1
|
Simultaneous measurement of cholinergic tone and neuronal network dynamics in vivo in the rat brain using a novel choline oxidase based electrochemical biosensor. Biosens Bioelectron 2015; 69:83-94. [DOI: 10.1016/j.bios.2015.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/11/2022]
|
2
|
Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. CHEMICAL PAPERS 2015. [DOI: 10.2478/s11696-014-0542-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractAcetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes expressed in the human body under physiological conditions. AChE is an important part of the cholinergic nerves where it hydrolyses neurotransmitter acetylcholine. Both cholinesterases are sensitive to inhibitors acting as neurotoxic compounds. In analytical applications, the enzymes can serve as a biorecognition element in biosensors as well as simple disposable sensors (dipsticks) and be used for assaying the neurotoxic compounds. In the present review, the mechanism of AChE and BChE inhibition by disparate compounds is explained and methods for assaying the enzymes activity are shown. Optical, electrochemical, and piezoelectric biosensors are described. Attention is also given to the application of sol-gel techniques and quantum dots in the biosensors’ construction. Examples of the biosensors are provided and the pros and cons are discussed.
Collapse
|
3
|
Garcia GJM, Boucher RC, Elston TC. Biophysical model of ion transport across human respiratory epithelia allows quantification of ion permeabilities. Biophys J 2013; 104:716-26. [PMID: 23442922 DOI: 10.1016/j.bpj.2012.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 12/16/2022] Open
Abstract
Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration.
Collapse
Affiliation(s)
- Guilherme J M Garcia
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | |
Collapse
|
4
|
Forebrain Cholinergic Systems and Cognition: New Insights Based on Rapid Detection of Choline Spikes Using Enzyme-Based Biosensors. NEUROMETHODS 2013. [DOI: 10.1007/978-1-62703-370-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Abstract
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
6
|
Robinson DL, Hermans A, Seipel AT, Wightman RM. Monitoring rapid chemical communication in the brain. Chem Rev 2008; 108:2554-84. [PMID: 18576692 PMCID: PMC3110685 DOI: 10.1021/cr068081q] [Citation(s) in RCA: 468] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Donita L Robinson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
7
|
Giuliano C, Parikh V, Ward JR, Chiamulera C, Sarter M. Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: enhanced detection by hydrolysis of acetylcholine on recording sites? Neurochem Int 2008; 52:1343-50. [PMID: 18346819 DOI: 10.1016/j.neuint.2008.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 11/25/2022]
Abstract
Previous experiments demonstrated that second-based transient increases in choline concentrations measured by electrodes coated with choline oxidase (ChOx) and the amperometric detection of hydrogen peroxide validly indicate the depolarization-dependent release of acetylcholine (ACh) and its hydrolysis by endogenous acetylcholinesterase (AChE). Therefore, choline-sensitive microelectrodes have become valuable tools in neuropharmacological and behavioral research. The present experiments were designed to test the possibility that co-immobilization of ChOx plus AChE on recording sites increases the level of detection for evoked ACh release in the brain. If newly released ACh is not completely hydrolyzed by endogenous AChE and capable of reaching the extracellular space, currents recorded via sites equipped with both enzymes should be greater when compared with sites coated with ChOx only. Pairs of platinum-recording sites were coated either with AChE plus ChOx or ChOx alone. Potassium or nicotine-evoked currents were recorded throughout the entire dorsal-ventral extent of the medial prefrontal cortex (mPFC). The amplitudes of evoked cholinergic signals did not differ significantly between AChE+ChOx and ChOx-only coated recording sites. Additional experiments controlling for several potential confounds suggested that, in vivo, ACh levels > or =150fmol were detected by recordings sites featuring dual enzyme coating. Collectively, these results indicate that co-coating of microelectrodes with AChE does not enhance the detection of cholinergic activity in the cortex compared with measurements via recording sites coated only with ChOx.
Collapse
Affiliation(s)
- Chiara Giuliano
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109-1043, USA
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Moussy Y, Dungel P, Hersh L. Diffusion of [3H]Dexamethasone in Rat Subcutaneous Slices after Injection Measured by Digital Autoradiography. Biotechnol Prog 2006. [DOI: 10.1002/bp060226r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Inazu M, Takeda H, Matsumiya T. Molecular and functional characterization of an Na+-independent choline transporter in rat astrocytes. J Neurochem 2005; 94:1427-37. [PMID: 16000150 DOI: 10.1111/j.1471-4159.2005.03299.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we examined the molecular and functional characterization of choline uptake into cultured rat cortical astrocytes. Choline uptake into astrocytes showed little dependence on extracellular Na+. Na+-independent choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 35.7 +/- 4.1 microm and a maximal velocity (Vmax) of 49.1 +/- 2.0 pmol/mg protein/min. Choline uptake was significantly decreased by acidification of the extracellular medium and by membrane depolarization. Na+-independent choline uptake was inhibited by unlabeled choline, acetylcholine and the choline analogue hemicholinium-3. The prototypical organic cation tetrahexylammonium (TEA), and other n-tetraalkylammonium compounds such as tetrabutylammonium (TBA) and tetrahexylammonium (THA), inhibited Na+-independent choline uptake, and their inhibitory potencies were in the order THA > TBA > TEA. Various organic cations, such as 1-methyl-4-tetrahydropyridinium (MPP+), clonidine, quinine, quinidine, guanidine, N-methylnicotinamide, cimetidine, desipramine, diphenhydramine and verapamil, also interacted with the Na+-independent choline transport system. Corticosterone and 17beta-estradiol, known inhibitors of organic cation transporter 3 (OCT3), did not cause any significant inhibition. However, decynium22, which inhibits OCTs, markedly inhibited Na+-independent choline uptake. RT-PCR demonstrated that astrocytes expressed low levels of OCT1, OCT2 and OCT3 mRNA, but the functional characteristics of choline uptake are very different from the known properties of these OCTs. The high-affinity Na+-dependent choline transporter, CHT1, is not expressed in astrocytes as evidenced by RT-PCR. Furthermore, mRNA for choline transporter-like protein 1 (CTL1), and its splice variants CTL1a and CTL1b, was expressed in rat astrocytes, and the inhibition of CTL1 expression by RNA interference completely inhibited Na+-independent choline uptake. We conclude that rat astrocytes express an intermediate-affinity Na+-independent choline transport system. This system seems to occur through a CTL1 and is responsible for the uptake of choline and organic cations in these cells.
Collapse
Affiliation(s)
- Masato Inazu
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
11
|
Burmeister JJ, Palmer M, Gerhardt GA. Ceramic-based multisite microelectrode array for rapid choline measures in brain tissue. Anal Chim Acta 2003. [DOI: 10.1016/s0003-2670(03)00067-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Bradaïa A, Trouslard J. Fast synaptic transmission mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in lamina X neurones of neonatal rat spinal cord. J Physiol 2002; 544:727-39. [PMID: 12411519 PMCID: PMC2290641 DOI: 10.1113/jphysiol.2002.028894] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Using patch clamp recordings on neonatal rat spinal cord slices, we have looked for the presence of alpha-bungarotoxin-sensitive nicotinic ACh receptors (nAChRs) on sympathetic preganglionic neurones (SPNs) surrounding the central canal of the spinal cord (lamina X) and examined whether they were implicated in a fast cholinergic synaptic transmission. SPNs were identified either by their morphology using biocytin in the recording electrode and/or by antidromic stimulation of the ventral rootlets. The selective alpha7-containing nAChR (alpha7*nAChR) agonist choline (10 mM) induced a fast, rapidly desensitizing inward current, which was fully blocked by alpha-bungarotoxin (alpha-BgT; 50 nM) and strychnine (1 microM), two antagonists of alpha7*nAChRs. The I-V relationship of the choline-induced current showed a strong inward-going rectification. Electrically evoked excitatory postsynaptic currents (eEPSCs) could be recorded. At -60 mV, eEPSCs peaked at -26.2 pA and decayed monoexponentially with a mean time constant of 8.5 ms. The current-voltage relationship for eEPSCs exhibited a strong inward rectification and a reversal potential close to 0 mV, compatible with a non-selective cationic current. The appearance of eEPSCs was entirely suppressed by the application of 100 microM ACh or nicotine. Choline (10 mM) and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP; 100 microM) both reduced the amplitude of eEPSCs, whereas cytisine (100 microM) had no effect. Strychnine (1 microM) and alpha-BgT (50 nM) both suppressed the eEPSCs. Blocking the P2X purinergic and 5-HT(3) receptors had no effect on eEPSCs. DMPP induced four types of current, which differed in their onset and desensitization rate. The most frequently encountered responses were insensitive to the action of strychnine and alpha-BgT, and were reproduced by ACh and nicotine but not by cytisine. We conclude that SPNs of the lamina X express several classes of nAChRs and in particular alpha-BgT-sensitive nAChRs. This is the first demonstration in a mammalian spinal cord preparation of a fast cholinergic neurotransmission in which alpha-BgT-sensitive nicotinic receptors are involved.
Collapse
Affiliation(s)
- A Bradaïa
- Laboratoire de Neurophysiologie Cellulaire et Intégrée, UMR 7519 CNRS/ULP, 21 rue R. Descartes, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
13
|
Abstract
Proton magnetic resonance spectroscopy has been increasingly utilized in brain research to monitor non-invasively metabolites such as N-acetyl aspartate (NAA), creatine (Cr) and choline (Cho). We present here studies of the effect of aging on the ratios of these metabolites measured in the rat brain in vivo and on choline transport and lipid synthesis in rat brain slices, in vitro. The in vivo studies indicated that the ratios of Cho/NAA and Cho/Cr increased in the aged hippocampus, whereas the ratio of Cr/NAA was similar in the aged and adult hippocampus. These three ratios remained similar in the cortex of adult and aged rats. The in vitro studies revealed that in the aged cortex and the aged hippocampus the activity of the low-affinity choline uptake increased, possibly compensating for a decrease in the high-affinity uptake activity and the rate of choline diffusion. The incorporation of choline into phospholipids exhibited high and low affinity kinetics which were not modified by aging.
Collapse
Affiliation(s)
- Rachel Katz-Brull
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
14
|
Sasaki T, Kawamura K, Tanaka Y, Ando S, Senda M. Assessment of choline uptake for the synthesis and release of acetylcholine in brain slices by a dynamic autoradiographic technique using [11C]choline. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2002; 10:1-11. [PMID: 12379431 DOI: 10.1016/s1385-299x(02)00159-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The uptake of choline for the synthesis and release of acetylcholine was investigated in brain slices by dynamic positron autoradiography using [11C]choline. Brain slices (330 microm) were incubated with [11C]choline in oxygenated Krebs-Ringer medium at 34 degrees C and serial two-dimensional time-resolved images of the uptake and release of radioactivity were recorded on Storage Phosphor screens. [11C]choline uptake increased with the period of incubation and was 1.9 times higher in the striatum than cerebral cortex. The uptake in the striatum was significantly diminished by hemicholinium-3 (HC-3), an inhibitor of high-affinity choline uptake. Pretreatment of brain slices with 50 mM K(+) for 20 min enhanced the uptake in striatum. The uptake of [11C]choline in brain slices was saturable using nonlabeled choline. Two uptake systems, a high-affinity and a low-affinity system, were confirmed to exist by kinetic analysis using Lineweaver-Burk plots. The 11C radioactivity that had accumulated in the striatum disappeared on treatment with veratridine, a depolarization agent, in the presence of HC-3. This pattern of disappearance was consistent with that of the appearance of unlabeled and labeled acetylcholine in the medium. These results indicate that this method is useful for obtaining information regarding the uptake of choline for the synthesis and release of acetylcholine in live brain tissues.
Collapse
Affiliation(s)
- Toru Sasaki
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | | | | | | | | |
Collapse
|
15
|
Katz-Brull R, Margalit R, Degani H. Differential routing of choline in implanted breast cancer and normal organs. Magn Reson Med 2001; 46:31-8. [PMID: 11443708 DOI: 10.1002/mrm.1157] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Choline is an essential nutrient participating as the initial substrate in major metabolic pathways. The differential metabolic routing of choline was investigated in MCF7 human breast cancer implanted in nude mice and in the kidney, liver, and brain of these mice. The distribution of metabolites following infusion of [1,2-(13)C]-choline was monitored by (13)C magnetic resonance spectroscopy. This infusion led to an 18-fold increase in plasma choline and to concomitant changes in the content and distribution of choline metabolites. In vivo kinetic studies of the tumor during the infusion demonstrated accumulation of choline in the interstitium and intracellular synthesis of phosphocholine. The amount of unlabeled choline metabolites was 7.1, 4.1, 3.5, and 1.4 micromol/g in the kidney, liver, tumor, and brain, respectively. The variations in the labeled metabolites were more pronounced with high amounts in the kidney and liver (8.0 and 4.3 micromol/g, respectively) and very low amounts in the tumor and brain (0.33 and 0.12 micromol/g, respectively). In the kidney and liver, betaine (unlabeled and labeled) was the predominant choline metabolite. The dominant unlabeled metabolite in breast cancer was phosphocholine and in the brain glycerophosphocholine. Magn Reson Med 46:31-38, 2001.
Collapse
Affiliation(s)
- R Katz-Brull
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
16
|
|
17
|
Abstract
Microsensors have traditionally been made as one-off, hand-crafted probes. Recently, however, there has been a concerted drive to exploit the microfabrication methods developed within the semiconductor industry in order to mass produce cheap, planar microsensing arrays. Such devices might be 'electronic Petri dishes' for the direct stimulation of, and measurement from, a variety of single cells, including neurones. In addition, micromachining has been used to construct picolitre-scale analytical sensors to extend the range of single-cell analyses.
Collapse
Affiliation(s)
- J M Cooper
- Bioelectronics Research Centre, Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, UK G12 8QQ
| |
Collapse
|
18
|
|