatment causes a significant preference for compartment paired with morphine after 1 day or 7 days post-training, which is associated with increased ERK1/2 phosphorylation (p-ERK1/2, a measure of ERK activity) in the CeA. More than 80% of the positive p-ERK1/2 neurons express NMDA receptor subunit NR1 by double immunofluorescence studies. The infusion of either MEK inhibitor U0126 or NMDA receptor antagonist MK-801 in the CeA not only suppresses the activation of ERK1/2 in the CeA but also abolishes the expression of CPP. These results suggest that the activation of the NMDA receptor-ERK signaling pathway in the CeA is required for the expression of morphine-induced place preference in the rat.
Collapse
|
31
|
Rezayof A, Sardari M, Zarrindast MR, Nayer-Nouri T. Functional interaction between morphine and central amygdala cannabinoid CB1 receptors in the acquisition and expression of conditioned place preference. Behav Brain Res 2011; 220:1-8. [PMID: 21262265 DOI: 10.1016/j.bbr.2011.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/17/2022]
Abstract
The present study was done to determine whether cannabinoid CB1 receptors of the central amygdala (CeA) are implicated in morphine-induced place preference. Using a 3-day schedule of conditioning, it was found that subcutaneous (s.c.) administration of morphine (2, 4 and 6 mg/kg) caused a significant dose-dependent conditioned place preference (CPP) in male Wistar rats. Intra-CeA microinjection of the cannabinoid CB1 receptor agonist arachidonylcyclopropylamide (ACPA; 0.5, 2.5 and 5 ng/rat) dose-dependently potentiated the morphine (2mg/kg)-induced CPP. Furthermore, the administration of ACPA (5 ng/rat, intra-CeA) alone induced a significant CPP. It should be considered that the higher dose of ACPA (5 ng/rat, intra-CeA) in combination with morphine decreased locomotor activity on the testing phase. On the other hand, intra-CeA microinjection of the cannabinoid CB1 receptor antagonist AM251 (120 ng/rat) alone induced a significant conditioned place aversion (CPA). Moreover, intra-CeA microinjection of AM251 (90 and 120 ng/rat) inhibited the morphine-induced place preference with a significant interaction. Intra-CeA microinjection of AM251 reversed the effect of ACPA on morphine response. Interestingly, microinjection of ACPA (2.5 and 5 ng/rat) or AM251 (60-120 ng/rat) into the CeA increased or decreased the expression of morphine (6 mg/kg)-induced place preference respectively. These observations provide evidence that cannabinoid CB1 receptors of the CeA are involved in mediating reward and these receptors are also implicated in the acquisition and expression of morphine-induced CPP.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | | | | |
Collapse
|
32
|
Ardjmand A, Rezayof A, Zarrindast MR. Involvement of central amygdala NMDA receptor mechanism in morphine state-dependent memory retrieval. Neurosci Res 2011; 69:25-31. [DOI: 10.1016/j.neures.2010.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/25/2010] [Accepted: 09/14/2010] [Indexed: 12/11/2022]
|
33
|
Zarrindast MR, Mahboobi S, Sadat-Shirazi MS, Ahmadi S. Anxiolytic-like effect induced by the cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA), in the rat amygdala is mediated through the D1 and D2 dopaminergic systems. J Psychopharmacol 2011; 25:131-40. [PMID: 20685770 DOI: 10.1177/0269881110376688] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study the influence of the dopaminergic system(s) of the amygdala on the anxiolytic-like effect of the cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA), in male Wistar rats was investigated. An elevated plus-maze test of anxiety was used to assess anxiety-like behaviors. The results showed that bilateral intra-amygdala injections of ACPA (0.125, 1.25 and 5 ng/rat) and the mixed dopamine D1/D2 receptor agonist, apomorphine, at different doses (0.001, 0.01 and 0.1 µg/rat) increased percentage open arm time (%OAT) and percentage open arm entries (%OAE), indicating an anxiolytic-like effect for both of the drugs. In contrast, intra-amygdala administration of the dopamine D1 receptor antagonist SCH23390 (0.5 and 1 µg/rat) and the dopamine D2 receptor antagonist, sulpiride (2 and 3 µg/rat) decreased %OAT and %OAE, suggesting an anxiogenic-like effect for both of the drugs. Interestingly, pretreatment with a sub-effective dose of apomorphine (0.0005 µg/rat) increased, while SCH23390 (0.25 µg/rat) and sulpiride (1.5 µg/rat) decreased the anxiolytic-like effect of ACPA. It can be concluded that the dopaminergic system of the amygdala may be involved, at least partly, in the anxiolytic-like effects induced by ACPA in the rat amygdala.
Collapse
Affiliation(s)
- Mohammad Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
34
|
Li SX, Liu LJ, Jiang WG, Sun LL, Zhou SJ, Le Foll B, Zhang XY, Kosten TR, Lu L. Circadian alteration in neurobiology during protracted opiate withdrawal in rats. J Neurochem 2010; 115:353-62. [PMID: 20738730 DOI: 10.1111/j.1471-4159.2010.06941.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protracted opiate withdrawal can extend for months of disrupted hormonal circadian rhythms. We examined rodent behaviors and these circadian disturbances in hormone and peptide levels as well as brain clock gene expression during 60 days of protracted withdrawal. Our behavioral tests included open field, elevated plus maze, and sucrose preference tests at 36 h, 10, 30, and 60 days after stopping chronic morphine. At these four assessment points, we collected samples every 4 h for 24 h to examine circadian rhythms in blood hormone and peptide levels and brain expression of rPER1, rPER2, and rPER3 clock genes. Decreased locomotor activity and elevated adrenocorticotropic hormone and melatonin levels persisted for 2 months after morphine withdrawal, but corticosterone was elevated only at 36 h and 10 days after withdrawal. Orexin levels were high at 36 h after withdrawal, but then reversed during protracted withdrawal to abnormally low levels. Beta-endorphin (β-EP) levels showed no differences from normal. However, circadian rhythms were blunted for all of these hormones. Corticosterone, adrenocorticotropic hormone, and orexin blunting persisted at least for 60 days. The blunted circadian rhythm of β-EP and melatonin recovered by day 60, but the peak phase of β-EP was delayed about 8 h. Blunted circadian rhythms and reduced expression of rPER1, rPER2, and rPER3 persisted at least for 60 days in the suprachiasmatic nucleus, prefrontal cortex, nucleus accumbens core, central nucleus of the amygdala, Hippocampus, and ventral tegmental area. Circadian rhythms of rPER1 in the nucleus accumbens shell and basolateral nucleus of the amygdala and of rPER2 in the central nucleus of the amygdala were reversed. Disrupted circadian rhythms of rPER1, rPER 2, and rPER3 expression in reward-related brain circuits and blunted circadian rhythms in peripheral hormones and peptides may play a role in protracted opiate withdrawal and contribute to relapse.
Collapse
Affiliation(s)
- Su-xia Li
- National Institute on Drug Dependence, Peking University, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Thiel KJ, Wenzel JM, Pentkowski NS, Hobbs RJ, Alleweireldt AT, Neisewander JL. Stimulation of dopamine D2/D3 but not D1 receptors in the central amygdala decreases cocaine-seeking behavior. Behav Brain Res 2010; 214:386-94. [PMID: 20600343 DOI: 10.1016/j.bbr.2010.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 05/24/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
Abstract
Alterations in dopamine output within the various subnuclei of the amygdala have previously been implicated in cocaine reinforcement, as well as cocaine-seeking behavior. To elucidate the potential for increased stimulation of D1- and D2-like receptors (D1Rs and D2Rs, respectively) specifically in the central nucleus of the amygdala (CeA) to modulate cue- and cocaine-elicited reinstatement of cocaine-seeking behavior, we infused either the D1R agonist, SKF-38393 (0-4.0 microg/side) or the D2R agonist, 7-OH-DPAT (0-4.0 microg/side) into the CeA immediately prior to tests for cue and cocaine-primed reinstatement. We also examined the effects of 7-OH-DPAT on cocaine self-administration as a positive behavioral control. 7-OH-DPAT decreased cue-and cocaine-primed reinstatement, and reduced the number of cocaine infusions obtained during self-administration; SKF-38393 produced no discernable effects. The results suggest that enhanced stimulation of D2Rs, but not D1Rs, in the CeA is sufficient to inhibit expression of the incentive motivational effects of cocaine priming and cocaine-paired cues. Together with previous findings that D1R blockade attenuates reinstatement of cocaine-seeking behavior, the results suggest that D1R stimulation may be necessary, but not sufficient, to modulate the incentive motivational effects of cues and cocaine priming.
Collapse
Affiliation(s)
- Kenneth J Thiel
- Department of Psychology, Arizona State University, P.O. Box 871104, Tempe, AZ 85287-1104, United States
| | | | | | | | | | | |
Collapse
|
36
|
Rezayof A, Khajehpour L, Zarrindast M. The amygdala modulates morphine-induced state-dependent memory retrieval via muscarinic acetylcholine receptors. Neuroscience 2009; 160:255-63. [DOI: 10.1016/j.neuroscience.2009.02.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 02/26/2009] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
|
37
|
Li SX, Liu LJ, Jiang WG, Lu L. Morphine withdrawal produces circadian rhythm alterations of clock genes in mesolimbic brain areas and peripheral blood mononuclear cells in rats. J Neurochem 2009; 109:1668-79. [PMID: 19383088 DOI: 10.1111/j.1471-4159.2009.06086.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies have shown that clock genes are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus, other brain regions, and peripheral tissues. Various peripheral oscillators can run independently of the SCN. However, no published studies have reported changes in the expression of clock genes in the rat central nervous system and peripheral blood mononuclear cells (PBMCs) after withdrawal from chronic morphine treatment. Rats were administered with morphine twice daily at progressively increasing doses for 7 days; spontaneous withdrawal signs were recorded 14 h after the last morphine administration. Then, brain and blood samples were collected at each of eight time points (every 3 h: ZT 9; ZT 12; ZT 15; ZT 18; ZT 21; ZT 0; ZT 3; ZT 6) to examine expression of rPER1 and rPER2 and rCLOCK. Rats presented obvious morphine withdrawal signs, such as teeth chattering, shaking, exploring, ptosis, and weight loss. In morphine-treated rats, rPER1 and rPER2 expression in the SCN, basolateral amygdala, and nucleus accumbens shell showed robust circadian rhythms that were essentially identical to those in control rats. However, robust circadian rhythm in rPER1 expression in the ventral tegmental area was completely phase-reversed in morphine-treated rats. A blunting of circadian oscillations of rPER1 expression occurred in the central amygdala, hippocampus, nucleus accumbens core, and PBMCs and rPER2 expression occurred in the central amygdala, prefrontal cortex, nucleus accumbens core, and PBMCs in morphine-treated rats compared with controls. rCLOCK expression in morphine-treated rats showed no rhythmic change, identical to control rats. These findings indicate that withdrawal from chronic morphine treatment resulted in desynchronization from the SCN rhythm, with blunting of rPER1 and rPER2 expression in reward-related neurocircuits and PBMCs.
Collapse
Affiliation(s)
- Su-xia Li
- National Institute on Drug Dependence, Peking University, Beijing, China
| | | | | | | |
Collapse
|
38
|
Effects of morphine on rat behaviour in the elevated plus maze: the role of central amygdala dopamine receptors. Behav Brain Res 2009; 202:171-8. [PMID: 19463698 DOI: 10.1016/j.bbr.2009.03.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 11/22/2022]
Abstract
The objective of the present study was to evaluate the possible role of dopamine D(1)/D(2) receptors of the central amygdala (CeA) on morphine-induced anxiolytic-like behaviour in adult male Wistar rats. The animals were bilaterally implanted with chronic cannulas the CeA and tested in an elevated plus maze (EPM) task. Intraperitoneal (i.p.) administration of morphine (5 and 6 mg/kg) increased the percentage of open arm time (%OAT) and open arm entries (%OAE), indicating an anxiolytic-like response. Intra-CeA administration of different doses of the dopaminergic agonist apomorphine (0.1-0.3 microg/rat) significantly increased %OAE, but not %OAT. Furthermore, co-administration of the same doses of apomorphine with an ineffective dose of morphine (4 mg/kg; i.p.) significantly increased %OAT and %OAE by the opioid. Single microinjection of the D(1) dopaminergic antagonist SCH23390 (0.5-1.5 microg/rat) or sulpiride (0.5-1.5 microg/rat) into the CeA caused no significant change for %OAT and %OAE. The obtained results also show that intra-CeA microinjection of the same doses of SCH23390 or sulpiride inhibits the anxiolytic-like effect of morphine (6 mg/kg; i.p.). Pre-treatment of animals with SCH23390 (intra-CeA) or sulpiride (intra-CeA) reversed the response induced by apomorphine (0.3 microg/rat) plus morphine (4 mg/kg; i.p.). It should be considered that the drugs also did not show any effect on locomotor activity in all experiments. In conclusion, these findings suggest that the central amygdala dopaminergic mechanisms, probably via D(1)/D(2) receptors, may be involved in the modulation of morphine-induced anxiolytic-like behaviour in rat.
Collapse
|
39
|
Kodas E, Cohen C, Louis C, Griebel G. Cortico-limbic circuitry for conditioned nicotine-seeking behavior in rats involves endocannabinoid signaling. Psychopharmacology (Berl) 2007; 194:161-71. [PMID: 17557151 DOI: 10.1007/s00213-007-0813-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 04/18/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE The endocannabinoid system plays an important role in conditioned drug seeking, but the neuronal mechanisms involved in this behavior are unclear. OBJECTIVES Here, we evaluate the role of endogenous cannabinoids in the cortico-limbic circuitry in cue-induced nicotine-seeking behavior in rats. METHODS Animals were first trained to self-administer nicotine (0.03 mg/kg/injection, IV) under conditions in which responding was reinforced jointly by response-contingent nicotine injections and audiovisual stimuli. During subsequent sessions, nicotine was withdrawn and responding was reinforced by contingent presentation of the stimuli only. One month after nicotine removal, the cannabinoid CB1 receptor antagonist, rimonabant, was injected bilaterally into the shell of the nucleus accumbens (ShNAcc, 0.3, 3, or 30 ng/0.5 microl), the basolateral amygdala (BLA, 30 ng/0.5 microl), or the prelimbic cortex (PLCx, 30 ng/0.5 microl). RESULTS Rimonabant injected into the ShNAcc dose-dependently reduced nicotine-seeking behavior without modifying spontaneous locomotor activity. Similar results were obtained when the drug (30 ng) was injected into the BLA or the PLCx. The anatomical specificity was confirmed in a control experiment using [(3)H]rimonabant. Fifteen minutes after drug injection, when the behavioral effects of rimonabant were already achieved, radioactivity was detected at the site of injection and had not diffused to adjacent regions. CONCLUSIONS These findings demonstrate that increased endocannabinoid transmission critically triggers conditioned nicotine-seeking behavior in key cortico-limbic regions.
Collapse
Affiliation(s)
- E Kodas
- Department of Psychopharmacology, Sanofi-Aventis Research and Development, 31 avenue Paul Vaillant-Couturier, 92220, Bagneux, France
| | | | | | | |
Collapse
|
40
|
Fields HL, Hjelmstad GO, Margolis EB, Nicola SM. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 2007; 30:289-316. [PMID: 17376009 DOI: 10.1146/annurev.neuro.30.051606.094341] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ventral tegmental area (VTA) neuron firing precedes behaviors elicited by reward-predictive sensory cues and scales with the magnitude and unpredictability of received rewards. These patterns are consistent with roles in the performance of learned appetitive behaviors and in positive reinforcement, respectively. The VTA includes subpopulations of neurons with different afferent connections, neurotransmitter content, and projection targets. Because the VTA and substantia nigra pars compacta are the sole sources of striatal and limbic forebrain dopamine, measurements of dopamine release and manipulations of dopamine function have provided critical evidence supporting a VTA contribution to these functions. However, the VTA also sends GABAergic and glutamatergic projections to the nucleus accumbens and prefrontal cortex. Furthermore, VTA-mediated but dopamine-independent positive reinforcement has been demonstrated. Consequently, identifying the neurotransmitter content and projection target of VTA neurons recorded in vivo will be critical for determining their contribution to learned appetitive behaviors.
Collapse
Affiliation(s)
- Howard L Fields
- Ernest Gallo Clinic and Research Center and Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, Emeryville, California 94608, USA.
| | | | | | | |
Collapse
|
41
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1021] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
42
|
Zarrindast MR, Sattari-Naeini M, Khalilzadeh A. Involvement of glucose and ATP-sensitive potassium (K+) channels on morphine-induced conditioned place preference. Eur J Pharmacol 2007; 573:133-8. [PMID: 17655841 DOI: 10.1016/j.ejphar.2007.06.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 06/23/2007] [Accepted: 06/28/2007] [Indexed: 11/30/2022]
Abstract
In the present study, the effects of glucose and ATP-sensitive K+ channel compounds on the acquisition of morphine-induced place preference in male mice were investigated. Subcutaneous administration of different doses of morphine (2.5-7.5 mg/kg) produced a dose-dependent conditioned place preference. With a 3-day conditioning schedule, it was found that glucose (100, 200, 500 and 1000 mg/kg), diazoxide (15, 30 and 60 mg/kg) or glibenclamide (3, 6 and 12 mg/kg) did not produce significant place preference or place aversion. Intraperitoneal administration of the glucose (1000 mg/kg) or glibenclamide (6 and 12 mg/kg) with a lower dose of morphine (0.5 mg/kg) elicited the significant conditioned place preference. The response of glibenclamide (6 mg/kg) was reversed by diazoxide (15, 30 and 60 mg/kg). Drug injections had no effects on locomotor activity during the test sessions. It is concluded that glucose and the ATP-sensitive K+ channel may play an active role in morphine reward.
Collapse
Affiliation(s)
- Mohammad R Zarrindast
- Department of Pharmacology and Iranian National Center for addiction Studies, Medical Sciences, University of Tehran, Iran.
| | | | | |
Collapse
|
43
|
Hill KG, Ryabinin AE, Cunningham CL. FOS expression induced by an ethanol-paired conditioned stimulus. Pharmacol Biochem Behav 2007; 87:208-21. [PMID: 17531293 PMCID: PMC2025694 DOI: 10.1016/j.pbb.2007.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 04/06/2007] [Accepted: 04/19/2007] [Indexed: 12/01/2022]
Abstract
To identify brain areas involved in ethanol-induced Pavlovian conditioning, brains of male DBA/2J mice were immunohistochemically analyzed for FOS expression after exposure to a conditioned stimulus (CS) previously paired with ethanol (2 g/kg) in two experiments. Mice were trained with a procedure that normally produces place preference (Before: ethanol before the CS) or one that normally produces place aversion (After: ethanol after the CS). Control groups received unpaired ethanol injections in the home cage (Delay) or saline only (Naïve). On the test day, mice were exposed to the 5-min CS 90 min before sacrifice. Before groups showed a conditioned increase in activity, whereas the After group showed a conditioned decrease in activity. FOS expression after a drug-free CS exposure was significantly higher in Before-group mice than in control mice in the bed nucleus of the stria terminalis (Experiment 1) and anterior ventral tegmental area (Experiments 1-2). Conditioned FOS responses were also seen in areas of the extended amygdala and hippocampus (Experiment 2). However, no conditioned FOS changes were seen in any brain area examined in After-group mice. Overall, these data suggest an important role for the mesolimbic dopamine pathway, extended amygdala and hippocampus in ethanol-induced conditioning.
Collapse
Affiliation(s)
- Katherine G Hill
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, United States
| | | | | |
Collapse
|
44
|
Rezayof A, Nazari-Serenjeh F, Zarrindast MR, Sepehri H, Delphi L. Morphine-induced place preference: Involvement of cholinergic receptors of the ventral tegmental area. Eur J Pharmacol 2007; 562:92-102. [PMID: 17336285 DOI: 10.1016/j.ejphar.2007.01.081] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
In the present study, the effects of intra-ventral tegmental area injections of cholinergic agents on morphine-induced conditioned place preference were investigated by using an unbiased 3-day schedule of place conditioning design in rats. The conditioning treatments with subcutaneous injections of morphine (0.5-7.5 mg/kg) induced a significant dose-dependent conditioned place preference for the drug-associated place. Intra-ventral tegmental area injection of an anticholinesterase, physostigmine (2.5 and 5 microg/rat) or nicotinic acetylcholine receptor agonist, nicotine (0.5 and 1 microg/rat) with an ineffective dose of morphine (0.5 mg/kg) elicited a significant conditioned place preference. Furthermore, intra-ventral tegmental area administration of muscarinic acetylcholine receptor antagonist, atropine (1-4 microg/rat) or nicotinic acetylcholine receptor antagonist, mecamylamine (5 and 7.5 microg/rat) dose-dependently inhibited the morphine (5 mg/kg)-induced place preference. Atropine or mecamylamine reversed the effect of physostigmine or nicotine on morphine response respectively. The injection of physostigmine, but not atropine, nicotine or mecamylamine, into the ventral tegmental area alone produced a significant place aversion. Moreover, intra-ventral tegmental area administration of the higher doses of physostigmine or atropine, but not nicotine or mecamylamine decreased the locomotor activity. We conclude that muscarinic and nicotinic acetylcholine receptors in the ventral tegmental area may critically mediate the rewarding effects of morphine.
Collapse
Affiliation(s)
- Ameneh Rezayof
- School of Biology, University College of Science, University of Tehran, Tehran, Iran.
| | | | | | | | | |
Collapse
|
45
|
Rezayof A, Golhasani-Keshtan F, Haeri-Rohani A, Zarrindast MR. Morphine-induced place preference: Involvement of the central amygdala NMDA receptors. Brain Res 2007; 1133:34-41. [PMID: 17184750 DOI: 10.1016/j.brainres.2006.11.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/05/2006] [Accepted: 11/16/2006] [Indexed: 11/21/2022]
Abstract
In the present study, the effects of bilateral injections of N-methyl-d-aspartate (NMDA) receptor agonist and/or antagonist into the central amygdala (CeA) on the acquisition and expression of morphine-induced conditioned place preference (CPP) were investigated in male Wistar rats. Animals that received 3 daily subcutaneous (s.c.) injections of morphine (1-9 mg/kg) or saline (1.0 ml/kg) indicated a significant preference for compartment paired with morphine in a dose dependent manner. Intra-CeA administration of the NMDA (0.01, 0.1 or 1 microg/rat) with an ineffective dose of morphine (1 mg/kg, s.c.) elicited a significant CPP. Administration of the non-competitive NMDA receptor antagonist, MK-801 (0.1, 0.3 or 0.5 microg/rat), into the central amygdala dose-dependently inhibited the morphine (6 mg/kg, s.c.)-induced place preference. Furthermore, intra-CeA administration of MK-801 (0.25, 0.5 or 1 microg/rat) reduced the response induced by NMDA (1 microg/rat, intra-CeA) plus morphine (1 mg/kg, s.c.). Neither NMDA nor MK-801 alone produce a significant place preference or place aversion. Moreover, intra-CeA injection of NMDA but not MK-801 before testing significantly increased the expression of morphine (6 mg/kg, s.c.)-induced place preference. NMDA or MK-801 injections into the CeA had no effects on locomotor activity on the testing sessions. These results suggest that the NMDA receptor mechanisms in the central amygdala may be involved in the acquisition and expression of morphine-induced place preference.
Collapse
Affiliation(s)
- Ameneh Rezayof
- School of Biology, University College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran.
| | | | | | | |
Collapse
|
46
|
Rezayof A, Razavi S, Haeri-Rohani A, Rassouli Y, Zarrindast MR. GABA(A) receptors of hippocampal CA1 regions are involved in the acquisition and expression of morphine-induced place preference. Eur Neuropsychopharmacol 2007; 17:24-31. [PMID: 16624534 DOI: 10.1016/j.euroneuro.2006.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 01/29/2006] [Accepted: 02/14/2006] [Indexed: 11/17/2022]
Abstract
In the present study, the effects of bilateral intra-hippocampal CA1 (intra-CA1) injections of GABA(A) receptor agonist and/or antagonist on the acquisition and expression of morphine-induced place preference in male Wistar rats have been investigated. The conditioning treatments with subcutaneous (s.c.) injections of different doses of morphine (0.5-7.5 mg/kg) induced a conditioned place preference (CPP) for the drug-associated place in a dose-dependent manner. Intra-CA1 administration of the GABA(A) receptor agonist, muscimol (0.25, 0.5 and 1 microg/rat) significantly inhibited the morphine (5 mg/kg, s.c.)-induced CPP. Intra-CA1 injections of different doses of the GABA(A) receptor antagonist, bicuculline (0.25, 0.5 and 1 microg/rat), in combination with an ineffective dose of morphine (0.5 mg/kg, s.c.) elicited a significant CPP. However, muscimol or bicuculline by themselves did not elicit any effect on place conditioning. Furthermore, the muscimol-induced inhibition of morphine response was reversed by bicuculline (1 microg/rat, intra-CA1) administration. On the other hand, the bilateral intra-CA1 injections of muscimol (0.25, 0.5 and 1 microg/rat) or bicuculline (0.5, 1 and 2 microg/rat) significantly decreased the expression of morphine-induced CPP. Intra-CA1 administration of different doses of muscimol or bicuculline had no effect on locomotor activity in the testing phase. Our data indicated that the GABA(A) receptors of the hippocampal CA1 regions may play an important role in the acquisition and expression of morphine-induced place preference.
Collapse
Affiliation(s)
- Ameneh Rezayof
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
47
|
Malekmohamadi N, Heidari P, Sahebgharani M, Zarrindast MR. Effects of Clozapine and Sulpiride on Morphine State-Dependent Memory in the Step-Down Passive Avoidance Test. Pharmacology 2006; 79:149-53. [PMID: 17191034 DOI: 10.1159/000098151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 11/06/2006] [Indexed: 11/19/2022]
Abstract
The effects of antipsychotic drugs sulpiride and clozapine on morphine state-dependent memory of passive avoidance task were examined in mice. Post-training administration of morphine (5 mg/kg) led to state-dependent learning with impaired memory retrieval on the test day which was reversed by pre-test administration of the same dose of the opioid (5 mg/kg). In animals where memory was impaired by post-training morphine, the administration of either sulpiride or clozapine before pre-test morphine reduced the improvement of memory produced by the opioid. Co-administration of sulpiride with clozapine did not potentiate their antagonistic response. In conclusion, the inhibition of improvement of memory retrieval by morphine treatment on the test day by the two dopamine receptor antagonists seems to be induced through two different receptor mechanisms.
Collapse
Affiliation(s)
- Nazanin Malekmohamadi
- Department of Pharmacology, School of Medicine and Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
48
|
Glass MJ, Kruzich PJ, Colago EEO, Kreek MJ, Pickel VM. Increased AMPA GluR1 receptor subunit labeling on the plasma membrane of dendrites in the basolateral amygdala of rats self-administering morphine. Synapse 2006; 58:1-12. [PMID: 16037950 DOI: 10.1002/syn.20176] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamate-dependent synaptic plasticity is emerging as an important neural substrate of addiction. These drug-dependent neural adaptations may occur within brain systems that mediate reward, emotion, and cognitive function such as the amygdala complex. Modification of glutamate receptor targeting may be a key mechanism mediating neural plasticity; however, evidence for alteration of amygdala AMPA receptor localization in response to drug self-administration is lacking. High-resolution immunogold electron microscopic immunocytochemistry was used to compare surface and intracellular labeling of the calcium sensitive AMPA GluR1 receptor subunit in the basolateral (BLA) and central (CeA) nuclei of the amygdala in rats self-administering escalating doses of morphine or saline. Morphine self-administration was associated with regionally diverse effects on dendritic GluR1 targeting in the BLA and CeA. In the BLA of morphine self-administering animals, there was a significant increase in the proportion of immunogold particles for GluR1 on the plasma membrane of dendrites, particularly in association with extrasynaptic sites, which was most prominent in large (2-4 microm) profiles. In contrast, there were no significant differences in surface or intracellular immunogold labeling in the CeA between morphine self-administering and control animals. In both amygdala regions, GluR1 and the micro-opioid receptor, the major cellular target of morphine, were only infrequently colocalized. These results indicate that GluR1 targeting is a dynamic process that can be differentially affected in distinct amygdala regions in response to chronic self-administration of morphine. Homeostatic adaptations in the subcellular localization of calcium sensitive AMPA receptors within the BLA may be an important neural substrate for alterations in reward, autonomic function, and behavioral processes associated with opiate addiction.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
49
|
Zarrindast MR, Fattahi Z, Rostami P, Rezayof A. Role of the cholinergic system in the rat basolateral amygdala on morphine-induced conditioned place preference. Pharmacol Biochem Behav 2005; 82:1-10. [PMID: 16054206 DOI: 10.1016/j.pbb.2005.02.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 02/14/2005] [Accepted: 02/17/2005] [Indexed: 11/22/2022]
Abstract
The effects of intra-basolateral amygdala (intra-BLA) injections of physostigmine, atropine, nicotine and/or mecamylamine on morphine-induced conditioned place preference (CPP) in rats was investigated by using an unbiased 3-day schedule of place conditioning design. Animals that received 3 daily injections of morphine (0.5-10 mg/kg) subcutaneously (s.c.) or saline (1.0 ml/kg, s.c.) showed a significant preference for compartment paired with morphine. The maximum response was observed with 7.5 mg/kg of the opioid. Administration of the anticholinesterase drug, physostigmine (1, 3 and 5 microg/rat) with an ineffective dose of morphine (0.5 mg/kg) elicited a significant CPP. Injections of antimuscarinic receptor agent, atropine (1, 4 and 7 microg/rat) dose-dependently inhibited the morphine (7.5 mg/kg)-induced place preference. The injections of nicotine (0.75, 1 and 2 microg/rat) potentiated the morphine (0.5 mg/kg)-induced place preference, while the nicotinic receptor antagonist, mecamylamine (1, 3 and 6 microg/rat) dose-dependently inhibited the morphine (7.5 mg/kg)-induced place preference. Furthermore, administration of atropine (7 microg/rat) but not mecamylamine (6 microg/rat) reduced the response induced by different doses of physostigmine plus morphine. Moreover, mecamylamine (6 microg/rat) but not atropine (7 microg/rat) reduced the response induced by different doses of nicotine plus morphine. It is concluded that the muscarinic and nicotinic receptor mechanisms in the BLA may be involved in the acquisition of morphine-induced place preference.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology and Iranian National Center for Addiction Studies, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | | | | | | |
Collapse
|
50
|
Andrzejewski ME, Spencer RC, Kelley AE. Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala. Neuroscience 2005; 135:335-45. [PMID: 16111818 PMCID: PMC2367315 DOI: 10.1016/j.neuroscience.2005.06.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/02/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
Substantial experimental evidence exists suggesting a critical role for dopamine in reinforcer-related processes, such as learning and drug addiction. Dopamine receptors, and in particular D1 receptors, are widely considered as modulators of synaptic plasticity. The amygdala contains both dopamine terminals and dopamine D1 receptors and is intimately involved in motivation and learning. However, little is known about the involvement of D1 receptor activation in two subnuclei of the mammalian amygdala, the central nucleus and basolateral complex in instrumental learning. Following recovery from surgery and preliminary training, rats with bilateral indwelling cannulae aimed at the central nucleus or basolateral complex were trained to lever-press for sucrose pellets over 12 sessions. Infusion of the selective D1 antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (0.3 nmol and 3.0 nmol) prior to the first five training sessions dose-dependently impaired instrumental learning when compared with vehicle-infused controls. All rats were then exposed to five sessions drug-free; lever-pressing quickly reached equal levels across groups. A drug infusion prior to an 11th session revealed no effect on performance. Control experiments indicated that basic motivational processes and general motor responses were intact, such as spontaneous feeding and locomotor activity. These results show an essential role for D1-receptor activation in both the central nucleus and basolateral complex on the acquisition of lever pressing for sucrose pellets in rats, but not the performance of the behavior once conditioned. We propose that instrumental learning is dependent on plasticity in the central nucleus and basolateral complex amygdala, and that D1 receptor activation participates in transcriptional processes that underlie this plasticity.
Collapse
Affiliation(s)
- M E Andrzejewski
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA.
| | | | | |
Collapse
|