1
|
Huang TT, Mantha S, Epstein C. The Role of Oxidative Imbalance in the Pathogenesis of Down Syndrome. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9780203912874.ch18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
2
|
Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Arch Toxicol 2005; 80:1-9. [PMID: 16187101 DOI: 10.1007/s00204-005-0009-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/14/2005] [Indexed: 12/14/2022]
Abstract
Zinc (Zn) is one of the most important trace elements in the body and it is essential as a catalytic, structural and regulatory ion. It is involved in homeostasis, in immune responses, in oxidative stress, in apoptosis and in ageing. Zinc-binding proteins (metallothioneins, MTs), are protective in situations of stress and in situations of exposure to toxic metals, infections and low Zn nutrition. Metallothioneins play a key role in Zn-related cell homeostasis due to their high affinity for Zn, which is in turn relevant against oxidative stress and immune responses, including natural killer (NK) cell activity and ageing, since NK activity and Zn ion bioavailability decrease in ageing. Physiological supplementation of Zn in ageing and in age-related degenerative diseases corrects immune defects, reduces infection relapse and prevents ageing. Zinc is not stored in the body and excess intakes result in reduced absorption and increased excretion. Nevertheless, there are cases of acute and chronic Zn poisoning.
Collapse
Affiliation(s)
- M Stefanidou
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75, Mikras Asias street, Goudi, Athens 11527, Greece.
| | | | | | | |
Collapse
|
3
|
Sinha S. Anti-oxidant gene expression imbalance, aging and Down syndrome. Life Sci 2005; 76:1407-26. [PMID: 15670619 DOI: 10.1016/j.lfs.2004.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
The expression of copper zinc superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), glutathione peroxidase (GPx), and catalase (CAT) genes have been detected in human skin fibroblast cells for 2 year normal child (control), 50 year old normal male and female and a 1 year old Down Syndrome (DS) male and female with established trisomy karyotype using the RT-PCR technique. Differential expression of these genes is quantified individually against a beta-Actin gene that has been employed as an internal control. The immunoblotting of cell lysate proteins with polyclonal antibodies exhibit SOD1 (16 kD), SOD2 (40 kD), GPx (23 and 92 kD), CAT (64 kD), and Actin (43 kD) as translational products. The results demonstrate that the enhancement in the level of mRNAs encoding SOD1 in DS male and female, as well as aged male and female are 51, 21, 31 and 50% respectively compared to the normal child (control). In SOD2, DS male and female display higher (176%) and lower (26%) levels of expression whereas aged male and female exhibit enhanced levels of expression (66 and 119%) respectively compared to the control. This study demonstrates that DS affects the female less than the male whereas in the aging process, the female is more prone to oxidative damage than the male. These results not only indicate that the level of GPx mRNA is constant except in DS male, which shows a downward regulation but that even CAT mRNA is upward regulated in aged as well as in DS males and females. These disproportionate changes in anti-oxidant genes, which are incapable of coping with over expressed genes, may contribute towards the aging process, dementia and Down syndrome.
Collapse
Affiliation(s)
- Santosh Sinha
- Department of Biotechnology, Brain Insights, Inc., 17801 Sky Park Circle # K, Irvine, California 92614, USA.
| |
Collapse
|
4
|
Mocchegiani E, Muzzioli M, Giacconi R, Cipriano C, Gasparini N, Franceschi C, Gaetti R, Cavalieri E, Suzuki H. Metallothioneins/PARP-1/IL-6 interplay on natural killer cell activity in elderly: parallelism with nonagenarians and old infected humans. Effect of zinc supply. Mech Ageing Dev 2003; 124:459-68. [PMID: 12714254 DOI: 10.1016/s0047-6374(03)00023-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metallothioneins (MTs) play pivotal role in zinc-related cell homeostasis because of their high affinity for this trace element which is in turn relevant against oxidative stress and for the efficiency of the entire immune system, including natural killer (NK) cell activity. In order to accomplish this role, MTs sequester and/or dispense zinc during stress and inflammation to protect cells against reactive oxygen species. MTs gene expression is affected by IL-6 for a prompt immune response. Concomitantly, MTs release zinc for the activity of antioxidant zinc-dependent enzymes, including poly(ADP-ribose)polymerase-1(PARP-1), which is involved in base excision DNA-repair. This role of MTs is peculiar in young adult-age during transient stress and inflammation, but not in ageing because stress-like condition and inflammation are persistent. This may lead MTs to turn-off from role of protection in young age to deleterious one in ageing with subsequent appearance of age-related diseases (severe infections). The aim is to study the role played by MTs/IL-6/PARP-1 interplay on NK cell activity in elderly, in old infected patients (acute and remission phases by bronchopneumonia infection) and in health nonagenarian/centenarian subjects. MTmRNA is high in lymphocytes from elderly people coupled with high IL-6, low zinc ion bioavailability, decreased NK cell activity and impaired capacity of PARP-1 in base excision DNA-repair. The same trend in this altered physiological cascade during ageing also occurs in old infected patients (both acute and remission phases) with more marked immune damage, inflammatory condition and very impaired PARP-1 in base excision DNA-repair. By contrast, centenarian subjects display low MTmRNA, good zinc ion bioavailability, satisfactory NK cell activity and higher capacity of PARP-1 in base excision DNA-repair. These findings clearly demonstrate that the sequester of zinc by MTs in ageing is deleterious because leading to low zinc ion bioavailability with subsequent impairment of PARP-1 and NK cell activity and appearance of severe infections. Physiological zinc supply (12 mg Zn(++)/day) for 1 month in elderly and in old infected patients (remission phase) restores NK cells activity with values observed in health centenarians. Therefore, the zinc ion bioavailability by zinc-bound MTs homeostasis is pivotal to reach health longevity and successful ageing.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Center (Section Nutrition, Immunity and Ageing), Research Department Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121, Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cairns NJ. Molecular neuropathology of transgenic mouse models of Down syndrome. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2002:289-301. [PMID: 11771752 DOI: 10.1007/978-3-7091-6262-0_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Down syndrome (DS) is a complex, clinically heterogeneous disorder which shows both impairment of neurodevelopement and the neurodegenerative changes of Alzheimer's disease (AD). The phenotype of DS is caused by triplication of chromosome 21 and transgenic mouse models have been developed, and are being created, that carry single genes and chromosomal segments to excess. For example, transgenic mice containing additional copies of the amyloid precursor protein (APP) gene, have been useful in producing the Abeta deposition characteristic of AD and DS, but not the cytoskeletal changes that are the hallmarks of these human disorders. Such models are useful in replicating aspects of pathogenesis and allow for the testing of therapeutic agents to restore impaired function. Segmental trisomic mouse models, which survive to adulthood and possess three copies of multiple genes responsible for the DS phenotype, such as Ts1Cje and Ts65Dn, have been used to explore aspects of neurodevelopment and neurodegeneration. These animal models show some but not all the pathological, biochemical, and transcriptional changes seen in DS. They also have the advantage of allowing for the testing of therapeutic agents to restore impaired function. Analysis of the transcriptome and proteome of fetal and adult DS indicates that there is a complex relationship between gene dosage, gene and protein expression, and that data from animal models will need to be compared and evaluated in the light of data obtained from DS tissue.
Collapse
Affiliation(s)
- N J Cairns
- Department of Neuropathology, Institute of Psychiatry, King's College London, United Kingdom.
| |
Collapse
|
6
|
Lott IT, Head E. Down syndrome and Alzheimer's disease: a link between development and aging. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:172-8. [PMID: 11553933 DOI: 10.1002/mrdd.1025] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A subset of aged individuals with Down syndrome (DS) exhibits the clinical features of Alzheimer's disease (AD) but our ability to detect dementia in this population is hampered by developmental differences as well as the sensitivity of existing test tools. Despite the apparent clinical heterogeneity in aged individuals with DS, age-associated neuropathology is a consistent feature. This is due to the fact that trisomy 21 leads to a dose-dependent increase in the production of the amyloid precursor protein and subsequently the production of the amyloidogenic fragments leading to early and predominant senile plaque formation. A review of the existing literature indicates that oxidative damage and neuroinflammation may interact to accelerate the disease process particularly in individuals with DS over the age of 40 years. By combining clinical information with measures of brain-region specific neuropathology we can "work backwards" and identify the earliest and most sensitive clinical change that may signal the onset of AD. For the past 50 years, investigators in the fields of mental retardation, developmental disabilities, and aging have been interested in the curious link between AD and DS. The morphologic and biochemical origins of AD are seen in the early years of the lifespan for individuals with DS. Study of the process by which AD evolves in DS affords an opportunity to understand an important link between development and aging. This review will focus on advances in the molecular and clinical basis of this association.
Collapse
Affiliation(s)
- I T Lott
- Department of Pediatrics, University of California, Irvine, Orange, CA 92868, USA.
| | | |
Collapse
|
7
|
Galdzicki Z, Siarey R, Pearce R, Stoll J, Rapoport SI. On the cause of mental retardation in Down syndrome: extrapolation from full and segmental trisomy 16 mouse models. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:115-45. [PMID: 11336779 DOI: 10.1016/s0926-6410(00)00074-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Down syndrome (DS, trisomy 21, Ts21) is the most common known cause of mental retardation. In vivo structural brain imaging in young DS adults, and post-mortem studies, indicate a normal brain size after correction for height, and the absence of neuropathology. Functional imaging with positron emission tomography (PET) shows normal brain glucose metabolism, but fewer significant correlations between metabolic rates in different brain regions than in controls, suggesting reduced functional connections between brain circuit elements. Cultured neurons from Ts21 fetuses and from fetuses of an animal model for DS, the trisomy 16 (Ts16) mouse, do not differ from controls with regard to passive electrical membrane properties, including resting potential and membrane resistance. On the other hand, the trisomic neurons demonstrate abnormal active electrical and biochemical properties (duration of action potential and its rates of depolarization and repolarization, altered kinetics of active Na(+), Ca(2+) and K(+) currents, altered membrane densities of Na(+) and Ca(2+) channels). Another animal model, the adult segmental trisomy 16 mouse (Ts65Dn), demonstrates reduced long-term potentiation and increased long-term depression (models for learning and memory related to synaptic plasticity) in the CA1 region of the hippocampus. Evidence suggests that the abnormalities in the trisomy mouse models are related to defective signal transduction pathways involving the phosphoinositide cycle, protein kinase A and protein kinase C. The phenotypes of DS and its mouse models do not involve abnormal gene products due to mutations or deletions, but result from altered expression of genes on human chromosome 21 or mouse chromosome 16, respectively. To the extent that the defects in signal transduction and in active electrical properties, including synaptic plasticity, that are found in the Ts16 and Ts65Dn mouse models, are found in the brain of DS subjects, we postulate that mental retardation in DS results from such abnormalities. Changes in timing and synaptic interaction between neurons during development can lead to less than optimal functioning of neural circuitry and signaling then and in later life.
Collapse
Affiliation(s)
- Z Galdzicki
- Section on Brain Physiology and Metabolism, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
8
|
Klein RC, Siarey RJ, Caruso A, Rapoport SI, Castellino FJ, Galdzicki Z. Increased expression of NR2A subunit does not alter NMDA-evoked responses in cultured fetal trisomy 16 mouse hippocampal neurons. J Neurochem 2001; 76:1663-9. [PMID: 11259484 DOI: 10.1046/j.1471-4159.2001.00170.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trisomy 16 (Ts16) mouse is an animal model for human trisomy 21 (Down's syndrome). The gene encoding the NR2A subunit of the NMDA receptor has been localized to mouse chromosome 16. In the present study, western blot analysis revealed a 2.5-fold increase of NR2A expression in cultured Ts16 embryonic hippocampal neurons. However, this increase did not affect the properties of NMDA-evoked currents in response to various modulators. The sensitivity of NMDA receptors to transient applications of NMDA, spermine, and Zn(2+) was investigated in murine Ts16 and control diploid cultured embryonic hippocampal neurons. Peak and steady-state currents evoked by NMDA were potentiated by spermine at concentrations < 1 mM, and inhibited by Zn(2+) in a dose-dependent and voltage-independent manner. No marked difference was observed between Ts16 and control diploid neurons for any of these modulators with regard to IC(50) and EC(50) values or voltage dependency. Additionally, inhibition by the NR2B selective inhibitor, ifenprodil, was similar. These results demonstrate that NMDA-evoked currents are not altered in cultured embryonic Ts16 neurons and suggest that Ts16 neurons contain similar functional properties of NMDA receptors as diploid control neurons despite an increased level of NR2A expression.
Collapse
Affiliation(s)
- R C Klein
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
In astrocyte primary cultures of trisomy 16 mice, an animal model for Down's syndrome, protein oxidation was 50% higher than in diploid littermates. Exposure to 10 microM H2O2 or 50 microM kainic acid incremented protein oxidation in trisomic but not in diploid cultures. Studies on stress response genes showed that metallothionein (MT) level was 2-3 times higher in trisomy 16 than in diploid cultures. Kainic acid or H2O2 exposure increased the MT protein level in diploid cultures but failed to increase it in trisomy 16 mouse beyond its elevated basal level. The reduced responsiveness of MT to simulated oxidative stress may result in insufficient removal of ROS, which could partially explain the further increase of protein oxidation in trisomy 16 cultures. In contrast, Pb exposure increased MT in trisomy 16 and diploid primary cultures to a similar extent. The similar metal responsiveness of MT in both phenotypes indicated that MT in trisomic glial cultures was not yet maximally stimulated. The flawed redox sensitivity in trisomy 16 mouse suggests possible alterations in the binding activity of ROS-sensitive transcription factors on the MT promoter.
Collapse
Affiliation(s)
- I Hanbauer
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
10
|
Scortegagna M, Hanbauer I. Increased AP-1 DNA-binding activity and nuclear REF-1 accumulation in lead-exposed primary cultures of astrocytes. Neurochem Res 2000; 25:861-6. [PMID: 10944005 DOI: 10.1023/a:1007577710066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pb was shown to perturb neuronal and glial function either directly by interacting with protein thiol groups or indirectly by mimicking Ca(2+) and increasing oxidative stress. In view of the potential action of Pb on cellular redox homeostasis we studied the regulation of activator protein-1 (AP-1) DNA binding. A 1h incubation of astrocyte primary cultures with 10 microM Pb caused a 2.5 fold increase in AP-1 DNA binding. An assessment of how Pb elicited this increase revealed the involvement of 1. transcriptional and 2. posttranslational processes. The first one was documented by an increase of c-jun mRNA content after 15 to 30 min of 10 microM Pb exposure. The second one was suggested by an enhanced nuclear accumulation of redox factor-1 after 30 to 60 min of 10 microM Pb exposure. The Pb-elicited increase of the reduction/oxidation-sensitive AP-1 signal transduction may regulate target genes operative in cell survival or cell death.
Collapse
Affiliation(s)
- M Scortegagna
- Laboratory of Molecular Immunology, NHLBI, NIH, Bethesda, MD 20892-1674, USA
| | | |
Collapse
|
11
|
Scortegagna M, Galdzicki Z, Rapoport SI, Hanbauer I. Activator protein-1 DNA binding activation by hydrogen peroxide in neuronal and astrocytic primary cultures of trisomy-16 and diploid mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 73:144-50. [PMID: 10581408 DOI: 10.1016/s0169-328x(99)00257-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of H(2)O(2) on DNA binding activity of activator protein-1 (AP-1) was studied by electrophoretic mobility shift assay (EMSA) in cortical primary cultures of trisomy-16 mice and their diploid littermates. Exposure to 10 microM H(2)O(2) for 15 min elicited a greater and earlier occurring increase of AP-1 DNA binding in neuronal primary cultures of trisomy-16 mice than of diploid mice. When astrocyte-rich primary cultures were exposed to 10 microM H(2)O(2) a two-fold increase of AP-1 DNA binding activity was found in trisomy-16 and diploid mice. Supershift EMSA analysis revealed that c-jun was a component of AP-1 in neuronal and glial cultures of diploid and trisomic mice. A 15-min exposure to 10 microM H(2)O(2) increased c-jun mRNA in cortical neuronal cultures by six-fold, compared with a two-fold increase in cultured astrocytes. The results documented that H(2)O(2)-elicited activation of AP-1 DNA binding in trisomy-16 primary cultures is transcriptionally regulated. Since oxidative stress also activates various stress-inducible protein kinases that may phosphorylate AP-1 dimers, the increase of AP-1 DNA binding may, in part, be triggered by phosphorylation.
Collapse
Affiliation(s)
- M Scortegagna
- Laboratory of Molecular Immunology, NHLBI, National Institutes of Health, Bldg. 10, Room 7N312, Bethesda, MD 20892-1674, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Autosomal trisomy causes a large proportion of all human pregnancy loss and so is a significant source of lethality in the human population. The autosomal trisomy syndromes each have a different phenotype and are probably caused by the effects of specific genes that are present in three copies, rather than the normal two. Identifying these genes will require the application of classical genetic and new genome-manipulation approaches. Recent advances in chromosome engineering are now allowing us to create precisely defined autosomal trisomies in the mouse, and so provide new routes to identifying the critical, dosage-sensitive genes that are responsible for these highly deleterious, yet very common, syndromes.
Collapse
Affiliation(s)
- D Hernandez
- Department of Neurogenetics, Imperial College School of Medicine (St Mary's), Norfolk Place, London, UK W2 1PG.
| | | |
Collapse
|