1
|
Spit J, Badisco L, Verlinden H, Van Wielendaele P, Zels S, Dillen S, Vanden Broeck J. Peptidergic control of food intake and digestion in insects 1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Like all heterotrophic organisms, insects require a strict control of food intake and efficient digestion of food into nutrients to maintain homeostasis and to fulfill physiological tasks. Feeding and digestion are steered by both external and internal signals that are transduced by a multitude of regulatory factors, delivered either by neurons innervating the gut or mouthparts, or by midgut endocrine cells. The present review gives an overview of peptide regulators known to control feeding and digestion in insects. We describe the discovery and functional role in these processes for insect allatoregulatory peptides, diuretic hormones, FMRFamide-related peptides, (short) neuropeptide F, proctolin, saliva production stimulating peptides, kinins, and tachykinins. These peptides control either gut myoactivity, food intake, and (or) release of digestive enzymes. Some peptides exert their action at multiple levels, possibly having a biological function that depends on their site of delivery. Many regulatory peptides have been physically extracted from different insect species. However, multiple peptidomics, proteomics, transcriptomics, and genome sequencing projects have led to increased discovery and prediction of peptide (precursor) and receptor sequences. In combination with physiological experiments, these large-scale projects have already led to important steps forward in unraveling the physiology of feeding and digestion in insects.
Collapse
Affiliation(s)
- J. Spit
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - L. Badisco
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - H. Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - P. Van Wielendaele
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - S. Zels
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - S. Dillen
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - J. Vanden Broeck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| |
Collapse
|
2
|
Audsley N, Weaver RJ. Neuropeptides associated with the regulation of feeding in insects. Gen Comp Endocrinol 2009; 162:93-104. [PMID: 18775723 DOI: 10.1016/j.ygcen.2008.08.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/01/2008] [Accepted: 08/03/2008] [Indexed: 11/18/2022]
Abstract
The stomatogastric nervous system plays a pivotal role in feeding behaviour. Central to this system is the frontal ganglion, which is responsible for foregut motor activity, and hence the passage of food through the gut. Many insect peptides, which exhibit myoactivity on the visceral muscles of the gut in vitro, have been detected in the stomatogastric nervous system by immunochemical or mass spectrometric techniques. This localisation of myoactive peptides, particularly in the frontal ganglion, implies roles for these peptides in the neural control and modulation of feeding in insects. Insect sulfakinins, tachykinins, allatotropin and proctolin have all been shown to stimulate the foregut muscles, whereas myosuppressins, myoinhibitory peptides and allatostatins all inhibited spontaneous contractions of the foregut in a variety of insects. Some of these peptides, when injected, inhibited feeding in vivo. Both the A-type and B-type allatostatins suppressed feeding activity when injected into the cockroach, Blattella germanica and the Manduca sexta C-type allatostatin and allatotropin inhibited feeding when injected into the larvae of two noctuid moths, Lacanobia oleracea and Spodoptera frugiperda, respectively. Injection of sulfakinins into the fly Phormia regina, the locust Schistocera gregaria and the cockroach B. germanica also suppressed feeding, whereas silencing the sulfakinin gene through the injection of double stranded RNA resulted in an increase in food consumption in the cricket Gryllus bimaculatus. The regulation of feeding in insects is clearly very complex, and involves the interaction of a number of mechanisms, one of which is the release, either centrally or locally, of neuropeptides. However, the role of neuropeptides, their mechanisms of action, interactions with each other, and their release are still poorly understood. It is also unclear why insects possess such a number of different peptides, some with multiples copies or homologues, which stimulate or inhibit gut motility, and how their release, sometimes from the same neurone, is regulated. These neuropeptides may also act at sites other than visceral muscles, such as centrally through the brain or on gut stretch receptors.
Collapse
Affiliation(s)
- N Audsley
- Environmental Biology Group, Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | |
Collapse
|
3
|
Pascual N, Maestro JL, Chiva C, Andreu D, Bellés X. Identification of a tachykinin-related peptide with orexigenic properties in the German cockroach. Peptides 2008; 29:386-92. [PMID: 18178289 DOI: 10.1016/j.peptides.2007.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
A number of evidences suggest that tachykinin-related peptides (TRPs) of insects can stimulate food consumption after being released from the midgut to the hemolymph. The idea of the present work has been to test this hypothesis in the anautogenous cockroach Blattella germanica. First, we have identified the peptide LemTRP-1 (APSGFLGVR-NH(2)) from brain extracts, by means of an ELISA developed with a polyclonal antibody against this peptide. ELISA studies have also shown that, whereas brain LemTRP-1 levels were fairly constant, midgut levels increase to a maximum on day 3 after adult emergence, falling thereafter until the end of the gonadotrophic cycle. Interestingly, maximum values of food consumption are concomitant with the decrease of LemTRP-1 immunoreactivity in the midgut. Furthermore, starvation decreases LemTRP-1 immunoreactivity in midgut, whereas in the hemolymph it increases. Finally, injection of synthetic LemTRP-1 to adult females significantly stimulates food consumption. The whole observations suggest that LemTRP-1 is released from the midgut to the hemolymph when sustained food consumption is required to maintain vitellogenesis at the highest levels, and that LemTRP-1 in the hemolymph stimulates food consumption in these days.
Collapse
Affiliation(s)
- Núria Pascual
- Department of Physiology and Molecular Biodiversity, Institut de Biologia Molecular de Barcelona (CSIC), Jordi Girona 18-26, Barcelona, Spain
| | | | | | | | | |
Collapse
|
4
|
Messinger DI, Kutz KK, Le T, Verley DR, Hsu YWA, Ngo CT, Cain SD, Birmingham JT, Li L, Christie AE. Identification and characterization of a tachykinin-containing neuroendocrine organ in the commissural ganglion of the crab Cancer productus. ACTA ACUST UNITED AC 2006; 208:3303-19. [PMID: 16109892 DOI: 10.1242/jeb.01787] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A club-shaped, tachykinin-immunopositive structure first described nearly two decades ago in the commissural ganglion (CoG) of three species of decapod crustaceans has remained enigmatic, as its function is unknown. Here, we use a combination of anatomical, mass spectrometric and electrophysiological techniques to address this issue in the crab Cancer productus. Immunohistochemistry using an antibody to the vertebrate tachykinin substance P shows that a homologous site exists in each CoG of this crab. Confocal microscopy reveals that its structure and organization are similar to those of known neuroendocrine organs. Based on its location in the anterior medial quadrant of the CoG, we have named this structure the anterior commissural organ (ACO). Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry shows that the ACO contains the peptide APSGFLGMRamide, commonly known as Cancer borealis tachykinin-related peptide Ia (CabTRP Ia). Using the same technique, we show that CabTRP Ia is also released into the hemolymph. As no tachykinin-like labeling is seen in any of the other known neuroendocrine sites of this species (i.e. the sinus gland, the pericardial organ and the anterior cardiac plexus), the ACO is a prime candidate to be the source of CabTRP Ia present in the circulatory system. Our electrophysiological studies indicate that one target of hemolymph-borne CabTRP Ia is the foregut musculature. Here, no direct CabTRP Ia innervation is present, yet several gastric mill and pyloric muscles are nonetheless modulated by hormonally relevant concentrations of the peptide. Collectively, our findings show that the C. productus ACO is a neuroendocrine organ providing hormonal CabTRP Ia modulation to the foregut musculature. Homologous structures in other decapods are hypothesized to function similarly.
Collapse
Affiliation(s)
- Daniel I Messinger
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Winther AM, Nässel DR. Intestinal peptides as circulating hormones: release of tachykinin-related peptide from the locust and cockroach midgut. J Exp Biol 2001; 204:1269-80. [PMID: 11249837 DOI: 10.1242/jeb.204.7.1269] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tachykinin-related peptides (TRPs) in the locust Locusta migratoria and the cockroach Leucophaea maderae have stimulatory effects on some muscles that are not innervated by TRP-containing neurons. Thus, these tissues may be affected by circulating TRPs. Here, we have investigated whether the midgut is the source of circulating TRPs. TRP-immunoreactive material in the locust midgut is found only in the endocrine cells of the gut epithelium. In both species of insect, the endocrine cells contain several isoforms of TRPs, as determined by immunocytochemistry and a combination of chromatography (HPLC) and enzyme immunoassay (ELISA). The release of TRPs was investigated by ELISA using isolated midguts of the locust and cockroach. Elevated levels of K(+) in the bathing saline induced the release of TRP from the midgut of both species. To examine the release of TRPs into the circulation in vivo, we measured haemolymph levels of TRPs in fed and starved locusts. The concentration of TRP-immunoreactive material in fed locusts was estimated to be 0.15 nmol l(−1), and this increased approximately fourfold in insects starved for 24 h. In accordance with this observation, the content of TRP-immunoreactive material in the midgut was lower in starved locusts than in fed locusts. Although part of the increased blood concentration of TRPs may be due to reduced blood volume, our data suggest that TRPs are released as hormones from the midgut of the locust and cockroach and that this release may be linked to nutritional status.
Collapse
Affiliation(s)
- A M Winther
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | | |
Collapse
|
6
|
Predel R, Nachman RJ, Gäde G. Myostimulatory neuropeptides in cockroaches: structures, distribution, pharmacological activities, and mimetic analogs. JOURNAL OF INSECT PHYSIOLOGY 2001; 47:311-324. [PMID: 11166295 DOI: 10.1016/s0022-1910(00)00129-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this brief overview we give the historical background on the discovery of myostimulatory neuropeptides in cockroaches. Related peptides were later found in other insect groups as well. We summarize the current knowledge on primary structures, localization, physiological and pharmacological effects of the different cockroach neuropeptides, including kinins, sulfakinins, pyrokinins, tachykinin-related peptides, periviscerokinins, corazonin, and proctolin. In addition, we briefly comment on the development of mimetic pseudopeptide analogs in the context of their possible use in insect pest management.
Collapse
Affiliation(s)
- R Predel
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität, Erbertstr. 1, 07743, Jena, Germany
| | | | | |
Collapse
|
7
|
Wegener C, Linde D, Eckert M. Periviscerokinins in cockroaches: release, localization, and taxon-specific action on the hyperneural muscle. Gen Comp Endocrinol 2001; 121:1-12. [PMID: 11161765 DOI: 10.1006/gcen.2000.7570] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The periviscerokinins of Periplaneta americana (Pea-PVKs) were the first neuropeptides directly isolated from perisympathetic organs (PSOs), neurohemal swellings of the transverse and median nerves of insects. It has been demonstrated that Pea-PVK-1 release can be induced from the abdominal PSOs of P. americana by in vitro depolarization. A myotropic effect of Pea-PVK-1 on the hyperneural muscle is restricted to blattid cockroaches, whereas proctolin induces contractions of this muscle in all cockroach species investigated. The location and morphology of Pea-PVK-1-like immunoreactive neurons in species of different cockroach taxa are very similar to those previously described for P. americana. Pea-PVK-1-like immunoreactivity is restricted to cells of the abdominal ganglia which constitute a neurohemal system and project via the median nerve to the abdominal PSOs. Despite interspecific differences in the topography of the transverse nerves of the terminal ganglion, Pea-PVK-1-like immunoreactive fibers always innervate transversal nerves VII and VIII of the terminal ganglion. The results suggest that PVKs act as neurohormones throughout the cockroaches, although they may have different effect(s) depending on the species.
Collapse
Affiliation(s)
- C Wegener
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität, Erbertstr.1, Jena, D-07743, Germany.
| | | | | |
Collapse
|
8
|
N�ssel DR, Persson MG, Muren JE. Baratin, a nonamidated neurostimulating neuropeptide, isolated from cockroach brain: Distribution and actions in the cockroach and locust nervous systems. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000626)422:2<267::aid-cne8>3.0.co;2-j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Veelaert D, Oonk HB, Vanden Eynde G, Torfs H, Meloen RH, Schoofs L, Parmentier M, De Loof A, Vanden Broeck J. Immunolocalization of a tachykinin-receptor-like protein in the central nervous system ofLocusta migratoria migratorioides andneobellieria bullata. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990510)407:3<415::aid-cne9>3.0.co;2-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Winther �M, Muren JE, Ahlborg N, N�ssel DR. Differential distribution of isoforms ofLeucophaea tachykinin-related peptides (LemTRPs) in endocrine cells and neuronal processes of the cockroach midgut. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990329)406:1<15::aid-cne2>3.0.co;2-g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Nässel DR, Vullings HG, Passier PC, Lundquist CT, Schoofs L, Diederen JH, Van der Horst DJ. Several isoforms of locustatachykinins may be involved in cyclic AMP-mediated release of adipokinetic hormones from the locust Corpora cardiaca. Gen Comp Endocrinol 1999; 113:401-12. [PMID: 10068501 DOI: 10.1006/gcen.1998.7226] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four locustatachykinins (LomTK I-IV) were identified in about equal amounts in extracts of corpora cardiaca of locusts, using reverse-phase high-performance liquid chromatography and radioimmunoassay with synthetic LomTK I-IV as standards. Brain extracts also contained the four isoforms in roughly equimolar concentrations. Retrograde tracing of the nervi corporis cardiaci II (NCC II) in vitro with Lucifer yellow in combination with LomTK immunocytochemistry revealed that about half of the secretomotor neurons in the lateral part of the protocerebrum projecting into the glandular lobe of the corpora cardiaca (CCG) contain LomTK-immunoreactive material. Since the four LomTKs are present in the CCG, these four or five neurons in each hemisphere are likely to contain colocalized LomTK I-IV. The role of two of the LomTKs in the regulation of the release of adipokinetic hormones (AKHs) from the adipokinetic cells in the CCG in the locust was investigated. Experiments performed in vitro showed that LomTK I and II induced release of AKH in a dose-dependent manner. These peptides also rapidly and transiently elevated the cyclic AMP-content of the CCG. The peak level of cyclic AMP occurred about 45 seconds after stimulation with LomTK. These results support the proposal that LomTKs are involved in controlling the release of the adipokinetic hormones and suggest that all LomTK isoforms may participate in this cyclic AMP-mediated event.
Collapse
Affiliation(s)
- D R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
12
|
Persson MG, Nässel DR. Neuropeptides in insect sensory neurones: tachykinin-, FMRFamide- and allatotropin-related peptides in terminals of locust thoracic sensory afferents. Brain Res 1999; 816:131-41. [PMID: 9878709 DOI: 10.1016/s0006-8993(98)01139-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sensory afferents in the thoracic ganglia of the locust Locusta migratoria were labelled with antisera to different neuropeptides: locustatachykinins, FMRFamide and allatotropin. The locustatachykinin-immunoreactive (LTKIR) sensory fibres were derived from the legs and entered the ventral sensory neuropil of each of the thoracic ganglia via nerve 5. In the thoracic neuropil, the LTKIR sensory fibres formed a distinct plexus of terminations ventrally in the ipsilateral hemisphere. The peripheral cell bodies of the sensory neurones could not be revealed, but lesion experiments indicated that origin of the LTKIR fibres was the tarsus of each leg. Possibly the thin fibres are from tarsal chemoreceptors. Double labelling immunocytochemistry revealed that all the LTKIR sensory fibres contained colocalized FMRFamide immunoreactivity. A larger population of sensory fibres reacted with antiserum to moth (Manduca sexta) allatotropin. By means of double labelling immunocytochemistry, we could show that the LTKIR fibres constituted a subpopulation of the larger set of allatotropin-like immunoreactive fibres. Thus some sensory fibres may contain colocalized peptides related to locustatachykinins, FMRFamide-related peptide(s) and allatotropin-like peptide. A separate non-overlapping small set of sensory fibres in nerve 5 reacted with an antiserum to serotonin. Sensory fibres of the other nerves of the ventral nerve cord, including the abdominal ganglia, did not react with the peptide antisera. Since acetylcholine is the likely primary neurotransmitter of insect sensory fibres, it is possible that the peptides and serotonin are colocalized with this transmitter and serve modulatory functions in a subset of the leg afferents.
Collapse
Affiliation(s)
- M G Persson
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden
| | | |
Collapse
|
13
|
Abstract
Peptides with sequence similarities to members of the tachykinin family have been identified in a number of invertebrates belonging to the mollusca, echiuridea, insecta and crustacea. These peptides have been designated tachykinin-related peptides (TRPs) and are characterized by the preserved C-terminal pentapeptide FX1GX2Ramide (X1 and X2 are variable residues). All invertebrate TRPs are myostimulatory on insect hindgut muscle, but also have a variety of additional actions: they can induce contractions in cockroach foregut and oviduct and in moth heart muscle, trigger a motor rhythm in the crab stomatogastric ganglion, depolarize or hyperpolarize identified interneurons of locust and the snail Helix and induce release of adipokinetic hormone from the locust corpora cardiaca. Two putative TRP receptors have been cloned from Drosophila; both are G-protein coupled and expressed in the nervous system. The invertebrate TRPs are distributed in interneurons of the CNS of Limulus, crustaceans and insects. In the latter two groups TRPs are also present in the stomatogastric nervous system and in insects endocrine cells of the midgut display TRP-immunoreactivity. In arthropods the distribution of TRPs in neuronal processes of the brain displays similar patterns. Also in coelenterates, flatworms and molluscs TRPs have been demonstrated in neurons. The activity of different TRPs has been explored in several assays and it appears that an amidated C-terminal hexapeptide (or longer) is required for bioactivity. In many invertebrate assays the first generation substance P antagonist spantide I is a potent antagonist of invertebrate TRPs and substance P. Locustatachykinins stimulate adenylate cyclase in locust interneurons and glandular cells of the corpora cardiaca, but in other tissues the putative second messenger systems have not yet been identified. The heterologously expressed Drosophila TRP receptors coupled to the phospholipase C pathway and could induce elevations of inositol triphosphate. The structures, distributions and actions of TRPs in various invertebrates are compared and it is concluded that the TRPs are multifunctional peptides with targets both in the central and peripheral nervous system and other tissues, similar to vertebrate tachykinins. Invertebrate TRPs may also be involved in developmental processes.
Collapse
Affiliation(s)
- D R Nässel
- Department of Zoology, Stockholm University, Sweden.
| |
Collapse
|
14
|
Wegener C, Predel R, Eckert M. Quantification of periviscerokinin-1 in the nervous system of the American cockroach, Periplaneta americana. An insect neuropeptide with unusual distribution. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1999; 40:203-211. [PMID: 10330720 DOI: 10.1002/(sici)1520-6327(1999)40:4<203::aid-arch5>3.0.co;2-c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study was undertaken to reveal the quantitative distribution of the insect neuropeptide periviscerokinin-1 (Pea-PVK-1) in the central nervous system of Periplaneta americana and to demonstrate that neurons stained in a previous immunohistochemical study contain authentic Pea-PVK-1. For this, we combined ELISA, HPLC, and MALDI-TOF mass spectrometry. The high specificity of the used antiserum enabled the quantification of Pea-PVK-1 in unseparated tissue extracts. No cross-reactivities with other insect neuropeptides were detected in ELISA. Only two immunoreactive fractions, coeluting with synthetic Pea-PVK-1 in its oxidized and nonoxidized form, were found in HPLC-separated extracts of the brain, suboesophageal ganglion, metathoracic ganglion, second abdominal ganglion with or without perisympathetic organ, and terminal ganglion. By using MALDI-TOF mass spectrometry, we were able to confirm the existence of authentic Pea-PVK-1 in these fractions. The abdominal perisympathetic organs contained 6.3 pmol Pea-PVK-1 per animal; another 1.3 pmol were found in the abdominal ganglia. More than 90% of the total 8.2 pmol in the central nervous system was found in the abdominal ganglia and their perisympathetic organs. The corpora cardiaca and corpora allata did not contain immunoreactive material, suggesting that Pea-PVK-1 is not released by the cephalic neurohaemal system. The quantitative distribution of Pea-PVK-1 differs considerably from that of other known insect neuropeptides.
Collapse
Affiliation(s)
- C Wegener
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität, Jena, Germany
| | | | | |
Collapse
|
15
|
Keeley LL, Bradfield JY, Lewis DK. Feeding effects on gene expression of the hypertrehalosemic hormone in the cockroach, Blaberus discoidalis. JOURNAL OF INSECT PHYSIOLOGY 1998; 44:967-972. [PMID: 12770433 DOI: 10.1016/s0022-1910(98)00034-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Feeding effects on hypertrehalosemic hormone (HTH) transcript levels in corpora cardiaca (CC) of adult females of the cockroach, Blaberus discoidalis were measured using dot blot hybridization. HTH transcript levels were nearly doubled in CC from females withheld from food and water for ten days compared to CC from fed females. The increase in HTH-mRNA was a response to starvation, not dehydration, and reversed within 2 days after exposure to food. HTH-mRNA was elevated in CC from fed insects that had their recurrent nerve severed, but low fecal output by insects with severed nerves indicated that feeding and digestion were impaired. Thus, the increased HTH synthesis likely resulted from starvation rather than disruption of neural regulation. CC from starved females that were refed with either solutions or agar that contained glucose did not show down-regulation of HTH-mRNA. Likewise, injections of glucose or trehalose did not suppress HTH-mRNA levels in CC of starving insects. Down-regulation of the starvation-related increase in HTH-mRNA appears to be a response to consumption of a complex of nutrients and not to increased carbohydrates or mechanical aspects of feeding.
Collapse
Affiliation(s)
- L L. Keeley
- Department of Entomology, Texas A and M University, Texas Agricultural Experiment Station, College Station, USA
| | | | | |
Collapse
|
16
|
Kim MY. Leucokinin and callitachykinin immunoreactive neurons during postembryonic development of calliphora vomitoria (L.) (DIPTERA : CALLIPHORIDAE). ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0020-7322(98)00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Winther AM, Muren JE, Lundquist CT, Osborne RH, Nässel DR. Characterization of actions of Leucophaea tachykinin-related peptides (LemTRPs) and proctolin on cockroach hindgut contractions. Peptides 1998; 19:445-58. [PMID: 9533632 DOI: 10.1016/s0196-9781(97)00463-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nine Leucophaea Tachykinin-Related Peptides (LemTRP 1-9) isolated from the midgut and brain of the cockroach, Leucophaea maderae, all induced increases in spontaneous contractions of the L. maderae hindgut. Synthetic LemTRP 1 and 3-9, were equally potent in inducing contractions of the hindgut. More than seven of the nine C-terminal residues of the closely related locust peptide locustatachykinin I (LomTK I) are required for full activity of the peptide on the L. maderae hindgut. Proctolin, a well characterized myostimulatory neuropeptide, was shown to be more potent than LemTRPs. LemTRP 1 and proctolin did not have synergistic actions in potentiating the amplitude and tonus of contractions of the L. maderae hindgut. Several differences could be seen in actions of LemTRP 1 and proctolin. In contrast to proctolin, LemTRP 1 could not override the inhibitory action of 10(-9) M of the myoinhibitory peptide leucomyosuppressin. Spantide I, an antagonist of the mammalian tachykinin receptors, at a concentration of 5 microM, blocked the response to LemTRP 1, but not to proctolin. The competitive proctolin receptor antagonist [alpha-methyl-L-tyrosine2]-proctolin blocked the action of both proctolin and LemTRP 1 when applied at 1 microM, whereas cycloproctolin had no antagonist action on either peptide. Verapamil, a blocker of voltage gated Ca2+-channels, and the less specific Ca2+-channel blocker Mn2+, abolished the action of LemTRP 1, but not of proctolin. The results obtained indicate that LemTRPs act on receptors distinct from those of proctolin. Double label immunocytochemistry revealed that all LomTK-like immunoreactive fibers impinge on the proctolinergic fibers in the hindgut. This finding and the inhibitory actions of Ca2+-channel blockers on TRP responses and of the proctolin receptor antagonist on both peptides, may suggest that the LemTRP receptors are not on the hindgut muscle fibers but on the terminals of the proctolinergic neurons. Thus, LemTRPs may induce release of proctolin on the hindgut. An alternative is that LemTRPs act by mechanisms clearly distinct from those of proctolin.
Collapse
Affiliation(s)
- A M Winther
- Department of Zoology, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
18
|
Muren JE, Nässel DR. Seven tachykinin-related peptides isolated from the brain of the Madeira cockroach: evidence for tissue-specific expression of isoforms. Peptides 1997; 18:7-15. [PMID: 9114447 DOI: 10.1016/s0196-9781(96)00243-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have isolated seven tachykinin-related peptides (TRPs) from an acidic extract of 1000 brains of the cockroach Leucophaea maderae. Four different reversed-phase high performance liquid chromatography (RP-HPLC) column systems were required to obtain pure peptides. During the purification the fractions were monitored in a radioimmunoassay (RIA) with an antiserum to locust TRP locustatachykinin I (LomTK I) and a cockroach hindgut muscle contraction bioassay. The sequences of the seven isolated LomTK immunoreactive and myostimulatory peptides were determined by Edman degradation. Six of these were confirmed by mass spectrometry and chemical synthesis as: APSGFLGVRamide, APAMGFQGVRamide, APAAGFFGMRamide, VPASGFFGMRamide, GPSMGFHGMRamide, and APSMGFQGMRamide. The seventh peptide, APEESPKRAPSGFLGVRamide, was confirmed only by mass spectrometry. These peptides were designated Leucophaea maderae tachykinin-related peptides 1, 2, 5-9 (LemTRP 1, 2, 5-9). Two more peptides were isolated using the same assays: SGLDSLSGATFGGNR and ALFEESTVSAEPR. The first shares the C-terminus FX1GX2R with the Lem TRPs, whereas the second one is not related to the TRPs (none of these peptides were synthesized and thus putative C-terminal amidation was not confirmed). Three of the brain peptides, LemTRP 1, 2, and 5, have previously been isolated from the midgut of L. maderae, whereas the others appear to be brain specific. Because the LemTRPs 3 and 4 appear to be unique for the midgut, we have indications for tissue-specific expression of TRPs. All seven confirmed LemTRPs of the brain are myotropic and induce increases in the amplitude and frequency of spontaneous contractions and tonus of hindgut muscle in L. maderae.
Collapse
Affiliation(s)
- J E Muren
- Department of Zoology, Stockholm University, Sweden
| | | |
Collapse
|
19
|
Muren JE, Nässel DR. Isolation of five tachykinin-related peptides from the midgut of the cockroach Leucophaea maderae: existence of N-terminally extended isoforms. REGULATORY PEPTIDES 1996; 65:185-96. [PMID: 8897641 DOI: 10.1016/0167-0115(96)00092-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using a radioimmunoassay (RIA) with an antiserum to the locust neuropeptide locustatachykinin I (LomTK I) and a cockroach hindgut contraction bioassay as monitors, we isolated 5 tachykinin-related peptides from an acidic extract of 600 midguts of the cockroach Leucophaea maderae. A series of 4 different reversed-phase high performance liquid chromatography (rpHPLC) column systems were required to obtain pure peptides. The sequences of the 5 isolated myostimulatory and LomTK immunoreactive peptides were determined by Edman degradation. Four of these were confirmed by mass spectrometry and chemical synthesis as: APSGFLGVRamide, NGERAPGSKKAPSGFLGTRamide, APAMGFQGVRamide and APSGFMGMRamide. The fifth peptide, APEESPKRAPSGFLGVRamide, was confirmed only by mass spectrometry. These peptides, which were designated Leucophaea tachykinin-related peptides 1-5 (LemTRP 1-5), are structurally related to tachykinin-related peptides previously isolated from a locust, blowfly and mosquito species, but showed a somewhat larger variability in their amino-acid sequence (including the carboxy terminus). The two N-terminally extended forms contain putative cleavage sites (KR and KK, respectively) and such extended tachykinins have not been previously identified in insects. All 5 LemTRPs are myotropic and induce increases in the tonus and frequency of spontaneous contractions of hindgut muscle in L. maderae. The potency of the different synthetic isoforms is very similar; they all have a stimulus threshold concentration of 2.5 x 10(-10) M and an ED50 of about 10(-9) M. The synthetic peptides were tested in RIA and found to cross react to different degrees with the antiserum to LomTK I, but it is likely that in immunocytochemistry performed earlier, all 5 forms were detected in the midgut. It is, however, not clear which isoforms are located in endocrine cells and neural fibers of the midgut, respectively.
Collapse
Affiliation(s)
- J E Muren
- Department of Zoology, Stockholm University, Sweden
| | | |
Collapse
|