1
|
Hudry-Clergeon H, Stengel D, Ninio E, Vilgrain I. Platelet-activating factor increases VE-cadherin tyrosine phosphorylation in mouse endothelial cells and its association with the PtdIns3'-kinase. FASEB J 2005; 19:512-20. [PMID: 15791001 PMCID: PMC4848345 DOI: 10.1096/fj.04-2202com] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Platelet-activating factor (PAF), a potent inflammatory mediator, is involved in endothelial permeability. This study was designed to characterize PAF receptor (PAF-R) expression and its specific contribution to the modifications of adherens junctions in mouse endothelial cells. We demonstrated that PAF-R was expressed in mouse endothelial cells and was functionally active in stimulating p42/p44 MAPK and phosphatidylinositol 3-kinase (PtdIns3'-kinase)/Akt activities. Treatment of cells with PAF induced a rapid time- and dose-dependent (10(-7) to 10(-10) M) increase in tyrosine phosphorylation of a subset of proteins ranging from 90 to 220 kDa, including the VE-cadherin, the latter effect being prevented by the tyrosine kinase inhibitors herbimycin A and bis-tyrphostin. We demonstrated that PAF promoted formation of multimeric aggregates of VE-cadherin with PtdIns3'-kinase, which was also inhibited by herbimycin and bis-tyrphostin. Finally, we show by immunostaining of endothelial cells VE-cadherin that PAF dissociated adherens junctions. The present data provide the first evidence that treatment of endothelial cells with PAF promoted activation of tyrosine kinases and the VE-cadherin tyrosine phosphorylation and PtdIns3'-kinase association, which ultimately lead to the dissociation of adherens junctions. Physical association between PtdIns3'-kinase, serving as a docking protein, and VE-cadherin may thus provide an efficient mechanism for amplification and perpetuation of PAF-induced cellular activation.
Collapse
Affiliation(s)
- Hélène Hudry-Clergeon
- Laboratoire de développement et vieillissement de l'endothélium
Université Joseph FourierINSERMCEA
| | - Dominique Stengel
- Génétique épidémiologique et moléculaire des pathologies cardiovasculaires
Université Pierre et Marie Curie - Paris 6INSERMIFR14Faculté de Médecine Pitié-Salpétrière 91, Boulevard de L'hôpital 75634 Paris cedex 13
| | - Ewa Ninio
- Génétique épidémiologique et moléculaire des pathologies cardiovasculaires
Université Pierre et Marie Curie - Paris 6INSERMIFR14Faculté de Médecine Pitié-Salpétrière 91, Boulevard de L'hôpital 75634 Paris cedex 13
| | - Isabelle Vilgrain
- Laboratoire de développement et vieillissement de l'endothélium
Université Joseph FourierINSERMCEA
- * Correspondence should be addressed to Isabelle Vilgrain
| |
Collapse
|
2
|
Lukashova V, Chen Z, Duhé RJ, Rola-Pleszczynski M, Stanková J. Janus kinase 2 activation by the platelet-activating factor receptor (PAFR): roles of Tyk2 and PAFR C terminus. THE JOURNAL OF IMMUNOLOGY 2004; 171:3794-800. [PMID: 14500680 DOI: 10.4049/jimmunol.171.7.3794] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Platelet-activating factor (PAF) is a phospholipid with multiple physiological and pathological actions. The PAF receptor (PAFR) belongs to the G protein-coupled, heptahelical receptor superfamily. Recently, we have shown that PAF signals through the Janus kinase (Jak)/STAT pathway and that Tyk2 plays an essential role in PAF-induced PAFR promoter 1 activation. In the present study we found that PAF stimulated Jak2 tyrosine phosphorylation in the monocytic cell line MonoMac-1 as well as in COS-7 cells transfected with PAFR and Jak2 cDNAs. The use of a G protein-uncoupled PAFR (D289A) mutant indicated that Jak2 activation was G protein independent. Interestingly, following PAF stimulation, Jak2 coimmunoprecipitated with PAFR in the presence of active Tyk2, but not with a kinase-inactive Tyk2 mutant, K930I. Moreover, Tyk2-K930I completely blocked PAF-stimulated Jak2 phosphorylation. Gradual deletion of C-terminal residues of the PAFR resulted in progressively decreased Jak2 activation. Deletion of 12 C-terminal residues in mutant V330Stop diminished Jak2 tyrosine phosphorylation by 17%. Further deletions of 25-37 residues from the PAFR C-tail (C317Stop, M311Stop, and T305Stop) resulted in a 50% decrease in Jak2 phosphorylation compared with the wild-type receptor. Complete removal of the C tail resulted in a mutant (K298Stop) that failed to activate Jak2, suggesting that the receptor C-terminal region contains important domains for Jak2 activation. Finally, the coexpression of a minigene encoding the C terminus of PAFR partially inhibited PAF-induced kinase activation. Taken together, our results indicate that PAF activates Jak2 and that Tyk2 and the C-terminal tail of PAFR are of critical importance for PAF-induced Jak2 activation.
Collapse
Affiliation(s)
- Viktoria Lukashova
- Immunology Division, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
3
|
Deo DD, Bazan NG, Hunt JD. Activation of platelet-activating factor receptor-coupled G alpha q leads to stimulation of Src and focal adhesion kinase via two separate pathways in human umbilical vein endothelial cells. J Biol Chem 2003; 279:3497-508. [PMID: 14617636 DOI: 10.1074/jbc.m304497200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platelet-activating factor (PAF), a phospholipid second messenger, has diverse physiological functions, including responses in differentiated endothelial cells to external stimuli. We used human umbilical vein endothelial cells (HUVECs) as a model system. We show that PAF activated pertussis toxin-insensitive G alpha(q) protein upon binding to its seven transmembrane receptor. Elevated cAMP levels were observed via activation of adenylate cyclase, which activated protein kinase A (PKA) and was attenuated by a PAF receptor antagonist, blocking downstream activity. Phosphorylation of Src by PAF required G alpha(q) protein and adenylate cyclase activation; there was an absolute requirement of PKA for PAF-induced Src phosphorylation. Immediate (1 min) PAF-induced STAT-3 phosphorylation required the activation of G alpha(q) protein, adenylate cyclase, and PKA, and was independent of these intermediates at delayed (30 min) and prolonged (60 min) PAF exposure. PAF activated PLC beta 3 through its G alpha(q) protein-coupled receptor, whereas activation of phospholipase C gamma 1 (PLC gamma 1) by PAF was independent of G proteins but required the involvement of Src at prolonged PAF exposure (60 min). We demonstrate for the first time in vascular endothelial cells: (i) the involvement of signaling intermediates in the PAF-PAF receptor system in the induction of TIMP2 and MT1-MMP expression, resulting in the coordinated proteolytic activation of MMP2, and (ii) a receptor-mediated signal transduction cascade for the tyrosine phosphorylation of FAK by PAF. PAF exposure induced binding of p130(Cas), Src, SHC, and paxillin to FAK. Clearly, PAF-mediated signaling in differentiated endothelial cells is critical to endothelial cell functions, including cell migration and proteolytic activation of MMP2.
Collapse
Affiliation(s)
- Dayanand D Deo
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
4
|
Konrad RJ, Gold G, Lee TN, Workman R, Broderick CL, Knierman MD. Glucose stimulates the tyrosine phosphorylation of Crk-associated substrate in pancreatic beta-cells. J Biol Chem 2003; 278:28116-22. [PMID: 12746446 DOI: 10.1074/jbc.m212899200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Several years ago, we demonstrated that glucose induced tyrosine phosphorylation of a 125-kDa protein (p125) in pancreatic beta-cells (Konrad, R. J., Dean, R. M., Young, R. A., Bilings, P. C., and Wolf, B. A. (1996) J. Biol. Chem. 271, 24179-24186). Glucose induced p125 tyrosine phosphorylation in beta-TC3 insulinoma cells, beta-HC9 cells, and in freshly isolated rat islets, whereas increased tyrosine phosphorylation was not observed with other fuel secretagogues. Initial efforts to identify p125 were unsuccessful, so a new approach was taken. The protein was purified from betaTC6,F7 cells via an immunodepletion method. After electrophoresis and colloidal Coomassie Blue staining, the area of the gel corresponding to p125 was excised and subjected to tryptic digestion. Afterward, mass spectrometry was performed and the presence of Crk-associated substrate (Cas) was detected. Commercially available antibodies against Cas were obtained and tested directly in beta-cells, confirming glucose-induced tyrosine phosphorylation of Cas. Further experiments demonstrated that in beta-cells the glucose-induced increase in Cas tyrosine phosphorylation occurs immediately and is not accompanied by increased focal adhesion kinase tyrosine phosphorylation. Finally, it is also demonstrated via Western blotting that Cas is present in normal isolated rat islets. Together, these results show that the identity of the previously described p125 beta-cell protein is Cas and that Cas undergoes rapid glucose-induced tyrosine phosphorylation in beta-cells.
Collapse
Affiliation(s)
- Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Calcerrada MC, Catalan RE, Martinez AM. PAF-stimulated protein tyrosine phosphorylation in hippocampus: involvement of NO synthase. Neurochem Res 2002; 27:313-8. [PMID: 11958533 DOI: 10.1023/a:1014911329489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of platelet-activating factor (PAF) on protein tyrosine phosphorylation was studied in rat hippocampal slices. PAF caused an increase in the tyrosine phosphorylation of two phosphoproteins, which we identified by immunoprecipitation assays as the focal adhesion kinase p125FAK and crk-associated substrate p130Ca. The PAF effect was time- and dose-dependent. In addition, the involvement of PAF receptor was demonstrated by using PCA-4248, a specific receptor antagonist. When NO synthase was inhibited by NG-monomethyl-L-arginine (L-NMA), PAF-stimulated protein tyrosine phosphorylation was inhibited. In conclusion, our results indicate that PAF increased the tyrosine phosphorylation of both p125FAK and p130Cas proteins by the production of NO in hippocampus, suggesting that PAF may play a role in the functioning of this cerebral area.
Collapse
Affiliation(s)
- M C Calcerrada
- Departamento de Bioquímica y Biologia Molecular I, Facultad de Química, Universidad Complutense de Madrid, Spain
| | | | | |
Collapse
|
6
|
Miguel BG, Calcerrada MC, Martín L, Catalán RE, Martínez AM. Increase of phosphoinositide hydrolysis and diacylglycerol production by PAF in isolated rat liver nuclei. Prostaglandins Other Lipid Mediat 2001; 65:159-66. [PMID: 11444588 DOI: 10.1016/s0090-6980(01)00124-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When isolated rat liver nuclei were treated with platelet-activating factor (PAF), a rapid increase in the mass of diacylglycerol (DAG) occurred. This effect was dose- and time-dependent. The maximum effect was observed after 1 min of 10(-7) M PAF treatment. A concomitant decrease of polyphosphoinositides and phosphatidic acid (PA) levels was observed. PAF-induced DAG accumulation was inhibited by the treatment with WEB 2086 or PCA-4248, specific PAF-receptor antagonists. This result may suggest that PAF exerts its action in the nucleus through specific nuclear PAF binding sites. The findings described herein are due to the activation of phospholipase C, as the results from experiments using U73122, a phospholipase C inhibitor, indicate. These are the first data on the action of
Collapse
Affiliation(s)
- B G Miguel
- in isolated nuclei, and they suggest a modulation by PAF of intranuclear signal transduction within the nucleus, possibly by specific PAF receptors
| | | | | | | | | |
Collapse
|
7
|
Lukashova V, Asselin C, Krolewski JJ, Rola-Pleszczynski M, Stanková J. G-protein-independent activation of Tyk2 by the platelet-activating factor receptor. J Biol Chem 2001; 276:24113-21. [PMID: 11309383 DOI: 10.1074/jbc.m100720200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid with multiple physiological and pathological effects. PAF exerts its activity through a specific heptohelical G-protein coupled receptor, expressed on a variety of cell types, including leukocytes. In this study, we showed that PAF induced a rapid tyrosine phosphorylation of the Tyk2 kinase in the monocytic cell lines U937 and MonoMac-1. PAF-initiated Tyk2 phosphorylation was also observed in COS-7 cells transiently transfected with the human PAF receptor (PAFR) and Tyk2 cDNAs. In addition, we found that Tyk2 co-immunoprecipitated and co-localized with PAFR, independently of ligand binding. Deletion mutants of Tyk2 indicated that the N terminus of the kinase was important for the binding to PAFR. Activation of Tyk2 was followed by a time-dependent 2-4-fold increase in the level of tyrosine phosphorylation of signal transducers and activators of transcription 1 (STAT1), STAT2, and STAT3 and a sustained 2.5-fold increase in STAT5 tyrosine phosphorylation. In MonoMac-1 cells, STAT1 and STAT3 translocated to the nucleus following PAF stimulation, and their translocation in transiently transfected COS-7 cells was shown to be dependent on the presence of Tyk2. In addition, when COS-7 cells were transfected with PAFR and constructs containing PAFR promoter 1, coupled to the luciferase reporter gene, PAF induced a 3.6-fold increase in promoter activation in the presence of Tyk2. Finally, PAFR mutants that could not couple to G-proteins were found to effectively mediate Tyk2 activation and signaling. Taken together, these findings suggest an important role for the Janus kinase/STAT pathway in PAFR signaling, independent of G-proteins, and in the regulation of PAF receptor expression by its ligand.
Collapse
Affiliation(s)
- V Lukashova
- Immunology Division, Department of Pediatrics and the Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
8
|
Nishio H, Matsui K, Tsuji H, Tamura A, Suzuki K. Possible involvement of Fyn kinase in ethanol-stimulated Cas tyrosine phosphorylation in rat cerebellum and cerebral cortex. J Neurochem 2001; 76:1073-9. [PMID: 11181827 DOI: 10.1046/j.1471-4159.2001.00143.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we have investigated the effect of intraperitoneal injection of ethanol (3.5 g/kg) on tyrosine phosphorylation in rat brain. Immunoblot analysis using an antiphosphotyrosine antibody revealed that a 130-kDa protein band was detected in the brain extract in response to ethanol administration. This ethanol-stimulated tyrosine phosphorylation of the 130-kDa protein was found in the brain but not in the heart, liver or thymus. The 130-kDa phosphotyrosine-containing protein was identified by immunoprecipitation to be Cas, a crk-associated src substrate. This ethanol-stimulated tyrosine phosphorylation of Cas was observed most prominently in the cerebellum and the cerebral cortex. We further examined the possible involvement of Fyn kinase in ethanol-stimulated Cas tyrosine phosphorylation. Immunecomplex kinase assay showed that Fyn was activated in the cerebellum and cerebral cortex of ethanol-administered rats. Immunoprecipitation experiments also showed that Fyn was co-immunoprecipitated with an anti-Cas antibody in these regions from ethanol-administered rats. Furthermore, exogenous Fyn was shown to phosphorylate Cas from cerebellum and cerebral cortex in vitro. These findings indicate that ethanol stimulates tyrosine phosphorylation of Cas in rat cerebellum and cerebral cortex, and that Fyn may be involved in the process.
Collapse
Affiliation(s)
- H Nishio
- Department of Legal Medicine, Osaka Medical College, Takatsuki, Japan
| | | | | | | | | |
Collapse
|
9
|
Wang JH, Sun GY. Platelet activating factor (PAF) antagonists on cytokine induction of iNOS and sPLA2 in immortalized astrocytes (DITNC). Neurochem Res 2000; 25:613-9. [PMID: 10905622 DOI: 10.1023/a:1007550801444] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) and its receptor are known to play important roles in modulating neuronal plasticity and inflammatory responses, particularly during neuronal injury. PAF receptors are widespread in different brain regions and are present on the cell surface as well as in intracellular membrane compartments. Astrocytes are immune active cells and are responsive to cytokines, which stimulate signaling cascades leading to transcriptional activation of genes and protein synthesis. Our recent studies indicate the ability of cytokines, e.g., tumor necrosis factor-alpha (TNFalpha), interleukin-1beta (IL-1beta) and interferon-gamma (IFNgamma), to induce the inducible nitric oxide (iNOS) and secretory phospholipase A2 (sPLA2) genes in immortalized astrocytes (DITNC) (Li et al., J. Interferon and Cytokine Res. 19: 121-127. 1999). The main objective for this study is to examine the effects of PAF antagonists on cytokine induction of iNOS and sPLA2 in these cells. Results show that BN50730, a synthetic PAF antagonist, but not BN52021, a natural PAF antagonist (ginkolide B) can dose-dependently inhibit cytokine induction of NO production and sPLA2 release. Inhibition of NO production by BN50730 corroborated well with the decrease in iNOS protein and mRNA levels as well as binding of NF-kappaB STAT- 1 to DNA, suggesting that BN50730 action is upstream of the transcriptional process. These results are in agreement with the role of intracellular PAF in regulating the cytokine signaling cascade in astrocytes and further suggest the possible use of BN50730 as a therapeutic agent for suppressing the inflammatory pathways elicited by cytokines.
Collapse
Affiliation(s)
- J H Wang
- Biochemistry Department, University of Missouri, Columbia 65212, USA
| | | |
Collapse
|