1
|
Gamage R, Rossetti I, Niedermayer G, Münch G, Buskila Y, Gyengesi E. Chronic neuroinflammation during aging leads to cholinergic neurodegeneration in the mouse medial septum. J Neuroinflammation 2023; 20:235. [PMID: 37833764 PMCID: PMC10576363 DOI: 10.1186/s12974-023-02897-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Low-grade, chronic inflammation in the central nervous system characterized by glial reactivity is one of the major hallmarks for aging-related neurodegenerative diseases like Alzheimer's disease (AD). The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex and may be differentially vulnerable in various neurodegenerative diseases. However, the impact of chronic neuroinflammation on the cholinergic function is still unclear. METHODS To gain further insight into age-related cholinergic decline, we investigated the cumulative effects of aging and chronic neuroinflammation on the structure and function of the septal cholinergic neurons in transgenic mice expressing interleukin-6 under the GFAP promoter (GFAP-IL6), which maintains a constant level of gliosis. Immunohistochemistry combined with unbiased stereology, single cell 3D morphology analysis and in vitro whole cell patch-clamp measurements were used to validate the structural and functional changes of BFCN and their microglial environment in the medial septum. RESULTS Stereological estimation of MS microglia number displayed significant increase across all three age groups, while a significant decrease in cholinergic cell number in the adult and aged groups in GFAP-IL6 mice compared to control. Moreover, we observed age-dependent alterations in the electrophysiological properties of cholinergic neurons and an increased excitability profile in the adult GFAP-IL6 group due to chronic neuroinflammation. These results complimented the significant decrease in hippocampal pyramidal spine density seen with aging and neuroinflammation. CONCLUSIONS We provide evidence of the significant impact of both aging and chronic glial activation on the cholinergic and microglial numbers and morphology in the MS, and alterations in the passive and active electrophysiological membrane properties of septal cholinergic neurons, resulting in cholinergic dysfunction, as seen in AD. Our results indicate that aging combined with gliosis is sufficient to cause cholinergic disruptions in the brain, as seen in dementias.
Collapse
Affiliation(s)
- Rashmi Gamage
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Gerald Münch
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Erika Gyengesi
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
2
|
Bhupatiraju L, Bethala K, Wen Goh K, Singh Dhaliwal J, Ching Siang T, Menon S, Menon B, Anchu KB, Yee Chan S, Chiau Ming L, Khan A. Influence of Murraya koenigii extract on diabetes induced rat brain aging. J Med Life 2023; 16:307-316. [PMID: 36937470 PMCID: PMC10015565 DOI: 10.25122/jml-2022-0151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/31/2022] [Indexed: 03/21/2023] Open
Abstract
Food supplements are used to improve cognitive functions in age-related dementia. This study was designed to determine the Murraya koenigii leaves' effect on Alloxan-induced cognitive impairment in diabetic rats and the contents of oxidative stress biomarkers, catalase, reduced glutathione, and glutathione reductase in brain tissue homogenates. Wistar rats were divided into seven groups (six rats per group). Group I received saline water (1 ml, p.o.), Diabetes was induced in Groups II-VII with Alloxan (120 mg/kg/p.o). Group III was provided with Donepezil HCl (2.5 mg/kg/p.o.), Group IV, V, VI, and VII with Murraya koenigii ethanol extract (200 and 400 mg/kg/p.o.) and aqueous extract (200 and 400 mg/kg/p.o.), respectively, for 30 days. Behavior, acetylcholinesterase (AChE) activity, oxidative stress status, and histopathological features were determined in the hippocampus and cerebral cortex. Administration of Murraya koenigii ethanolic and aqueous extracts significantly (P<0.05, P<0.001) increased the number of holes crossed by rats from one chamber to another. There was an increase in the (1) latency to reach the solid platform, (2) number of squares traveled by rats on the 30th day, and (3) percentage of spontaneous alternation behavior compared to the control group. Administration for successive days markedly decreased AChE activity (P<0.05), decreased TBARS level, and increased catalase, GSH, and GR levels. Murayya koenigii could be a promising food supplement for people with dementia. However, more research into sub-chronic toxicity and pharmacokinetic and pharmacodynamics interactions is essential.
Collapse
Affiliation(s)
- Lakshmi Bhupatiraju
- Department of Pharmacology, School of Allied Health Sciences, Malla Reddy University, Hyderabad, Telangana, India
- Corresponding Author: Lakshmi Bhupatiraju, Department of Pharmacology, School of Allied Health Sciences, Malla Reddy University, Hyderabad, Telangana, India. E-mail: Khang Wen Goh, Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia. E-mail:
| | - Krupavaram Bethala
- Department of Pharmacology, School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Corresponding Author: Lakshmi Bhupatiraju, Department of Pharmacology, School of Allied Health Sciences, Malla Reddy University, Hyderabad, Telangana, India. E-mail: Khang Wen Goh, Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia. E-mail:
| | - Jagjit Singh Dhaliwal
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Tan Ching Siang
- Department of Pharmacology, School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
| | - Shasidharan Menon
- Department of Pharmacology, School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
| | - Bamavv Menon
- Department of Pharmacology, School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
| | - Kishore Babu Anchu
- Department of Pharmacology, School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
| | - Siok Yee Chan
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Malaysia
| | - Long Chiau Ming
- School of Medicine and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Abdullah Khan
- Faculty of Pharmacy, Quest International University, Ipoh, Malaysia
| |
Collapse
|
3
|
Jin T, Chen R, Shao M, Yang X, Ma L, Wang F. Dorsal hippocampus- and ACC-projecting medial septum neurons differentially contribute to the recollection of episodic-like memory. FASEB J 2020; 34:11741-11753. [PMID: 32652689 DOI: 10.1096/fj.202000398r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 11/11/2022]
Abstract
Episodic memory refers to the recollection of previous experiences containing specific temporal, spatial, and emotional information. The ability to recollect episodic memory requires coordination of multiple brain regions, including the hippocampus (HPC) and the cingulate cortex. While the afferents into HPC and cingulate cortex that orchestrate the episodic memory remain unclear. The medial septum (MS), one of the anatomical location of cholinergic centers, innervates not only the dorsal HPC (dHPC), but also the cingulate and entorhinal cortices. By using "What-Where-When" episodic-like memory (ELM) behavioral model and viral tracing, we found that MS neurons projected to dHPC and anterior cingulate cortex (ACC), which exerted distinct impacts on ELM recollection. Chemogenetic inhibition of the dHPC-projecting MS neurons disrupted "What-Where-When" ELM recollection as well as object location, object-in-place, and recency recognition memories recollection, while chemogenetic inhibition of the ACC-projecting MS neurons only disrupted "What-Where-When" ELM recollection. Moreover, neither dHPC- nor ACC-projecting MS neurons were involved in novel object recognition memory recollection or locomotor activity. Immunostaining showed that ACC- and dHPC-projecting MS neurons are partially overlapped populations. These findings reveal an unsuspected division of ELM processing and provide the potential mechanism that the recollection of episodic memory need the coordination of MS neurons projecting to dHPC and ACC.
Collapse
Affiliation(s)
- Tao Jin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ruyan Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mingshuo Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feifei Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Hermanowicz-Sobieraj B, Bogus-Nowakowska K, Robak A. Calcium-binding proteins expression in the septum and cingulate cortex of the adult guinea pig. Ann Anat 2018; 215:30-39. [DOI: 10.1016/j.aanat.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023]
|
5
|
Talpate KA, Bhosale UA, Zambare MR, Somani RS. Neuroprotective and nootropic activity of Clitorea ternatea Linn.(Fabaceae) leaves on diabetes induced cognitive decline in experimental animals. J Pharm Bioallied Sci 2014; 6:48-55. [PMID: 24459404 PMCID: PMC3895294 DOI: 10.4103/0975-7406.124317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/13/2012] [Accepted: 08/30/2013] [Indexed: 12/05/2022] Open
Abstract
Purpose: Ethanol extract of Clitorea ternatea (EECT) was evaluated in diabetes-induced cognitive decline rat model for its nootropic and neuroprotective activity. Materials and Methods: Effect on spatial working memory, spatial reference memory and spatial working-reference memory was evaluated by Y maze, Morris water maze and Radial arm maze respectively. Neuroprotective effects of EECT was studied by assaying acetylcholinesterase, lipid peroxide, superoxide dismutase (SOD), total nitric oxide (NO), catalase (CAT) and glutathione (GSH) levels in the brain of diabetic rats. Results: The EECT (200 and 400 mg/kg) was found to cause significant increase in spatial working memory (P < 0.05), spatial reference memory (P < 0.001) and spatial working-reference (P < 0.001) in retention trials on Y maze, Morris water maze and Radial arm maze respectively. Whereas significant decrease in acetylcholinesterase activity (P < 0.05), lipid peroxide (P < 0.001), total NO (P < 0.001) and significant increase in SOD, CAT and GSH levels was observed in animals treated with EECT (200 and 400 mg/kg) compared to diabetic control group. Conclusions: The present data indicates that Clitorea ternatea tenders protection against diabetes induced cognitive decline and merits the need for further studies to elucidate its mode of action.
Collapse
Affiliation(s)
- Karuna A Talpate
- Department of Pharmacology, Sinhgad College of Pharmacy, Vadgaon, Pune, Maharashtra, India
| | - Uma A Bhosale
- Department of Pharmacology, Smt. Kashibai Navale Medical College and General Hospital, Narhe, Pune, Maharashtra, India
| | - Mandar R Zambare
- Department of Pharmacology, Sinhgad College of Pharmacy, Vadgaon, Pune, Maharashtra, India
| | - Rahul S Somani
- Department of Pharmacology, Sinhgad College of Pharmacy, Vadgaon, Pune, Maharashtra, India
| |
Collapse
|
6
|
Talpate KA, Bhosale UA, Zambare MR. Clitorea ternatea, a herb from Indian folklore, improves streptozotocin-induced diabetes and diabetes-induced cognitive decline in rats. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2012; 10:939-947. [PMID: 22883412 DOI: 10.3736/jcim20120816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVE To study the antidiabetic, neurochemical-antioxidant and cognition protective effects of Clitorea ternatea leaves on a rat model of diabetic cognitive decline. METHODS Antidiabetic activity was evaluated by serum glucose and body weight estimation in ethanol extract of Clitorea ternatea (EECT)-treated diabetic rats. Effects of EECT on spatial working memory (SWM) and spatial reference memory (SRM) were evaluated by Y-maze and Morris water maze tests respectively. Neurochemical-antioxidant effects of EECT were studied by acetylcholinesterase assay, and measurements of thiobarbituric acid reactive substances (TBARSs), superoxide dismutase (SOD) and catalase (CAT) levels in diabetic rats. RESULTS The 200 and 400 mg/kg of EECT showed a significant antidiabetic activity by decreasing serum glucose level (P<0.05, P<0.01), and there was a significant increase in the body weight in 400 mg/kg of EECT-treated diabetic rats (P<0.01). EECT was found to cause significant increases in SWM and SRM in retention trials on Y-maze and Morris water maze respectively (P<0.05, P<0.01). Significant decreases in acetylcholinesterase activity and TBARS level, and significant increase in CAT level were observed in rats treated with 200 and 400 mg/kg of EECT compared with rats in the diabetic control group (P<0.05 or P<0.01). Significant increase was also found in SOD in rats treated with 400 mg/kg of EECT. CONCLUSION Clitorea ternatea exhibits antidiabetic and antioxidant activities, offers the protection against diabetes-induced cognitive decline, and warrants the need for further studies to elucidate its mode of action.
Collapse
Affiliation(s)
- Karuna A Talpate
- Department of Pharmacology, Sinhgad College of Pharmacy, Vadgaon, Pune 411041, Maharashtra, India
| | | | | |
Collapse
|
7
|
Savage LM. Sustaining high acetylcholine levels in the frontal cortex, but not retrosplenial cortex, recovers spatial memory performance in a rodent model of diencephalic amnesia. Behav Neurosci 2012; 126:226-36. [PMID: 22448856 DOI: 10.1037/a0027257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although the thalamus and/or mammillary bodies are the primary sites of neuropathology in cases of diencephalic amnesia such as Wernicke Korsakoff Syndrome (WKS), there is also functional deactivation of certain cortical regions that contribute to the cognitive dysfunction. Acetylcholine (ACh) is a key neurotransmitter that modulates neural processing within the cortex and between the thalamus and cortex. In the pyrithiamine-induced thiamine deficiency (PTD) rat model of WKS, there are significant reductions in cholinergic innervation and behaviorally stimulated ACh efflux in the frontal (FC) and retrosplenial (RSC) cortices. In the present study, ACh released levels were site-specifically amplified with physostigmine (0.5 μg, 1.0 μg) in the FC and the RSC, which was confirmed with in vivo microdialysis. Although physostigmine sustained high ACh levels in both cortical regions, the effects on spatial memory, assessed by spontaneous alternation, were different as a function of region (FC, RSC) and treatment (PTD, pair-fed [PF]). Higher ACh levels in the FC recovered the rate of alternation in PTD rats as well as reduced arm-reentry perseverative errors. However, higher ACh levels within the FC of PF rats exacerbated arm-reentry perseverative errors without significantly affecting alternation rates. Maintaining high ACh levels in the RSC had no procognitive effects in PTD rats, but rather impaired alternation behavior in PF rats. These results demonstrate that diverse cortical regions respond differently to intensified ACh levels-and the effects are dependent on thalamic pathology. Thus, pharmacotherapeutics aimed at enhancing cognitive functions must account for the unique features of cortical ACh stimulation and the connective circuitry with the thalamus.
Collapse
Affiliation(s)
- Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
8
|
Li W, Antuono PG, Xie C, Chen G, Jones JL, Ward BD, Franczak MB, Goveas JS, Li SJ. Changes in regional cerebral blood flow and functional connectivity in the cholinergic pathway associated with cognitive performance in subjects with mild Alzheimer's disease after 12-week donepezil treatment. Neuroimage 2012; 60:1083-91. [PMID: 22245641 DOI: 10.1016/j.neuroimage.2011.12.077] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 11/27/2022] Open
Abstract
Acetylcholinesterase inhibitors (AChEIs), such as donepezil, have been shown to improve cognition in mild to moderate Alzheimer's disease (AD) patients. In this paper, our goal is to determine the relationship between altered cerebral blood flow (CBF) and intrinsic functional network connectivity changes in mild AD patients before and after 12-week donepezil treatment. An integrative neuroimaging approach was employed by combining pseudocontinuous arterial spin labeling (pCASL) MRI and resting-state functional MRI (R-fMRI) methods to determine the changes in CBF and functional connectivity (FC) in the cholinergic pathway. Linear regression analyses determined the correlations of the regional CBF alterations and functional connectivity changes with cognitive responses. These were measured with the Mini-Mental Status Examination (MMSE) scores and Alzheimer's disease Assessment Scale-Cognitive subscale (ADAS-cog) scores. Our results show that the regional CBF in mild AD subjects after donepezil treatment was significantly increased in the middle cingulate cortex (MCC) and posterior cingulate cortex (PCC), which are the neural substrates of the medial cholinergic pathway. In both brain regions, the baseline CBF and its changes after treatment were significantly correlated with the behavioral changes in ADAS-cog scores. The intrinsic FC was significantly enhanced in the medial cholinergic pathway network in the brain areas of the parahippocampal, temporal, parietal and prefrontal cortices. Finally, the FC changes in the medial prefrontal areas demonstrated an association with the CBF level in the MCC and the PCC, and also were correlated with ADAS-cog score changes. These findings indicate that regional CBF and FC network changes in the medial cholinergic pathway were associated with cognitive performance. It also is suggested that the combined pCASL-MRI and R-fMRI methods could be used to detect regional CBF and FC changes when using drug treatments in mild AD subjects.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen EYH, Hui CLM. HT1001, a proprietary North American ginseng extract, improves working memory in schizophrenia: a double-blind, placebo-controlled study. Phytother Res 2011; 26:1166-72. [PMID: 22213250 DOI: 10.1002/ptr.3700] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/21/2011] [Accepted: 09/30/2011] [Indexed: 01/01/2023]
Abstract
Evidence suggests that HT1001™, a proprietary North American ginseng extract containing known levels of active ginsenosides, may improve cognitive function. Importantly, individuals with schizophrenia show marked deficits in working memory, which are believed to be predictive of functional outcome in this population. The present study aimed to characterize the effect of HT1001 on working memory in a group of stable individuals with schizophrenia. In a double-blind, placebo-controlled study design, a total of 64 individuals satisfying DSM-IV criteria for schizophrenia were randomly assigned to receive either HT100 or placebo for 4 weeks. Verbal working memory and visual working memory were assessed at baseline and again at the end of the treatment phase using the Letter-Number Span Test and Visual Pattern Test, respectively. Symptoms and medication side effects were also measured at baseline and post-treatment. Visual working memory was significantly improved in the HT1001 group, but not in the placebo group. Furthermore, extrapyramidal symptoms were significantly reduced after 4 weeks treatment with HT1001, whereas no difference in extrapyramidal effects was observed in the placebo group. These results provide a solid foundation for the further investigation of HT1001 as an adjunct therapy in schizophrenia, as an improvement in working memory and a reduction in medication-related side effects has considerable potential to improve functional outcome in this population.
Collapse
Affiliation(s)
- Eric Y H Chen
- Department of Psychiatry, Queen Mary Hospital, University of Hong Kong, Hong Kong, S.A.R., China.
| | | |
Collapse
|
10
|
Zhang H, Lin SC, Nicolelis MAL. A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations. J Neurophysiol 2011; 106:2749-63. [PMID: 21865435 PMCID: PMC3214118 DOI: 10.1152/jn.00267.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/23/2011] [Indexed: 01/08/2023] Open
Abstract
The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these "pro-arousal" neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation.
Collapse
Affiliation(s)
- Hao Zhang
- Dept. of Neurobiology, Duke Univ. Medical Center, Durham, NC 27705, USA.
| | | | | |
Collapse
|
11
|
Byun K, Kim JM, Kim N, Kang JA, Won MH, Jeong GB, Jo SM, Lee B. Alteration of the CNS pathway to the hippocampus in a mouse model of Niemann-Pick, type C disease. J Chem Neuroanat 2011; 42:39-44. [PMID: 21549832 DOI: 10.1016/j.jchemneu.2011.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/21/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
Niemann-Pick type C disease (NPC) is an autosomal recessive disorder that results in premature death due to progressive neurodegeneration including dementia. To understand neuronal pathways connecting to the hippocampus, retrograde transneuronal labeling method with Bartha strain of pseudorabies virus (PRV) was employed in 40 NPC+/+, NPC+/- and NPC-/- mice. Immunohistochemistry using polyclonal antibody against PRV and streological counting were used. The number of neurons and synapse in CA2&3 regions of the hippocampus decreased dramatically in the NPC-/- mouse compared to the NPC+/+ or +/- mouse. The number of PRV positive cell was significantly decreased in several regions including the entorhinal and piriform cortex in the NPC-/- mouse. More severely, lateral septal dorsal nucleus, dorsal entorhinal cortex and medial geniculate body showed no positive labeling in the NPC-/- mouse. However, the hippocampus, medial septal and supramammilary nuclei showed increased immunoreactivity in the NPC-/- mouse. Our data suggest that the synaptic loss and discontinuity of the CNS hippocampal pathway may contribute to understanding the mechanism of symptoms and functional disabilities such as memory and learning disturbance in NPC patients.
Collapse
Affiliation(s)
- Kyunghee Byun
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon 406-840, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pang MH, Kim NS, Kim IH, Kim H, Kim HT, Choi JS. Cholinergic transmission in the dorsal hippocampus modulates trace but not delay fear conditioning. Neurobiol Learn Mem 2010; 94:206-13. [DOI: 10.1016/j.nlm.2010.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 11/27/2022]
|
13
|
Anzalone S, Vetreno RP, Ramos RL, Savage LM. Cortical cholinergic abnormalities contribute to the amnesic state induced by pyrithiamine-induced thiamine deficiency in the rat. Eur J Neurosci 2010; 32:847-58. [PMID: 20726882 PMCID: PMC2974809 DOI: 10.1111/j.1460-9568.2010.07358.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the key neuropathology associated with diencephalic amnesia is lesions to the thalamus and/or mammillary bodies, functional deactivation of the hippocampus and associated cortical regions also appear to contribute to the memory dysfunction. For example, there is loss of forebrain cholinergic neurons and alterations in stimulated acetylcholine (ACh) levels in the hippocampus and cortex in animal models of diencephalic amnesia associated with thiamine deficiency. In the present study, the pyrithiamine-induced thiamine deficiency rat model was used to assess the functional relationships between thalamic pathology, behavioral impairment, ACh efflux and cholinergic innervation of the hippocampus and cortex. In pyrithiamine-induced thiamine deficiency-treated rats, ACh efflux during behavioral testing was blunted to differing degrees in the hippocampus, medial frontal cortex and retrosplenial cortex. In addition, significant reductions in cholinergic fiber densities were observed in each of these regions. However, only hippocampal cholinergic fiber density correlated significantly with ACh efflux in the same region, suggesting that the reduction in cortical ACh efflux in cases of diencephalic amnesia cannot be fully explained by a loss of cholinergic fiber innervation. This notion supports the emerging theory that the functional consequences of the distal effects of lesions go beyond simple deafferentation. Specifically, some frontal cortical regions exhibit hypersensitivity to deafferentation that is only detected during behavioral and/or physiological demand.
Collapse
Affiliation(s)
- Steven Anzalone
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY, 13802, USA
| | - Ryan P. Vetreno
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY, 13802, USA
| | - Raddy L. Ramos
- Department of Neuroscience & Histology, New York College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Lisa M. Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY, 13802, USA
| |
Collapse
|
14
|
Anzalone S, Roland J, Vogt B, Savage L. Acetylcholine efflux from retrosplenial areas and hippocampal sectors during maze exploration. Behav Brain Res 2009; 201:272-8. [PMID: 19428644 PMCID: PMC2680767 DOI: 10.1016/j.bbr.2009.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 12/27/2022]
Abstract
Both the retrosplenial cortex (RSC) and the hippocampus are important for spatial learning across species. Although hippocampal acetylcholine (ACh) release has been associated with learning on a number of spatial tasks, relatively little is understood about the functional role of ACh release in the RSC. In the present study, spatial exploration was assessed in rats using a plus maze spontaneous alternation task. ACh efflux was assessed simultaneously in the hippocampus and two sub-regions of the RSC (areas 29ab and 30) before, during and after maze exploration. Results demonstrated that there was a significant rise in ACh efflux in RSC area 29ab and the hippocampus during maze traversal. The rise in ACh efflux across these two regions was correlated. There were no significant behaviorally driven changes in ACh efflux in RSC area 30. While both the hippocampal sectors and area 29ab displayed increases in ACh efflux during maze exploration, the percent ACh rise in area 29ab was higher than that observed in the hippocampus and persisted into the post-baseline period. Joint efflux analyses demonstrated a key functional role for ACh release in area 29ab during spatial processing.
Collapse
Affiliation(s)
- Steven Anzalone
- Behavioral Neuroscience Program, Department of Psychology, State University of New York, Vestal Parkway East, Binghamton, NY 13902, United States
| | | | | | | |
Collapse
|
15
|
van der Staay FJ, Bouger P, Lehmann O, Lazarus C, Cosquer B, Koenig J, Stump V, Cassel JC. Long-term effects of immunotoxic cholinergic lesions in the septum on acquisition of the cone-field task and noncognitive measures in rats. Hippocampus 2006; 16:1061-79. [PMID: 17016816 DOI: 10.1002/hipo.20229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In rats, nonspecific mechanical or neurotoxic lesions of the septum impair spatial memory in, e.g., Morris water- and radial-maze tasks. Unfortunately, the lack of specificity of such lesions limits inferences about the role of the cholinergic hippocampal projections in spatial cognition. We therefore tested the effects of septal lesions produced by 192 IgG-saporin in rats, which is highly selective for basal forebrain cholinergic neurons, on home cage activity, noncognitive tests (modified Irwin test, open field and forced swimming tests, and various sensorimotor tasks), and the cone-field spatial learning task. The immunotoxic lesion reduced acetylcholine (ACh) levels in the septum (-61%) and hippocampus (>-75%). Rats with lesions showed mild home-cage hyperactivity at 4 weeks postlesion, but no noncognitive deficits at 13 weeks postsurgery. In the cone-field task, rats with septal lesions made more working- and reference-memory errors than the controls, but acquisition curves were parallel in both groups. The speed of visiting cones was faster in the rats with lesions, indicative of disturbed attention or increased motivation. These data support the growing evidence that involvement of the septohippocampal cholinergic system in spatial learning and memory may have been overestimated in studies that used lesions with poor selectivity.
Collapse
|
16
|
Bizot JC, Herpin A, Pothion S, Pirot S, Trovero F, Ollat H. Chronic treatment with sulbutiamine improves memory in an object recognition task and reduces some amnesic effects of dizocilpine in a spatial delayed-non-match-to-sample task. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:928-35. [PMID: 15951087 DOI: 10.1016/j.pnpbp.2005.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/20/2022]
Abstract
The effect of a sulbutiamine chronic treatment on memory was studied in rats with a spatial delayed-non-match-to-sample (DNMTS) task in a radial maze and a two trial object recognition task. After completion of training in the DNMTS task, animals were subjected for 9 weeks to daily injections of either saline or sulbutiamine (12.5 or 25 mg/kg). Sulbutiamine did not modify memory in the DNMTS task but improved it in the object recognition task. Dizocilpine, impaired both acquisition and retention of the DNMTS task in the saline-treated group, but not in the two sulbutiamine-treated groups, suggesting that sulbutiamine may counteract the amnesia induced by a blockade of the N-methyl-D-aspartate glutamate receptors. Taken together, these results are in favor of a beneficial effect of sulbutiamine on working and episodic memory.
Collapse
Affiliation(s)
- Jean-Charles Bizot
- Key-Obs S.A., Centre d'Innovation, 16 rue Léonard de Vinci, 45074 Orléans Cedex 2, France.
| | | | | | | | | | | |
Collapse
|
17
|
Tan TZ, Quek C, Ng GS. Ovarian cancer diagnosis by hippocampus and neocortex-inspired learning memory structures. Neural Netw 2005; 18:818-25. [PMID: 16085388 DOI: 10.1016/j.neunet.2005.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Early detection and accurate staging of ovarian cancer are the keys to improving survival rate. However, at present there is no single diagnosis modality that is sufficiently sensitive. DNA microarray analysis is an emerging technique that has potential for ameliorating the hardship in early detection and staging of ovarian disease. However, microarray data is ultra-huge and difficult to analyze. Hence, computational intelligence methods are often utilized to assist in the diagnosis and analysis process. Fuzzy Neural Networks (FNN) are more suitable for this task as FNN provides not only the accuracy, but also the interpretability of its reasoning process. Hippocampus-inspired Complementary Learning FNN (CLFNN) is able to rapidly derive fuzzy sets and formulate fuzzy rules. CLFNN uses positive and negative learning, and hence it reduces the effect of the curse of dimensionality and is capable of modeling the dynamics of the problem space with relatively good classification performance. One of its successors, a hybrid of complementary hippocampal learning and associative neocortical learning called Pseudo Associative Complementary Learning (PACL), is a structure that seeks to functionally model the memory consolidation process. Both PACL and CLFNN have human-like reasoning that allows physicians to examine their computation using familiar terms. They can construct intuitive fuzzy rules autonomously to justify their reasoning, which is important to generate trust among the users. Hence, CLFNN and PACL are applied as a diagnostic decision support system in ovarian cancer diagnosis. The experimental results are encouraging.
Collapse
Affiliation(s)
- T Z Tan
- Centre for Computational Intelligence (formerly known as Intelligent System Lab), School of Computer Engineering, Nanyang Technological University, Blk N4, #B1a-02, Nanyang Avenue, Singapore 639798
| | | | | |
Collapse
|
18
|
Winters BD, Bussey TJ. Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. Eur J Neurosci 2005; 21:2263-70. [PMID: 15869523 DOI: 10.1111/j.1460-9568.2005.04055.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The perirhinal cortex of the temporal lobe has a crucial role in object recognition memory. Cholinergic transmission within perirhinal cortex also seems to be important for this function, as the muscarinic receptor antagonist scopolamine disrupts object recognition performance when administered systemically or directly into perirhinal cortex. In the present study, we directly assessed the contribution of cholinergic basal forebrain input to perirhinal cortex in object recognition. Selective bilateral removal of the cholinergic basal forebrain inputs to perirhinal cortex was accomplished by injecting the immunotoxin 192 IgG-saporin directly into perirhinal cortex in rats. These animals were significantly impaired relative to vehicle-injected controls in a spontaneous object recognition task despite intact spatial alternation performance. These results are consistent with recent reports of object recognition impairment following acute cholinergic receptor blockade and extend these findings by demonstrating that chronic removal of cholinergic basal forebrain input to an otherwise intact perirhinal cortex causes a severe object recognition deficit similar to that associated with more extensive cell body lesions of perirhinal cortex.
Collapse
Affiliation(s)
- Boyer D Winters
- Department of Experimental Psychology, University of Cambridge, Downing St., Cambridge CB2 3EB, UK.
| | | |
Collapse
|
19
|
Carter CS. Applying New Approaches From Cognitive Neuroscience to Enhance Drug Development for the Treatment of Impaired Cognition in Schizophrenia. Schizophr Bull 2005; 31:810-5. [PMID: 16107584 DOI: 10.1093/schbul/sbi046] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
New approaches to the measurement of cognition in schizophrenia include the use of tasks from experimental cognitive psychology to examine the integrity of specific cognitive systems and the application of these tasks in noninvasive neuroimaging (e.g., functional magnetic resonance imaging [fMRI]) studies that directly measure the effects of drugs on cognition-related brain activity. These approaches offer many advantages, including the isolation of specific cognitive systems that may be conserved across species; controlling for the confounding effects of generalized performance deficits such as poor motivation, sedation, and so on; and providing a direct translational bridge from studies using animal models of cognition to patient-based research using fMRI. These developments have the potential to transform the early human phases of drug development and streamline the decision making at this critical point in the process. As was the case for the Measurement and Treatment Research to Improve Cognition in Schizophrenia initiative, optimizing the application of cognitive neuroscience to new drug development will require a major commitment by multiple investigators to task development and a thorough psychometric evaluation of both behavioral and neuroimaging measures.
Collapse
Affiliation(s)
- Cameron S Carter
- Department of Psychiatry, University of California at Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
20
|
Bunce JG, Sabolek HR, Chrobak JJ. Intraseptal infusion of the cholinergic agonist carbachol impairs delayed-non-match-to-sample radial arm maze performance in the rat. Hippocampus 2004; 14:450-9. [PMID: 15224982 DOI: 10.1002/hipo.10200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The medial septal nucleus regulates the physiology and emergent functions (e.g., memory formation) of the hippocampal formation. This nucleus is particularly rich in cholinergic receptors and is a putative target for the development of cholinomimetic cognitive enhancing drugs. A large number of studies have demonstrated that direct intraseptal drug infusions can produce amnestic or promnestic effects. While a few studies have examined the effects of direct intraseptal infusion of cholinomimetics on spatial memory performance (with drug "on-board" at the time of testing), the effects of post-acquisition infusions have not been assessed. We hypothesized that post-acquisition intraseptal infusion of cholinomimetics, by promoting hippocampal theta and suppressing the occurrence of hippocampal sharp waves, may disrupt the long-term retention and consolidation of memory. The present study examined the effects of intraseptal infusion of the cholinergic agonist carbachol in a delayed-non-match-to-sample radial maze task. Treatments were administered immediately following (within 1 min) the sample session with a retention session 2 h later. Carbachol infusions (12.5-125 ng in 0.5 microl) produced a linear dose-dependent decrease in correct entries and increase in retroactive errors, without any change in proactive errors or latency-per-choice. These findings suggest that post-acquisition intraseptal cholinergic treatments can produce amnesia. These findings are discussed with regard to multi-stage models of hippocampal-dependent memory formation and the further development of therapeutic strategies in the treatment of mild cognitive impairment as well as age-related cognitive decline and Alzheimer's dementia.
Collapse
Affiliation(s)
- Jamie G Bunce
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
21
|
Winters BD, Dunnett SB. Selective lesioning of the cholinergic septo-hippocampal pathway does not disrupt spatial short-term memory: a comparison with the effects of fimbria-fornix lesions. Behav Neurosci 2004; 118:546-62. [PMID: 15174932 DOI: 10.1037/0735-7044.118.3.546] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rats receiving intrahippocampal injections of 192 IgG-saporin (SAP-HPC), fimbria-fornix lesions (FF), or sham control surgeries were tested in a series of delayed matching (DMTP)- and nonmatching (DNMTP)-to-position tasks. The FF group was significantly impaired on a pretrained DNMTP task relative to the control and SAP-HPC groups, which did not differ. All groups then acquired a matching-to- position rule at the same rate, and only the FF group showed a delay-dependent deficit when longer retention intervals were introduced for DMTP testing. Results demonstrate the importance of the fimbria-fornix fiber system in spatial short-term memory but suggest that the cholinergic septohippocampal component of this pathway is not required for successful delayed matching (or nonmatching)-to-position performance.
Collapse
Affiliation(s)
- Boyer D Winters
- Medical Research Council Cambridge Centre for Brain Repair, and Departmernt of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom.
| | | |
Collapse
|
22
|
Pizzo DP, Thal LJ. Intraparenchymal nerve growth factor improves behavioral deficits while minimizing the adverse effects of intracerebroventricular delivery. Neuroscience 2004; 124:743-55. [PMID: 15026115 DOI: 10.1016/j.neuroscience.2003.12.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 11/19/2022]
Abstract
Nerve growth factor (NGF) delivered via intracerebroventricular (ICV) infusion restores behavioral and biochemical deficits in animal models of cholinergic hypofunction. However, ICV infusion of NGF induces an array of adverse events including weight loss, thermal hyperalgesia, and Schwann cell hyperplasia. We compared ICV administration with three different doses of intraparenchymally delivered NGF with cytochrome C infusion serving as a control. The goal of the study was to determine whether direct infusion of NGF would result in a more restricted topographical distribution of NGF leading to a reduction or elimination of the adverse events while still augmenting cholinergic functioning sufficiently to restore spatial mnemonic processing. Subsequent to bilateral ibotenic acid lesions of the nucleus basalis magnocellularis (NBM), NGF was delivered into the lateral ventricle or adjacent to the NBM for 11 weeks. Ibotenic acid lesions resulted in reductions in choline acetyltransferase (ChAT) activity in the cortex. The highest and medium dose of NGF led to significant restoration in ChAT activity on par with ICV infusion. The lowest dose was ineffective in altering ChAT activity in any region assayed. Similarly, the two highest doses did not alter weight gain, but ICV-NGF led to a significant weight loss. Intraparenchymal infusion resulted in a dose-dependent attenuation of the development of thermal hyperalgesia. However, the highest dose of intraparenchymal NGF induced Schwann cell hyperplasia at the level of the medulla and upper cervical spinal cord. ICV-NGF was able to completely restore spatial learning and memory as predicted while only the highest intraparenchymal dose was able to able to restore the mnemonic deficits. These data suggest that intraparenchymal infusion of growth factors may provide a viable delivery method in clinical trials using this mode of drug delivery once an optimal dose has been established.
Collapse
Affiliation(s)
- D P Pizzo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
23
|
Vuckovich JA, Semel ME, Baxter MG. Extensive lesions of cholinergic basal forebrain neurons do not impair spatial working memory. Learn Mem 2004; 11:87-94. [PMID: 14747521 PMCID: PMC321318 DOI: 10.1101/lm.63504] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The present study tested rats with highly selective lesions of cholinergic neurons in all major areas of the basal forebrain on a spatial working memory task in the radial arm maze. In postoperative testing, there were no significant differences between lesion and control groups in working memory, even with a delay period of 8 h, with the exception of a transient impairment during the first 2 d of postoperative testing at shorter delays (0 or 2 h). This finding corroborates other results that indicate that the cholinergic basal forebrain does not play a significant role in spatial working memory. Furthermore, it underscores the presence of intact memory functions after cholinergic basal forebrain damage, despite attentional impairments that follow these lesions, demonstrated in other task paradigms.
Collapse
Affiliation(s)
- Joseph A Vuckovich
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
24
|
Sarter M, Bruno JP, Givens B. Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 2004; 80:245-56. [PMID: 14521867 DOI: 10.1016/s1074-7427(03)00070-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hypothesis that cortical cholinergic inputs mediate attentional functions and capacities has been extensively substantiated by experiments assessing the attentional effects of specific cholinotoxic lesions of cortical cholinergic inputs, attentional performance-associated cortical acetylcholine release, and the effects of pharmacological manipulations of the excitability of basal forebrain corticopetal cholinergic projections on attentional performance. At the same time, numerous animal experiments have suggested that the integrity of cortical cholinergic inputs is not necessary for learning and memory, and a dissociation between the role of the cortical cholinergic input system in attentional functions and in learning and memory has been proposed. We speculate that this dissociation is due, at least in part, to the use of standard animal behavioral tests for the assessment of learning and memory which do not sufficiently tax defined attentional functions. Attentional processes and the allocation of attentional capacities would be expected to influence the efficacy of the acquisition and recall of declarative information and therefore, persistent abnormalities in the regulation of the cortical cholinergic input system may yield escalating impairments in learning and memory. Furthermore, the cognitive effects of loss of cortical cholinergic inputs are augmented by the disruption of the top-down regulation of attentional functions that normally acts to optimize information processing in posterior cortical areas. Because cortical cholinergic inputs play an integral role in the mediation of attentional processing, the activity of cortical cholinergic inputs is hypothesized to also determine the efficacy of learning and memory.
Collapse
Affiliation(s)
- Martin Sarter
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
25
|
Winters BD, Robbins TW, Everitt BJ. Selective cholinergic denervation of the cingulate cortex impairs the acquisition and performance of a conditional visual discrimination in rats. Eur J Neurosci 2004; 19:490-6. [PMID: 14725645 DOI: 10.1111/j.0953-816x.2003.03157.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Results from excitotoxic lesion studies have implicated the cingulate cortex and its basal forebrain afferents in the acquisition and performance of conditional discrimination tasks. In the present work, we sought to clarify the role of specifically cholinergic projections from the vertical limb nucleus of the diagonal band (VDB) to the cingulate cortex in conditional visual discrimination (CVD) learning and performance in rats. We injected the cholinergic immunotoxin 192 IgG-saporin into the cingulate cortex to produce selective retrograde lesions of the cholinergic neurons projecting from the VDB to the cingulate cortex with the aim of sparing afferents of non-cingulate regions that can be disrupted by excitotoxic or immunotoxic VDB injections and non-cholinergic VDB projections that can also be damaged by excitotoxic lesions. Rats sustaining selective cholinergic denervation in this manner were significantly impaired relative to sham-operated animals in the acquisition and performance of a CVD rule of the type 'If lights are flashing FAST, press the left lever; if SLOW, press right'. Asymptotic performance of the lesion group was substantially lower than for control rats, indicating an enduring performance deficit. This impairment was associated with a selective disruption on trials with the FAST flashing stimulus. The results confirm the involvement of cholinergic innervation of the cingulate cortex in CVD performance; however, the nature of the deficit suggests a role for cholinergic modulation in task-relevant stimulus processing rather than stimulus-response learning per se.
Collapse
Affiliation(s)
- Boyer D Winters
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| | | | | |
Collapse
|
26
|
Pang KC, Nocera R, Secor AJ, Yoder RM. GABAergic septohippocampal neurons are not necessary for spatial memory. Hippocampus 2002; 11:814-27. [PMID: 11811676 DOI: 10.1002/hipo.1097] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The medial septum/vertical limb of the diagonal band of Broca (MSDB) provides a major input to the hippocampus and is important for spatial memory. Both cholinergic and GABAergic MSDB neurons project to the hippocampus, and nonselective lesions of the MSDB or transections of the septohippocampal pathway impair spatial memory. However, selective lesions of cholinergic MSDB neurons using 192-IgG saporin (SAP) do not impair or only mildly impair spatial memory. Previously, intraseptal kainic acid was found to reduce levels of glutamic acid decarboxylase, a marker of GABAergic neurons, but not to alter the levels of choline acetyltransferase, a marker of cholinergic neurons. The present study further characterized the effects of kainic acid on GABAergic MSDB neurons and examined the effects of intraseptal kainic acid on spatial memory. Saline, kainic acid, SAP, or the combination of kainic acid and SAP was administered into the MSDB of rats. Spatial memory was assessed in an eight-arm radial maze and a water maze. Kainic acid destroyed GABAergic septohippocampal neurons, but spared cholinergic neurons. SAP eliminated MSDB cholinergic neurons, sparing noncholinergic neurons. Coadministration of kainic acid and SAP destroyed GABAergic and cholinergic MSDB neurons. Acquisition of the radial maze task and performance on this task with 4-h delays were unimpaired by intraseptal kainic acid or SAP, but were impaired by coadministration of kainic acid and SAP. Acquisition of the water maze task was unaffected by intraseptal kainic acid, delayed slightly by SAP, and impaired severely by coadministration of kainic acid and SAP. These results provide evidence that kainic acid at appropriate concentrations effectively destroys GABAergic septohippocampal neurons, while sparing cholinergic MSDB neurons. Furthermore, lesions of the GABAergic septohippocampal neurons do not impair spatial memory. While lesions of cholinergic MSDB neurons may mildly impair spatial memory, the combined lesion of GABAergic and cholinergic septohippocampal neurons resulted in a memory impairment that was greater than that observed after a selective lesion to either population. Thus, damage of GABAergic or cholinergic MSDB neurons, which together comprise the majority of the septohippocampal pathway, cannot totally account for the spatial memory impairment that is observed after nonselective lesions of the MSDB.
Collapse
Affiliation(s)
- K C Pang
- Department of Psychology, J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Ohio 43403, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
192 immunoglobulin G-saporin (192-sap) is an immunotoxin which targets the cholinergic basal forebrain after injection into either the ventricular system or the parenchyma of the rat brain. When injected by the i.c.v. route, 192-sap kills some cerebellar Purkinje cells in addition to its more extensive killing of the cholinergic basal forebrain. Behaviorally, i.c.v. injections of 192-sap result in impaired performance in a variety of experimental paradigms of learning and memory including a working memory task in the radial maze. The current study examined the contribution, if any, of immunotoxin-induced Purkinje cell loss to impaired performance in the radial maze. To meet this aim, we used i.c.v. injection of another immunotoxin, OX7-saporin (OX7-sap), at a dose that produced Purkinje cell loss of similar extent to that produced by i.c.v. 192-sap. We then compared these OX7-sap-injected rats with 192-sap-injected rats in a radial maze working memory task. We found a working memory impairment only in the 192-sap-injected rats. These data show that moderate Purkinje cell loss alone is insufficient to impair working memory. Furthermore, the data are consistent with the idea that the working memory deficit observed in 192-sap-injected animals is likely due to lesioning of the cholinergic basal forebrain.
Collapse
Affiliation(s)
- C C Wrenn
- Laboratory of Experimental Neurology, Veterans Administration Medical Center, Nashville, TN 37212, USA.
| | | |
Collapse
|
28
|
Competition between memory systems: acetylcholine release in the hippocampus correlates negatively with good performance on an amygdala-dependent task. J Neurosci 2002. [PMID: 11826146 DOI: 10.1523/jneurosci.22-03-01171.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lesions of the amygdala impair acquisition of a food conditioned place preference (CPP) task. In contrast, lesions of the fornix facilitate acquisition on this task, showing that an intact hippocampal system can interfere with learning an amygdala-dependent task. Our recent findings indicate that acetylcholine (ACh) release in the hippocampus increases while rats perform a hippocampus-dependent spontaneous alternation task. To the extent that ACh output in the hippocampus reflects activation of that brain area in learning and memory, the results obtained with fornix lesions suggest that ACh release in the hippocampus might be negatively correlated with learning on a CPP task. Using in vivo microdialysis, release of ACh was measured in the hippocampus while rats learned and were tested on an amygdala-dependent CPP task and a hippocampus-dependent spontaneous alternation task. Release of ACh in the hippocampus increased when rats were tested on either task. The magnitude of the increase in release of hippocampal ACh was negatively correlated with good performance on the amygdala-dependent CPP task. These findings suggest that ACh release may reflect activation and participation of the hippocampus in learning and memory, but in a manner that can be detrimental to performance on a task dependent on another brain area.
Collapse
|
29
|
Asaka Y, Seager MA, Griffin AL, Berry SD. Medial septal microinfusion of scopolamine disrupts hippocampal activity and trace jaw movement conditioning. Behav Neurosci 2000; 114:1068-77. [PMID: 11142639 DOI: 10.1037/0735-7044.114.6.1068] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study investigated the effects of microinfusion of scopolamine into the medial septum (MS Scp) on hippocampal neurophysiology and learning of the rabbit's classically conditioned jaw movement response. The percentage of hippocampal theta slow waves (2-8 Hz) decreased after drug infusion in the MS Scp group but did not change in control groups that received infusion of saline into the MS or scopolamine into the cortex. Unit recordings from the MS Scp group showed significantly smaller conditioning-related hippocampal neural responses than seen in controls, and during conditioning, rabbits in the MS Scp group took significantly longer to reach learning criterion than either control group. Thus, the neural and behavioral impairments previously reported for systemic muscarinic blockade were reproduced by microinfusions restricted to the medial septal nucleus.
Collapse
Affiliation(s)
- Y Asaka
- Department of Psychology, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
30
|
Sarter M, Bruno JP, Miner LA, McGaughy J. Development of a method for intraparenchymal infusions of 192 IgG-saporin: a comment on Pizzo et al. (1999). J Neurosci Methods 2000; 96:169-70. [PMID: 10720682 DOI: 10.1016/s0165-0270(99)00196-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Pappas BA, Bayley PJ, Bui BK, Hansen LA, Thal LJ. Choline acetyltransferase activity and cognitive domain scores of Alzheimer's patients. Neurobiol Aging 2000; 21:11-7. [PMID: 10794843 DOI: 10.1016/s0197-4580(00)00090-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Choline acetyltransferase activity and cognitive domain scores of Alzheimer's patients. Item scores from the Mattis Dementia Rating Scale (MDRS) and the Mini-Mental State Examination (MMSE) from 389 patients with probable Alzheimer's disease were submitted to principal component analysis with orthogonal rotation. The optimal solution identified four factors that reflected the cognitive domains of attention/registration, verbal fluency/reasoning, graphomotor/praxis and recent memory. A subgroup of patients was identified for whom both the MDRS and the MMSE had been administered within the 12 months before death. Scores were assigned to these patients for the four factors. These cognitive-domain scores were then correlated with postmortem choline acetyltransferase (ChAT) activity in the medial frontal cortex, inferior parietal cortex, and hippocampus. ChAT activity in both the medial frontal and the inferior parietal cortex significantly correlated with scores on the graphomotor/praxis factor. Medial frontal ChAT also correlated significantly with the attention/registration scores. Hippocampal ChAT correlated significantly only with recent memory scores. These results are consistent with current animal research regarding the effect of selective cholinergic lesions on behavior.
Collapse
Affiliation(s)
- B A Pappas
- Alzheimer's Disease Research Center, University of California at San Diego, La Jolla, CA 92093-0948, USA.
| | | | | | | | | |
Collapse
|
32
|
Wrenn CC, Lappi DA, Wiley RG. Threshold relationship between lesion extent of the cholinergic basal forebrain in the rat and working memory impairment in the radial maze. Brain Res 1999; 847:284-98. [PMID: 10575099 DOI: 10.1016/s0006-8993(99)02099-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cholinergic basal forebrain (CBF) degenerates in Alzheimer's Disease (AD), and the degree of this degeneration correlates with the degree of dementia. In the present study we have modeled this degeneration in the rat by injecting various doses of the highly selective immunotoxin 192 IgG-saporin (192-sap) into the ventricular system. The ability of 192-sap-treated rats to perform in a previously learned radial maze working memory task was then tested. We report here that 192-sap created lesions of the CBF and, to a lesser extent, cerebellar Purkinje cells in a dose-dependent fashion. Furthermore, we found that rats harboring lesions of the entire CBF greater than 75% had impaired spatial working memory in the radial maze. Correlational analysis of working memory impairment and lesion extent of the component parts of the CBF revealed that high-grade lesions of the hippocampal-projecting neurons of the CBF were not sufficient to impair working memory. Only rats with high-grade lesions of the hippocampal and cortical projecting neurons of the CBF had impaired working memory. These data are consistent with other 192-sap reports that found behavioral deficits only with high-grade CBF lesions and indicate that the relationship between CBF lesion extent and working memory impairment is a threshold relationship in which a high degree of neuronal loss can be tolerated without detectable consequences. Additionally, the data suggest that the CBF modulates spatial working memory via its connections to both the hippocampus and cortex.
Collapse
Affiliation(s)
- C C Wrenn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
33
|
Abstract
Studies of the function of the basal forebrain have focused on cholinergic neurons that project to cortical and limbic structures critical for various cognitive abilities. Recent experiments suggest that these neurons serve a modulatory function in cognition, by optimizing cortical information processing and influencing attention.
Collapse
Affiliation(s)
- M G Baxter
- Department of Psychology, Harvard University, 984 William James Hall, 33 Kirkland Street, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|