1
|
Spergel DJ. Neuropeptidergic modulation of GnRH neuronal activity and GnRH secretion controlling reproduction: insights from recent mouse studies. Cell Tissue Res 2018; 375:179-191. [DOI: 10.1007/s00441-018-2893-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022]
|
2
|
Fang P, He B, Shi M, Kong G, Dong X, Zhu Y, Bo P, Zhang Z. The regulative effect of galanin family members on link of energy metabolism and reproduction. Peptides 2015; 71:240-249. [PMID: 26188174 DOI: 10.1016/j.peptides.2015.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/27/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
Abstract
It is essential for the species survival that an efficient coordination between energy storage and reproduction through endocrine regulation. The neuropeptide galanin, one of the endocrine hormones, can potently coordinate energy metabolism and the activities of hypothalamic-pituitary-gonadal reproductive axis to adjust synthesis and release of metabolic and reproductive hormones in animals and humans. However, few papers have summarized the regulative effect of the galanin family members on the link of energy storage and reproduction as yet. To address this issue, this review attempts to summarize the current information available about the regulative effect of galanin, galanin-like peptide and alarin on the metabolic and reproductive events, with special emphasis on the interactions between galanin and hypothalamic gonadotropin-releasing hormone, pituitary luteinizing hormone and ovarian hormones. This research line will further deepen our understanding of the physiological roles of the galanin family in regulating the link of energy metabolism and reproduction.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Biao He
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Guimei Kong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Xiaoyun Dong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
3
|
Hrabovszky E, Liposits Z. Afferent neuronal control of type-I gonadotropin releasing hormone neurons in the human. Front Endocrinol (Lausanne) 2013; 4:130. [PMID: 24062728 PMCID: PMC3778916 DOI: 10.3389/fendo.2013.00130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/03/2013] [Indexed: 12/30/2022] Open
Abstract
Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH) synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. Under various physiological and pathological conditions, hormonal and metabolic signals either regulate GnRH neurons directly or act on upstream neuronal circuitries to influence the pattern of pulsatile GnRH secretion into the hypophysial portal circulation. Neuronal afferents to GnRH cells convey important metabolic-, stress-, sex steroid-, lactational-, and circadian signals to the reproductive axis, among other effects. This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic, and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B (NKB) play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes, and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and NKB systems.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary e-mail:
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
4
|
Kalló I, Vida B, Deli L, Molnár CS, Hrabovszky E, Caraty A, Ciofi P, Coen CW, Liposits Z. Co-localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones. J Neuroendocrinol 2012; 24:464-76. [PMID: 22129075 DOI: 10.1111/j.1365-2826.2011.02262.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The gonadotrophin-releasing hormone (GnRH) secreting neurones, which form the final common pathway for the central regulation of reproduction, are directly targeted by kisspeptin (KP) via the G protein-coupled receptor, GPR54. In these multiple labelling studies, we used ovariectomised mice treated with 17β-oestradiol (OVX + E(2)) or vehicle (OVX + oil) to determine: (i) the ultrastructural characteristics of KP-immunoreactive (IR) afferents to GnRH neurones; (ii) their galanin or neurokinin B (NKB) content; and (iii) the co-expression of galanin or NKB with KP in the two major subpopulations of KP neurones located in the rostral periventricular area of the third ventricle (RP3V) and the arcuate nucleus (Arc). Electron microscopic investigation of the neuronal juxtapositions revealed axosomatic and axodendritic synapses; these showed symmetrical or asymmetrical characteristics, suggesting a phenotypic diversity of KP afferents. Heterogeneity of afferents was also demonstrated by differential co-expression of neuropeptides; in OVX + E(2) mice, KP afferents to GnRH neurones showed galanin-immunoreactivity with an incidence of 22.50 ± 2.41% and NKB-immunoreactivity with an incidence of 5.61 ± 2.57%. In OVX + oil animals, galanin-immunoreactivity in the KP afferents showed a major reduction, appearing in only 5.78 ± 1.57%. Analysis for co-localisation of galanin or NKB with KP was extended to the perikaryal level in animal models, which showed the highest KP incidence; these were OVX + E(2) females for the RP3V and OVX + oil females for the ARC. In the RP3V of colchicine-treated OVX + E(2) animals, 87.84 ± 2.65% of KP-IR neurones were galanin positive. In the Arc of the colchicine-treated OVX + oil animals, galanin immunoreactivity was detected in only 12.50 ± 1.92% of the KP expressing neurones. By contrast, the incidence of co-localisation with NKB in the Arc of those animals was 98.09 ± 1.30%. In situ hybridisation histochemistry of sections from OVX + E(2) animals identified galanin message in more than a third of the KP neurones in the RP3V (38.67 ± 11.57%) and in the Arc (42.50 ± 12.52%). These data suggest that GnRH neurones are innervated by chemically heterogeneous KP cell populations, with a small proportion deriving from the Arc group. The presence of galanin within KP axons innervating GnRH neurones and the oestrogen-dependent regulation of that presence add a new dimension to the roles played by galanin in the central regulation of reproduction.
Collapse
Affiliation(s)
- I Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tillet Y, Tourlet S, Picard S, Sizaret PY, Caraty A. Morphofunctional interactions between galanin and GnRH-containing neurones in the diencephalon of the ewe. The effect of oestradiol. J Chem Neuroanat 2012; 43:14-9. [DOI: 10.1016/j.jchemneu.2011.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/17/2011] [Accepted: 09/16/2011] [Indexed: 11/28/2022]
|
6
|
Porteous R, Petersen SL, Yeo SH, Bhattarai JP, Ciofi P, D'anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE. Kisspeptin neurons co-express met-enkephalin and galanin in the rostral periventricular region of the female mouse hypothalamus. J Comp Neurol 2011; 519:3456-69. [DOI: 10.1002/cne.22716] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
|
8
|
Todman MG, Han SK, Herbison AE. Profiling neurotransmitter receptor expression in mouse gonadotropin-releasing hormone neurons using green fluorescent protein-promoter transgenics and microarrays. Neuroscience 2005; 132:703-12. [PMID: 15837132 DOI: 10.1016/j.neuroscience.2005.01.035] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2005] [Indexed: 01/08/2023]
Abstract
The definition of neurotransmitter receptors expressed by individual neuronal phenotypes is essential for our understanding of integrated neural regulation. We report here a single-neuron strategy using green fluorescent protein (GFP)-promoter transgenic mice and oligonucleotide microarrays that has enabled us to provide a qualitative profile of the neurotransmitter receptors expressed by the gonadotropin- releasing hormone (GnRH) neurons, critical for the neural regulation of fertility. Acute brain slices were prepared from adult female GnRH-GFP transgenic mice and single GnRH neurons identified and patched. The contents of GnRH neurons underwent reverse transcription and cDNA amplification using the switch mechanism at the 5' end of RNA templates system, and hybridization to mouse gene oligonucleotide arrays. Fifty different neurotransmitter receptor subunit mRNAs were detected in GnRH neurons. Many of the classical amino acid and aminergic receptors were present in addition to 14 distinct, and in most cases novel, neuropeptidergic receptor signaling families. Four of the latter were selected for functional validation with gramicidin-perforated patch-clamp electrophysiology. Galanin, GnRH and neuromedin B were all found to exert direct depolarizing actions upon GnRH neurons whereas somatostatin induced a potent hyperpolarizing response. These studies demonstrate a relatively straightforward approach for transcriptome profiling of specific neuronal phenotypes. The stimulatory actions of GnRH and galanin upon GnRH neurons found here indicate that positive ultrashort feedback loops exist among the GnRH neuronal population.
Collapse
Affiliation(s)
- M G Todman
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
9
|
Gottsch ML, Clifton DK, Steiner RA. Galanin-like peptide as a link in the integration of metabolism and reproduction. Trends Endocrinol Metab 2004; 15:215-21. [PMID: 15223051 DOI: 10.1016/j.tem.2004.05.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The arcuate nucleus is a hypothalamic center that couples energetics and reproduction. Peptide-releasing neurons in the arcuate nucleus receive and process humoral signals from the periphery and relay this information to other nuclei in the hypothalamus and preoptic area. Galanin-like peptide (GALP) is expressed in the arcuate nucleus, and GALP-containing neurons are targets for the action of leptin. GALP-containing neurons are closely apposed to gonadotropin-releasing hormone (GnRH) neurons in the preoptic area, and CNS injections of GALP stimulate GnRH-mediated secretion of luteinizing hormone. These observations indicate that GALP is a molecular signal that couples circulating indices of metabolism to the neuroendocrine reproductive system and, thus, regulates reproductive activity as a function of the energy state. In this article, we describe the involvement of GALP in metabolism and reproduction, and in the coupling between these two processes.
Collapse
Affiliation(s)
- Michelle L Gottsch
- Department of Physiology and Biophysics, University of Washington, Box 357290, Seattle WA 98195-7290, USA
| | | | | |
Collapse
|
10
|
Dudás B, Merchenthaler I. Bi-directional associations between galanin and luteinizing hormone-releasing hormone neuronal systems in the human diencephalon. Neuroscience 2004; 127:695-707. [PMID: 15283968 DOI: 10.1016/j.neuroscience.2004.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/29/2004] [Accepted: 05/05/2004] [Indexed: 12/17/2022]
Abstract
Evidence suggests that galanin plays an important role in the regulation of reproduction in the rat. Galanin is colocalized with luteinizing hormone (LH)-releasing hormone (LHRH) in a subset of LHRH neurons in female rats and galanin-immunoreactive (galanin-IR) nerve terminals innervate LHRH neurons. Recent studies indicate that galanin may control gonadal functions in rats at two different levels: (i) via direct modulation of pituitary LH secretion and/or (ii) indirectly via the regulation of the hypothalamic LHRH release. However, the morphological substrate of any similar modulation is not known in human. In the present series of experiments we first mapped the galanin-IR and LHRH-IR neural elements in human brain, utilizing single label immunohistochemistry. Then, following the superimposition of the maps of these systems, the overlapping sites were identified with double labeling immunocytochemistry and examined in order to verify the putative juxtapositions between galanin-IR and LHRH-IR structures. LHRH and galanin immunoreactivity were detected mainly in the medial basal hypothalamus, in the medial preoptic area and along the diagonal band of Broca. Careful examination of the IR elements in the overlapping areas revealed close, bi-directional contacts between galanin-IR and LHRH-IR structures, which have been verified in semithin plastic sections. These galanin-LHRH and LHRH-galanin juxtapositions were most numerous in the medial preoptic area and in the infundibulum/median eminence of the human diencephalon. In conclusion, the present study is the first to reveal bi-directional juxtapositions between galanin- and LHRH-IR neural elements in the human diencephalon. These galanin-LHRH and LHRH-galanin contacts may be functional synapses, and they may be the morphological substrate of the galanin-controlled gonadal functions in humans.
Collapse
Affiliation(s)
- B Dudás
- Laboratory of Neuroendocrine Organization, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Boulevard, Erie, PA 16509-1025, USA.
| | | |
Collapse
|
11
|
Dufourny L, Schofield N, Skinner DC. Immunoreactive galanin expression in ovine gonadotropin-releasing hormone neurones: no effects of gender or reproductive status. J Neuroendocrinol 2003; 15:1062-9. [PMID: 14622436 DOI: 10.1046/j.1365-2826.2003.01098.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuropeptide, galanin, has been implicated to play a significant role in numerous physiological functions, including reproduction. Studies on several species have shown that galanin enhances gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone secretion. In rodents, a subset of GnRH neurones expresses galanin in a sexually dimorphic manner and it has been suggested that this may underpin the differences in GnRH secretion observed between the sexes. However, there are few data available for other species. Previous studies in sheep have shown that the distribution of GnRH neurones overlaps with galanin cells. The primary objectives of our study were to determine whether GnRH and galanin coexist in the sheep brain and, importantly, if a sex difference is apparent in the colocalization of these two peptides. Using immunocytochemistry coupled to high temperature antigen retrieval, we found that all GnRH neurones in the ovine brain colocalize with galanin. There is also a distinct population of galanin neurones that do not secrete GnRH. In addition, the distribution of galanin-immunoreactive cells was similar to that previously reported for colchicine treated ewes and, in agreement with earlier studies, the number of GnRH neurones did not differ between rams and ewes or between ewes killed at different stages of the oestrous cycle. These results suggest that, in sheep, GnRH and galanin may be cosecreted but the functional significance of this coexpression and possible cosecretion remains to be elucidated.
Collapse
Affiliation(s)
- L Dufourny
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071-3166, USA
| | | | | |
Collapse
|
12
|
Rodríguez MA, Anadón R, Rodríguez-Moldes I. Development of galanin-like immunoreactivity in the brain of the brown trout (Salmo trutta fario), with some observations on sexual dimorphism. J Comp Neurol 2003; 465:263-85. [PMID: 12949786 DOI: 10.1002/cne.10832] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of galanin-like immunoreactive (GAL-ir) cells and fibers was investigated in the brain of brown trout embryos, alevins, juveniles, and adults (some spontaneously releasing their gametes). The earliest GAL-ir neurons appeared in the preoptic region and the primordial hypothalamic lobe of 12-mm embryos. After hatching, new GAL-ir neurons appeared in the lateral, anterior, and posterior tuberal nuclei, and in late alevins, GAL-ir neurons appeared in the area postrema. In juveniles, further GAL-ir populations appeared in the nucleus subglomerulosus and magnocellular preoptic nucleus. The GAL-ir neuronal groups present in juveniles were also observed in sexually mature adults, although the area postrema of males lacked immunoreactive neurons. Moreover, spawning males exhibited GAL-ir somata in the olfactory bulb and habenula, which were never observed in adult females or in developing stages. In adults, numerous GAL-ir fibers were observed in the ventral telencephalon, preoptic area, hypothalamus, neurohypophysis, mesencephalic tegmentum, ventral rhombencephalon, and area postrema. Moderate to low GAL-ir innervation was seen in the olfactory bulbs, dorsomedial telencephalon, epithalamus, medial thalamus, optic tectum, cerebellum, and rhombencephalic alar plate. There were large differences among regions in the GAL-ir innervation establishment time. In embryos, GAL-ir fibers appeared in the preoptic area and hypothalamus, indicating early expression of galanin in hypophysiotrophic centers. The presence of galanin immunoreactivity in the olfactory, reproductive, visual, and sensory-motor centers of the brain suggest that galanin is involved in many other brain functions. Furthermore, the distribution of GAL-ir elements observed throughout trout development indicates that galaninergic system maturation continues until sexual maturity.
Collapse
Affiliation(s)
- Miguel Angel Rodríguez
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | | | | |
Collapse
|
13
|
Rajendren G. Increased galanin synapses onto activated gonadotropin-releasing hormone neuronal cell bodies in normal female mice and in functional preoptic area grafts in hypogonadal mice. J Neuroendocrinol 2002; 14:435-41. [PMID: 12047718 DOI: 10.1046/j.1365-2826.2002.00796.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Galanin synaptic input onto gonadotropin-releasing hormone (GnRH) neuronal cell bodies was analysed in female mice using the presynaptic vesicle-specific protein, synaptophysin (Syn) as a marker. In the first experiment, forebrain sections from normal ovariectomized ovarian steroid-primed mice exhibiting a surge of luteinizing hormone were processed for immunohistochemical labelling for GnRH, synaptophysin, galanin and Fos. Two representative sections from each brain, one passing through the anterior septum (anterior section) and the other through the organum vasculosum lamina terminalis-preoptic area (posterior section), were analysed under the confocal microscope. None of the GnRH cells analysed in the anterior sections were Fos immunoreactive (IR) or received input from galanin-IR fibres. In contrast, the majority of GnRH cells in the posterior sections analysed were Fos-positive. The number of galanin synapses onto the Fos-positive GnRH cells was significantly higher than that in the Fos-negative cells in this area of the brain, even though the number of Syn-IR appositions was comparable to each other. Transplantation of preoptic area (POA) into the third cerebral ventricle of hypogonadal (HPG) mice corrects deficits in the reproductive system. In the second experiment, synaptic input to GnRH cells was compared between HPG/POA mice with (functional graft) or without (nonfunctional graft) gonadal development. The mean numbers of Syn-IR appositions and galanin synapses per GnRH cell and the proportion of GnRH cells with galanin input were significantly higher in the functional than in the nonfunctional grafts. The results suggest that galanin can act directly on the GnRH cell bodies and may have an important regulatory role on the GnRH system.
Collapse
Affiliation(s)
- G Rajendren
- Division of Endocrinology Diabetes and Bone Diseases (and Arthur Fishberg Center for Neurobiology), Mount Sinai Medical Center, New York, NY 10029, USA.
| |
Collapse
|
14
|
Gundlach AL. Galanin/GALP and galanin receptors: role in central control of feeding, body weight/obesity and reproduction? Eur J Pharmacol 2002; 440:255-68. [PMID: 12007540 DOI: 10.1016/s0014-2999(02)01433-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scientific and commercial pharmacological interest in the role of galanin and galanin receptors in the regulation of food intake, energy balance, and obesity has waned recently, following initial enthusiasm during the 1980-1990s. It has been replaced by efforts to understand the role of newly discovered peptide systems such as the hypocretin/orexins, melanocortins and cocaine- and amphetamine-regulated transcript (CART) and their relationship to the important hormones, leptin and insulin. Thus, while numerous studies have revealed the ability of galanin to stimulate food intake via actions at sites within the hypothalamus, and shown reliable changes in hypothalamic galanin synthesis in response to food ingestion; findings including the lack of a 'body weight/obesity' phenotype in galanin transgenic mouse strains and a lack of agonists/antagonists for galanin receptor subtypes have probably served to reduce enthusiasm. However, as more is learnt about the general and galanin-related neurochemistry of brain pathways involved in feeding, metabolism and body weight control, the potential importance of galanin systems is again in focus. Studies of the newly discovered galanin family peptide, 'galanin-like peptide' (GALP), highlight the likely role of galanin peptides and receptors in the physiological coupling of body weight, adiposity and reproductive function. GALP is produced by a discrete population of neurons within the basomedial arcuate nucleus (and median eminence) that send projections to the anterior paraventricular nucleus and that make close contacts with leutinizing hormone-releasing hormone (LHRH) neurons in basal forebrain. Furthermore, GALP neurons express leptin receptors and respond to leptin treatment by increasing their expression of GALP mRNA. Centrally administered GALP activates LHRH-immunoreactive neurons and increases plasma LH levels. These findings suggest a direct stimulatory action of endogenous GALP on gonadotropin secretion via actions within the hypothalamus/basal forebrain, with leptin actions linking this system to body adipose levels.
Collapse
Affiliation(s)
- Andrew L Gundlach
- Howard Florey Institute of Experimental Physiology and Medicine, and Department of Medicine, Austin and Repatriation Medical Centre, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
15
|
Iqbal J, Pompolo S, Murakami T, Grouzmann E, Sakurai T, Meister B, Clarke IJ. Immunohistochemical characterization of localization of long-form leptin receptor (OB-Rb) in neurochemically defined cells in the ovine hypothalamus. Brain Res 2001; 920:55-64. [PMID: 11716811 DOI: 10.1016/s0006-8993(01)02932-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Leptin, a hormone secreted from the adipose tissue, is involved in the regulation of food intake and neuroendocrine function, by modulation of the expression and/or function of various neuropeptides in the hypothalamus. The long isoform (OB-Rb) is the major signaling form of the leptin receptor in the hypothalamus. We have used double-labeling immunohistochemistry to examine the extent of OB-Rb expression in neurochemically defined cell types in the ovine hypothalamus. OB-Rb-like immunoreactivity was widespread within cells localized to the periventricular, paraventricular, supraoptic, dorsomedial hypothalamic, ventromedial hypothalamic and arcuate nuclei, as well as the median eminence, perifornical, anterior hypothalamic and lateral hypothalamic areas and the zona incerta. Double-labeling showed expression of OB-Rb in 59.6+/-6.0% neuropeptide Y-containing cells, 60.8+/-4.7% galanin-containing cells, 89.8+/-2.65% pro-opiomelanocortin-containing cells, 73.4+/-3.5% tyrosine hydroxylase-containing cells and 31.8+/-2.8% corticotropin-releasing factor-containing cells. Interestingly 100% of melanin-concentrating hormone and orexin positive cells were also OB-Rb immunoreactive. These data provide semi-quantitative information on the extent to which various cell types express OB-Rb in the hypothalamus. Expression of OB-Rb within specific neuropeptidergic neurons provides evidence for the direct action of leptin upon the various neurochemical systems that regulate food intake, neuroendocrine and autonomic function in the brain.
Collapse
Affiliation(s)
- J Iqbal
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Victoria 3168, Clayton, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Rajendren G, Li X. Galanin synaptic input to gonadotropin-releasing hormone perikarya in juvenile and adult female mice: implications for sexual maturity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 131:161-5. [PMID: 11718847 DOI: 10.1016/s0165-3806(01)00257-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Changes in connectivity of the gonadotropin-releasing hormone (GnRH) neuronal system are believed to occur during the transition from juvenile to adulthood in females. Experiments were designed to investigate whether there is any difference in the number of galanin inputs to GnRH cells located in the organum vasculosum of lamina terminalis-rostral preoptic area (OVLT-rPOA) between juvenile (2 weeks old) and adult (10 weeks old) female mice. Triple label immunofluorescence staining of brain sections for galanin, GnRH and the presynaptic vesicle marker synaptophysin coupled with confocal microscopy was employed to identify galanin synapses to GnRH perikarya. The number of galanin synapses to GnRH cells and the proportion of GnRH cells with galanin input were significantly higher in adults than in juvenile mice. In adult mice, the proportions of GnRH cells with 0, 1, 2, 3, 4, 5 or 6 galanin synapses/cell were comparable to each other whereas in the juveniles the vast majority of them received no galanin synaptic input. A greater number of galanin synapses in adult as compared with juvenile female mice suggests a functional role for galanin in the maturation of the GnRH system.
Collapse
Affiliation(s)
- G Rajendren
- Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai Medical Center, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
17
|
Abstract
Estrogen exerts a critical regulatory influence upon the biosynthetic and secretory activity of the gonadotropin-releasing hormone (GnRH) neurons. It seems likely that estrogen regulates the behavior of the GnRH neuron through multiple transsynaptic, neuronal-glial, and direct membrane modes of action. Advances in our understanding of these mechanisms over the last 3 years are highlighted. In addition, very recent studies have begun to provide evidence for the expression of estrogen receptors (ERs) in GnRH neurons in the rodent. Although not yet firmly established, the current consensus supports the hypothesis that GnRH neurons express ERbeta. Evidence exists for ERbeta mRNA expression by GnRH neurons throughout development and ERbeta immunoreactivity has now also been detected in these cells. Murine GnRH neurons have further been shown to express estrogen receptor-related receptor-alpha, an orphan receptor thought to constitutively activate estrogen response elements. Together, these findings provide a cornerstone for the reassessment of the role of ERs and related receptors in the direct genomic and potential nontranscriptional actions of estrogen upon the GnRH neuron.
Collapse
Affiliation(s)
- A E Herbison
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge CB2 4AT, United Kingdom.
| | | |
Collapse
|
18
|
Cheung CC, Hohmann JG, Clifton DK, Steiner RA. Distribution of galanin messenger RNA-expressing cells in murine brain and their regulation by leptin in regions of the hypothalamus. Neuroscience 2001; 103:423-32. [PMID: 11246157 DOI: 10.1016/s0306-4522(01)00012-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Galanin is widely distributed throughout the mammalian brain and has been implicated in the regulation of food intake, metabolism and reproduction-functions that are also thought to be under the control of leptin. To investigate the possible role of galanin in mediating the physiological effects of leptin in the mouse, we had three experimental objectives: first, to map the distribution of galanin messenger RNA-expressing cells in the brain of the mouse; second, to assess the effects of leptin on galanin gene expression in areas of the brain thought to be involved in the regulation of body weight and reproduction; and third, to determine whether galanin neurons in these regions express leptin receptor messenger RNA. We found the pattern of galanin messenger RNA expression in the mouse brain to be similar, but not identical, to that in the rat. Leptin treatment (2microg/g for six days) significantly reduced cellular levels of galanin messenger RNA in the hypothalamic periventricular nucleus of leptin-deficient obese (ob/ob) mice (P<0.01) by approximately 30%; however, leptin did not appear to influence the expression of galanin in the arcuate or dorsomedial nucleus of the hypothalamus. Galanin-producing neurons in the arcuate, dorsomedial and periventricular nuclei did not appear to express leptin receptor messenger RNA (P>0.05). These results demonstrate that galanin distribution patterns in the mouse brain are comparable to other species and, yet, possess unique features. In addition, galanin-expressing neurons in the hypothalamic periventricular nucleus are targets for regulation by leptin; however, the effect of leptin on galanin gene expression is likely to be mediated indirectly, perhaps through either proopiomelanocortin- or neuropeptide Y-expressing cells in the hypothalamus.
Collapse
Affiliation(s)
- C C Cheung
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
19
|
Key S, Wray S. Two olfactory placode derived galanin subpopulations: luteinizing hormone-releasing hormone neurones and vomeronasal cells. J Neuroendocrinol 2000; 12:535-45. [PMID: 10844582 DOI: 10.1046/j.1365-2826.2000.00486.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In adult rodents, the peptide galanin is expressed in a subpopulation of hypothalamic luteinizing hormone-releasing hormone (LHRH) neurones in an activity-dependent manner. In this investigation, we examined whether galanin mRNA expression in mice was activated coincident with LHRH mRNA expression, as LHRH neurones differentiate from the olfactory placode. Using in situ hybridization, we show (i) that galanin mRNA is coexpressed in LHRH neurones prenatally, (ii) that there is a decrease in galanin mRNA expression relative to LHRH mRNA expression once LHRH mRNA positive/galanin mRNA positive neurones migrate out of the olfactory pit and into the nasal septum, and (iii) the presence of a novel population of galanin mRNA positive/LHRH mRNA negative expressing neurones in the olfactory pit/vomeronasal organ which do not migrate into the central nervous systenm (CNS). This study demonstrates that there are at least two populations of galanin mRNA expressing neurones arising from the olfactory placode; one that remains in nasal regions, is LHRH mRNA negative and whose function is unknown, and one which is coexpressed with LHRH. In addition, the temporal expression of galanin mRNA in LHRH cells indicates that initial activation and subsequent inactivation of galanin mRNA expression is independent of synaptic CNS connections.
Collapse
Affiliation(s)
- S Key
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD 20892-4156, USA
| | | |
Collapse
|