1
|
Donadoni M, Cicalese S, Sarkar DK, Chang SL, Sariyer IK. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis 2019; 10:447. [PMID: 31171771 PMCID: PMC6554352 DOI: 10.1038/s41419-019-1673-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/19/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
Alternative splicing and expression of splice variants of genes in the brain may lead to the modulation of protein functions, which may ultimately influence behaviors associated with alcohol dependence and neurotoxicity. We recently showed that ethanol exposure can lead to pre-mRNA missplicing of Mcl-1, a pro-survival member of the Bcl-2 family, by downregulating the expression levels of serine/arginine rich splicing factor 1 (SRSF1). Little is known about the physiological expression of these isoforms in neuronal cells and their role in toxicity induced by alcohol exposure during the developmental period. In order to investigate the impact of alcohol exposure on alternative splicing of Mcl-1 pre-mRNA and its role in neurotoxicity, we developed a unique primary human neuronal culture model where neurospheres (hNSPs), neural progenitors (hNPCs), immature neurons, and mature neurons were cultured from the matching donor fetal brain tissues. Our data suggest that neural progenitors and immature neurons are highly sensitive to the toxic effects of ethanol, while mature neuron cultures showed resistance to ethanol exposure. Further analysis of Mcl-1 pre-mRNA alternative splicing by semi-quantitative and quantitative analysis revealed that ethanol exposure causes a significant decrease in Mcl-1L/Mcl-1S ratio in a dose and time dependent manner in neural progenitors. Interestingly, ectopic expression of Mcl-1L isoform in neural progenitors was able to recover the viability loss and apoptosis induced by alcohol exposure. Altogether, these observations suggest that alternative splicing of Mcl-1 may play a crucial role in neurotoxicity associated with alcohol exposure in the developing fetal brain.
Collapse
Affiliation(s)
- Martina Donadoni
- Department of Neuroscience, Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Stephanie Cicalese
- Department of Neuroscience, Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Dipak K Sarkar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Lane, New Brunswick, NJ, 08901, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Ilker Kudret Sariyer
- Department of Neuroscience, Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Alinaghipour A, Mazoochi T, Ardjmand A. Low-dose ethanol ameliorates amnesia induced by a brief seizure model: the role of NMDA signaling. Neurol Res 2019; 41:624-632. [PMID: 30967097 DOI: 10.1080/01616412.2019.1602322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: The present study aimed to evaluate the ameliorative effect of low-dose ethanol (Eth) on amnesia induced by a brief seizure model and the role of N-methyl D-aspartate (NMDA) signaling in this event. Materials and Methods: Four groups of rats (total number = 36; n = 9, each group) were used: control, Eth (0.5 g/kg/i.p.), pentylenetetrazole (PTZ) (60 mg/kg/i.p.), and Eth+PTZ. Eth was administered for 6 days before the single injection of PTZ, at minute dose that cannot induce memory impairment. The consequences of Eth pretreatment, coadministered with PTZ, were studied in an inhibitory avoidance (IA) memory model. The PTZ was injected 30 min prior to the IA memory test. Thereafter, locomotion, liver enzymes, and the Real-time PCR for NR1 subunit of NMDA receptor were studied. The statistical analyses were performed using the parametric/nonparametric ANOVA and the post-hoc tests. Results: Our findings revealed that Eth pretreatment significantly improved the IA memory impairment induced by PTZ (P < 0.001), and indicated no change in locomotion and serum ALT, but significantly differed for AST between the PTZ and PTZ groups (P = < 0.05). The Real-time PCR results indicate the decreased NR1 mRNA expression in Eth and PTZ groups and the increased NR1 mRNA expression in Eth+PTZ group, compared to the control group (P < 0.001); however, the NR1 mRNA expression was increased in the Eth+PTZ group, compared to PTZ group (P < 0.001). Conclusion: The present study provides evidence that the low-dose Eth can improve the amnesia induced by a brief seizure model presumably via NMDA signaling in a rat.
Collapse
Affiliation(s)
- Azam Alinaghipour
- a Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Tahereh Mazoochi
- b Anatomical Science Research Center , Kashan University of Medical sciences , Kashan , Iran
| | - Abolfazl Ardjmand
- a Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran.,c Department of Physiology , School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
3
|
Vranjkovic O, Winkler G, Winder DG. Ketamine administration during a critical period after forced ethanol abstinence inhibits the development of time-dependent affective disturbances. Neuropsychopharmacology 2018; 43:1915-1923. [PMID: 29907878 PMCID: PMC6046046 DOI: 10.1038/s41386-018-0102-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/16/2018] [Accepted: 05/16/2018] [Indexed: 01/12/2023]
Abstract
Forced abstinence from chronic two bottle-choice ethanol drinking produces the development of negative affective states in female C57BL/6J mice. We previously reported that this disrupted behavior is acutely reversed by administration of ketamine 30 min-prior to testing. Here we assessed whether ketamine can be used as an inoculant against the development of abstinence- dependent affective disturbances. In parallel, we examined the impact of ketamine administration on long-term potentiation (LTP) in the bed nucleus of the stria terminalis (BNST), a region implicated in affective disturbances. We administered ketamine (3 mg/kg i.p.) to female C57BL/6J mice with a history of chronic ethanol drinking at either the onset, two, or 6 days- post-abstinence and observed its impact on affective behavior in the elevated plus maze (EPM), the Novelty Suppressed Feeding Test (NSFT), and the Forced Swim Test (FST). In addition, we assessed BNST synaptic plasticity with field potential electrophysiology two to 3 weeks into abstinence. We found that early abstinence was associated with disrupted behavior on the EPM. Ketamine administered at the onset of forced abstinence prevented both the deficit in early EPM behavior, and the delayed deficits in NSFT and FST. However, ketamine administered either two or 6 days post-abstinence failed to prevent the abstinence-induced affective disturbances. To begin to explore potential alterations in neural circuit activity that accompanies these actions of ketamine, we assessed the impact of ketamine administration at the onset of forced abstinence and measured LTP induction in the BNST. We find that early ketamine administration persistently increased the capacity for LTP within the BNST. These findings suggest a critical period at the onset of forced abstinence in which ketamine inoculation can prevent the development of affective disturbances, in part by enhancing plasticity within the BNST.
Collapse
Affiliation(s)
- Oliver Vranjkovic
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Garrett Winkler
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
4
|
Chen J, Ma Y, Fan R, Yang Z, Li MD. Implication of Genes for the N-Methyl-D-Aspartate (NMDA) Receptor in Substance Addictions. Mol Neurobiol 2018; 55:7567-7578. [PMID: 29429049 DOI: 10.1007/s12035-018-0877-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/07/2018] [Indexed: 12/17/2022]
Abstract
Drug dependence is a chronic brain disease with harmful consequences for both individual users and society. Glutamate is a primary excitatory neurotransmitter in the brain, and both in vivo and in vitro experiments have implicated N-methyl-D-aspartate (NMDA) receptor, a glutamate receptor, as an element in various types of addiction. Recent findings from genetics-based approaches such as genome-wide linkage, candidate gene association, genome-wide association (GWA), and next-generation sequencing have demonstrated the significant association of NMDA receptor subunit genes such as GluN3A, GluN2B, and GluN2A with various addiction-related phenotypes. Of these genes, GluN3A has been the most studied, and it has been revealed to play crucial roles in the etiology of addictions. In this communication, we provide an updated view of the genetic effects of NMDA receptor subunit genes and their functions in the etiology of addictions based on the findings from investigation of both common and rare variants as well as SNP-SNP interactions. To better understand the molecular mechanisms underlying addiction-related behaviors and to promote the development of specific medicines for the prevention and treatment of addictions, current efforts aim not only to identify more causal variants in NMDA receptor subunits by using large independent samples but also to reveal the molecular functions of these variants in addictions.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China. .,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China. .,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
5
|
Sariyer R, De-Simone FI, Donadoni M, Hoek JB, Chang SL, Sariyer IK. Alcohol-Mediated Missplicing of Mcl-1 Pre-mRNA is Involved in Neurotoxicity. Alcohol Clin Exp Res 2017; 41:1715-1724. [PMID: 28800142 DOI: 10.1111/acer.13474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/06/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Heavy and chronic ethanol (EtOH) exposure can cause significant structural and functional damage to the adult brain. The most devastating consequence of EtOH exposure is the neurotoxicity associated with the depletion of neurons. Regulation of splice variants in the brain can modulate protein functions, which may ultimately affect behaviors associated with alcohol dependence and EtOH-mediated neurotoxicity. As alcohol consumption is associated with neurotoxicity, it is possible that altered splicing of survival and pro-survival factors during the development of alcoholism may contribute to the neurotoxicity. METHODS Primary human neurons and a neuroblastoma cell line were exposed to different concentrations of EtOH for various time periods. Cell viability and neuronal marker expression were analyzed by MTT assay and immunoblotting, respectively. Effect of EtOH exposure on splicing regulatory protein expression and alternative splicing of candidate genes was analyzed by a biochemical approach. Transcriptional activity of serine/arginine-rich splicing factor 1 (SRSF1) gene was determined by reporter gene analysis. RESULTS Our results suggest that EtOH exposure to neuronal cells at 25 mM and higher concentrations are detrimental. In addition, EtOH exposure caused a dramatic reduction in SRSF1 expression levels. Furthermore, EtOH exposure led to pre-mRNA missplicing of Mcl-1, a pro-survival member of the Bcl-2 family, by down-regulating the expression levels of SRSF1. Moreover, ectopic expression of both SRSF1 and Mcl-1L isoform was able to recover EtOH-mediated neurotoxicity. CONCLUSIONS Our results suggest that EtOH exposure can lead to pre-mRNA missplicing of Mcl-1 in neuronal cells. Our results indicate that EtOH exposure of neurons leads to a decrease in the ratio of Mcl-1L/Mcl-1S by favoring pro-apoptotic Mcl-1S splicing over anti-apoptotic Mcl-1L isoform suggesting that Mcl-1S may play a crucial role in neurotoxicity associated with alcohol consumption.
Collapse
Affiliation(s)
- Rahsan Sariyer
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Francesca I De-Simone
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Martina Donadoni
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey
| | - Ilker Kudret Sariyer
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Wills TA, Baucum AJ, Louderback KM, Chen Y, Pasek JG, Delpire E, Tabb DL, Colbran RJ, Winder DG. Chronic intermittent alcohol disrupts the GluN2B-associated proteome and specifically regulates group I mGlu receptor-dependent long-term depression. Addict Biol 2017; 22:275-290. [PMID: 26549202 PMCID: PMC4860359 DOI: 10.1111/adb.12319] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 02/03/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are major targets of both acute and chronic alcohol, as well as regulators of plasticity in a number of brain regions. Aberrant plasticity may contribute to the treatment resistance and high relapse rates observed in alcoholics. Recent work suggests that chronic alcohol treatment preferentially modulates both the expression and subcellular localization of NMDARs containing the GluN2B subunit. Signaling through synaptic and extrasynaptic GluN2B-NMDARs has already been implicated in the pathophysiology of various other neurological disorders. NMDARs interact with a large number of proteins at the glutamate synapse, and a better understanding of how alcohol modulates this proteome is needed. We employed a discovery-based proteomic approach in subcellular fractions of hippocampal tissue from chronic intermittent alcohol (CIE)-exposed C57Bl/6J mice to gain insight into alcohol-induced changes in GluN2B signaling complexes. Protein enrichment analyses revealed changes in the association of post-synaptic proteins, including scaffolding, glutamate receptor and PDZ-domain binding proteins with GluN2B. In particular, GluN2B interaction with metabotropic glutamate (mGlu)1/5 receptor-dependent long-term depression (LTD)-associated proteins such as Arc and Homer 1 was increased, while GluA2 was decreased. Accordingly, we found a lack of mGlu1/5 -induced LTD while α1 -adrenergic receptor-induced LTD remained intact in hippocampal CA1 following CIE. These data suggest that CIE specifically disrupts mGlu1/5 -LTD, representing a possible connection between NMDAR and mGlu receptor signaling. These studies not only demonstrate a new way in which alcohol can modulate plasticity in the hippocampus but also emphasize the utility of this discovery-based proteomic approach to generate new hypotheses regarding alcohol-related mechanisms.
Collapse
Affiliation(s)
- Tiffany A. Wills
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Anthony J. Baucum
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202
| | | | - Yaoyi Chen
- Department of Biochemical Informatics, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Johanna G. Pasek
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Eric Delpire
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville TN 37232
- J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville TN 37232
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville TN 37232
| | - David L. Tabb
- Department of Biochemical Informatics, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Roger J. Colbran
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville TN 37232
- J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Danny G. Winder
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville TN 37232
- J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville TN 37232
| |
Collapse
|
7
|
Radke AK, Jury NJ, Delpire E, Nakazawa K, Holmes A. Reduced ethanol drinking following selective cortical interneuron deletion of the GluN2B NMDA receptors subunit. Alcohol 2017; 58:47-51. [PMID: 28109345 DOI: 10.1016/j.alcohol.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDAR) are involved in the regulation of alcohol drinking, but the contribution of NMDAR subunits located on specific neuronal populations remains incompletely understood. The current study examined the role of GluN2B-containing NMDARs expressed on cortical principal neurons and cortical interneurons in mouse ethanol drinking. Consumption of escalating concentrations of ethanol was measured in mice with GluN2B gene deletion in either cortical principal neurons (GluN2BCxNULL) or interneurons (GluN2BInterNULL), using a two-bottle choice paradigm. Results showed that GluN2BInterNULL, but not GluN2BCxNULL, mice consumed significantly less ethanol, at relatively high concentrations, than non-mutant controls. In a second paradigm in which mice were offered a 15% ethanol concentration, without escalation, GluN2BCxNULL mice were again no different from controls. These findings provide novel evidence for a contribution of interneuronal GluN2B-containing NMDARs in the regulation of ethanol drinking.
Collapse
Affiliation(s)
- Anna K Radke
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Nicholas J Jury
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Eric Delpire
- Departments of Anesthesiology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kazu Nakazawa
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Reilly MT, Noronha A, Goldman D, Koob GF. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology 2017; 122:3-21. [PMID: 28118990 DOI: 10.1016/j.neuropharm.2017.01.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
Family, twin and adoption studies demonstrate clearly that alcohol dependence and alcohol use disorders are phenotypically complex and heritable. The heritability of alcohol use disorders is estimated at approximately 50-60% of the total phenotypic variability. Vulnerability to alcohol use disorders can be due to multiple genetic or environmental factors or their interaction which gives rise to extensive and daunting heterogeneity. This heterogeneity makes it a significant challenge in mapping and identifying the specific genes that influence alcohol use disorders. Genetic linkage and (candidate gene) association studies have been used now for decades to map and characterize genomic loci and genes that underlie the genetic vulnerability to alcohol use disorders. These approaches have been moderately successful in identifying several genes that contribute to the complexity of alcohol use disorders. Recently, genome-wide association studies have become one of the major tools for identifying genes for alcohol use disorders by examining correlations between millions of common single-nucleotide polymorphisms with diagnosis status. Genome-wide association studies are just beginning to uncover novel biology; however, the functional significance of results remains a matter of extensive debate and uncertainty. In this review, we present a select group of genome-wide association studies of alcohol dependence, as one example of a way to generate functional hypotheses, within the addiction cycle framework. This analysis may provide novel directions for validating the functional significance of alcohol dependence candidate genes. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Matthew T Reilly
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA.
| | - Antonio Noronha
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - David Goldman
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Chief, Laboratory of Neurogenetics, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - George F Koob
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Director NIAAA, 5635 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
9
|
Swartzwelder HS, Risher ML, Miller KM, Colbran RJ, Winder DG, Wills TA. Changes in the Adult GluN2B Associated Proteome following Adolescent Intermittent Ethanol Exposure. PLoS One 2016; 11:e0155951. [PMID: 27213757 PMCID: PMC4877005 DOI: 10.1371/journal.pone.0155951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022] Open
Abstract
Adolescent alcohol use is the strongest predictor for alcohol use disorders. In rodents, adolescents have distinct responses to acute ethanol, and prolonged alcohol exposure during adolescence can maintain these phenotypes into adulthood. One brain region that is particularly sensitive to the effects of both acute and chronic ethanol exposure is the hippocampus. Adolescent intermittent ethanol exposure (AIE) produces long lasting changes in hippocampal synaptic plasticity and dendritic morphology, as well as in the susceptibility to acute ethanol-induced spatial memory impairment. Given the pattern of changes in hippocampal structure and function, one potential target for these effects is the ethanol sensitive GluN2B subunit of the NMDA receptor, which is known to be involved in synaptic plasticity and dendritic morphology. Thus we sought to determine if there were persistent changes in hippocampal GluN2B signaling cascades following AIE. We employed a previously validated GluN2B-targeted proteomic strategy that was used to identify novel signaling mechanisms altered by chronic ethanol exposure in the adult hippocampus. We collected adult hippocampal tissue (P70) from rats that had been given 2 weeks of AIE from P30-45. Tissue extracts were fractionated into synaptic and non-synaptic pools, immuno-precipitated for GluN2B, and then analyzed using proteomic methods. We detected a large number of proteins associated with GluN2B. AIE produced significant changes in the association of many proteins with GluN2B in both synaptic and non-synaptic fractions. Intriguingly the number of proteins changed in the non-synaptic fraction was double that found in the synaptic fraction. Some of these proteins include those involved in glutamate signaling cytoskeleton rearrangement, calcium signaling, and plasticity. Disruptions in these pathways may contribute to the persistent cellular and behavioral changes found in the adult hippocampus following AIE. Further, the robust change in non-synaptic proteins suggests that AIE may prime this signaling pathway for future ethanol exposures in adulthood.
Collapse
Affiliation(s)
- H. Scott Swartzwelder
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Psychology and Neuroscience, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mary-Louise Risher
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kelsey M. Miller
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Roger J. Colbran
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States of America
- J. F. Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States of America
| | - Danny G. Winder
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States of America
- J. F. Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States of America
| | - Tiffany A. Wills
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, United States of America
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Gutierrez CA, Staehle MM. A control system analysis of the dynamic response of N-methyl-D-aspartate glutamate receptors to alcoholism and alcohol withdrawal. Theor Biol Med Model 2015; 12:8. [PMID: 25982851 PMCID: PMC4455702 DOI: 10.1186/s12976-015-0004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-methyl-D-Aspartate (NMDA) and its receptors (NMDAR) play a critical role in glutamatergic neurotransmission. Ethanol molecules inhibit these receptors, and if the brain is exposed to ethanol chronically, NMDA-induced glutamatergic changes can result in physical dependence to ethanol in order to sustain normal brain function. In these cases, removal of ethanol from the system results in excitotoxic withdrawal. One compensatory mechanism the brain uses to regulate extracellular glutamate concentration is modulating the number of NMDARs at the synapse. Previous work has shown that the number of functional NMDARs at the synapse can be changed by three mechanisms: additional receptors can be synthesized and inserted, receptors can be recruited to the synapse from extrasynaptic regions, or the functionality of existing receptors can be modified. METHODS In this study, we consider the dynamic relocation control of NMDARs in response to chronic alcoholism and withdrawal. Specifically, we (1) propose and construct a mathematical model of the relocation control as a negative feedback system with an explicit set point, (2) investigate the effect of various ethanol consumption and withdrawal profiles on the NMDAR population, and (3) propose and calculate quantitative measures for the extent of withdrawal based on modeled NMDAR populations. RESULTS A relocation-only model with an explicit set point was developed. The model was shown to apply across a wide range of controller parameters. The results suggest that withdrawal severity does not depend upon the dynamics involved in the development of dependence, and that regulating the blood alcohol level throughout the progression of withdrawal can minimize excitotoxic withdrawal symptoms. CONCLUSIONS The negative feedback control system produced characteristic behaviors of NMDAR populations in response to simulations of alcohol dependence and abrupt withdrawal. The model can also predict the severity of excitotoxic withdrawal following various alcohol consumption and/or withdrawal patterns in order to generate testable hypotheses regarding ameliorating withdrawal.
Collapse
Affiliation(s)
- Carlos A Gutierrez
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, NJ, USA.
| | - Mary M Staehle
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, NJ, USA. .,Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, NJ, USA.
| |
Collapse
|
11
|
Lee C, Mayfield RD, Harris RA. Altered gamma-aminobutyric acid type B receptor subunit 1 splicing in alcoholics. Biol Psychiatry 2014; 75:765-73. [PMID: 24209778 PMCID: PMC3999301 DOI: 10.1016/j.biopsych.2013.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chronic alcohol exposure can change splice variant expression. The gamma-aminobutyric acid type B (GABAB) receptor undergoes splicing and is an alcoholism treatment target, but there is little information about splicing changes in this receptor in alcoholics. We studied GABAB receptor subunit 1 (GABAB1) splicing in alcoholic postmortem brains. METHODS To maximize GABAB1 splice junction identification, we combined gene specific libraries with RNA-seq. Splice junctions and mapped reads were also found from intronic and intergenic regions. We compared GABAB1 splice junctions in prefrontal cortices from 14 alcoholic and 15 control subjects and introduced new strategies, reads per kilobase of splice junction model per million mapped reads and reads per kilobase of gene model per million mapped reads, for quantitating splice junction and gene expression. RESULTS Novel splice junction detection indicated that the GABAB1 gene is at least two times longer than the previously reported gene length. GABAB1 exon and intron expression data showed low expression at the 5' end exons and exon grouping. This indicated that there are short splicing variants in addition to GABAB receptor subunit GABAB1a, the longest known major transcript. We found that chronic alcohol altered exon/intron expression and splice junction levels. Decreased expression of the gamma-aminobutyric acid binding site, a transmembrane domain and a microRNA binding site may decrease normal GABAB1 transcript population and thereby decrease normal signal transduction in alcoholics. CONCLUSIONS We discovered novel, complex splicing of GABAB1 in human brain and showed that chronic alcohol produces additional splicing complexity.
Collapse
Affiliation(s)
- Changhoon Lee
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
12
|
Developmental changes in the acute ethanol sensitivity of glutamatergic and GABAergic transmission in the BNST. Alcohol 2013; 47:531-7. [PMID: 24103431 DOI: 10.1016/j.alcohol.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Glutamatergic and GABAergic transmission undergo significant changes during adolescence. Receptors for both of these transmitters (NMDAR, and GABAA) are known to be key targets for the acute effects of ethanol in adults. The current study set out to investigate the acute effects of ethanol on both NMDAR-mediated excitatory transmission and GABAergic inhibitory transmission within the bed nucleus of the stria terminalis (BNST) across age. The BNST is an area of the brain implicated in the negative reinforcing properties associated with alcohol dependence, and the BNST plays a critical role in stress-induced relapse. Therefore, assessing the developmental regulation of ethanol sensitivity in this key brain region is important to understanding the progression of ethanol dependence. To do this, whole-cell recordings of isolated NMDAR-evoked excitatory postsynaptic currents (eEPSCs) or evoked GABAergic inhibitory postsynaptic currents (eIPSCs) were performed on BNST neurons in slices from 4- or 8-week-old male C57BL/6J mice. Ethanol (50 mm) produced greater inhibition of NMDAR-eEPSCs in adolescent mice than in adult mice. This enhanced sensitivity in adolescence was not a result of shifts in function of the GluN2B subunit of the NMDAR, measured by Ro25-6981 inhibition and decay kinetics measured across age. Adolescent mice also exhibited greater ethanol sensitivity of GABAergic transmission, as ethanol (50 mm) enhanced eIPSCs in the BNST of adolescent but not adult mice. Collectively, this work illustrates that a moderate dose of ethanol produces greater inhibition of transmission in the BNST (through greater excitatory inhibition and enhancement of inhibitory transmission) in adolescents compared to adults. Given the role of the BNST in alcohol dependence, these developmental changes in acute ethanol sensitivity could accelerate neuroadaptations that result from chronic ethanol use during the critical period of adolescence.
Collapse
|
13
|
Ethanol neurotoxicity in the developing cerebellum: underlying mechanisms and implications. Brain Sci 2013; 3:941-63. [PMID: 24961432 PMCID: PMC4061865 DOI: 10.3390/brainsci3020941] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 06/04/2013] [Indexed: 01/18/2023] Open
Abstract
Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA) receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-I), and basic fibroblast growth factor (bFGF). In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.
Collapse
|
14
|
Wills TA, Winder DG. Ethanol effects on N-methyl-D-aspartate receptors in the bed nucleus of the stria terminalis. Cold Spring Harb Perspect Med 2013; 3:a012161. [PMID: 23426579 DOI: 10.1101/cshperspect.a012161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The extended amygdala is a series of interconnected, embryologically similar series of nuclei in the brain that are thought to play key roles in aspects of alcohol dependence, specifically in stress-induced increases in alcohol-seeking behaviors. Plasticity of excitatory transmission in these and other brain regions is currently an intense area of scrutiny as a mechanism underlying aspects of addiction. N-methyl-D-aspartate (NMDA) receptors (NMDARs) play a critical role in plasticity at excitatory synapses and have been identified as major molecular targets of ethanol. Thus, this article will explore alcohol and NMDAR interactions first at a general level and then focusing within the extended amygdala, in particular on the bed nucleus of the stria terminalis (BNST).
Collapse
Affiliation(s)
- Tiffany A Wills
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | |
Collapse
|
15
|
Chronic alcohol exposure alters behavioral and synaptic plasticity of the rodent prefrontal cortex. PLoS One 2012; 7:e37541. [PMID: 22666364 PMCID: PMC3364267 DOI: 10.1371/journal.pone.0037541] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 04/23/2012] [Indexed: 01/16/2023] Open
Abstract
In the present study, we used a mouse model of chronic intermittent ethanol (CIE) exposure to examine how CIE alters the plasticity of the medial prefrontal cortex (mPFC). In acute slices obtained either immediately or 1-week after the last episode of alcohol exposure, voltage-clamp recording of excitatory post-synaptic currents (EPSCs) in mPFC layer V pyramidal neurons revealed that CIE exposure resulted in an increase in the NMDA/AMPA current ratio. This increase appeared to result from a selective increase in the NMDA component of the EPSC. Consistent with this, Western blot analysis of the postsynaptic density fraction showed that while there was no change in expression of the AMPA GluR1 subunit, NMDA NR1 and NRB subunits were significantly increased in CIE exposed mice when examined immediately after the last episode of alcohol exposure. Unexpectedly, this increase in NR1 and NR2B was no longer observed after 1-week of withdrawal in spite of a persistent increase in synaptic NMDA currents. Analysis of spines on the basal dendrites of layer V neurons revealed that while the total density of spines was not altered, there was a selective increase in the density of mushroom-type spines following CIE exposure. Examination of NMDA-receptor mediated spike-timing-dependent plasticity (STDP) showed that CIE exposure was associated with altered expression of long-term potentiation (LTP). Lastly, behavioral studies using an attentional set-shifting task that depends upon the mPFC for optimal performance revealed deficits in cognitive flexibility in CIE exposed mice when tested up to 1-week after the last episode of alcohol exposure. Taken together, these observations are consistent with those in human alcoholics showing protracted deficits in executive function, and suggest these deficits may be associated with alterations in synaptic plasticity in the mPFC.
Collapse
|
16
|
Bertotto ME, Maldonado NM, Bignante EA, Gorosito SV, Cambiasso MJ, Molina VA, Martijena ID. ERK activation in the amygdala and hippocampus induced by fear conditioning in ethanol withdrawn rats: modulation by MK-801. Eur Neuropsychopharmacol 2011; 21:892-904. [PMID: 21315561 DOI: 10.1016/j.euroneuro.2011.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 12/08/2010] [Accepted: 01/05/2011] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK) pathway, which can be activated by NMDA receptor stimulation, is involved in fear conditioning and drug addiction. We have previously shown that withdrawal from chronic ethanol administration facilitated the formation of contextual fear memory. In order to explore the neural substrates and the potential mechanism involved in this effect, we examined: 1) the ERK1/2 activation in the central (CeA) and basolateral (BLA) nuclei of the amygdala and in the dorsal hippocampus (dHip), 2) the effect of the NMDA receptor antagonist MK-801 on fear conditioning and ERK activation and 3) the effect of the infusion of U0126, a MEK inhibitor, into the BLA on fear memory formation in ethanol withdrawn rats. Rats made dependent via an ethanol-containing liquid diet were subjected to contextual fear conditioning on day 3 of ethanol withdrawal. High basal levels of p-ERK were found in CeA and dHip from ethanol withdrawn rats. ERK activation was significantly increased both in control (60min) and ethanol withdrawn rats (30 and 60min) in BLA after fear conditioning. Pre-training administration of MK-801, at a dose that had no effect on control rats, prevented the increase in ERK phosphorylation in BLA and attenuated the freezing response 24h later in ethanol withdrawn rats. Furthermore, the infusion of U0126 into the BLA, but not the CeA, before fear conditioning disrupted fear memory formation. These results suggest that the increased fear memory can be linked to changes in ERK phosphorylation, probably due to NMDA receptor activation in BLA in ethanol withdrawn rats.
Collapse
|
17
|
Anji A, Kumari M. A cis-acting region in the N-methyl-d-aspartate R1 3'-untranslated region interacts with the novel RNA-binding proteins beta subunit of alpha glucosidase II and annexin A2--effect of chronic ethanol exposure in vivo. Eur J Neurosci 2011; 34:1200-11. [PMID: 21995826 DOI: 10.1111/j.1460-9568.2011.07857.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cis-acting region, Δ4, located in the 3'-untranslated region of N-methyl-d-aspartate R1(NR1) mRNA interacts with several trans-acting proteins present in polysomes purified from fetal cortical neurons. Chronic ethanol exposure of fetal cortical neurons increases Δ4 RNA-protein interactions. This increased interaction is due to an increase in one of the Δ4-binding trans-acting proteins identified as beta subunit of alpha glucosidase II (GIIβ). In this study, we examined whether ethanol-mediated regulation of NR1 mRNA in vivo is similar to that in vitro and whether Δ4-trans interactions are important for ethanol-mediated NR1 mRNA stability. Our data show that polysomal proteins from adult mouse cerebral cortex (CC) formed a complex with Δ4 RNA, suggesting the presence of NR1 mRNA-binding trans-acting proteins in CC polysomes. The intensity of the Δ4 RNA-protein complex was increased with polysomes from chronic ethanol-exposed CC. The Δ4 RNA-protein complex harbored GIIβ and a second trans-acting protein identified as annexin A2 (AnxA2). Ethanol-sensitive GIIβ was upregulated by 70% in ethanol-exposed CC. Heparin, a known binding partner of AnxA2, inhibited Δ4 RNA-protein complex formation. Transient transfection studies using chimeric constructs with and without the Δ4 region revealed that cis-trans interactions are important for ethanol-mediated stability of NR1 mRNA. Furthermore, our data highlight, for the first time, the presence of a binding site on the 3'-untranslated region of NR1 mRNA for AnxA2 and demonstrate the regulation of NR1 mRNA by AnxA2, GIIβ and a third NR1 mRNA-binding protein, which is yet to be identified.
Collapse
Affiliation(s)
- Antje Anji
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
18
|
Du X, Elberger AJ, Matthews DB, Hamre KM. Heterozygous deletion of NR1 subunit of the NMDA receptor alters ethanol-related behaviors and regional expression of NR2 subunits in the brain. Neurotoxicol Teratol 2011; 34:177-86. [PMID: 21945132 DOI: 10.1016/j.ntt.2011.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 09/02/2011] [Accepted: 09/06/2011] [Indexed: 02/07/2023]
Abstract
NMDA receptors have been hypothesized to play a role in various aspects of ethanol-related phenotypes, notably in ethanol withdrawal. However, the role of each of the specific subunits remains unclear. To address this issue, mice that are heterozygous for the NR1 deletion, and thus have a reduction in functional NMDA receptors, were examined for ethanol consumption and acute ethanol withdrawal. Additionally, mice were examined for the level of vocalization following footshock, and behavior in an elevated plus maze, to determine their responses to stress. In these behavioral tests, NR1 heterozygous mice were shown to consume significantly higher levels of ethanol in the two bottle-choice test showing a possible role for this receptor in ethanol consumption. Analysis of acute withdrawal found that the heterozygous mice exhibit lower levels of handling-induced convulsions consistent with a role in ethanol sensitivity or withdrawal. In contrast, no effects on stress-related phenotypes were detected. Levels of NR2A-NR2D subunits of the NMDA receptor in specific brain regions were compared between NR1+/- mice and wild-type controls to assess whether the behavioral responses were specific to the diminution in NR1 expression or whether these changes could be due to secondary changes in expression of other NMDA subunits. Real-time quantitative PCR, Western blot and immunohistochemistry were used to examine expression levels in the hippocampus, neocortex, striatum and cerebellum. For the majority of the subunits, no differences were found between the wild-type and heterozygous mice in any of the brain regions. However, the NR2B subunit exhibited differences in expression of RNA in the hippocampus and protein levels in multiple brain regions, between wild-type and NR1+/- mice. These results show that NR1 plays a role, through mechanisms as yet unknown, in the expression of NR2 subunits in a region and subtype specific manner. This provides evidence of the effects of altered levels of NR1 expression on ethanol withdrawal and consumption, and suggests that concomitant changes in the levels of NR2B may contribute to that effect.
Collapse
Affiliation(s)
- Xiaoping Du
- Department of Anatomy and Neurobiology, University of Tennessee, Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
19
|
Pian JP, Criado JR, Milner R, Ehlers CL. N-methyl-D-aspartate receptor subunit expression in adult and adolescent brain following chronic ethanol exposure. Neuroscience 2010; 170:645-54. [PMID: 20603193 DOI: 10.1016/j.neuroscience.2010.06.065] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/16/2010] [Accepted: 06/25/2010] [Indexed: 11/17/2022]
Abstract
Substantial evidence suggests that glutamatergic neurotransmission is a critical mediator of the experience-dependent synaptic plasticity that may underlie alcohol dependence. Substance abuse typically begins in adolescence; therefore, the impact of alcohol on glutamatergic systems during this critical time in brain development is of particular importance. The N-methyl-d-aspartate receptor (NMDAR) is involved in developmental mechanisms underlying neuronal differentiation and synaptogenesis and as such may be a target system for alcohol effects during adolescence. In the present study quantitative biochemical determinations were made of the relative abundance of different protein expressions of NMDAR subunits in adolescents and adults after 2 weeks of ethanol vapor exposure, and 24 h and 2 weeks following withdrawal. After 2 weeks of ethanol vapor exposure N-methyl-d-aspartate receptor NR1 subunit (NR1), N-methyl-d-aspartate receptor NR2A subunit (NR2A), and N-methyl-d-aspartate receptor NR2B subunit (NR2B) subunit expression was found to be increased in hippocampus of the adults. In contrast, 2 weeks of ethanol exposure resulted in no significant changes in NR1 and NR2B subunits and a reduction NR2A subunit expression in hippocampus in adolescents. Twenty-four h and 2 weeks following withdrawal from ethanol vapor NR1 and NR2A subunit expression in hippocampus was decreased in adolescents, whereas in adults it had returned to control levels. In frontal cortex, 2 weeks of chronic ethanol exposure produced decreases in NR1 subunit expression in both adults and adolescents but also produced decreases in NR2A and NR2B subunit expression in adults that returned or exceeded control levels by 2 weeks following withdrawal from ethanol vapor. These results demonstrate that NMDAR subunit composition can be modulated differentially between adolescents and adults by chronic ethanol exposure and withdrawal. These developmental differences in NMDAR subunits composition may also be associated with the enhanced vulnerability of the adolescent brain to ethanol dependence.
Collapse
Affiliation(s)
- J P Pian
- Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
20
|
Nagy J, Kolok S, Boros A, Dezso P. Role of altered structure and function of NMDA receptors in development of alcohol dependence. Curr Neuropharmacol 2010; 3:281-97. [PMID: 18369402 DOI: 10.2174/157015905774322499] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 07/18/2005] [Indexed: 11/22/2022] Open
Abstract
Long-term alcohol exposure gives rise to development of physical dependence on alcohol in consequence of changes in certain neurotransmitter functions. Accumulating evidence suggests that the glutamatergic neurotransmitter system, especially the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol's action, since ethanol is a potent inhibitor of the NMDA receptors (NMDARs) and prolonged ethanol exposition leads to a compensatory "upregulation" of NMDAR mediated functions supposedly contributing to the occurrence of ethanol tolerance, dependence as well as the acute and delayed signs of ethanol withdrawal.Recently, expression of different types of NMDAR subunits was found altered after long-term ethanol exposure. Especially, the expression of the NR2B and certain splice variant forms of the NR1 subunits were increased in primary neuronal cultures treated intermittently with ethanol. Since NMDA ion channels with such an altered subunit composition have increased permeability for calcium ions, increased agonist sensitivity, and relatively slow closing kinetics, the abovementioned alterations may underlie the enhanced NMDAR activation observed after long-term ethanol exposure. In accordance with these changes, the inhibitory potential of NR2B subunit-selective NMDAR antagonists is also increased, demonstrating excellent potency against alcohol withdrawal-induced in vitro cytotoxicity. Although in vivo data are few with these compounds, according to the effectiveness of the classic NMDAR antagonists in attenuation, not only the physical symptoms, but also some affective and motivational components of alcohol withdrawal, novel NR2B subunit selective NMDAR antagonists may offer a preferable alternative in the pharmacotherapy of alcohol dependence.
Collapse
Affiliation(s)
- József Nagy
- Gedeon Richter Ltd., Pharmacological and Drug Safety Research, Budapest 10. P.O.Box 27, H-1475, Hungary.
| | | | | | | |
Collapse
|
21
|
Sasabe T, Ishiura S. Alcoholism and alternative splicing of candidate genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1448-66. [PMID: 20617039 PMCID: PMC2872348 DOI: 10.3390/ijerph7041448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
Abstract
Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.
Collapse
Affiliation(s)
- Toshikazu Sasabe
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
22
|
Acosta G, Hasenkamp W, Daunais JB, Friedman DP, Grant KA, Hemby SE. Ethanol self-administration modulation of NMDA receptor subunit and related synaptic protein mRNA expression in prefrontal cortical fields in cynomolgus monkeys. Brain Res 2010; 1318:144-54. [PMID: 20043891 DOI: 10.1016/j.brainres.2009.12.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 01/18/2023]
Abstract
BACKGROUND Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR) complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication, and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in the alcohol-addicted state. METHODS AND RESULTS The effects of chronic ethanol self-administration on glutamate receptor ionotropic NMDA (GRIN), as well as GRIN1 splice variant mRNA expression was studied in the orbitofrontal cortex (OFC; Area 13), dorsolateral prefrontal cortex (DLPFC; Area 46) and anterior cingulate cortex (ACC; Area 24) of male cynomolgus monkeys. Chronic ethanol self-administration resulted in significant changes in the expression of NMDA subunit mRNA expression in the DLPFC and OFC, but not the ACC. In DLPFC, the overall expression of NMDA subunits was significantly decreased in ethanol treated monkeys. Slight but significant changes were observed for synaptic associated protein 102 kD (SAP102) and neuronal nitric oxide synthase (nNOS) mRNAs. In OFC, the NMDAR1 variant GRIN1-1 was reduced while GRIN1-2 was increased. Furthermore, no significant changes in GFAP protein levels were observed in either the DLPFC or OFC. CONCLUSION Results from these studies provide the first demonstration of posttranscriptional regulation of iGluR subunits in the primate brain following long-term ethanol self-administration. Furthermore, changes in these transcripts do not appear to reflect changes in glial activation or loss. Further studies examining the expression and cellular localization of subunit proteins and receptor pharmacology would shed more light on the findings reported here.
Collapse
Affiliation(s)
- Glen Acosta
- Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
23
|
Shukla SD, Velazquez J, French SW, Lu SC, Ticku MK, Zakhari S. Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res 2008; 32:1525-34. [PMID: 18616668 DOI: 10.1111/j.1530-0277.2008.00729.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review deals with the recent developments on the epigenetic effects of ethanol. A large body of data have come from studies in liver and in neuronal systems and involve post-translational modifications in histones and methylations in DNA. Ethanol causes site selective acetylation, methylation, and phosphorylation in histone. With respect to methylations the methyl group donating system involving S-adenosyl methionine appears to play a central role. There is contrasting effect of acetylation versus methylation on the same site of histone, as it relates to the transcriptional activation. Epigenetic memory also appears to correlate with liver pathology and Mallory body formation. Experimental evidence supports transcriptional regulation of genes in the CNS by DNA methylations. These studies are contributing towards a better understanding of a novel epigenetic regulation of gene expression in the context of alcohol. The critical steps and the enzymes (e.g., histone acetyltransferase, histone deacetylase, DNA methyltransferase) responsible for the epigenetic modifications are prime targets for intense investigation. The emerging data are also beginning to offer novel insight towards defining the molecular actions of ethanol and may contribute to potential therapeutic targets at the nucleosomal level. These epigenetic studies have opened up a new avenue of investigation in the alcohol field.
Collapse
Affiliation(s)
- Shivendra D Shukla
- Department of Medical Pharmacology & Physiology, University of Missouri Columbia, Missouri 65212, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Expression of N-methyl-d-aspartate (NMDA) receptor subunits and splice variants in an animal model of long-term voluntary alcohol self-administration. Drug Alcohol Depend 2008; 96:16-21. [PMID: 18358639 DOI: 10.1016/j.drugalcdep.2007.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 12/21/2007] [Accepted: 04/07/2008] [Indexed: 11/23/2022]
Abstract
Long-term, free-choice, alcohol self-administration with repeated alcohol deprivation phases is known to enhance N-methyl-d-aspartate (NMDA) receptor activity. We hypothesized that this might not only reflect an increase in NMDA receptor density, but that differential transcriptional regulation and alternative splicing of the various subunits comprising the NMDA receptor may lead to changes in receptor composition and subsequent function. We, therefore, aimed to further investigate this effect in various brain regions. The relative mRNA expression of exon 5 inclusion/exclusion variants of the NR1 subunit, and the relative expression of NR2A, NR2B and NR2C subunits was examined in rats subjected to long-term free-choice, alcohol self-administration with repeated alcohol deprivation phases. We observed a relative decrease of the NR2C/NR2A mRNA ratio and an increase of NR1 splice variants including exon 5 (NR1+E5) in the striatum but not in the cortex, hippocampus or cerebellum in the experimental group. Our results demonstrate that long-term voluntary alcohol self-administration, affects the regulation of genes encoding the various subunits and splice variants of the NMDA receptor in a brain regional-specific manner.
Collapse
|
25
|
Karolewicz B, Johnson L, Szebeni K, Stockmeier CA, Ordway GA. Glutamate signaling proteins and tyrosine hydroxylase in the locus coeruleus of alcoholics. J Psychiatr Res 2008; 42:348-55. [PMID: 17481661 PMCID: PMC2292639 DOI: 10.1016/j.jpsychires.2007.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/18/2007] [Accepted: 02/27/2007] [Indexed: 11/18/2022]
Abstract
It has been postulated that alcoholism is associated with abnormalities in glutamatergic neurotransmission. This study examined the density of glutamate NMDA receptor subunits and its associated proteins in the noradrenergic locus coeruleus (LC) in deceased alcoholic subjects. Our previous research indicated that the NMDA receptor in the human LC is composed of obligatory NR1 and regulatory NR2C subunits. At synapses, NMDA receptors are stabilized through interactions with postsynaptic density protein (PSD-95). PSD-95 provides structural and functional coupling of the NMDA receptor with neuronal nitric oxide synthase (nNOS), an intracellular mediator of NMDA receptor activation. LC tissue was obtained from 10 alcohol-dependent subjects and eight psychiatrically healthy controls. Concentrations of NR1 and NR2C subunits, as well as PSD-95 and nNOS, were measured using Western blotting. In addition, we have examined tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of norepinephrine. The amount of NR1 was lower in the rostral (-30%) and middle (-41%) portions of the LC of alcoholics as compared to control subjects. No differences in the amounts of NR2C, PSD-95, nNOS and TH were detected comparing alcoholic to control subjects. Lower levels of NR1 subunit of the NMDA receptor in the LC implicates altered glutamate-norepinephrine interactions in alcoholism.
Collapse
Affiliation(s)
- Beata Karolewicz
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, USA
| | | | | | | | | |
Collapse
|
26
|
Nagy J. Alcohol related changes in regulation of NMDA receptor functions. Curr Neuropharmacol 2008; 6:39-54. [PMID: 19305787 PMCID: PMC2645546 DOI: 10.2174/157015908783769662] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/19/2007] [Accepted: 10/20/2007] [Indexed: 12/25/2022] Open
Abstract
Long-term alcohol exposure may lead to development of alcohol dependence in consequence of altered neurotransmitter functions. Accumulating evidence suggests that the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol's action. Several studies showed that ethanol potently inhibits NMDA receptors (NMDARs) and prolonged ethanol exposition leads to a compensatory "up-regulation" of NMDAR mediated functions. Therefore, alterations in NMDAR function are supposed to contribute to the development of ethanol tolerance, dependence as well as to the acute and late signs of ethanol withdrawal.A number of publications report alterations in the expression and phosphorylation states of NMDAR subunits, in their interaction with scaffolding proteins or other receptors in consequence of chronic ethanol treatment. Our knowledge on the regulatory processes, which modulate NMDAR functions including factors altering transcription, protein expression and post-translational modifications of NMDAR subunits, as well as those influencing their interactions with different regulatory proteins or other downstream signaling elements are incessantly increasing. The aim of this review is to summarize the complex chain of events supposedly playing a role in the up-regulation of NMDAR functions in consequence of chronic ethanol exposure.
Collapse
Affiliation(s)
- József Nagy
- Gedeon Richter Plc., Pharmacological and Drug Safety Research, Laboratory for Molecular Cell Biology, Budapest 10. P.O. Box 27, H-1475 Hungary.
| |
Collapse
|
27
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
28
|
Uzbay T, Kayir H, Celik T, Yüksel N. Acute and chronic tianeptine treatments attenuate ethanol withdrawal syndrome in rats. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:478-85. [PMID: 16412550 DOI: 10.1016/j.pnpbp.2005.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2005] [Indexed: 11/12/2022]
Abstract
Effects of acute and chronic tianeptine treatments on ethanol withdrawal syndrome were investigated in rats. Ethanol (7.2% v/v) was given to adult male Wistar rats by a liquid diet for 30 days. Acute or chronic (twice daily) tianeptine (5, 10 and 20 mg/kg) and saline were administered to rats intraperitoneally. Acute and last chronic tianeptine injections and saline were done 30 min before ethanol withdrawal testing. After 2nd, 4th and 6th hours of ethanol withdrawal, rats were observed for 5 min, and withdrawal signs which included locomotor hyperactivity, agitation, tremor, wet dog shakes, stereotyped behavior and audiogenic seizures were recorded or rated. Locomotor activity in naive (no ethanol-dependent rats) was also tested after acute tianeptine treatments. Acute but not chronic tianeptine treatment attenuated locomotor hyperactivity and agitation in ethanol-dependent rats. Both acute and chronic tianeptine treatment produced some significant inhibitory effects on tremor, wet dog shakes, stereotyped behaviors and audiogenic seizures during the ethanol withdrawal. Our results suggest that acute or chronic tianeptine treatment attenuates ethanol withdrawal syndrome in ethanol-dependent rats and this drug may be useful for treatment of ethanol-type dependence.
Collapse
Affiliation(s)
- Tayfun Uzbay
- Department of Medical Pharmacology, Psychopharmacology Research Unit, Faculty of Medicine, Gulhane Military Medical Academy, Etlik, 06018 Ankara, Turkey.
| | | | | | | |
Collapse
|
29
|
Jin C, Woodward JJ. Effects of 8 Different NR1 Splice Variants on the Ethanol Inhibition of Recombinant NMDA Receptors. Alcohol Clin Exp Res 2006; 30:673-9. [PMID: 16573586 DOI: 10.1111/j.1530-0277.2006.00079.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND N-Methyl-D-aspartate (NMDA) receptors are glutamate-activated ion channels that are assembled from NR1 and NR2 subunits. These receptors are highly enriched in brain neurons and are considered to be an important target for the acute and chronic effects of ethanol. NR2 subunits (A-D) arise from separate genes and are expressed in a developmental and brain region-specific manner. The NR1 subunit has 8 isoforms that are generated by alternative splicing of a single gene. The heteromeric subunit makeup of the NMDA receptor determines the pharmacological and biophysical properties of the receptor and provides for functional receptor heterogeneity. Although results from previous studies suggest that NR2 subunits affect the ethanol sensitivity of NMDA receptors, the role of the NR1 subunit and its multiple splice variants is less well known. METHODS In this study, all 8 NR1 splice variants were individually coexpressed with each NR2 subunit in human embryonic kidney 293 (HEK293) cells and tested for inhibition by ethanol using patch-clamp electrophysiology. RESULTS All 32 subunit combinations tested gave reproducible glutamate-activated currents and all receptors were inhibited to some degree by 100 mM ethanol. The sensitivity of individual receptors to ethanol was affected by the specific NR1 splice variant expressed with receptors containing the NR1-3 and NR1-4 subunits among the least inhibited by ethanol. CONCLUSIONS These results suggest that regional, developmental, or compensatory changes in the expression of NR1 splice variants may significantly affect ethanol inhibition of NMDA receptors.
Collapse
Affiliation(s)
- Chun Jin
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
30
|
Haddad JJ. N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog Neurobiol 2006; 77:252-82. [PMID: 16343729 DOI: 10.1016/j.pneurobio.2005.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/10/2004] [Accepted: 10/27/2005] [Indexed: 12/30/2022]
Abstract
Excitatory synaptic transmission in the central nervous system (CNS) is mediated by the release of glutamate from presynaptic terminals onto postsynaptic channels gated by N-methyl-D-aspartate (NMDA) and non-NMDA (AMPA and KA) receptors. Extracellular signals control diverse neuronal functions and are responsible for mediating activity-dependent changes in synaptic strength and neuronal survival. Influx of extracellular calcium ([Ca(2+)](e)) through the NMDA receptor (NMDAR) is required for neuronal activity to change the strength of many synapses. At the molecular level, the NMDAR interacts with signaling modules, which, like the mitogen-activated protein kinase (MAPK) superfamily, transduce excitatory signals across neurons. Recent burgeoning evidence points to the fact that MAPKs play a crucial role in regulating the neurochemistry of NMDARs, their physiologic and biochemical/biophysical properties, and their potential role in pathophysiology. It is the purpose of this review to discuss: (i) the MAPKs and their role in a plethora of cellular functions; (ii) the role of MAPKs in regulating the biochemistry and physiology of NMDA receptors; (iii) the kinetics of MAPK-NMDA interactions and their biologic and neurochemical properties; (iv) how cellular signaling pathways, related cofactors and intracellular conditions affect NMDA-MAPK interactions and (v) the role of NMDA-MAPK pathways in pathophysiology and the evolution of disease conditions. Given the versatility of the NMDA-MAPK interactions, the NMDA-MAPK axis will likely form a neurochemical target for therapeutic interventions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Lebanon.
| |
Collapse
|
31
|
Maler JM, Esselmann H, Wiltfang J, Kunz N, Lewczuk P, Reulbach U, Bleich S, Rüther E, Kornhuber J. Memantine inhibits ethanol-induced NMDA receptor up-regulation in rat hippocampal neurons. Brain Res 2005; 1052:156-62. [PMID: 16009352 DOI: 10.1016/j.brainres.2005.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 05/26/2005] [Accepted: 06/05/2005] [Indexed: 10/25/2022]
Abstract
The present study examined the effect of memantine, an uncompetitive NMDA receptor antagonist, on ethanol-induced NMDA receptor up-regulation. Primary glutamatergic rat hippocampal neurons were exposed to ethanol and memantine for 5 days. The ethanol-sensitive NMDA receptor subunits NR1, NR2A and NR2B were quantified by Western immunoblot analysis. Exposure to ethanol (50 mM) caused an increase in the levels of NR1 (137 +/- 11% of untreated control, P = 0.009), NR2A (128 +/- 14%, P = 0.022) and NR2B (136 +/- 19%, P = 0.012). Coincubation with memantine (10 microM) completely blocked the ethanol-induced up-regulation of NR1 (102 +/- 4%), NR2A (95 +/- 7%) and NR2B (105 +/- 13%). No effect of memantine on NR subunit expression was observable, except for NR2A, where a decrease (79 +/- 6%, P = 0.034) was noted. Neither ethanol nor memantine alone or in combination were toxic in the concentrations tested. These results may provide a molecular explanation for beneficial effects of memantine on ethanol-induced glutamatergic hyperexcitability reflected in the ethanol withdrawal syndrome and on the development of ethanol dependence.
Collapse
Affiliation(s)
- Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nelson TE, Ur CL, Gruol DL. Chronic intermittent ethanol exposure enhances NMDA-receptor-mediated synaptic responses and NMDA receptor expression in hippocampal CA1 region. Brain Res 2005; 1048:69-79. [PMID: 15919065 DOI: 10.1016/j.brainres.2005.04.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/14/2005] [Accepted: 04/15/2005] [Indexed: 11/21/2022]
Abstract
In previous studies, we found that chronic intermittent ethanol (CIE) treatment-a model of ethanol consumption in which animals are exposed to and withdrawn from intoxicating levels of ethanol on a daily basis-produces neuroadaptive changes in hippocampal area CA1 excitatory synaptic transmission and plasticity. Synaptic responses mediated by N-methyl-D-aspartate (NMDA) receptors are known to be sensitive to ethanol and could play an important role in the neuroadaptive changes induced by CIE treatment. To address this issue, we compared electrophysiological recordings of pharmacologically isolated NMDA-receptor-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 region of hippocampal slices prepared from control rats and rats exposed to 2 weeks of CIE treatment administered by vapor inhalation. We found that fEPSPs induced by NMDA receptor activation were unaltered in slices prepared shortly after cessation of CIE treatment (i.e., < or = 1 day of withdrawal from CIE). However, following 7 days of withdrawal from CIE treatment, NMDA-receptor-mediated fEPSPs were augmented relative to age-matched controls. Western blot analysis of NMDA receptor subunit expression showed that, at 7 days of withdrawal, the level of protein for NR2A and NR2B subunits was elevated in the CA1 region of hippocampal slices from CIE-treated animals compared with slices from age-matched controls. These results are consistent with an involvement of NMDA-receptor-mediated synaptic responses in the neuroadaptive effects of CIE on hippocampal physiology and suggest that such changes may contribute to ethanol-induced changes in processes dependent on NMDA-receptor-mediated synaptic responses such as learning and memory, neural development, hyperexcitability and seizures, and neurotoxicity.
Collapse
Affiliation(s)
- T E Nelson
- Department of Neuropharmacology, CVN-11, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
33
|
Foley PF, Loh EW, Innes DJ, Williams SM, Tannenberg AEG, Harper CG, Dodd PR. Association studies of neurotransmitter gene polymorphisms in alcoholic Caucasians. Ann N Y Acad Sci 2005; 1025:39-46. [PMID: 15542698 DOI: 10.1196/annals.1316.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ethanol enhances mesolimbic/cortical dopamine activity in reward and reinforcement circuits. We investigated the hypothesis that risk for alcoholism may be mediated by genes for neurotransmitters associated with the dopamine reward system as well as genes for enzymes involved in ethanol metabolism. DNA was extracted from brain tissue collected at autopsy from pathologically characterized alcoholics and controls. PCR-based assays showed that alcoholism was associated with polymorphisms of the dopamine D2 receptor (DRD2) TaqI B (P = .029) and the GABAA-beta2 subunit C1412T (P = .012) genes, but not with the glutamate receptor subunit gene NMDAR2B (366C/G), the serotonin transporter gene (5HTTL-PR), the dopamine transporter gene DAT1(SLC6A3), the dopamine D2 receptor gene DRD2 TaqI A, or the GABAA alpha1(A15G), alpha6(T1519C), and gamma2(G3145A) subunit genes. The glial glutamate transporter gene EAAT2 polymorphism G603A was associated with alcoholic cirrhosis (P = .048). The genotype for the most active alcohol dehydrogenase enzyme ADH1C was associated with a lower risk of alcoholism (P = .026) and was less prevalent in alcoholics with DRD2TaqIA2/A2 (P = .047), GABAA-beta2 1412C/C (P = .01), or EAAT2 603G/A (P = .022) genotypes. Combined DRD2TaqI A or B with GABAA-beta2 or EAAT2 G603A genotypes may have a concerted influence in the predisposition to alcoholism.
Collapse
Affiliation(s)
- P F Foley
- Department of Biochemistry, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, Brisbane, Australia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rujescu D, Soyka M, Dahmen N, Preuss U, Hartmann AM, Giegling I, Koller G, Bondy B, Möller HJ, Szegedi A. GRIN1 locus may modify the susceptibility to seizures during alcohol withdrawal. Am J Med Genet B Neuropsychiatr Genet 2005; 133B:85-7. [PMID: 15635650 DOI: 10.1002/ajmg.b.30112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
N-Methyl-D-aspartate (NMDA) receptors, members of the glutamate receptor channel superfamily, are generally inhibited by alcohol. The expression and alternative splicing of the obligatory NR1 subunit is altered by alcohol exposure, emphasizing the involvement of the NR1 subunit, which is coded by the GRIN1 gene, in alcohol-mediated effects. We performed an association study in patients with alcohol dependence with the GRIN1 locus. Two independent case control samples consisting of a total of 442 alcohol-dependent patients and 442 unrelated controls were included. There was no overall difference in allele or genotype frequency between patients and controls. However, the 2108A allele and A-containing genotypes were over-represented in the patients with a history of withdrawal-induced seizures when compared to healthy volunteers (allele: chi(2) = 5.412, df = 1, P = 0.020) or an independent sample of patients without a history of seizures (allele: chi(2) = 4.185, df = 1, P = 0.041). Age at onset, years of alcohol dependence, and a history of delirium tremens did not differ between genotype or allele groups. These findings support the hypothesis that the GRIN1 locus may modify the susceptibility to seizures during alcohol withdrawal. This novel finding warrants replication.
Collapse
Affiliation(s)
- D Rujescu
- Department of Psychiatry, University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
AIMS To describe recent research focusing on the analysis of gene and protein expression relevant to understanding ethanol consumption, dependence and effects, in order to identify common themes. METHODS A selective literature search was used to collate the relevant data. RESULTS Over 160 genes have been individually assessed before or after ethanol administration, as well as in genetically selected lines. Techniques for studying gene expression include northern blots, differential display, real time reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization. More recently, high throughput functional genomic technology, such as DNA microarrays, has been used to examine gene expression. Recent gene expression analyses have dramatically increased the number of candidate genes (nine array papers have illuminated 600 novel gene transcripts that may contribute to alcohol abuse and alcoholism). CONCLUSIONS Although functional genomic experiments (transcriptome analysis) have failed to identify a single alcoholism gene, they have illuminated important pathways and gene products that may contribute to the risk of alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- Travis J Worst
- Center for the Neurobehavioral Study of Alcohol, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
36
|
Simonyi A, Christian MR, Sun AY, Sun GY. Chronic Ethanol-Induced Subtype- and Subregion-Specific Decrease in the mRNA Expression of Metabotropic Glutamate Receptors in Rat Hippocampus. Alcohol Clin Exp Res 2004; 28:1419-23. [PMID: 15365315 DOI: 10.1097/01.alc.0000139825.35438.a4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic ethanol consumption is known to induce adaptive changes in the hippocampal glutamatergic transmission and alter NMDA receptor binding and subunit expression. Metabotropic glutamate (mGlu) receptors have been shown to function as modulators of neuronal excitability and can fine tune glutamatergic transmission. This study was aimed to determine whether chronic ethanol treatment could change the messenger RNA (mRNA) expression of mGlu receptors in the hippocampus. METHODS Male Sprague Dawley rats were fed a Lieber-DeCarli liquid diet with 5% (w/v) ethanol or isocaloric amount of maltose for 2 months. Quantitative in situ hybridization was carried out using coronal brain sections through the hippocampus. RESULTS The results revealed decreases in mRNA expression of several mGlu receptors in different subregions of the hippocampus. In the dentate gyrus, mGlu3 and mGlu5 receptor mRNA levels were significantly lower in the ethanol-treated rats than in the control rats. In the CA3 region, the mRNA expression of mGlu1, mGlu5, and mGlu7 receptors showed substantial decreases after ethanol exposure. The mGlu7 receptor mRNA levels were also declined in the CA1 region and the polymorph layer of the dentate gyrus. No changes were found in mRNA expression of mGlu2, mGlu4, and mGlu8 receptors. CONCLUSIONS Considering the involvement of hippocampal mGlu receptors in learning and memory processes as well as in neurotoxicity and seizure production, the reduced expression of these receptors might contribute to ethanol withdrawal-induced seizures and also may play a role in cognitive deficits and brain damage caused by long-term ethanol consumption.
Collapse
Affiliation(s)
- Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65212, USA.
| | | | | | | |
Collapse
|
37
|
Vagts AJ, He DY, Yaka R, Ron D. Cellular adaptation to chronic ethanol results in altered compartmentalization and function of the scaffolding protein RACK1. Alcohol Clin Exp Res 2004; 27:1599-605. [PMID: 14574230 DOI: 10.1097/01.alc.0000089957.63597.a4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previously, we found that acute ethanol induces the translocation of the scaffolding protein RACK1 to the nucleus. Recently, we found that nuclear RACK1 mediates acute ethanol induction of immediate early gene c-fos expression. Alterations in gene expression are thought to lead to long-term changes that ultimately contribute to the development of alcohol addiction and toxicity. Therefore, we sought to determine the effects of chronic exposure of cells to ethanol on the cellular compartmentalization of RACK1 and on c-fos messenger RNA (mRNA) and protein expression. METHODS Rat C6 glioma cells were used as the cell culture model. Immunohistochemistry was implemented to visualize the localization of RACK1 and to monitor the protein level of c-fos. Reverse-transcription polymerase chain reaction was used to measure c-fos mRNA levels. The Tat-protein transduction method was used to transduce recombinant Tat-RACK1 into cells as previously described. RESULTS Chronic exposure of cells to 200 mM ethanol for 24 and 48 hr resulted in the gradual re-distribution of RACK1 out of the nucleus. It is interesting to note that acute ethanol re-challenge immediately after chronic treatment did not result in RACK1 translocation to the nucleus, and nuclear compartmentalization of RACK1 in response to acute ethanol was detected only after 24 hr of withdrawal. Similar patterns were obtained for c-fos expression. Chronic exposure to ethanol did not result in an increase in mRNA or protein levels of c-fos. Furthermore, acute ethanol exposure did not increase c-fos protein levels in cells that were first treated chronically with ethanol. However, transduction of exogenous RACK1 expressed as a Tat-fusion protein was able to rescue c-fos mRNA expression after chronic ethanol exposure. CONCLUSIONS Our data suggest that RACK1 nuclear compartmentalization and ethanol-induced c-fos expression are transient and are desensitized to ethanol during prolonged exposure to high concentrations. The desensitization is temporary, and RACK1 can respond to acute ethanol treatment after a 24-hr withdrawal period. Our data further suggest that the altered compartmentalization of RACK1 leads to differences in c-fos expression upon acute or chronic exposure to ethanol. In summary, RACK1 is an important molecular mediator of the acute and chronic actions of ethanol on the expression of c-fos. These findings could have implications for the molecular signaling pathways leading to pathologic states associated with alcoholism, including toxicity.
Collapse
Affiliation(s)
- Alicia J Vagts
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California, USA
| | | | | | | |
Collapse
|
38
|
Miki T, Harris SJ, Wilce PA, Takeuchi Y, Bedi KS. Effects of age and alcohol exposure during early life on pyramidal cell numbers in the CA1-CA3 region of the rat hippocampus. Hippocampus 2004; 14:124-34. [PMID: 15058490 DOI: 10.1002/hipo.10155] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life can result in an alteration in spatial learning ability. The hippocampal formation is known to be involved in the control of this ability. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life had either immediate or delayed effects on the numbers of pyramidal cells in the CA1-CA3 subregion of the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol at postnatal day 10-15 by placing them for 3 h/day in a chamber containing ethanol vapor. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anesthetized and killed at 16 and 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle was used to determine the volumes of the CA1 and CA2+CA3 regions. The physical disector method was used to estimate the numerical density of neurons in each of the subdivisions. The total number of pyramidal cells was calculated by multiplying the appropriate estimates of the numerical density by the volume. There were significant age-related reductions in the total numbers of pyramidal cells at 16-30 days of age irrespective of the groups examined. Ethanol treated rats were found to have slightly but significantly fewer pyramidal cell neurons than either the MRC or SC groups. These observations indicate that pyramidal cells in the hippocampus may be vulnerable to a relatively high dose of ethanol exposure during this short period of early postnatal life.
Collapse
Affiliation(s)
- Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa Medical University, Kagawa, Japan.
| | | | | | | | | |
Collapse
|
39
|
Ulfig N, Bohl J, Setzer M. Expression of NMDAR1 in the Human Fetal Amygdala and the Adjacent Ganglionic Eminence. Neuroembryology Aging 2003. [DOI: 10.1159/000068499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Nagy J, Kolok S, Dezso P, Boros A, Szombathelyi Z. Differential alterations in the expression of NMDA receptor subunits following chronic ethanol treatment in primary cultures of rat cortical and hippocampal neurones. Neurochem Int 2003; 42:35-43. [PMID: 12441166 DOI: 10.1016/s0197-0186(02)00062-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In our previous experiments, severe cellular damages and neuronal cell loss were observed following 24h of alcohol withdrawal in primary cultures of rat cortical neurones pre-treated with ethanol (50-200 mM) repeatedly for 3 days. Increased NMDA induced cytosolic calcium responses and excitotoxicity were also demonstrated in the ethanol pre-treated cultures. Thus, the enhancement in functions of NMDA receptors was supposed to be involved in the adaptive changes leading to the neurotoxic effect of alcohol-withdrawal. In this study, we investigated the effect of the 3-day repeated ethanol (100 mM) treatment on the function and subunit composition of the NMDA receptors. Here, we demonstrate that the maximal inhibitory effect of ethanol was significantly increased after ethanol pre-treatment. Similarly, the inhibitory activity of the NR2B subunit selective antagonists threo-ifenprodil, CP-101,606 and CI-1041 was also enhanced. On the contrary, the efficiency of the channel blocker agent MK-801 and the glycine-site selective antagonist 5,7-dichlorokynurenic acid was the same as in control cultures. According to these observations, a shift in subunit expression in favour for the NR2B subunit was suggested. Indeed, we provided evidence for increased expression of the NR2B and the C1 and C2' cassette containing splice variant forms of the NR1 subunit proteins in ethanol pre-treated cultures in further experiments using a flow cytometry based immunocytochemical method. These changes may constitute the basis of the increased NMDA receptor functions and subsequently the enhanced sensitivity of ethanol pre-treated cortical neurones to excitotoxic insults resulting in increased neuronal cell loss after ethanol withdrawal. Such alterations may play a role in the neuronal adaptation to ethanol as well as in the development of alcohol dependence, and might cause neuronal cell loss in certain areas of the brain during alcohol withdrawal.
Collapse
Affiliation(s)
- József Nagy
- Pharmacological and Drug Safety Research, Gedeon Richter Ltd., P.O.B. 27, H-1475 Budapest 10, Hungary.
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Paula L Hoffman
- Department of Pharmacology C-236, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA
| |
Collapse
|
42
|
Ulfig N. The Functional Organization of the Developing Human Brain in Relation to Motor Deficits, Cognitive Impairment and Psychotic States. ACTA ACUST UNITED AC 2003. [DOI: 10.1159/000071024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Ikegami A, Olsen CM, Fleming SM, Guerra EE, Bittner MA, Wagner J, Duvauchelle CL. Intravenous ethanol/cocaine self-administration initiates high intake of intravenous ethanol alone. Pharmacol Biochem Behav 2002; 72:787-94. [PMID: 12062567 DOI: 10.1016/s0091-3057(02)00738-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Evidence suggests that ethanol (EtOH) preexposure influences the rewarding valence of subsequent EtOH use. This study was conducted to determine if EtOH preexposure through EtOH/cocaine self-administration facilitates the motivational effects of EtOH alone. Rats self-administered intravenous (iv) EtOH/cocaine combinations (EtOH/Cocaine Fading group; EtOH 125.0 mg/kg/inj+Cocaine 0.1-0.75 mg/kg/inj) during a preexposure period. Consequently, these rats self-administered intravenous EtOH alone (62.5, 125.0, 250.0 and 500.0 mg/kg/inj) significantly more than a control group with prior cocaine self-administration experience (0.1-0.75 mg/kg/inj). In addition, at equal EtOH intake levels, locomotor activity was significantly enhanced in the EtOH/Cocaine Fading group but not the Cocaine Control animals (P=.01). The amount of EtOH self-administered in the EtOH/Cocaine Fading group during 1-h sessions (approximately 0.5-2.0 g/kg) corresponded with blood alcohol levels (BAL) ranging from 44 to 221 mg/dl. The highest BALs reported here have not previously been demonstrated after voluntary EtOH intake through any route of administration. These data suggest that preexposure to EtOH during EtOH/cocaine self-administration sessions modified neural substrates underlying both the reinforcing and locomotor responses to EtOH alone. Further studies utilizing intravenous EtOH self-administration will allow identification of various long-term behavioral and neural consequences of voluntary high EtOH intake.
Collapse
Affiliation(s)
- Aiko Ikegami
- College of Pharmacy, Division of Pharmacology/Toxicology, PHR 5.224, The University of Texas, Austin, TX 78712-1074, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Bellinger FP, Davidson MS, Bedi KS, Wilce PA. Neonatal ethanol exposure reduces AMPA but not NMDA receptor levels in the rat neocortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 136:77-84. [PMID: 12036520 DOI: 10.1016/s0165-3806(02)00363-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in western society. We investigated possible changes in glutamate receptor levels in neonatal animals following ethanol exposure using radioligand binding and western blot analysis. We used a vapor chamber to administer ethanol to neonatal Wistar rats 3 h a day from postnatal day (PND) 4-9. A separation control group was separated from their mothers for the same time and duration as the vapor treatment, while a normal control group was left to develop normally. Daily ethanol administrations resulted in decreased brain weight and body weight, as well as microencephaly (decreased brain:body weight ratio). Neither the affinity nor maximum binding of [(3)H]MK-801 (dizoclipine maleate) in the cortex of PND10 rats differed between treatment groups. Western blot analysis also failed to reveal any changes in NMDAR1, NMDAR2A, or NMDAR2B receptor levels. In contrast, the AMPA receptor subunit GluR1 was greatly reduced in vapor-treated pups compared with control pups, as revealed by western blot analysis. A similar reduction was found in westerns with an antibody recognizing the GluR2 and 4 subunits. These results indicate that ethanol reduces AMPA rather than NMDA receptors in the developing neocortex, possibly by blocking NMDA receptors during development.
Collapse
Affiliation(s)
- Frederick P Bellinger
- Alcohol Research Unit, Department of Biochemistry, The University of Queensland, St. Lucia QLD 4072, Australia.
| | | | | | | |
Collapse
|
45
|
Ferreira VM, Frausto S, Browning MD, Savage DD, Morato GS, Valenzuela CF. Ionotropic Glutamate Receptor Subunit Expression in the Rat Hippocampus: Lack of an Effect of a Long-Term Ethanol Exposure Paradigm. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02157.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Kumari M. Differential effects of chronic ethanol treatment on N-methyl-D-aspartate R1 splice variants in fetal cortical neurons. J Biol Chem 2001; 276:29764-71. [PMID: 11387318 DOI: 10.1074/jbc.m100317200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional N-methyl-D-aspartate receptors consisting of NR1 and NR2 subunits are an important site of action of ethanol. Chronic ethanol treatment increases the NR1 polypeptide levels in vivo and in vitro. Chronic ethanol treatment in vitro does not significantly alter the NR1 mRNA levels, even though under similar culture conditions ethanol (50 mm, 5 days) enhances the half-life of NR1 mRNA in fetal cortical neurons. To address this phenomenon, we determined by reverse transcription-polymerase chain reaction and Western blotting whether ethanol (50 mm, 5 days) has a splice variant-specific effect on the expression of the NR1 subunit in mouse fetal cortical neurons. This report analyzes for the first time the distribution of all NR1 splice variants in these neurons. Our data indicate the presence of NR1-3a,b and NR1-4a,b splice variants in cortical neurons. Chronic ethanol treatment significantly decreased the mRNA levels of exon 5-containing NR1 splice variants (NR1-3b and NR1-4b) (-E5/+E5 = 4.6 in untreated neurons and 6.1 in ethanol-treated neurons) and had no effect on the mRNA levels of NR1-3 (+E21/-E22) and NR1-4 (-E21/-E22) splice variants. At the polypeptide level, chronic ethanol treatment significantly reduced exon 5-containing splice variants (NR1-3b and NR1-4b). However, ethanol (50 mm, 5 days) induced a significant increase in polypeptide levels of NR1-4 (-E21/-E22), without any effect on NR1-3 (+E21/-E22) polypeptide levels. These results demonstrate that chronic ethanol treatment has a selective effect on the expression of NR1 splice variants at both the mRNA and polypeptide levels in mouse fetal cortical neurons.
Collapse
Affiliation(s)
- M Kumari
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| |
Collapse
|
47
|
Wilce PA, Depaz I, Hardy P, Davidson M, Jaquet V. Ethanol-related adaptive changes and physical dependence in rats after exposure to ethanol. Alcohol 2001; 24:137-9. [PMID: 11522435 DOI: 10.1016/s0741-8329(01)00148-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adaptive changes that occur after chronic exposure to ethanol are an important component in the development of physical dependence. We have focused our research on ethanol-induced changes in the expression of several genes that may be important in adaptation. In this article, we describe adaptive changes at the level of the N-methyl-D-aspartate receptor, in the protein expression and activity of the Egr transcription factors, and in the expression of a novel gene of unknown function.
Collapse
Affiliation(s)
- P A Wilce
- Alcohol Research Unit, Department of Biochemistry, The University of Queensland, St. Lucia, Queensland, Australia 4072.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The free-radical gas nitric oxide (NO) plays an important role in a diverse range of physiological processes. It is synthesized from the precursor L-arginine by the enzyme NO synthase (NOS), which transforms L-arginine into NO and citrulline. This synthetic pathway exists in the central nervous system (CNS), and NO appears to be a messenger molecule in the CNS, fulfilling most of the criteria of a neurotransmitter. Recent studies indicate that NO may play an important role in dependence on drugs of abuse. The purpose of this review is to address the role of NO in dependence on substances such as opioids, ethanol, psychostimulants and nicotine. Inhibitors of NOS modulate withdrawal from opioids and ethanol, diminishing many signs of withdrawal. In addition, NOS inhibitors suppress signs of withdrawal from nicotine. These data suggest that NO may be involved in the expression of withdrawal signs, and they leave open the possibility that NO may mediate the development of many of these signs. Although preliminary, data to date suggest that glutamate neurotransmission may be related to these beneficial effects of NOS inhibitors on signs of withdrawal. Emerging data further suggest that NO may have a general role in the dependence potential of various classes of drugs of abuse. Thus, modulation of NO systems may be a potential therapeutic target for treatment of substance abuse.
Collapse
Affiliation(s)
- I Tayfun Uzbay
- Gülhane Military Medical Academy, Department of Medical Pharmacology, Psychopharmacology Research Unit, Etlik 06018, Ankara, Turkey.
| | | |
Collapse
|
49
|
Dodd PR, Beckmann AM, Davidson MS, Wilce PA. Glutamate-mediated transmission, alcohol, and alcoholism. Neurochem Int 2000; 37:509-33. [PMID: 10871702 DOI: 10.1016/s0197-0186(00)00061-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glutamate-mediated neurotransmission may be involved in the range of adaptive changes in brain which occur after ethanol administration in laboratory animals, and in chronic alcoholism in human cases. Excitatory amino acid transmission is modulated by a complex system of receptors and other effectors, the efficacy of which can be profoundly affected by altered gene or protein expression. Local variations in receptor composition may underlie intrinsic regional variations in susceptibility to pathological change. Equally, ethanol use and abuse may bring about alterations in receptor subunit expression as the essence of the adaptive response. Such considerations may underlie the regional localization characteristic of the pathogenesis of alcoholic brain damage, or they may form part of the homeostatic change that constitutes the neural substrate for alcohol dependence.
Collapse
Affiliation(s)
- P R Dodd
- Department of Biochemistry, University of Queensland, Qld 4072, Brisbane, Australia.
| | | | | | | |
Collapse
|
50
|
Bisaga A, Popik P, Bespalov AY, Danysz W. Therapeutic potential of NMDA receptor antagonists in the treatment of alcohol and substance use disorders. Expert Opin Investig Drugs 2000; 9:2233-48. [PMID: 11060803 DOI: 10.1517/13543784.9.10.2233] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the fact that the use of alcohol, nicotine and other drugs is the major external factor contributing to mortality in industrialised countries, there are few medications available to treat alcohol and substance use disorders. In recent years, major advances have been made in the understanding of the neurobiological basis for these disorders and these advances should lead to the development of new pharmacotherapeutics. A substantial amount of the research suggests that N-methyl-D-aspartate (NMDA) receptor neurotransmission contributes to mediating the behavioural effects of alcohol and other drugs of abuse. This research supports the therapeutic potential of NMDA receptor antagonists in alcohol and substance use disorders. In this paper the authors present their opinion on the goals and stages of pharmacological treatment of these complex psychiatric disorders. Available preclinical research using designs that model aspects of alcohol and substance use disorders is summarised, with an emphasis on research published in the last two years. In animal models, NMDA antagonists inhibit physical dependence and the reinforcing effects of a variety of abused substances. The ability of NMDA antagonists to inhibit tolerance to drug effects and contribute possible antidepressant and anxiolytic effects are also important from the perspective of drug development. This review summarises the relevant clinical laboratory and treatment data. Finally, it presents the status of the current development of NMDA receptor antagonists and discusses candidates with the greatest potential for clinical development.
Collapse
Affiliation(s)
- A Bisaga
- New York State Psychiatric Institute, Unit #120, 1051 Riverside Dr., New York, NY 10032, USA.
| | | | | | | |
Collapse
|