1
|
Orexin-A differentially modulates inhibitory and excitatory synaptic transmission in rat inner retina. Neuropharmacology 2021; 187:108492. [PMID: 33582153 DOI: 10.1016/j.neuropharm.2021.108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
In this work, modulation by orexin-A of the release of glutamate and GABA from bipolar and amacrine cells respectively was studied by examining the effects of the neuropeptide on miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) of rat retinal ganglion cells (GCs). Using RNAscope in situ hybridization in combination with immunohistochemistry, we showed positive signals for orexin receptor-1 (OX1R) mRNA in the bipolar cell terminals and those for orexin receptor-2 (OX2R) mRNA in the amacrine cell terminals. With whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that application of orexin-A reduced the interevent interval of mEPSCs of GCs through OX1R. However, it increased the interevent interval of mIPSCs, mediated by GABAA receptors, through OX2R. Furthermore, orexin-A-induced reduction of mEPSC interevent interval was abolished by the application of PI-PLC inhibitors or PKC inhibitors. In contrast, orexin-A-induced increase of GABAergic mIPSC interevent interval was mimicked by 8-Br-cAMP or an adenylyl cyclase activator, but was eliminated by PKA antagonists. Finally, application of nimodipine, an L-type Ca2+ channel blocker, increased both mEPSC and mIPSC interevent interval, and co-application of orexin-A no longer changed the mEPSCs and mIPSCs. We conclude that orexin-A increases presynaptic glutamate release onto GCs by activating L-type Ca2+ channels in bipolar cells, a process that is mediated by an OX1R/PI-PLC/PKC signaling pathway. However, orexin-A decreases presynaptic GABA release onto GCs by inhibiting L-type Ca2+ channels in amacrine cells, a process that is mediated by an OX2R/cAMP-PKA signaling pathway.
Collapse
|
2
|
Gao F, Yang Z, Jacoby RA, Wu SM, Pang JJ. The expression and function of TRPV4 channels in primate retinal ganglion cells and bipolar cells. Cell Death Dis 2019; 10:364. [PMID: 31064977 PMCID: PMC6504919 DOI: 10.1038/s41419-019-1576-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/25/2019] [Indexed: 12/26/2022]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel may be opened by mechanical stimuli to mediate Ca2+ and Na+ influxes, and it has been suggested to mediate glaucoma retinopathy. However, it has been mostly unclear how TRPV4 activities affect the function of primate retinal ganglion cells (RGCs). We studied RGCs and bipolar cells (BCs) in the peripheral retina of the old-world primate using whole-cell current-clamp and voltage-clamp recordings, immunomarkers and confocal microscopy. RGCs were distinguished from displaced amacrine cells (ACs) by the absence of GABA and glycine immunoreactivity and possession of an axon and a large soma in the RGC layer. Strong TRPV4 signal was concentrated in medium to large somas of RGCs, and some TRPV4 signal was found in BCs (including PKCα-positive rod BCs), as well as the end feet, soma and outer processes of Mȕller cells. TRPV4 immunoreactivity quantified by the pixel intensity histogram revealed a high-intensity component for the plexiform layers, a low-intensity component for the soma layers of ACs and Mȕller cells, and both components in the soma layers of RGCs and BCs. In large RGCs, TRPV4 agonists 4α-phorbol 12,13 didecanoate (4αPDD) and GSK1016790A reversibly enhanced the spontaneous firing and shortened the delay of voltage-gated Na+ (Nav) currents under current-clamp conditions, and under voltage-clamp conditions, 4αPDD largely reversibly increased the amplitude and frequency of spontaneous excitatory postsynaptic currents. In BCs, changes in the membrane tension induced by either applying pressure or releasing the pressure both activated a transient cation current, which reversed at ~ -10 mV and was enhanced by heating from 24 °C to 30 °C. The pressure for the half-maximal effect was ~18 mmHg. These data indicate that functional TRPV4 channels are variably expressed in primate RGCs and BCs, possibly contributing to pressure-related changes in RGCs in glaucoma.
Collapse
Affiliation(s)
- Fan Gao
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Zhuo Yang
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Roy A Jacoby
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
VanderWall KB, Vij R, Ohlemacher SK, Sridhar A, Fligor CM, Feder EM, Edler MC, Baucum AJ, Cummins TR, Meyer JS. Astrocytes Regulate the Development and Maturation of Retinal Ganglion Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2019; 12:201-212. [PMID: 30639213 PMCID: PMC6373493 DOI: 10.1016/j.stemcr.2018.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Retinal ganglion cells (RGCs) form the connection between the eye and the brain, with this connectivity disrupted in numerous blinding disorders. Previous studies have demonstrated the ability to derive RGCs from human pluripotent stem cells (hPSCs); however, these cells exhibited some characteristics that indicated a limited state of maturation. Among the many factors known to influence RGC development in the retina, astrocytes are known to play a significant role in their functional maturation. Thus, efforts of the current study examined the functional maturation of hPSC-derived RGCs, including the ability of astrocytes to modulate this developmental timeline. Morphological and functional properties of RGCs were found to increase over time, with astrocytes significantly accelerating the functional maturation of hPSC-derived RGCs. The results of this study clearly demonstrate the functional and morphological maturation of RGCs in vitro, including the effects of astrocytes on the maturation of hPSC-derived RGCs.
Collapse
Affiliation(s)
- Kirstin B VanderWall
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Ridhima Vij
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Sarah K Ohlemacher
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Akshayalakshmi Sridhar
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Clarisse M Fligor
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Elyse M Feder
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Michael C Edler
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA
| | - Anthony J Baucum
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA
| | - Theodore R Cummins
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA
| | - Jason S Meyer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University, Indianapolis IN 46202, USA; Glick Eye Institute, Department of Ophthalmology, Indiana University, Indianapolis IN 46202, USA.
| |
Collapse
|
4
|
Pang JJ, Gao F, Paul DL, Wu SM. Rod, M-cone and M/S-cone inputs to hyperpolarizing bipolar cells in the mouse retina. J Physiol 2012; 590:845-54. [PMID: 22219344 PMCID: PMC3381314 DOI: 10.1113/jphysiol.2011.224113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/27/2011] [Indexed: 11/08/2022] Open
Abstract
Bipolar cells are the central neurons of the retina that convey visual signals from rod and cone photoreceptors in the outer retina to higher-order neurons in the inner retina and the brain. Early anatomical studies have suggested that there are four types of cone hyperpolarizing (OFF) bipolar cells (HBCs) in the mouse retina, but no light responses have been systematically examined. By analysing light-evoked cation and chloride currents (I(C) and I(Cl)) from over 50 morphologically identified HBCs in the dark-adapted wildtype and connexin36 knockout (Cx36(-/-)) mouse retinas, we identified three types of HBCs, each with distinct light responses and morphological characteristics. The HBC(R/MC)s with axon terminals ramifying between 0% and 30% of the inner plexiform layer (IPL) receive mixed inputs from rods and M-cones, the HBC(MC)s with axon terminals ramifying between 10% and 50% of the IPL receive inputs primarily from M-cones, and the HBC(M/SC)s with axon terminals ramifying between 25% and 50% of IPL receive inputs primarily from cones with mixed M- and S-cone pigments. Moreover, we found that HBC(R/MC)s in the Cx36(-/-) mice exhibit light responses very similar to the wildtype HBC(R/MC)s, suggesting that the mixed rod-cone inputs are not mediated by connexin36-dependent rod-cone coupling, but rather by direct synaptic contacts from rods and M-cones. This study constitutes the first systematic investigation that correlates light response characteristics and axonal morphology of HBCs in dark-adapted mouse retina, and contributes to recently emerging evidence that revises the traditional view that mammalian HBCs only contact cone photoreceptors.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
5
|
Yang J, Nemargut JP, Wang GY. The roles of ionotropic glutamate receptors along the On and Off signaling pathways in the light-adapted mouse retina. Brain Res 2011; 1390:70-9. [DOI: 10.1016/j.brainres.2011.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/28/2011] [Accepted: 03/06/2011] [Indexed: 10/18/2022]
|
6
|
Nemargut JP, Wang GY. Inhibition of nitric oxide synthase desensitizes retinal ganglion cells to light by diminishing their excitatory synaptic currents under light adaptation. Vision Res 2009; 49:2936-47. [PMID: 19772868 DOI: 10.1016/j.visres.2009.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The effect of inhibiting nitric oxide synthase (NOS) on the visual responses of mouse retinal ganglion cells (RGCs) was studied under light adaptation by using patch-clamp recordings. The results demonstrated that NOS inhibitor, l-NAME, reduced the sensitivity of RGCs to light under light adaptation at different ambient light conditions. These observations were seen in all cells that recordings were made from. l-NAME diminished the excitatory synaptic currents (EPSCs), rather than increasing the inhibitory synaptic currents, of RGCs to reduce the sensitivity of RGCs to light. Cones may be the sites that l-NAME acted to diminish the EPSCs of RGCs.
Collapse
Affiliation(s)
- Joseph P Nemargut
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, United States
| | | |
Collapse
|
7
|
Coggins MR, Grabner CP, Almers W, Zenisek D. Stimulated exocytosis of endosomes in goldfish retinal bipolar neurons. J Physiol 2007; 584:853-65. [PMID: 17823206 PMCID: PMC2276998 DOI: 10.1113/jphysiol.2007.140848] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
After exocytosis, synaptic vesicle components are selectively retrieved by clathrin-mediated endocytosis and then re-used in future rounds of transmitter release. Under some conditions, synaptic terminals in addition perform bulk endocytosis of large membranous sacs. Bulk endocytosis is less selective than clathrin-mediated endocytosis and probably internalizes components normally targeted to the plasma membrane. Nonetheless, this process plays a major role in some tonic ribbon-type synapses, which release neurotransmitter for prolonged periods of time. We show here, that large endosomes formed after strong and prolonged stimulation undergo stimulated exocytosis in retinal bipolar neurons. The result suggests how cells might return erroneously internalized components to the plasma membrane, and also demonstrates that synaptic vesicles are not the only neuronal organelle that stains with styryl dyes and undergoes stimulated exocytosis.
Collapse
Affiliation(s)
- Michael R Coggins
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
8
|
Pang JJ, Abd-El-Barr MM, Gao F, Bramblett DE, Paul DL, Wu SM. Relative contributions of rod and cone bipolar cell inputs to AII amacrine cell light responses in the mouse retina. J Physiol 2007; 580:397-410. [PMID: 17255172 PMCID: PMC2075551 DOI: 10.1113/jphysiol.2006.120790] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 01/22/2007] [Indexed: 01/04/2023] Open
Abstract
AII amacrine cells (AIIACs) are crucial relay stations for rod-mediated signals in the mammalian retina and they receive synaptic inputs from depolarizing and hyperpolarizing bipolar cells (DBCs and HBCs) as well as from other amacrine cells. Using whole-cell voltage-clamp technique in conjunction with pharmacological tools, we found that the light-evoked current response of AIIACs in the mouse retina is almost completely mediated by two DBC synaptic inputs: a 6,7-dinitro-quinoxaline-2,3-dione (DNQX)-resistant component mediated by cone DBCs (DBC(C)s) through an electrical synapse, and a DNQX-sensitive component mediated by rod DBCs (DBC(R)s). This scheme is supported by AIIAC current responses recorded from two knockout mice. The dynamic range of the AIIAC light response in the Bhlhb4-/- mouse (which lacks DBC(R)s) resembles that of the DNQX-resistant component, and that of the connexin36 (Cx36)-/- mouse resembles the DNQX-sensitive component. By comparing the light responses of the DBC(C)s with the DNQX-resistant AIIAC component, and light responses of the DBC(R)s with the DNQX-sensitive AIIAC component, we obtained the input-output relations of the DBC(C)-->AIIAC electrical synapse and the DBC(R)-->AIIAC chemical synapse. Similar to other glutamatergic chemical synapses in the retina, the DBC(R)-->AIIAC synapse is non-linear. Its highest voltage gain (approximately 5) is found near the dark membrane potential, and it saturates for presynaptic signals larger than 5.5 mV. The DBC(C)-->AIIAC electrical synapse is approximately linear (voltage gain of 0.92), consistent with the linear junctional conductance found in retinal electrical synapses. Moreover, relative DBC(R) and DBC(C) contributions to the AIIAC response at various light intensity levels are determined.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
9
|
Pang JJ, Gao F, Wu SM. Cross-talk between ON and OFF channels in the salamander retina: Indirect bipolar cell inputs to ON–OFF ganglion cells. Vision Res 2007; 47:384-92. [PMID: 17092534 DOI: 10.1016/j.visres.2006.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/22/2022]
Abstract
It has been widely accepted that ON and OFF channels in the visual system are segregated with little cross-communication, except for the mammalian rod bipolar cell-AII amacrine cell-ganglion cell pathway. Here, we show that in the tiger salamander retina the light responses of a subpopulation of ON-OFF ganglion cells are mediated by crossing the ON and OFF bipolar cell pathways. Although the majority of ON-OFF ganglion cells (type I cells) receive direct excitatory inputs from depolarizing and hyperpolarizing bipolar cells (DBCs and HBCs), about 5% (type II cells) receive indirect excitatory inputs from DBCs and 20% (type III cells) receive indirect excitatory inputs from HBCs. These indirect bipolar cell inputs are likely to be mediated by a subpopulation of amacrine cells that exhibit transient hyperpolarizing light responses (AC(H)s) and make GABAergic/glycinergic synapses on DBC or HBC axon terminals. GABA and glycine receptor antagonists enhanced the ON and OFF excitatory cation current (DeltaI(C)) in type I ganglion cells, but completely suppressed the ON DeltaI(C) mediated by DBCs in type II cells and the OFF DeltaI(C) mediated by HBCs in types III cells. Dendrites of type I cells ramify in both sublamina A and B, type II cells exclusively in sublamina A, and type III cells exclusively in sublamina B of the inner plexiform layer. These results demonstrate that indirect, amacrine cell-mediated bipolar cell-ganglion cell synaptic pathways exist in a non-mammalian retina, and that bidirectional cross-talk between ON and OFF channels is present in the vertebrate retina.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA
| | | | | |
Collapse
|
10
|
Cadetti L, Tranchina D, Thoreson WB. A comparison of release kinetics and glutamate receptor properties in shaping rod-cone differences in EPSC kinetics in the salamander retina. J Physiol 2005; 569:773-88. [PMID: 16223761 PMCID: PMC1383429 DOI: 10.1113/jphysiol.2005.096545] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/11/2005] [Indexed: 01/23/2023] Open
Abstract
Synaptic transmission from cones is faster than transmission from rods. Using paired simultaneous recordings from photoreceptors and second-order neurones in the salamander retina, we studied the contributions of rod-cone differences in glutamate receptor properties and synaptic release rates to shaping postsynaptic responses. Depolarizing steps evoked sustained calcium currents in rods and cones that in turn produced transient excitatory postsynaptic currents (EPSCs) in horizontal and OFF bipolar cells. Cone-driven EPSCs rose and decayed faster than rod-driven EPSCs, even when comparing inputs from a rod and cone onto the same postsynaptic neurone. Thus, rod-cone differences in EPSCs reflect properties of individual rod and cone synapses. Experiments with selective AMPA and KA agonists and antagonists showed that rods and cones both contact pharmacologically similar AMPA receptors. Spontaneous miniature EPSCs (mEPSCs) exhibited unimodal distributions of amplitude and half-amplitude time width and there were no rod-cone differences in mEPSC properties. To examine how release kinetics shape the EPSC, we convolved mEPSC waveforms with empirically determined release rate functions for rods and cones. The predicted EPSC waveform closely matched the actual EPSC evoked by cones, supporting a quantal release model at the photoreceptor synapse. Convolution with the rod release function also produced a good match in rod-driven cells, although the actual EPSC was often somewhat slower than the predicted EPSC, a discrepancy partly explained by rod-rod coupling. Rod-cone differences in the rates of exocytosis are thus a major factor in producing faster cone-driven responses in second-order retinal neurones.
Collapse
Affiliation(s)
- Lucia Cadetti
- Department of Ophthalmology, University of Nebraska Medical Center, Durham Research Center, Omaha, NE 68198-5840, USA
| | | | | |
Collapse
|
11
|
Akopian A, Szikra T, Cristofanilli M, Krizaj D. Glutamate-induced Ca2+ influx in third-order neurons of salamander retina is regulated by the actin cytoskeleton. Neuroscience 2005; 138:17-24. [PMID: 16359816 PMCID: PMC2927977 DOI: 10.1016/j.neuroscience.2005.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 09/22/2005] [Accepted: 11/01/2005] [Indexed: 11/20/2022]
Abstract
Ligand-gated ion channels (ionotropic receptors) link to the cortical cytoskeleton via specialized scaffold proteins and thereby to appropriate signal transduction pathways in the cell. We studied the role of filamentous actin in the regulation of Ca influx through glutamate receptor-activated channels in third-order neurons of salamander retina. Staining by Alexa-Fluor 488-phalloidin, to visualize polymerized actin, we show localization of filamentous actin in neurites, and the membrane surrounding the cell soma. With Ca(2+) imaging we found that in dissociated neurons, depolymerization of filamentous actin by latrunculin A, or cytochalasin D significantly reduced glutamate-induced intracellular Ca(2+) accumulation to 53+/-7% of control value. Jasplakinolide, a stabilizer of filamentous actin, by itself slightly increased the glutamate-induced Ca(2+) signal and completely attenuated the inhibitory effect when applied in combination with actin depolymerizing agents. These results indicate that in salamander retinal neurons the actin cytoskeleton regulates Ca(2+) influx through ionotropic glutamate receptor-activated channels, suggesting regulatory roles for filamentous actin in a number of Ca(2+)-dependent physiological and pathological processes.
Collapse
Affiliation(s)
- A Akopian
- Department of Ophthalmology, NYU School of Medicine, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
12
|
Freed MA, Smith RG, Sterling P. Timing of quantal release from the retinal bipolar terminal is regulated by a feedback circuit. Neuron 2003; 38:89-101. [PMID: 12691667 DOI: 10.1016/s0896-6273(03)00166-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In isolation, a presynaptic terminal generally releases quanta according to Poisson statistics, but in a circuit its release statistics might be shaped by synaptic interactions. We monitored quantal glutamate release from retinal bipolar cell terminals (which receive GABA-ergic feedback from amacrine cells) by recording spontaneous EPSCs (sEPSCs) in their postsynaptic amacrine and ganglion cells. In about one-third of these cells, sEPSCs were temporally correlated, arriving in brief bursts (10-55 ms) more often than expected from a Poisson process. Correlations were suppressed by antagonizing the GABA(C) receptor (expressed on bipolar terminals), and correlations were induced by raising extracellular calcium or osmolarity. Simulations of the feedback circuit produced "bursty" release when the bipolar cell escaped intermittently from inhibition. Correlations of similar duration were present in the light-evoked sEPSCs and spike trains of sluggish-type ganglion cells. These correlations were suppressed by antagonizing GABA(C) receptors, indicating that glutamate bursts from bipolar terminals induce spike bursts in ganglion cells.
Collapse
Affiliation(s)
- Michael A Freed
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
13
|
Zhang J, Wu SM, Gross RL. Effects of beta-adrenergic blockers on glutamate-induced calcium signals in adult mouse retinal ganglion cells. Brain Res 2003; 959:111-9. [PMID: 12480164 DOI: 10.1016/s0006-8993(02)03735-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Betaxolol, a selective beta(1)-adrenoceptor antagonist, is an antiglaucoma drug commonly used to lower the intraocular pressure (IOP) in treatment of glaucoma. Recent evidence has also shown that it attenuates ligand- and voltage-gated currents in retinal ganglion cells, which may lead to reduction of intracellular calcium and prevention of glutamate-induced ganglion cell damage in glaucoma. In the present study, we examined the effectiveness of betaxolol and other beta-adrenergic blockers on glutamate-induced calcium signals. Dissociated adult mouse retinal ganglion cells were immuno-labeled with antibody CD90.2 and loaded with Fura-2AM. Calcium signals were recorded with optical recording techniques. Low doses of glutamate cause an increase in intracellular calcium that may result in pathological changes in ganglion cells. The action of glutamate could be reversibly suppressed by beta-adrenergic blockers and the order of inhibitory potency is (s)(-)-propranolol>betaxolol>>timolol, with average IC(50) of 78.05, 235.7 and 2167.05, microM, respectively. Betaxolol compressed the dose-response curve of glutamate. The EC(50) of glutamate was shifted from 6.19 to 23.53 microM, indicating that betaxolol acts as a non-competitive inhibitor of glutamate response in retinal ganglion cells. Our data are consistent with previous reports that betaxolol and other beta-adrenergic blockers may exert its neuroprotective action by suppression of glutamate-induced intracellular calcium increase in retinal ganglion cells.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, 6565 Fannin Street, NC-205, Houston, TX 77030, USA
| | | | | |
Collapse
|
14
|
Yang XL, Gao F, Wu SM. Non-linear, high-gain and sustained-to-transient signal transmission from rods to amacrine cells in dark-adapted retina of Ambystoma. J Physiol 2002; 539:239-51. [PMID: 11850516 PMCID: PMC2290137 DOI: 10.1113/jphysiol.2001.013110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In darkness, On-Off amacrine cells (ACs) of the tiger salamander retina exhibited large spontaneous transient depolarizing potentials (sTDPs) with average peak amplitude of 5.05 +/- 2.5 mV and average frequency of 0.42 +/- 0.25 s(-1). Under voltage-clamp conditions the cell displayed large spontaneous postsynaptic currents (sPSCs) with average peak amplitude of 98 +/- 39 pA and average frequency of 0.45 +/- 0.22 s(-1). To a light step, ACs gave rise to a transient 'On' response at the light onset and a transient 'Off' response at light offset, followed by a train of TDPs ('After' response). Near the response threshold (0.3 activated rhodopsin molecules per rod per second), light-evoked TDPs (leTDPs) of similar amplitude and kinetics as the large sTDPs observed in darkness were seen, and about half of these leTDPs elicited a regenerative potential (RP). Brighter light steps gave rise to more leTDPs and higher rates of RPs in the On, Off and After responses. Within the linear response range of the rods, the AC response was non-linear, with the highest gain (676 +/- 429) near the dark potential. The amplitude of Off responses increased with the duration of the light step, and ACs may use this to encode speeds of moving stimuli: the faster the light object moves, the smaller the AC Off response. Moreover, the number of leTDPs in the AC After response increased with light intensity, and the onset of the After response coincides with bipolar cell tail response recovery. One possible origin of the large sTDPs and leTDPs is the spontaneous and depolarization-induced regenerative calcium potentials (RCaPs) in bipolar cell synaptic terminals. RCaPs in bipolar cell synaptic terminals cause transient glutamate release that results in the sTDPs in darkness, and leTDPs in On, Off and After responses in ACs.
Collapse
Affiliation(s)
- Xiong-Li Yang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
15
|
Pang JJ, Gao F, Wu SM. Relative contributions of bipolar cell and amacrine cell inputs to light responses of ON, OFF and ON-OFF retinal ganglion cells. Vision Res 2002; 42:19-27. [PMID: 11804628 DOI: 10.1016/s0042-6989(01)00258-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Light-evoked postsynaptic currents (lePSCs) were recorded from ON, OFF and ON-OFF ganglion cells in dark-adapted salamander retinal slices under voltage clamp conditions, and the cell morphology was examined using Lucifer yellow fluorescence with confocal microscopy. The current-voltage relations of the lePSCs in all three types of ganglion cells are approximately linear within the cells' physiological range. The average chloride/cation conductance ratio (Deltag(Cl)(NR)/Deltag(C)(NR)) of the lePSCs is near 3, suggesting that ganglion cell light responses are associated with a greater postsynaptic conductance change at the amacrine-ganglion cell inhibitory synapses than at the bipolar-ganglion cell excitatory synapses. By comparing the charge transfer of lePSCs in normal Ringer's and in picrotoxin+strychnine+Imidazole-4-acidic acid, we found that the GABAergic and glycinergic amacrine-bipolar cell feedback synapses decreased the light-induced glutamatergic vesicle release from bipolar cells to all ganglion cells, and the degree of release reduction varied widely from ganglion cell to ganglion cell, with a range of 3-28 fold.
Collapse
Affiliation(s)
- Ji Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA
| | | | | |
Collapse
|
16
|
Miller RF, Fagerson MH, Staff NP, Wolfe R, Doerr T, Gottesman J, Sikora MA, Schuneman R. Structure and functional connections of presynaptic terminals in the vertebrate retina revealed by activity-dependent dyes and confocal microscopy. J Comp Neurol 2001; 437:129-55. [PMID: 11494248 DOI: 10.1002/cne.1275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The fluorescent dyes sulforhodamine 101 (SR 101) and FM1-43 were used as activity-dependent dyes (ADDs) to label presynaptic terminals in the retinas of a broad range of animals, including amphibians, mammals, fish, and turtles. The pattern of dye uptake was studied in live retinal preparations by using brightfield, fluorescence, and confocal microscopy. When bath-applied to the retina-eyecup, these dyes were avidly sequestered by the presynaptic terminals of virtually all rods, cones, and bipolar and amacrine cells; ganglion cell dendrites and horizontal cells lacked significant dye accumulation. Other structures stained with these dyes included pigment epithelial cells, cone outer segments, and Müller cell end-feet. Studies of dye uptake in dark- and light-adapted preparations showed significant differences in the dye accumulation pattern in the inner plexiform layer (IPL), suggesting a dynamic, light-modulated control of endocytotic activity. Presynaptic terminals in the IPL could be segregated on the basis of volume: bipolar varicosities in the IPL were typically larger than those of amacrine cells. The combination of retrograde labeling of ganglion cells and presynaptic terminal labeling with ADDs served as the experimental preparation for three-dimensional reconstruction of both structures, based on dual detector, confocal microscopy. Our results demonstrate a new approach for studying synaptic interactions in retinal function. These findings provide new insights into the likely number and position of functional connections from amacrine and bipolar cell terminals onto ganglion cell dendrites.
Collapse
Affiliation(s)
- R F Miller
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Nelson R, Janis AT, Behar TN, Connaughton VP. Physiological responses associated with kainate receptor immunoreactivity in dissociated zebrafish retinal neurons: a voltage probe study. PROGRESS IN BRAIN RESEARCH 2001; 131:255-65. [PMID: 11420945 DOI: 10.1016/s0079-6123(01)31021-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- R Nelson
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Building 36 Room 2C02, 36 Convent Dr MSC 4066, Bethesda, MD 20892-4066, USA.
| | | | | | | |
Collapse
|
18
|
Wu SM, Gao F, Maple BR. Integration and segregation of visual signals by bipolar cells in the tiger salamander retina. PROGRESS IN BRAIN RESEARCH 2001; 131:125-43. [PMID: 11420936 DOI: 10.1016/s0079-6123(01)31012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- S M Wu
- Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC-205, Houston, TX 77030, USA.
| | | | | |
Collapse
|
19
|
Miller RF, Gottesman J, Henderson D, Sikora M, Kolb H. Pre- and postsynaptic mechanisms of spontaneous, excitatory postsynaptic currents in the salamander retina. PROGRESS IN BRAIN RESEARCH 2001; 131:241-53. [PMID: 11420944 DOI: 10.1016/s0079-6123(01)31020-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- R F Miller
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
20
|
Wang Z, Zheng P. Characterization of spontaneous excitatory synaptic currents in pyramidal cells of rat prelimbic cortex. Brain Res 2001; 901:303-13. [PMID: 11368981 DOI: 10.1016/s0006-8993(01)02350-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded with the whole-cell patch-clamp technique from 41 pyramidal cells in the layers V-VI of the prelimbic (PL) cortex. The sEPSCs occurred randomly and the averaged frequency in 41 cells was 1.81+/-0.27 Hz. The amplitude distribution was skewed toward larger events and could be adequately fitted by a sum of two or three Gaussian distributions, but they could not be fitted by a sum of Gaussian distributions with equidistant separation in all cells studied (n=24). In eight of 24 cells, after the transformation of the amplitudes into logarithms, the skewed histogram became bell-shaped and could be adequately fitted by a single Gaussian distribution, whereas in the other 16 cells, after the transformation the histograms were still skewed. However, for those latter cells, when the logarithms were transformed into difference, the distribution of the differences in 15 of 16 cells became bell-shaped and could be adequately fitted by a single Gaussian distribution. The pie distribution of different rise times within one cell in 1 ms bin showed that there were four different patterns of the rise time distribution. The amplitude distribution of the sEPSCs was unchanged in 10 of 22 cells after TTX, but in the other 12 cells, it was changed significantly. However, for these cells although TTX had a marked effect, it could not change the skewed distribution into a single Gaussian distribution in case of both original and transformed data.
Collapse
Affiliation(s)
- Z Wang
- State Key Laboratory of Medical Neurobiology, Fudan University Medical Center, 138 Yixueyuan Road, 200032, Shanghai, China
| | | |
Collapse
|
21
|
Intensity-dependent, rapid activation of presynaptic metabotropic glutamate receptors at a central synapse. J Neurosci 2001. [PMID: 11160453 DOI: 10.1523/jneurosci.21-02-00741.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic signals from retinal bipolar cells were monitored by measuring EPSCs in ganglion cells voltage-clamped at -70 mV. Spontaneous EPSCs were strongly suppressed by l-2-amino-4-phosphonobutyrate (AP-4), an agonist at group III metabotropic glutamate receptors (mGluRs). Agonists of group I or II mGluRs were ineffective. AP-4 also suppressed ganglion cell EPSCs evoked by bipolar cell stimulation using potassium puffs, sucrose puffs, or zaps of current (0.5-1 microA). In addition, AP-4 suppressed Off EPSCs evoked by dim-light stimuli. This indicates that group III mGluRs mediate a direct suppression of bipolar cell transmitter release. An mGluR antagonist, (RS)-alpha-cyclopropyl-4-phosphonophenylyglycine (CPPG), blocked the action of AP-4. When bipolar cells were weakly stimulated, AP-4 produced a large suppression of the EPSC, but CPPG alone had little effect. Conversely, when bipolar cells were strongly stimulated, CPPG produced an enhancement of the EPSC, but AP-4 alone had little effect. This indicates that endogenous feedback regulates bipolar cell transmitter release and that the dynamic range of the presynaptic metabotropic autoreceptor is similar to that of the postsynaptic ionotropic receptor. Furthermore, the feedback is rapid and intensity-dependent. Hence, concomitant activation of presynaptic and postsynaptic glutamate receptors shapes the responses of ganglion cells.
Collapse
|
22
|
Watanabe S, Koizumi A, Matsunaga S, Stocker JW, Kaneko A. GABA-Mediated inhibition between amacrine cells in the goldfish retina. J Neurophysiol 2000; 84:1826-34. [PMID: 11024075 DOI: 10.1152/jn.2000.84.4.1826] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinal amacrine cells have abundant dendro-dendritic synapses between neighboring amacrine cells. Therefore an amacrine cell has both presynaptic and postsynaptic aspects. To understand these synaptic interactions in the amacrine cell, we recorded from amacrine cells in the goldfish retinal slice preparation with perforated- and whole cell-patch clamp techniques. As the presynaptic element, 19% of the cells recorded (15 of 78 cells) showed spontaneous tetrodotoxin (TTX)-sensitive action potentials. As the postsynaptic element, all amacrine cells (n = 9) were found to have GABA-evoked responses and, under perforated patch clamp, 50 microM GABA hyperpolarized amacrine cells by activating a Cl(-) conductance. Bicuculline-sensitive spontaneous postsynaptic currents, carried by Cl(-), were observed in 82% of the cells (64 of 78 cells). Since the source of GABA in the inner plexiform layer is amacrine cells alone, these events are likely to be inhibitory postsynaptic currents (IPSCs) caused by GABA spontaneously released from neighboring amacrine cells. IPSCs were classified into three groups. Large amplitude IPSCs were suppressed by TTX (1 microM), indicating that presynaptic action potentials triggered GABA release. Medium amplitude IPSCs were also TTX sensitive. Small amplitude IPSCs were TTX insensitive (miniature IPSCs; n = 26). All of spike-induced, medium amplitude, and miniature IPSCs were Ca(2+) dependent and blocked by Co(2+). Blocking of glutamatergic inputs by DL-2-amino-phosphonoheptanoate (AP7; 30 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 2 microM) had almost no effect on spontaneous GABA release from presynaptic amacrine cells. We suggest that these dendro-dendrotic inhibitory networks contribute to receptive field spatiotemporal properties.
Collapse
Affiliation(s)
- S Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
23
|
Hirooka K, Kelly ME, Baldridge WH, Barnes S. Suppressive actions of betaxolol on ionic currents in retinal ganglion cells may explain its neuroprotective effects. Exp Eye Res 2000; 70:611-21. [PMID: 10870519 DOI: 10.1006/exer.2000.0822] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Betaxolol, a beta 1-selective adrenoceptor antagonist, is widely used in the treatment of glaucoma. In addition to its ocular hypotensive effects, betaxolol has been suggested to act as a retinal neuroprotective agent (Osborne et al., 1997). To investigate possible mechanisms underlying the neuroprotective effects, we tested the actions of betaxolol on ion channels and calcium signaling in isolated retinal ganglion cells. Betaxolol (50 microM) reduced by about 20% the high-voltage-activated (HVA) Ca channel currents in ganglion cells isolated from tiger salamander retina. In contrast, the beta 1-adrenoceptor antagonists propranolol (10 microM) and timolol (50 microM) had no inhibitory actions on HVA Ca channel currents. The L-type Ca channel antagonist, nisoldipine, blocked the HVA Ca channel current partially and the remaining current was not inhibited by betaxolol. Outward current was inhibited in the presence of betaxolol. Both iberiotoxin (IBTX; 10 nM), a selective inhibitor of large-conductance Ca-activated K channels, and Cd2+ (100 microM), which suppresses Ca-activated K channels subsequent to its block of Ca channels, reduced outward current and the remaining current was not blocked significantly with betaxolol. In the presence of betaxolol, Na channel currents were reduced by about 20%, as were currents evoked by glutamate (10 mM) and GABA (1 mM). Current clamp recordings from isolated ganglion cells showed that betaxolol had several effects on excitability: spike height decreased, repetitive spike activity was suppressed, spike width increased and hyperpolarization following spikes was reduced. Calcium imaging in isolated rat retinal ganglion cells revealed that betaxolol inhibited glutamate-induced increases in [Ca2+]i. These results suggest that betaxolol has a diversity of suppressive actions on ganglion cell ion channels and that, as a consequence, one of the net actions of the drug is to reduce Ca2+ influx. The subsequent reduction in [Ca2+]i may contribute to the apparent neuroprotective actions of betaxolol in promoting ganglion cell survival following ischemic insult, as may occur in glaucoma and retinal disease.
Collapse
Affiliation(s)
- K Hirooka
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|