1
|
Ganjikunta RK, Naik RB, Vallepalli C, M J. Isotretinoin and Suicide: Data Mining of the United States Food and Drug Administration Adverse Event Reporting System Database. Cureus 2024; 16:e70502. [PMID: 39479132 PMCID: PMC11523545 DOI: 10.7759/cureus.70502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Background Isotretinoin is a 13-cis-retinoic acid most commonly used to treat severe nodular acne. It may result in psychiatric adverse events, such as completed suicide, even though the exact mechanism is unknown. Despite extensive research, the potential link between isotretinoin and psychiatric side effects remains unclear. Objectives The main objective of this study is to find the relationship between isotretinoin and suicide-related adverse events by analyzing the United States Food and Drug Administration Adverse Event Reporting System (FAERS). Methods The study data were obtained from the FAERS database from 1982 to March 2024. The inclusion criteria were: (i) isotretinoin-related suicide and suicide-related adverse events; (ii) reports with specified age and gender. Out of the 73,076 extracted cases, 2839 were finalized for analysis based on the inclusion criteria. The data were represented as frequency and percentages. A chi-square or Fischer exact test was used to analyze the categorical variables. The P-value <0.05 was considered as statistically significant. Results As 2433 patients experienced multiple reactions, the reported suicide and suicide-related adverse events totalled 3,059. The most commonly affected individuals were males, with the exception of depression suicidal event, which was more common in females. Among all age groups, those aged 10-19 were the most affected, as the occurrence of acne and the use of isotretinoin were higher in this age group. Almost all the reactions were serious, and there were 349 completed suicides. Conclusion The usage of isotretinoin can increase the possibility of suicide-related adverse events and should be used cautiously, especially in adolescents and patients with previous psychiatric disorders.
Collapse
Affiliation(s)
| | - Rupeshkumar B Naik
- Forensic Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati, IND
| | | | | |
Collapse
|
2
|
Tan NKW, Tang A, MacAlevey NCYL, Tan BKJ, Oon HH. Risk of Suicide and Psychiatric Disorders Among Isotretinoin Users: A Meta-Analysis. JAMA Dermatol 2024; 160:54-62. [PMID: 38019562 PMCID: PMC10687715 DOI: 10.1001/jamadermatol.2023.4579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/20/2023] [Indexed: 11/30/2023]
Abstract
Importance Isotretinoin is hypothesized to contribute to the development of psychiatric disorders, but the epidemiological association and risk factors associated with psychiatric disorders among isotretinoin users remain unclear. Objective To clarify the absolute and relative risk and risk factors associated with suicide and psychiatric disorders among isotretinoin users. Data Sources PubMed, Embase, Web of Science, and Scopus were searched from inception until January 24, 2023. Study Selection Randomized trials and observational studies were selected if they reported the absolute risk, relative risk, and risk factors for suicide and psychiatric disorders among isotretinoin users. Data Extraction and Synthesis Relevant data were extracted and risk of bias was evaluated at the study level using the Newcastle-Ottawa Scale. Data were pooled using inverse variance-weighted meta-analyses. Heterogeneity was measured using the I2 statistic, and meta-regression analyses were performed. Main Outcomes and Measures Absolute risk (percentage), relative risks (risk ratios [RR]), and risk factors (RR) of suicide and psychiatric disorders among isotretinoin users. Results A total of 25 studies including 1 625 891 participants were included in the review and 24 in the meta-analysis. Among the included studies, participants' average age ranged from 16 to 38 years, and distribution by sex ranged from 0% to 100% male. The 1-year pooled absolute risk from between 2 and 8 studies of completed suicide, suicide attempt, suicide ideation, and self-harm were each less than 0.5%, while that of depression was 3.83% (95% CI, 2.45-5.93; I2 = 77%) in 11 studies. Isotretinoin users were less likely than nonusers to attempt suicide at 2 years (RR, 0.92; 95% CI, 0.84-1.00; I2 = 0%), 3 years (RR, 0.86; 95% CI, 0.77-0.95; I2 = 0%), and 4 years (RR, 0.85; 95% CI, 0.72-1.00; I2 = 23%) following treatment. Isotretinoin was not associated with the risk of all psychiatric disorders (RR, 1.08; 95% CI, 0.99-1.19; I2 = 0%). Study-level meta-regression found that studies with participants of older age reported lower 1-year absolute risk of depression, while those with a higher percentage of male participants reported a higher 1-year absolute risk of completed suicide. Conclusions and Relevance The findings suggest that at a population level, isotretinoin users do not have increased risk of suicide or psychiatric conditions but may instead have a lower risk of suicide attempts at 2 to 4 years following treatment. While these findings are reassuring, clinicians should continue to practice holistic psychodermatologic care and monitor patients for signs of mental distress during isotretinoin treatment.
Collapse
Affiliation(s)
- Nicole Kye Wen Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adelina Tang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Hazel H. Oon
- National Skin Centre and Skin Research Institute, Singapore
| |
Collapse
|
3
|
Retinoic acid and depressive disorders: Evidence and possible neurobiological mechanisms. Neurosci Biobehav Rev 2020; 112:376-391. [DOI: 10.1016/j.neubiorev.2020.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
|
4
|
Hu B, Zhang J, Wang J, He B, Wang D, Zhang W, Zhou X, Li H. Responses of PKCε to cardiac overloads on myocardial sympathetic innervation and NET expression. Auton Neurosci 2017; 210:24-33. [PMID: 29195789 DOI: 10.1016/j.autneu.2017.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023]
Abstract
Protein kinase C (PKC) is a key mediator of many diverse physiological and pathological responses. PKC activation play an important regulatory role of cardiac function. The present study was performed to investigate whether there were differential activations of the PKCε and how the activation coupled with norepinephrine transporter (NET) surface expression, sympathetic innervation pattern and extracellular matrix remodeling in different cardiac hemodynamic overloads induced by abdominal aortic constriction or aortocaval fistula. At 8weeks after the operations, heart failure were induced, accompanied with myocardial hypertrophy, which was more pronounced in pressure overload (POL) than that of volume overload (VOL) rats, left ventricular dysfunction and increased plasma norepinephrine (NE). In POL rats there was an increase in myocardial collagen deposition, in contrast, the amount decreased in VOL as compared with the sham rats. POL remarkably upregulated PKCε membrane-cytosol ratio and downregulated NET membrane fraction, whereas, in VOL induced opposite changes. Accompanied with the PKCε activation, nerve sprouting, evidenced by myocardial GAP43 protein increased, and different nerve phenotypes were found, in POL tyrosine hydroxylase (TH) positive nerve density increased with NET and choline acetyltransferase (ChAT) immunoreactivity density decreased, in contrast, in VOL NET and ChAT increased, TH did not change. The overloads did not induce alteration of NET mRNA expression, but resulted in different myocardial β1-AR mRNA expression, in POL β1-AR mRNAwas significantly downregulated, while in VOL rats unaltered. Conclusion, the present results suggested that the different cardiac hemodynamic overload could differentially activate a common signaling, PKCε intermediate and thereby generate biological diversity.
Collapse
Affiliation(s)
- Bing Hu
- Xiqing Hospital, Tianjin, China
| | - Jing Zhang
- Pingjin Hospital, Logistics University of CAPF, China
| | - Jing Wang
- Pingjin Hospital, Logistics University of CAPF, China
| | - Bing He
- Tianjin Key Laboratory for Biomarkers of Occupation and Environmental Hazard, China
| | - Deshun Wang
- Pingjin Hospital, Logistics University of CAPF, China
| | | | - Xin Zhou
- Pingjin Hospital, Logistics University of CAPF, China; Institute of Cardiovascular disease of CAPF, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, China
| | - He Li
- Pingjin Hospital, Logistics University of CAPF, China; Institute of Cardiovascular disease of CAPF, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, China.
| |
Collapse
|
5
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
6
|
Wróbel A, Rechberger T. An animal model of detrusor overactivity induced by depression. J Pharmacol Toxicol Methods 2016; 80:19-25. [PMID: 27050558 DOI: 10.1016/j.vascn.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Depression is frequently found in patients suffering from overactive bladder. The aim of the study was to verify whether the 13-cis-retinoic acid, a synthetic retinoid used in the treatment of acne, which was proven to induce depressive changes in both humans and animals, can cause detrusor overactivity symptoms in conscious rats. METHODS In order to assess the 13-cis-retinoic acid impact on the behavioural parameters, after 6weeks of intraperitoneal administration of retinoid in a dose of 1mg/kg/day, a forced swim test and cystometry were performed, and the locomotor activity of animals was assessed. The control group received a mixture of DMSO and physiological saline at a 1:1 ratio. RESULTS 13-cis-retinoic acid caused cystometric parameter changes analogous to those observed in people with a urodynamic diagnosis of detrusor overactivity. The retinoid caused also an extension of the immobility time in the forced swim test which is consistent with increased depression-related behaviour, with no impact on the locomotor activity of rats. The intravenous administration of solifenacin succinate in a single dose of 0.03mg/kg turned out to reverse changes in the cystometric parameters modified by 13-cis-retinoic acid treatment. The histopathological analysis of bladders did not show any lesions in the upper layer of the umbrella cells, urothelium or muscles. The retinoid concentration level achieved in the animals tested turned out to be identical to that occurring in humans. DISCUSSION 13-cis-retinoic acid can induce detrusor overactivity symptoms that are reversed by solifenacin succinate.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland.
| | - Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland
| |
Collapse
|
7
|
Bremner JD, McCaffery P. The neurobiology of retinoic acid in affective disorders. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:315-31. [PMID: 17707566 PMCID: PMC2704911 DOI: 10.1016/j.pnpbp.2007.07.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 07/02/2007] [Accepted: 07/02/2007] [Indexed: 01/29/2023]
Abstract
Current models of affective disorders implicate alterations in norepinephrine, serotonin, dopamine, and CRF/cortisol; however treatments targeted at these neurotransmitters or hormones have led to imperfect resolution of symptoms, suggesting that the neurobiology of affective disorders is incompletely understood. Until now retinoids have not been considered as possible contributors to affective disorders. Retinoids represent a family of compounds derived from vitamin A that perform a large number of functions, many via the vitamin A product, retinoic acid. This signaling molecule binds to specific retinoic acid receptors in the brain which, like the glucocorticoid and thyroid hormone receptors, are part of the nuclear receptor superfamily and regulate gene transcription. Research in the field of retinoic acid in the CNS has focused on the developing brain, in part stimulated by the observation that isotretinoin (13-cis retinoic acid), an isomer of retinoic acid used in the treatment of acne, is highly teratogenic for the CNS. More recent work has suggested that retinoic acid may influence the adult brain; animal studies indicated that the administration of isotretinoin is associated with alterations in behavior as well as inhibition of neurogenesis in the hippocampus. Clinical evidence for an association between retinoids and depression includes case reports in the literature, studies of health care databases, and other sources. A preliminary PET study in human subjects showed that isotretinoin was associated with a decrease in orbitofrontal metabolism. Several studies have shown that the molecular components required for retinoic acid signaling are expressed in the adult brain; the overlap of brain areas implicated in retinoic acid function and stress and depression suggest that retinoids could play a role in affective disorders. This report reviews the evidence in this area and describes several systems that may be targets of retinoic acid and which contribute to the pathophysiology of depression.
Collapse
Affiliation(s)
- J Douglas Bremner
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30306, USA.
| | | |
Collapse
|
8
|
Abstract
The norepinephrine transporter (NET) terminates noradrenergic signalling by rapid re-uptake of neuronally released norepinephrine (NE) into presynaptic terminals. NET exerts a fine regulated control over NE-mediated behavioural and physiological effects including mood, depression, feeding behaviour, cognition, regulation of blood pressure and heart rate. NET is a target of several drugs which are therapeutically used in the treatment or diagnosis of disorders among which depression, attention-deficit hyperactivity disorder and feeding disturbances are the most common. Individual genetic variations in the gene encoding the human NET (hNET), located at chromosome 16q12.2, may contribute to the pathogenesis of those diseases. An increasing number of studies concerning the identification of single nucleotide polymorphisms in the hNET gene and their potential association with disease as well as the functional investigation of naturally occurring or induced amino acid variations in hNET have contributed to a better understanding of NET function, regulation and genetic contribution to disorders. This review will reflect the current knowledge in the field of NET from its initial discovery until now.
Collapse
Affiliation(s)
- H Bönisch
- Department of Pharmacology and Toxicology, University of Bonn, Reuterstr. 2b, 53115 Bonn, Germany.
| | | |
Collapse
|
9
|
Matsunaga W, Isobe K, Shirokawa T. Involvement of neurotrophic factors in aging of noradrenergic innervations in hippocampus and frontal cortex. Neurosci Res 2006; 54:313-8. [PMID: 16448713 DOI: 10.1016/j.neures.2005.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/26/2005] [Accepted: 12/28/2005] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated the age-dependent changes in the axon terminals of the locus coeruleus (LC) neurons in the frontal cortex and hippocampus, in which a high degree of axonal branching in the middle-aged brain was suggested to occur in our previous electrophysiological study. We used 6-, 13- and 25-month-old male F344/N rats, and performed Western blot analysis of the norepinephrine transporter (NET), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). NET expression level increased in the 13-month-old hippocampus, but was not altered by aging in the frontal cortex. BDNF expression level increased in the hippocampus, but did not change with age in the frontal cortex. On the other hand, GDNF expression level was increased with age in the frontal cortex, but was not in the hippocampus. These results suggest that the LC noradrenergic innervations may be locally regulated by different neurotrophic factors that exert their trophic actions at different target sites.
Collapse
Affiliation(s)
- Wataru Matsunaga
- National Center for Geriatrics and Gerontology, Mechanism of Aging, Obu City, Aichi Prefecture, Japan
| | | | | |
Collapse
|
10
|
Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol 2005; 75:275-93. [PMID: 15882777 DOI: 10.1016/j.pneurobio.2005.03.002] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 03/11/2005] [Accepted: 03/14/2005] [Indexed: 11/30/2022]
Abstract
Vitamin A (all-trans-retinol) is the parent compound of a family of natural and synthetic compounds, the retinoids. Retinoids regulate gene transcription in numerous cells and tissues by binding to nuclear retinoid receptor proteins, which act as transcription factors. Much of the research conducted on retinoid signalling in the nervous system has focussed on developmental effects in the embryonic or early postnatal brain. Here, we review the increasing body of evidence indicating that retinoid signalling plays an important role in the function of the mature brain. Components of the metabolic pathway for retinoids have been identified in adult brain tissues, suggesting that all-trans-retinoic acid (ATRA) can be synthesized in discrete regions of the brain. The distribution of retinoid receptor proteins in the adult nervous system is different from that seen during development; and suggests that retinoid signalling is likely to have a physiological role in adult cortex, amygdala, hypothalamus, hippocampus, striatum and associated brain regions. A number of neuronal specific genes contain recognition sequences for the retinoid receptor proteins and can be directly regulated by retinoids. Disruption of retinoid signalling pathways in rodent models indicates their involvement in regulating synaptic plasticity and associated learning and memory behaviours. Retinoid signalling pathways have also been implicated in the pathophysiology of Alzheimer's disease, schizophrenia and depression. Overall, the data underscore the likely importance of adequate nutritional Vitamin A status for adult brain function and highlight retinoid signalling pathways as potential novel therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Michelle A Lane
- Department of Human Ecology, Division of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
11
|
Lecomte MJ, De Gois S, Guerci A, Ravassard P, Faucon Biguet N, Mallet J, Berrard S. Differential expression and regulation of the high-affinity choline transporter CHT1 and choline acetyltransferase in neurons of superior cervical ganglia. Mol Cell Neurosci 2005; 28:303-13. [PMID: 15691711 DOI: 10.1016/j.mcn.2004.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 09/17/2004] [Accepted: 09/22/2004] [Indexed: 11/21/2022] Open
Abstract
Previous studies revealed that leukemia inhibitory factor (LIF) and retinoic acid (RA) induce a noradrenergic to cholinergic switch in cultured sympathetic neurons of superior cervical ganglia (SCG) by up-regulating the coordinate expression of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter. Here, we examined the effect of both factors on high-affinity choline uptake (HACU) and on expression of the high-affinity choline transporter CHT1. We found that HACU and CHT1-mRNA levels are up-regulated by LIF and down-regulated by RA in these neurons. Thus, in contrast to LIF, RA differentially regulates the expression of the presynaptic cholinergic proteins. Moreover, we showed that untreated SCG neurons express HACU and CHT1-mRNAs at much higher levels than ChAT activity and transcripts. In intact SCG, CHT1-mRNAs are abundant and synthesized by the noradrenergic neurons themselves. This study provides the first example of CHT1 expression in neurons which do not use acetylcholine as neurotransmitter.
Collapse
Affiliation(s)
- Marie-José Lecomte
- Laboratoire de la Neurotransmission et des Processus Neurodégénératifs, CNRS, UMR 7091, Bâtiment CERVI, Hôpital de la Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Holzschuh J, Barrallo-Gimeno A, Ettl AK, Durr K, Knapik EW, Driever W. Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype. Development 2003; 130:5741-54. [PMID: 14534139 DOI: 10.1242/dev.00816] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tfap2a is a transcriptional activator expressed in many different cell types, including neurons, neural crest derivatives and epidermis. We show that mutations at the zebrafish locus previously called mont blanc (mob) or lockjaw (low) encode tfap2a. The mutant phenotype reveals that tfap2a is essential for the development of hindbrain noradrenergic (NA) neurons of the locus coeruleus, medulla and area postrema, as well as for sympathetic NA neurons, epibranchial placode derived visceral sensory ganglia, and craniofacial and trunk crest derivatives. We focus our analysis on the role of tfap2a NA differentiation in the CNS. In the locus coeruleus, Phox2a and Tfap2a are co-expressed and are both required for NA development. By contrast, in the medulla Phox2a and Tfap2a are expressed in adjacent overlapping domains, but only tfap2a activity is required for NA differentiation, as NA neurons develop normally in soulless/phox2a mutant medulla. phox2a and tfap2a do not appear to affect each others expression. Our studies show that two distinct inductive mechanisms control NA development in the zebrafish hindbrain. For the posterior hindbrain, we identify retinoic acid as an important signal to induce NA differentiation in the medulla oblongata and area postrema, where it expands the tfap2a expression domain and thus acts upstream of tfap2a. By contrast, previous work revealed Fgf8 to be involved in specification of NA neurons in the locus coeruleus. Thus, although the inductive signals may be distinct, hindbrain NA neurons of the locus coeruleus and the posterior groups both require Tfap2a to establish their noradrenergic identity.
Collapse
Affiliation(s)
- Jochen Holzschuh
- Developmental Biology, Institute Biology 1, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Li W, Knowlton D, Woodward WR, Habecker BA. Regulation of noradrenergic function by inflammatory cytokines and depolarization. J Neurochem 2003; 86:774-83. [PMID: 12859689 DOI: 10.1046/j.1471-4159.2003.01890.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the sympathetic neurons innervating the heart are exposed to the inflammatory cytokines cardiotrophin-1 (CT-1), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFalpha) after myocardial infarction, the effects of these cytokines on noradrenergic function are not well understood. We used cultured sympathetic neurons to investigate the effects of these cytokines on catecholamine content, the tyrosine hydroxylase co-factor, tetrahydrobiopterin (BH4), and norepinephrine (NE) uptake. CT-1, but not IL-6 or TNFalpha, suppressed NE uptake and catecholamines in these neurons, whereas CT-1 and, to a lesser extent, IL-6 decreased BH4 content. CT-1 exerted these effects by decreasing tyrosine hydroxylase, GTP cyclohydrolase (GCH) and NE transporter mRNAs, while IL-6 lowered only GCH mRNA. The neurons innervating the heart are also activated by the central nervous system after myocardial infarction. We examined the combined effect of depolarization and cytokines on noradrenergic function. In CT-1-treated cells, depolarization caused a small increase in BH4 and NE uptake, and a large increase in catecholamines. These changes were accompanied by increased TH, GCH and NE transporter mRNAs. CT-1 and depolarization regulate expression of noradrenergic properties in an opposing manner, and the combined treatment results in elevated cellular catecholamines and decreased NE uptake relative to control cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Physiology & Pharmacology, Oregon Health & Science University School of Medicine, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
14
|
Maden M. Role and distribution of retinoic acid during CNS development. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:1-77. [PMID: 11580199 DOI: 10.1016/s0074-7696(01)09010-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinoic acid (RA), the biologically active derivative of vitamin A, induces a variety of embryonal carcinoma and neuroblastoma cell lines to differentiate into neurons. The molecular events underlying this process are reviewed with a view to determining whether these data can lead to a better understanding of the normal process of neuronal differentiation during development. Several transcription factors, intracellular signaling molecules, cytoplasmic proteins, and extracellular molecules are shown to be necessary and sufficient for RA-induced differentiation. The evidence that RA is an endogenous component of the developing central nervous system (CNS) is then reviewed, data which include high-pressure liquid chromotography (HPLC) measurements, reporter systems and the distribution of the enzymes that synthesize RA. The latter is particularly relevant to whether RA signals in a paracrine fashion on adjacent tissues or whether it acts in an autocrine manner on cells that synthesize it. It seems that a paracrine system may operate to begin early patterning events within the developing CNS from adjacent somites and later within the CNS itself to induce subsets of neurons. The distribution of retinoid-binding proteins, retinoid receptors, and RA-synthesizing enzymes is described as well as the effects of knockouts of these genes. Finally, the effects of a deficiency and an excess of RA on the developing CNS are described from the point of view of patterning the CNS, where it seems that the hindbrain is the most susceptible part of the CNS to altered levels of RA or RA receptors and also from the point of view of neuronal differentiation where, as in the case of embryonal carcinoma (EC) cells, RA promotes neuronal differentiation. The crucial roles played by certain genes, particularly the Hox genes in RA-induced patterning processes, are also emphasized.
Collapse
Affiliation(s)
- M Maden
- MRC Centre for Developmental Neurobiology, King's College London, United Kingdom
| |
Collapse
|
15
|
Li H, Ma SK, Hu XP, Zhang GY, Fei J. Norepinephrine transporter (NET) is expressed in cardiac sympathetic ganglia of adult rat. Cell Res 2001; 11:317-20. [PMID: 11787777 DOI: 10.1038/sj.cr.7290102] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.
Collapse
Affiliation(s)
- H Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
| | | | | | | | | |
Collapse
|
16
|
Kim CH, Ardayfio P, Kim KS. An E-box motif residing in the exon/intron 1 junction regulates both transcriptional activation and splicing of the human norepinephrine transporter gene. J Biol Chem 2001; 276:24797-805. [PMID: 11333263 DOI: 10.1074/jbc.m101279200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The norepinephrine transporter (NET) is responsible for the rapid NaCl-dependent uptake of norepinephrine into presynaptic noradrenergic nerve endings. Recently, we have characterized the structural organization of the 5' upstream promoter region of the human NET (hNET) gene. A new intron of 476 base pairs was found in the middle of the 5'-untranslated leader sequence and was shown to robustly enhance the promoter activity. Here, we show that the first hNET intron enhances both the homologous hNET and the heterologous thymidine kinase promoter activities in an orientation- and position-dependent manner. The first hNET intron exhibited a similar promoter-enhancing effect in both SK-N-BE(2)C (NET-positive) and HeLa (NET-negative) cell lines, showing that its function is not cell-specific. Transient transfection assays of a series of deletional constructs show that the first hNET intron contains subdomains with either positive or negative regulatory functions. Furthermore, DNase I footprinting analysis demonstrated that the 5' side of the intron, encompassing the splice donor site, is prominently protected by nuclear proteins isolated from both SK-N-BE(2)C and HeLa cells. The protected nucleotide sequence contains a consensus E-box motif, known to regulate diverse eukaryotic genes, which overlaps with the splice donor site of the first intron. We demonstrate that two basic helix-loop-helix proteins, upstream stimulatory factors 1 and 2, are major proteins interacting at this site and that the E-box is at least in part responsible for the promoter-enhancing activity of the first intron. Furthermore, site-directed mutagenesis of the splice donor site of the first intron affects both correct splicing and transcriptional activity. Taken together, our results indicate that a cis-element residing at the first exon/intron junction, encompassing an E-box motif, has a unique dual role in basal transcriptional activation and splicing of hNET mRNA.
Collapse
Affiliation(s)
- C H Kim
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | | | | |
Collapse
|
17
|
Eisenhofer G. The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 2001; 91:35-62. [PMID: 11707293 DOI: 10.1016/s0163-7258(01)00144-9] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Catecholamines are translocated across plasma membranes by transporters that belong to two large families with mainly neuronal or extraneuronal locations. In mammals, neuronal uptake of catecholamines involves the dopamine transporter (DAT) at dopaminergic neurons and the norepinephrine transporter (NET) at noradrenergic neurons. Extraneuronal uptake of catecholamines is mediated by organic cation transporters (OCTs), including the classic corticosterone-sensitive extraneuronal monoamine transporter. Catecholamine transporters function as part of uptake and metabolizing systems primarily responsible for inactivation of transmitter released by neurons. Additionally, the neuronal catecholamine transporters, recycle catecholamines for rerelease, thereby reducing requirements for transmitter synthesis. In a broader sense, catecholamine transporters function as part of integrated systems where catecholamine synthesis, release, uptake, and metabolism are regulated in a coordinated fashion in response to the demands placed on the system. Location is also important to function. Neuronal transporters are essential for rapid termination of the signal in neuronal-effector organ transmission, whereas non-neuronal transporters are more important for limiting the spread of the signal and for clearance of catecholamines from the bloodstream. Besides their presynaptic locations, NET and DAT are also present at several extraneuronal locations, including syncytiotrophoblasts of the placenta and endothelial cells of the lung (NET), stomach and pancreas (DAT). The extraneuronal monoamine transporter shows a broad tissue distribution, whereas the other two non-neuronal catecholamine transporters (OCT1 and OCT2) are mainly localized to the liver, kidney, and intestine. Altered function of peripheral catecholamine transporters may be involved in disturbances of the autonomic nervous system, such as occurs in congestive heart failure and hypernoradrenergic hypertension. Peripheral catecholamine transporters provide important targets for clinical imaging of sympathetic nerves and diagnostic localization and treatment of neuroendocrine tumors, such as neuroblastomas and pheochromocytomas.
Collapse
Affiliation(s)
- G Eisenhofer
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, Building 10, Room 6N 252, National Institutes of Health, 10 Center Drive, MSC 1620, Bethesda, MD 20892-1620, USA.
| |
Collapse
|
18
|
Phillips JK, Dubey R, Sesiashvilvi E, Takeda M, Christie DL, Lipski J. Differential expression of the noradrenaline transporter in adrenergic chromaffin cells, ganglion cells and nerve fibres of the rat adrenal medulla. J Chem Neuroanat 2001; 21:95-104. [PMID: 11173223 DOI: 10.1016/s0891-0618(00)00113-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expression of the noradrenaline transporter (NAT) was identified in various cell and fibre populations of the rat adrenal medulla, examined with immunohistochemistry and confocal microscopy. Immunoreactivity for the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), aromatic-L-amino-acid decarboxylase (AADC) and dopamine beta-hydroxylase (DBH) was present in all chromaffin cells, while phenylethanolamine N-methyltransferase (PNMT) was used to determine adrenergic chromaffin cell groups. Labelling with NAT antibody was predominantly cytoplasmic and colocalised with PNMT immunoreactivity. Noradrenergic chromaffin cells were not NAT immunoreactive. Additionally, NAT antibody labelling demonstrated clusters of ganglion cells (presumably Type I) and nerve fibres. Expression of TH, AADC, DBH, PNMT and NAT mRNA was examined using reverse transcription-polymerase chain reaction (RT-PCR) from adrenal medulla punches and single chromaffin cells, and results were consistent with those obtained with immunocytochemistry. Chromaffin cells and fibres labelled with antibodies against growth associated protein-43 (GAP-43) were not NAT immunoreactive, while ganglion cells were doubled labelled with the two antibodies. The presence of NAT in adrenergic chromaffin cells, and its absence from noradrenergic cells, suggests that the adrenergic cell type is primarily responsible for uptake of catecholamines in the adrenal medulla.
Collapse
Affiliation(s)
- J K Phillips
- Department of Physiology, School of Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
19
|
Habecker BA, Klein MG, Cox BC, Packard BA. Norepinephrine transporter expression in cholinergic sympathetic neurons: differential regulation of membrane and vesicular transporters. Dev Biol 2000; 220:85-96. [PMID: 10720433 DOI: 10.1006/dbio.2000.9631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic neurons that undergo a noradrenergic to cholinergic change in phenotype provide a useful model system to examine the developmental regulation of proteins required to synthesize, store, or remove a particular neurotransmitter. This type of change occurs in the sympathetic sweat gland innervation during development and can be induced in cultured sympathetic neurons by extracts of sweat gland-containing footpads or by leukemia inhibitory factor. Sympathetic neurons initially produce norepinephrine (NE) and contain the vesicular monoamine transporter 2 (VMAT2), which packages NE into vesicles, and the norepinephrine transporter (NET), which removes NE from the synaptic cleft to terminate signaling. We have used a variety of biochemical and molecular techniques to test whether VMAT2 and NET levels decrease in sympathetic neurons which stop producing NE and make acetylcholine. In cultured sympathetic neurons, NET protein and mRNA decreased during the switch to a cholinergic phenotype but VMAT2 mRNA and protein did not decline. NET immunoreactivity disappeared from the developing sweat gland innervation in vivo as it acquired cholinergic properties. Surprisingly, NET simultaneously appeared in sweat gland myoepithelial cells. The presence of NET in myoepithelial cells did not require sympathetic innervation. VMAT2 levels did not decrease as the sweat gland innervation became cholinergic, indicating that NE synthesis and vesicular packaging are not coupled in this system. Thus, production of NE and the transporters required for noradrenergic transmission are not coordinately regulated during cholinergic development.
Collapse
Affiliation(s)
- B A Habecker
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA.
| | | | | | | |
Collapse
|
20
|
Kim CH, Kim HS, Cubells JF, Kim KS. A previously undescribed intron and extensive 5' upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J Biol Chem 1999; 274:6507-18. [PMID: 10037744 DOI: 10.1074/jbc.274.10.6507] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synaptic action of norepinephrine is terminated by NaCl-dependent uptake into presynaptic noradrenergic nerve endings, mediated by the norepinephrine transporter (NET). NET is expressed only in neuronal tissues that synthesize and secrete norepinephrine and in most cases is co-expressed with the norepinephrine-synthetic enzyme dopamine beta-hydroxylase (DBH). To understand the molecular mechanisms regulating human NET (hNET) gene expression, we isolated and characterized an hNET genomic clone encompassing approximately 9. 5 kilobase pairs of the 5' upstream promoter region. Here we demonstrate that the hNET gene contains an as-yet-unidentified intron of 476 base pairs within the 5'-untranslated region. Furthermore, both primer extension and 5'-rapid amplification of cDNA ends analyses identified multiple transcription start sites from mRNAs expressed only in NET-expressing cell lines. The start sites clustered in two subdomains, each preceded by a TATA-like sequence motif. As expected for mature mRNAs, transcripts from most of these sites each contained an additional G residue at the 5' position. Together, the data strongly support the authenticity of these sites as the transcriptional start sites of hNET. We assembled hNET-chloramphenicol acetyltransferase reporter constructs containing different lengths of hNET 5' sequence in the presence or the absence of the first intron. Transient transfection assays indicated that the combination of the 5' upstream sequence and the first intron supported the highest level of noradrenergic cell-specific transcription. Forced expression of the paired-like homeodomain transcription factor Phox2a did not affect hNET promoter activity in NET-negative cell lines, in marked contrast to its effect on a DBH-chloramphenicol acetyltransferase reporter construct. Together with our previous studies suggesting a critical role of Phox2a for noradrenergic-specific expression of the DBH gene, these data support a model in which distinct, or partially distinct, molecular mechanisms regulate cell-specific expression of the NET and DBH genes.
Collapse
Affiliation(s)
- C H Kim
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee College of Medicine, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
21
|
Hoffman BJ, Hansson SR, Mezey E, Palkovits M. Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol 1998; 19:187-231. [PMID: 9665836 DOI: 10.1006/frne.1998.0168] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The monoamines, serotonin, dopamine, norepinephrine, epinephrine and histamine, play a critical role in the function of the hypothalamic-pituitary-adrenal axis and in the integration of information in sensory, limbic, and motor systems. The primary mechanism for termination of monoaminergic neurotransmission is through reuptake of released neurotransmitter by Na+, CI-dependent plasma membrane transporters. A second family of transporters packages monoamines into synaptic and secretory vesicles by exchange of protons. Identification of those cells which express these two families of neurotransmitter transporters is an initial step in understanding what adaptive strategies cells expressing monoamine transporters use to establish the appropriate level of transport activity and thus attain the appropriate efficiency of monoamine storage and clearance. The most recent advances in this field have yielded several surprises about their function, cellular and subcellular localization, and regulation, suggesting that these molecules are not static and most likely are the most important determinants of extracellular levels of monoamines. Here, information on the localization of mRNAs for these transporters in rodent and human brain is summarized along with immunohistochemical information at the light and electron microscopic levels. Regulation of transporters at the mRNA level by manipulation in rodents and differences in transporter site densities by tomographic techniques as an index of regulation in human disease and addictive states are also reviewed. These studies have highlighted the presence of monoamine neurotransmitter transporters in neurons but not in glia in situ. The norepinephrine transporter is present in all cells which are both tyrosine hydroxylase (TH)- and dopamine beta-hydroxylase-positive but not in those cells which are TH- and phenyl-N-methyltransferase-positive, suggesting that epinephrine cells may have their own, unique transporter. In most dopaminergic cells, dopamine transporter mRNA completely overlaps with TH mRNA-positive neurons. However, there are areas in which there is a lack of one to one correspondence. The serotonin transporter (5-HTT) mRNA is found in all raphe nuclei and in the hypothalamic dorsomedial nucleus where the 5-HTT mRNA is dramatically reduced following immobilization stress. The vesicular monoamine transporter 2 (VMAT2) is present in all monoaminergic neurons including epinephrine- and histamine-synthesizing cells. Immunohistochemistry demonstrates that the plasma membrane transporters are present along axons, soma, and dendrites. Subcellular localization of DAT by electron microscopy suggests that these transporters are not at the synaptic density but are confined to perisynaptic areas, implying that dopamine diffuses away from the synapse and that contribution of diffusion to dopamine signalling may vary between brain regions. Interestingly, the presence of VMAT2 in vesicles underlying dendrites, axons, and soma suggests that monoamines may be released at these cellular domains. An understanding of the regulation of transporter function may have important therapeutic consequences for neuroendocrine function in stress and psychiatric disorders.
Collapse
Affiliation(s)
- B J Hoffman
- Unit on Molecular Pharmacology, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|