1
|
Moreira da Silva Santos A, Kelly JP, Dockery P, Doyle KM. Effect of a binge-like dosing regimen of methamphetamine on dopamine levels and tyrosine hydroxylase expressing neurons in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:303-309. [PMID: 30296469 DOI: 10.1016/j.pnpbp.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 11/19/2022]
Abstract
Methamphetamine, an amphetamine derivative, is a powerful psychomotor stimulant and commonly used drug of abuse. This study examined the effect of binge-like methamphetamine (MA) dosing (4 × 4 mg/kg, s.c., 2 h apart) on regional dopamine and dopaminergic metabolite levels in rat brain at a range of early time points after final dose (2-48 h). Body temperature was elevated when measured 2 h after the last dose. MA increased dopamine levels in the frontal cortex 2 and 24 h after the last dose. The dopamine level was also increased in the amygdala at 24 h. No change was observed in the striatum at any time point, but levels of the dopamine metabolite DOPAC were markedly reduced at 24 and 48 h. Tyrosine hydroxylase expression is induced downstream of dopamine activity, and it is the rate limiting enzyme in dopamine synthesis. The effect of MA binge-like dosing on the volume of tyrosine hydroxylase containing cell bodies and the area fraction of tyrosine hydroxylase containing fibres was also assessed. MA increased the area fraction of tyrosine hydroxylase fibres in the frontal cortex and reduced the volume of tyrosine hydroxylase containing cell bodies 2 h after last dose in the ventral tegmental area and the substantia nigra. An increase in cell body volume in the substantia nigra was observed 48 h after treatment. These findings collectively highlight the importance of the dopaminergic system in methamphetamine induced effects, identify the frontal cortex, amygdala and striatum as key regions that undergo early changes in response to binge-like methamphetamine dosing and provide evidence of time-dependent effects on the cell bodies and fibres of tyrosine hydroxylase expressing neurons.
Collapse
Affiliation(s)
- Andreia Moreira da Silva Santos
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Centro Universitário Unievangélica, Anápolis - GO CEP, 75083-515, Brazil
| | - John P Kelly
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Peter Dockery
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Karen M Doyle
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
2
|
Kuhn DM, Angoa-Pérez M, Thomas DM. Nucleus accumbens invulnerability to methamphetamine neurotoxicity. ILAR J 2016; 52:352-65. [PMID: 23382149 DOI: 10.1093/ilar.52.3.352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.
Collapse
|
3
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
4
|
Wong YK, Chou MK, Shen YC, Wang YH, Yen JC, Chen CF, Lin SK, Liao JF. Preventive effect of baicalein on methamphetamine-induced amnesia in the passive avoidance test in mice. Pharmacology 2014; 93:278-85. [PMID: 25170749 DOI: 10.1159/000365008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Methamphetamine abuse may produce cognitive impairment. Baicalein, a bioactive flavonoid, has antioxidative, anti-inflammatory and neuroprotective effects. This study examined the effects of baicalein pretreatment on memory performance in the passive avoidance test after either one dose or an acute binge of methamphetamine in Institute of Cancer Research (ICR) mice. METHODS Methamphetamine was administered by intraperitoneal (i.p.) injection of either one dose (3 mg/kg) or an acute binge (3 mg/kg, 4 i.p. injections at 2-hour intervals). The effects of baicalein pretreatment (1 mg/kg, i.p.) on methamphetamine-induced changes of locomotor activity and memory performance were compared with those of eticlopride, a selective dopamine D2 receptor antagonist. The effects of baicalein on acute binge methamphetamine-induced oxidative stress (malondialdehyde- and nitrotyrosine-modified protein production) in the mouse hippocampus were also examined. RESULTS One-dose methamphetamine treatment (i.p., 30 min before or immediately after the training trial) induced hyperlocomotion and amnesia in mice, which were blocked by eticlopride but not by baicalein pretreatment. The memory performance in mice was impaired 5 days after acute binge methamphetamine, which was significantly attenuated by baicalein but not by eticlopride pretreatment. Baicalein pretreatment also attenuated acute binge methamphetamine-induced oxidative stress in the mouse hippocampus. CONCLUSIONS Baicalein exhibits antioxidative and neuroprotective effects in attenuating acute binge methamphetamine-induced memory deficits and oxidative hippocampal damage.
Collapse
Affiliation(s)
- Yi-Kuei Wong
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol Ther 2014; 144:28-40. [PMID: 24836729 DOI: 10.1016/j.pharmthera.2014.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/30/2023]
Abstract
Reports of methamphetamine-related emergency room visits suggest that elevated body temperature is a universal presenting symptom, with lethal overdoses generally associated with extreme hyperthermia. This review summarizes the available information on methamphetamine toxicity as it pertains to elevations in body temperature. First, a brief overview of thermoregulatory mechanisms is presented. Next, central and peripheral targets that have been considered for potential involvement in methamphetamine hyperthermia are discussed. Finally, future areas of investigation are proposed, as further studies are needed to provide greater insight into the mechanisms that mediate the alterations in body temperature elicited by methamphetamine.
Collapse
|
6
|
Is there a role for nitric oxide in methamphetamine-induced dopamine terminal degeneration? Neurotox Res 2013; 25:153-60. [PMID: 23918001 DOI: 10.1007/s12640-013-9415-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 12/21/2022]
Abstract
Methamphetamine (METH) abuse results in long-term damage to the dopaminergic system, manifesting as decreases in dopamine (DA) tissue content, DA transporter binding, as well as tyrosine hydroxylase and vesicular monoamine transporter immunostaining. However, the exact cascade of events that ultimately result in this damage has not been clearly elucidated. One factor that has been heavily implicated in METH-induced DA terminal degeneration is the production of nitric oxide (NO). Unfortunately, many of the studies attempting to clarify the role of NO in METH-induced neurotoxicity have been confounded by issues such as the disruption of METH-induced hyperthermia, preventing the formation of strong conclusions. As a result, there is a body of work suggesting that NO is sufficient for METH-induced neurotoxicity, while other studies suggest that NO does not play a role in METH-induced degeneration of DA nerve terminals. This review summarizes the existing studies investigating the role of NO in METH-induced neurotoxicity, and argues that while NO may be necessary for METH-induced neurotoxicity, it is not sufficient. Finally, important areas of future investigation are highlighted and discussed.
Collapse
|
7
|
Evaluating the role of neuronal nitric oxide synthase-containing striatal interneurons in methamphetamine-induced dopamine neurotoxicity. Neurotox Res 2013; 24:288-97. [PMID: 23575992 DOI: 10.1007/s12640-013-9391-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 12/21/2022]
Abstract
Production of nitric oxide (NO) has been implicated in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. The source of this NO has not been clearly delineated, but recent evidence suggests that it arises from activation of neuronal nitric oxide synthase (nNOS), which is selectively expressed in a subpopulation of striatal interneurons. Our objective was to determine whether inhibiting activation of nNOS-containing interneurons in the striatum blocks METH-induced neurotoxicity. These interneurons selectively express the neurokinin-1 (NK-1) receptor, which is activated by substance P. One particular toxin, a conjugate of substance P to the ribosome-inactivating protein saporin (SSP-SAP), selectively destroys neurons expressing the NK-1 receptor. Thus, we examined the extent to which depletion of the nNOS-containing interneurons alters production of NO and attenuates METH-induced neurotoxicity. The SSP-SAP lesions resulted in significant loss of nNOS-containing interneurons throughout striatum. Surprisingly, this marked deletion did not confer resistance to METH-induced DA neurotoxicity, even in areas devoid of nNOS-positive cells. Furthermore, these lesions did not attenuate NO production, even in areas lacking nNOS. These data suggest that nNOS-containing interneurons either are not necessary for METH-induced DA neurotoxicity or produce NO that can diffuse extensively through striatal tissue and thereby still mediate neurotoxicity.
Collapse
|
8
|
Naseh M, Vatanparast J, Baniasadi M, Hamidi GA. Alterations in nitric oxide synthase-expressing neurons in the forebrain regions of rats after developmental exposure to organophosphates. Neurotoxicol Teratol 2013; 37:23-32. [PMID: 23416429 DOI: 10.1016/j.ntt.2013.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/26/2013] [Accepted: 02/02/2013] [Indexed: 12/15/2022]
Abstract
Several mechanisms have been addressed as contributors to the long lasting behavioral deficits after developmental exposure to organophosphate (OP) compounds. Here, the effects of developmental exposure to two common OP insecticides, chlorpyrifos (CPF) and diazinon (DZN), on nitric oxide synthase (NOS)-expressing neurons in the rat forebrain are reported. A daily dose of 1mg/kg of either CPF or DZN was administered to rats during gestational days 15-18 or postnatal days (PND) 1-4. We then assessed NADPH-diaphorase and neuronal NOS (nNOS) immunohistochemistry in forebrain sections on different postnatal days. Prenatal exposure to CPF and DZN induced a transient reduction of NADPH-d(+)/nNOS-immunoreactive (IR) neurons in most cortical regions on PND 4 but exceptionally increased them in the entorhinal/piriform cortex. On PND 15, NADPH-d(+)/nNOS-IR neurons showed morphological abnormalities within entorhinal/piriform cortex of the rats that gestationally exposed to CPF. Postnatal exposure to CPF and DZN did not induce widespread effects on the number of NADPH-d(+)/nNOS-IR neurons on PNDs 7 and 15 but significantly reduced them in most cortical regions and hippocampal subfields on PND 60. The OPs affected NADPH-d(+)/nNOS-IR neurons in a sex independent manner and apparently spared them in the striatum. While the NADPH-d reactivity of microvessels was normally diminished by age, OP treated rats evidently preserved the NADPH-d reactivity of microvessels in the cerebral cortex and hippocampus. The effects of OPs on NADPH-d(+)/nNOS-IR neurons may contribute to the long-lasting behavioral outcomes and expand the neurotransmitter system that need to be considered in OP neurotoxicity evaluations.
Collapse
Affiliation(s)
- Maryam Naseh
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|
9
|
Friend DM, Son JH, Keefe KA, Fricks-Gleason AN. Expression and activity of nitric oxide synthase isoforms in methamphetamine-induced striatal dopamine toxicity. J Pharmacol Exp Ther 2013; 344:511-21. [PMID: 23230214 PMCID: PMC3558820 DOI: 10.1124/jpet.112.199745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/07/2012] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7-30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH. Acute administration of methamphetamine on postnatal day 90 (Saline:METH and METH:METH) increased nitric oxide production, as evidenced by increased protein nitration. Methamphetamine did not, however, change the expression of endothelial or inducible isoforms of nitric oxide synthase, nor did it change the number of cells positive for neuronal nitric oxide synthase mRNA expression or the amount of neuronal nitric oxide synthase mRNA per cell. However, nitric oxide synthase activity in striatal interneurons was increased in the Saline:METH and METH:METH animals. These data suggest that increased nitric oxide production after a neurotoxic regimen of methamphetamine results from increased nitric oxide synthase activity, rather than an induction of mRNA, and that constitutively expressed neuronal nitric oxide synthase is the most likely source of nitric oxide after methamphetamine administration. Of interest, animals rendered resistant to further methamphetamine-induced dopamine depletions still show equivalent degrees of methamphetamine-induced nitric oxide production, suggesting that nitric oxide production alone in response to methamphetamine is not sufficient to induce acute neurotoxic injury.
Collapse
Affiliation(s)
- Danielle M Friend
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
10
|
Methamphetamine induces endoplasmic reticulum stress related gene CHOP/Gadd153/ddit3 in dopaminergic cells. Cell Tissue Res 2011; 345:231-41. [PMID: 21789578 PMCID: PMC3148436 DOI: 10.1007/s00441-011-1207-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 06/16/2011] [Indexed: 11/22/2022]
Abstract
We examined the toxicity of methamphetamine and dopamine in CATH.a cells, which were derived from mouse dopamine-producing neural cells in the central nervous system. Use of the quantitative real-time polymerase chain reaction revealed that transcripts of the endoplasmic reticulum stress related gene (CHOP/Gadd153/ddit3) were considerably induced at 24–48 h after methamphetamine administration (but only under apoptotic conditions), whereas dopamine slightly induced CHOP/Gadd153/ddit3 transcripts at an early stage. We also found that dopamine and methamphetamine weakly induced transcripts for the glucose-regulated protein 78 gene (Grp78/Bip) at the early stage. Analysis by immunofluorescence microscopy demonstrated an increase of CHOP/Gadd153/ddit3 and Grp78/Bip proteins at 24 h after methamphetamine administration. Treatment of CATH.a cells with methamphetamine caused a re-distribution of dopamine inside the cells, which mimicked the presynaptic activity of neurons with cell bodies located in the ventral tegmental area or the substantia nigra. Thus, we have demonstrated the existence of endoplasmic reticulum stress in a model of presynaptic dopaminergic neurons for the first time. Together with the recent evidence suggesting the importance of presynaptic toxicity, our findings provide new insights into the mechanisms of dopamine toxicity, which might represent one of the most important mechanisms of methamphetamine toxicity and addiction.
Collapse
|
11
|
Kaushal N, Seminerio MJ, Shaikh J, Medina MA, Mesangeau C, Wilson LL, McCurdy CR, Matsumoto RR. CM156, a high affinity sigma ligand, attenuates the stimulant and neurotoxic effects of methamphetamine in mice. Neuropharmacology 2011; 61:992-1000. [PMID: 21762711 DOI: 10.1016/j.neuropharm.2011.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 05/16/2011] [Accepted: 06/28/2011] [Indexed: 01/29/2023]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse. Low and high dose administration of METH leads to locomotor stimulation, and dopaminergic and serotonergic neurotoxicity, respectively. The behavioral stimulant and neurotoxic effects of METH can contribute to addiction and other neuropsychiatric disorders, thus necessitating the identification of potential pharmacotherapeutics against these effects produced by METH. METH binds to σ receptors at physiologically relevant concentrations. Also, σ receptors are present on and can modulate dopaminergic and serotonergic neurons. Therefore, σ receptors provide a viable target for the development of pharmacotherapeutics against the adverse effects of METH. In the present study, CM156, a σ receptor ligand with high affinity and selectivity for σ receptors over 80 other non-σ binding sites, was evaluated against METH-induced stimulant, hyperthermic, and neurotoxic effects. Pretreatment of male, Swiss Webster mice with CM156 dose dependently attenuated the locomotor stimulation, hyperthermia, striatal dopamine and serotonin depletions, and striatal dopamine and serotonin transporter reductions produced by METH, without significant effects of CM156 on its own. These results demonstrate the ability of a highly selective σ ligand to mitigate the effects of METH.
Collapse
Affiliation(s)
- Nidhi Kaushal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pubill D, Garcia-Ratés S, Camarasa J, Escubedo E. Neuronal Nicotinic Receptors as New Targets for Amphetamine-Induced Oxidative Damage and Neurotoxicity. Pharmaceuticals (Basel) 2011. [PMCID: PMC4055958 DOI: 10.3390/ph4060822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are widely abused drugs in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS) production seems to be one of the main causes. Recent research has demonstrated that blockade of α7 nicotinic acetylcholine receptors (nAChR) inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, α7 nAChR antagonists (methyllycaconitine and memantine) attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to α7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on α7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on α7 and heteromeric nAChR populations have been found.
Collapse
Affiliation(s)
- David Pubill
- Author to whom correspondence should be addressed; E-Mails: ; Tel.: +34-93-402-4531; Fax: +34-93-403-5982
| | | | | | | |
Collapse
|
13
|
Ali SF, Jiang H, Rongzhu L, Milatovic D, Aschner M. Methamphetamine Dysregulates Redox Status in Primary Rat Astrocyte and Mesencephalic Neuronal Cultures. AMERICAN JOURNAL OF NEUROPROTECTION AND NEUROREGENERATION 2009; 1:52-59. [PMID: 30627316 PMCID: PMC6322417 DOI: 10.1166/ajnn.2009.1004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Astrocytes provide structural, metabolic and trophic support to neurons. They are directly involved in the regulation of neuronal transmission and synaptic activity and respond to the synaptic release and remove neurotransmitters from the extracellular fluid. The dysfunction of astrocytes has been implicated in multiple neurotoxicities, including those associated with drugs of abuse. Methamphetamine (METH) has long-lasting neurotoxic effects, yet little is known about the mechanisms that govern METH-induced neural dysfunction, and especially the astrocytic control over the extracellular milieu. The purpose of this study was to clarify the response of astrocytes and neurons treated with METH and determine their relative sensitivity to this drug of abuse. Confluent rat primary astrocyte and mesencephalic neuron cultures were treated for 24 hrs with 0, 0.1, 0.5 or 1 mM METH, and the initial rate of glutamate and glutamine uptake was measured over a 5 min period. Additional studies examined the effect of METH (24 hr exposure at similar concentrations) on oxidative endpoints, namely glutathione (GSH) levels, lactate dehydrogenase (LDH) release and isoprostane (IsoP) levels, considered to be the most accurate biomarker of lipid peroxidation. There was no effect of METH on the rates of glutamate and glutamine uptake, and these were indistinguishable from controls. However, METH concentration-dependently affected astrocytic and neuronal GSH levels, leading to a significant decrease in redox potential at all of the tested concentrations (p<0.05). METH also significantly enhanced astrocytic LDH release at the 0.5 and 1.0 mM exposures. Consistent with the changes in IsoPs, METH (0.5 and 1.0 mM) also increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor with a key role in regulating oxidative stress responses. However, this Nrf2 increased in expression was observed only in astrocytes and no effect was noted in neurons. Taken together, this study establishes that METH affects both astrocyte and neuronal functions, and that oxidative stress is a proximate mechanism for METH's-induced neurotoxicity on both cell types. Furthermore, in response to oxidative stress astrocytes efficiently upregulated Nrf2 nuclear translocation and transcription. These effects were absent in neurons. Combined with their lower content of GSH, these characteristics may account for the greater sensitivity of neurons to METH-induce toxicity.
Collapse
Affiliation(s)
- S. F. Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, NCTR/FDA, Jefferson, AR
| | - H. Jiang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - L. Rongzhu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - D. Milatovic
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - M. Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
14
|
Yamamoto BK, Raudensky J. The role of oxidative stress, metabolic compromise, and inflammation in neuronal injury produced by amphetamine-related drugs of abuse. J Neuroimmune Pharmacol 2008; 3:203-17. [PMID: 18709468 DOI: 10.1007/s11481-008-9121-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 07/28/2008] [Indexed: 11/30/2022]
Abstract
Methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are amphetamine derivatives with high abuse liability. These amphetamine-related drugs of abuse mediate their effects through the acute activation of both dopaminergic and serotonergic neurons. Long-term abuse of these amphetamine derivatives, however, results in damage to both dopaminergic and serotonergic terminals throughout the brain. This toxicity is mediated in part by oxidative stress, metabolic compromise, and inflammation. The overall objective of this review is to highlight experimental evidence that METH and MDMA increase oxidative stress, produce mitochondrial dysfunction, and increase inflammation that converge and culminate in the long-term toxicity to dopaminergic and serotonergic neurons.
Collapse
Affiliation(s)
- Bryan K Yamamoto
- Department of Pharmacology and Experimental Therapeutics, Laboratory of Neurochemistry, Boston University School of Medicine, L-613, 715 Albany St., Boston, MA 02118, USA.
| | | |
Collapse
|
15
|
Eyerman DJ, Yamamoto BK. A rapid oxidation and persistent decrease in the vesicular monoamine transporter 2 after methamphetamine. J Neurochem 2007; 103:1219-27. [PMID: 17683483 DOI: 10.1111/j.1471-4159.2007.04837.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methamphetamine (METH) produces long-term decreases in markers of dopamine (DA) terminals in animals and humans. A decrease in the function of the vesicular monoamine transporter 2 (VMAT2) has been associated with damage to striatal DA terminals caused by METH; however, a possible mechanism for this decrease in VMAT2 function has not been defined. The current study showed that METH caused a rapid decrease to 68% of controls in VMAT2 protein immunoreactivity of the vesicular fraction from striatal synaptosomes within 1 h after a repeated high-dose administration regimen of METH. This decrease was associated with a 75% increase in nitrosylation of VMAT2 protein in the synaptosomal fraction as measured by nitrosocysteine immunoreactivity of VMAT2 protein. The rapid decreases in VMAT2 persisted when evaluated 7 days later and were illustrated by decreases in VMAT2 immunoreactivity and DA content of the vesicular fraction to 34% and 51% of control values, respectively. The decreases were blocked or attenuated by prior injections of the neuronal nitric oxide synthase inhibitor, S-methyl-l-thiocitrulline. These studies demonstrate that METH causes a rapid neuronal nitric oxide synthase-dependent oxidation of VMAT2 and long-term decreases in VMAT2 protein and function. The results also suggest that surviving DA terminals after METH exposure may have a compromised capacity to buffer cytosolic DA concentrations and DA-derived oxidative stress.
Collapse
Affiliation(s)
- David J Eyerman
- Laboratory of Neurochemistry, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
16
|
Anderson KL, Itzhak Y. Methamphetamine-induced selective dopaminergic neurotoxicity is accompanied by an increase in striatal nitrate in the mouse. Ann N Y Acad Sci 2007; 1074:225-33. [PMID: 17105919 DOI: 10.1196/annals.1369.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Exposure to high doses of methamphetamine (METH), a major drug of abuse, may cause neuronal damage. Previous studies have implicated the role of peroxynitrite, produced by nitric oxide (NO) and reactive oxygen species, in dopaminergic neurotoxicity produced by METH in mice. The present article was undertaken to investigate if a neurotoxic regimen of METH is associated with changes in tissue levels of nitrate and nitrite, which are the stable products of NO. Administration of METH (5 mg/kg x 3) to Swiss Webster mice resulted in marked depletion of dopamine (DA) and DA transporter (DAT) binding sites but no change in 5-hydroxytryptamine (5-HT) and 5-HT transporter (5-HTT) binding sites in the striatum, amygdala, frontal cortex, and hippocampus, suggesting that METH causes selective neurotoxicity to DA nerve terminals. The concentration of nitrate in the striatum was increased by about two-fold after METH administration; however, no changes in nitrate concentration were detected in other brain regions that endured dopaminergic neurotoxicity. These findings suggest that (a) a neurotoxic regimen of METH produces selective increase in NO in the striatum, which may generate toxic species such as peroxynitrite, and (b) toxins other than NO-related derivatives may mediate dopaminergic neurotoxicity in the amygdala and frontal cortex.
Collapse
Affiliation(s)
- Karen L Anderson
- Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Gautier Building 503, 1011 NW 15th Street, Miami, FL 33136, USA
| | | |
Collapse
|
17
|
Samantaray S, Ray SK, Ali SF, Banik NL. Calpain activation in apoptosis of motoneurons in cell culture models of experimental parkinsonism. Ann N Y Acad Sci 2007; 1074:349-56. [PMID: 17105932 DOI: 10.1196/annals.1369.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a movement disorder characterized by progressive degeneration of primarily the dopaminergic neurons in the substantia nigra (SN). The present study briefly describes our findings to support the hypothesis that there is a possibility of degeneration of spinal cord (SC) motoneurons in course of parkinsonism. In cell culture models of experimental parkinsonism, we examined the degeneration of ventral SC motoneuron cell line (VSC4.1) following exposure to two different toxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone. Our studies suggested calpain activation in the apoptosis of VSC4.1 motoneurons due to exposure to these parkinsonian toxins. Furthermore, our study showed the toxic effects of the dopaminergic toxin methamphetamine (METH) on VSC4.1 cells. The results strongly implicated a possible role for calpain in the mechanism of motoneuron apoptosis during parkinsonian degeneration, at large. Hence, we examined the neuroprotective efficacy of calpeptin, a specific inhibitor of calpain, in cell culture model of experimental parkinsonism.
Collapse
Affiliation(s)
- Supriti Samantaray
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
18
|
Kawasaki T, Ishihara K, Ago Y, Nakamura S, Itoh S, Baba A, Matsuda T. Protective effect of the radical scavenger edaravone against methamphetamine-induced dopaminergic neurotoxicity in mouse striatum. Eur J Pharmacol 2006; 542:92-9. [PMID: 16784740 DOI: 10.1016/j.ejphar.2006.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/09/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The administration of high doses of methamphetamine causes the degeneration of striatal dopaminergic fibers in the brains of rodents, and oxidative stress appears to be one of the main factors of neurotoxicity. This study examined whether edaravone, a radical scavenger, protects against methamphetamine-induced neurotoxicity in mice. Methamphetamine treatment (4 mg/kg, s.c. x 4 with 2 h intervals) showed striatal dopaminergic degeneration as observed by decreases in dopamine levels and tyrosine hydroxylase immunoreactivity in the striatum. The neurotoxicity was reduced by edaravone (3 mg/kg, i.p.), when it was administered four times 30 min before methamphetamine at 2 h intervals and additionally four times after methamphetamine at 12 h intervals. An immunohistochemical study showed that methamphetamine increased 3-nitrotyrosine immunoreactivity, an in vivo marker of peroxynitrite production, and activated microglia and astrocytes in the striatum. Edaravone blocked the increase in 3-nitrotyrosine immunoreactivity and the activation of astrocytes, but it did not affect the activation of microglia. Edaravone did not affect methamphetamine-induced hyperthermia and striatal dopamine release. These results suggest that edaravone protects against methamphetamine-induced neurotoxicity in the striatum by blocking peroxynitrite production. This study also suggests that methamphetamine activates microglia in a radical-independent mechanism.
Collapse
Affiliation(s)
- Toshiyuki Kawasaki
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Olmos A, Giner RM, Máñez S. Drugs modulating the biological effects of peroxynitrite and related nitrogen species. Med Res Rev 2006; 27:1-64. [PMID: 16752428 DOI: 10.1002/med.20065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The term "reactive nitrogen species" includes nitrogen monoxide, commonly called nitric oxide, and some other remarkable chemical entities (peroxynitrite, nitrosoperoxycarbonate, etc.) formed mostly from nitrogen monoxide itself in biological environments. Regardless of the specific mechanisms implicated in their effects, however, it is clear that an integrated pharmacological approach to peroxynitrite and related species is only just beginning to take shape. The array of affected chemical and pathological processes is extremely broad. One of the most conspicuous mechanisms observed thus far has been the scavenging of the peroxynitrite anion by molecules endowed with antioxidant activity. This discovery has in turn lent great significance to several naturally occurring and synthetic antioxidants, which usually protect not only against oxidative reactions, but also from nitrating ones, both in vitro and in vivo. This has proven to be beneficial in different tissues, especially within the central nervous system. Taking these results and those of other biochemical investigations into account, many research lines are currently in progress to establish the true potential of reactive nitrogen species deactivators in the therapy of neurological diseases, ischemia-reperfusion damage, renal failure, and lung injury, among others.
Collapse
Affiliation(s)
- Ana Olmos
- Departament de Farmacologia, Universitat de València, València, Spain
| | | | | |
Collapse
|
20
|
ZHU JPQ, XU W, ANGULO JA. Methamphetamine-induced cell death: selective vulnerability in neuronal subpopulations of the striatum in mice. Neuroscience 2006; 140:607-22. [PMID: 16650608 PMCID: PMC2882192 DOI: 10.1016/j.neuroscience.2006.02.055] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 02/02/2006] [Accepted: 02/08/2006] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH) is an illicit and potent psychostimulant, which acts as an indirect dopamine agonist. In the striatum, METH has been shown to cause long lasting neurotoxic damage to dopaminergic nerve terminals and recently, the degeneration and death of striatal cells. The present study was undertaken to identify the type of striatal neurons that undergo apoptosis after METH. Male mice received a single high dose of METH (30 mg/kg, i.p.) and were killed 24 h later. To demonstrate that METH induces apoptosis in neurons, we combined terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining with immunohistofluorescence for the neuronal marker neuron-specific nuclear protein (NeuN). Staining for TUNEL and NeuN was colocalized throughout the striatum. METH induces apoptosis in approximately 25% of striatal neurons. Cell counts of TUNEL-positive neurons in the dorsomedial, ventromedial, dorsolateral and ventrolateral quadrants of the striatum did not reveal anatomical preference. The type of striatal neuron undergoing cell death was determined by combining TUNEL with immunohistofluorescence for selective markers of striatal neurons: dopamine- and cAMP-regulated phosphoprotein, of apparent Mr 32,000, parvalbumin, choline acetyltransferase and somatostatin (SST). METH induces apoptosis in approximately 21% of dopamine- and cAMP-regulated phosphoprotein, of apparent Mr 32,000-positive neurons (projection neurons), 45% of GABA-parvalbumin-positive neurons in the dorsal striatum, and 29% of cholinergic neurons in the dorsal-medial striatum. In contrast, the SST-positive interneurons were refractory to METH-induced apoptosis. Finally, the amount of cell loss determined with Nissl staining correlated with the amount of TUNEL staining in the striatum of METH-treated animals. In conclusion, some of the striatal projection neurons and the GABA-parvalbumin and cholinergic interneurons were removed by apoptosis in the aftermath of METH. This imbalance in the populations of striatal neurons may lead to functional abnormalities in the output and processing of neural information in this part of the brain.
Collapse
Affiliation(s)
| | | | - J. A. ANGULO
- Corresponding author. Tel: +1-212-772-5232; fax: +1-212-772-5230. (J. A. Angulo)
| |
Collapse
|
21
|
Liang CS, Mao W, Iwai C, Fukuoka S, Stevens SY. Cardiac sympathetic neuroprotective effect of desipramine in tachycardia-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 2006; 290:H995-1003. [PMID: 16214845 DOI: 10.1152/ajpheart.00569.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac sympathetic transmitter stores are reduced in the failing heart. In this study, we proposed to investigate whether the reduction of cardiac sympathetic neurotransmitters was associated with increased interstitial norepinephrine (NE) and reactive oxygen species in congestive heart failure (CHF), using a microdialysis technique and salicylate to detect ·OH generation. Rabbits with and without rapid ventricular pacing (340 beats/min) were randomized to receive desipramine (10 mg/day) or placebo for 8 wk. Rapid pacing produced left ventricular dilation and systolic dysfunction. The failing myocardium also showed reduced tissue contents of NE and tyrosine hydroxylase protein and activity. In contrast, myocardial interstitial NE was increased in CHF (0.89 ± 0.11 ng/ml) compared with the sham-operated animals (0.26 ± 0.03 ng/ml). In addition, cardiac oxidative stress was increased in CHF animals as measured by myocardial interstitial ·OH radical, tissue oxidized glutathione, and oxidized mitochondrial DNA. Desipramine treatment produced significant NE uptake inhibition as evidence by an exaggerated pressor response and a greater increase of myocardial interstitial NE in response to intravenous NE infusion but no significant effects on cardiac function or hemodynamics in sham-operated or CHF animals. However, desipramine treatment attenuated the reductions of tissue NE and tyrosine hydroxylase protein and activity in CHF. Desipramine also prevented the reduction of tyrosine hydroxylase produced by NE in PC12 cells. Thus the reduction of cardiac sympathetic neurotransmitters is related to the increased interstitial NE and tissue oxidative stress in CHF. Also, normal neuronal uptake of NE is required for NE or its oxidized metabolites to exert their neurotoxic effects.
Collapse
Affiliation(s)
- Chang-Seng Liang
- Department of Medicine, Cardiology Division, University of Rochester Medical Center, Box 679, 601 Elmwood Ave., Rochester, New York 14642, USA.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Itzhak Y, Ali SF. Role of nitrergic system in behavioral and neurotoxic effects of amphetamine analogs. Pharmacol Ther 2006; 109:246-62. [PMID: 16154200 DOI: 10.1016/j.pharmthera.2005.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/02/2005] [Indexed: 12/22/2022]
Abstract
Several amphetamine analogs are potent psychostimulants and major drugs of abuse. In animal models, the psychomotor and reinforcing effects of amphetamine, methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy), and methylphenidate (MPD; Ritalin) are thought to be dependent on increased extracellular levels of dopamine (DA) in mesocorticolimbic and mesostriatal pathways. However, amphetamine analogs that increase primarily serotonergic transmission, such as p-chloroamphetamine (PCA) and fenfluramine (FEN), have no potential for abuse. High doses of METH, MDMA, PCA, and FEN produce depletions of dopaminergic and serotonergic nerve terminal markers and are considered as potential neurotoxicants. The first part of this review briefly summarizes the behavioral and neurotoxic effects of amphetamines that have a different spectrum of activity on dopaminergic and serotonergic systems. The second part discusses evidence supporting involvement of the nitrergic system in dopamine-mediated effects of amphetamines. The nitrergic system in this context corresponds to nitric oxide (NO) produced from neuronal nitric oxide synthase (nNOS) that has roles in nonsynaptic interneuronal communication and excitotoxic neuronal injury. Increasing evidence now suggests cross talk between dopamine, glutamate, and NO. Results from our laboratory indicate that dopamine-dependent psychomotor, reinforcing, and neurotoxic effects of amphetamines are diminished by pharmacological blockade of nNOS or deletion of the nNOS gene. These findings, and evidence supporting the role of NO in synaptic plasticity and neurotoxic insults, suggest that NO functions as a neuronal messenger and a neurotoxicant subsequent to exposure to amphetamine-like psychostimulants.
Collapse
Affiliation(s)
- Yossef Itzhak
- Department of Psychiatry and Behavioral Sciences, 1011 NW 15th Street Gautier 503, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
24
|
Theodore S, Cass WA, Maragos WF. Methamphetamine and human immunodeficiency virus protein Tat synergize to destroy dopaminergic terminals in the rat striatum. Neuroscience 2005; 137:925-35. [PMID: 16338084 DOI: 10.1016/j.neuroscience.2005.10.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 08/05/2005] [Accepted: 10/06/2005] [Indexed: 12/22/2022]
Abstract
Dysfunction of the dopaminergic system accompanied by loss of dopamine in the striatum is a major feature of human immunodeficiency virus-1-associated dementia. Previous studies have shown that human immunodeficiency virus-1-associated dementia patients with a history of drug abuse have rapid neurological progression, prominent psychomotor slowing, more severe encephalitis and more severe dendritic and neuronal damage in the frontal cortex compared with human immunodeficiency virus-1-associated dementia patients without a history of drug abuse. In a previous study, we showed that methamphetamine and human immunodeficiency virus-1 protein Tat interact to produce a synergistic decline in dopamine levels in the rat striatum. The present study was carried out to understand the underlying cause for the loss of dopamine. Male Sprague-Dawley rats were administered saline, methamphetamine, Tat or Tat followed by methamphetamine 24 h later. Two and seven days later the animals were killed and tissue sections from striatum were processed for silver staining to examine terminal degeneration while sections from striatum and substantia nigra were processed for tyrosine hydroxylase immunoreactivity. Striatal tissue was also analyzed by Western blotting for tyrosine hydroxylase protein levels. Compared with controls, methamphetamine+Tat-treated animals showed extensive silver staining and loss of tyrosine hydroxylase immunoreactivity and protein levels in the ipsilateral striatum. There was no apparent loss of tyrosine hydroxylase in the substantia nigra. Markers for oxidative stress were significantly increased in striatal synaptosomes from Tat+methamphetamine group compared with controls. The results indicate that methamphetamine and Tat interact to produce an enhanced injury to dopaminergic nerve terminals in the striatum with sparing of the substantia nigra by a mechanism involving oxidative stress. These findings suggest a possible mode of interaction between methamphetamine and human immunodeficiency virus-1 infection to produce enhanced dopaminergic neurotoxicity in human immunodeficiency virus-1 infected/methamphetamine-abusing patients.
Collapse
Affiliation(s)
- S Theodore
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
25
|
Santiago-López D, Vázquez-Román B, Pérez-de La Cruz V, Barrera D, Rembao D, Salinas-Lara C, Pedraza-Chaverrí J, Galván-Arzate S, Ali SF, Santamaría A. Peroxynitrite decomposition catalyst, iron metalloporphyrin, reduces quinolinate-induced neurotoxicity in rats. Synapse 2005; 54:233-8. [PMID: 15484207 DOI: 10.1002/syn.20084] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dario Santiago-López
- Laboratorio de Aminoácidos Excitadores/Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F. 14269, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
O'Dell SJ, Marshall JF. Neurotoxic regimens of methamphetamine induce persistent expression of phospho-c-Jun in somatosensory cortex and substantia nigra. Synapse 2005; 55:137-47. [PMID: 15549691 DOI: 10.1002/syn.20098] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Repeated systemic administration of moderate doses of methamphetamine (mAMPH) can result in neuronal damage. In addition to the prominent damage of forebrain dopamine and serotonin terminals, mAMPH also injures certain non-monoaminergic neuronal somata in the cerebral cortex. In previous studies, we have localized the damaged neurons to the "whisker barrels" in primary somatosensory cortex, reported the time course of their appearance, and found that sensory inputs from the mystacial vibrissae appear to play a crucial role in the mechanism of their injury by mAMPH. One common feature of these studies is that they used a single marker for neuronal injury, the fluorochrome dye Fluoro-Jade, which stains neurons injured by disparate mechanisms. Here we compare mAMPH-induced damage to somatosensory cortical neurons as assessed by Fluoro-Jade and immunohistochemical staining for phospho-c-Jun. A neurotoxic regimen of mAMPH induced phospho-c-Jun-positive neurons in both cortical whisker barrels and the substantia nigra. Neurons in the barrel cortex can be sufficiently damaged by mAMPH that they become Fluoro-Jade-positive within 2 hr after the final mAMPH injection. By contrast, phospho-c-Jun immunoreactivity does not appear until 12-24 hr after mAMPH. As reported in an earlier study, unilateral removal of vibrissae prior to mAMPH treatment affords partial protection from injury in the hemisphere contralateral to the vibrissotomy. The vibrissotomized animals show similar decreases in Fluoro-Jade staining and phospho-c-Jun immunoreactivity in the protected hemisphere. Since phospho-c-Jun indicates activation of Jun N-terminal kinase pathways, which have been implicated in apoptosis, we conclude that phospho-c-Jun provides a useful new marker for mAMPH-induced damage to cortical neurons.
Collapse
Affiliation(s)
- Steven J O'Dell
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
27
|
Pérez-De La Cruz V, González-Cortés C, Galván-Arzate S, Medina-Campos ON, Pérez-Severiano F, Ali SF, Pedraza-Chaverrí J, Santamaría A. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington’s disease in rats: Protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 2005; 135:463-74. [PMID: 16111817 DOI: 10.1016/j.neuroscience.2005.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/27/2005] [Accepted: 06/14/2005] [Indexed: 01/06/2023]
Abstract
Oxidative/nitrosative stress is involved in NMDA receptor-mediated excitotoxic brain damage produced by the glutamate analog quinolinic acid. The purpose of this work was to study a possible role of peroxynitrite, a reactive oxygen/nitrogen species, in the course of excitotoxic events evoked by quinolinic acid in the brain. The effects of Fe(TPPS) (5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III)), an iron porphyrinate and putative peroxynitrite decomposition catalyst, were tested on lipid peroxidation and mitochondrial function in brain synaptic vesicles exposed to quinolinic acid, as well as on peroxynitrite formation, nitric oxide synthase and superoxide dismutase activities, lipid peroxidation, caspase-3-like activation, DNA fragmentation, and GABA levels in striatal tissue from rats lesioned by quinolinic acid. Circling behavior was also evaluated. Increasing concentrations of Fe(TPPS) reduced lipid peroxidation and mitochondrial dysfunction induced by quinolinic acid (100 microM) in synaptic vesicles in a concentration-dependent manner (10-800 microM). In addition, Fe(TPPS) (10 mg/kg, i.p.) administered 2 h before the striatal lesions, prevented the formation of peroxynitrite, the increased nitric oxide synthase activity, the decreased superoxide dismutase activity and the increased lipid peroxidation induced by quinolinic acid (240 nmol/microl) 120 min after the toxin infusion. Enhanced caspase-3-like activity and DNA fragmentation were also reduced by the porphyrinate 24 h after the injection of the excitotoxin. Circling behavior from quinolinic acid-treated rats was abolished by Fe(TPPS) six days after quinolinic acid injection, while the striatal levels of GABA, measured one day later, were partially recovered. The protective effects that Fe(TPPS) exerted on quinolinic acid-induced lipid peroxidation and mitochondrial dysfunction in synaptic vesicles suggest a primary action of the porphyrinate as an antioxidant molecule. In vivo findings suggest that the early production of peroxynitrite, altogether with the enhanced risk of superoxide anion (O2*-) and nitric oxide formation (its precursors) induced by quinolinic acid in the striatum, are attenuated by Fe(TPPS) through a recovery in the basal activities of nitric oxide synthase and superoxide dismutase. The porphyrinate-mediated reduction in DNA fragmentation simultaneous to the decrease in caspase-3-like activation from quinolinic acid-lesioned rats suggests a prevention in the risk of peroxynitrite-mediated apoptotic events during the course of excitotoxic damage in the striatum. In summary, the protective effects that Fe(TPPS) exhibited both under in vitro and in vivo conditions support an active role of peroxynitrite and its precursors in the pattern of brain damage elicited by excitotoxic events in the experimental model of Huntington's disease. The neuroprotective mechanisms of Fe(TPPS) are discussed.
Collapse
Affiliation(s)
- V Pérez-De La Cruz
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F. 14269, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nangle MR, Cotter MA, Cameron NE. Effects of the peroxynitrite decomposition catalyst, FeTMPyP, on function of corpus cavernosum from diabetic mice. Eur J Pharmacol 2004; 502:143-8. [PMID: 15464100 DOI: 10.1016/j.ejphar.2004.08.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 08/11/2004] [Accepted: 08/18/2004] [Indexed: 11/27/2022]
Abstract
Peroxynitrite, the reaction product of nitric oxide and superoxide, may contribute to vascular tissue oxidant stress in diabetes mellitus. The aim was to establish whether the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron III (FeTMPyP) could improve nitric oxide-dependent autonomic nerve and microvascular penile function in the diabetic mouse. Diabetes was induced by streptozotocin; duration was 6 weeks. Intervention FeTMPyP treatment (25 mg kg(-1) day(-1)) was given for 2 weeks following 4 weeks untreated diabetes. Corpus cavernosum were isolated in organ baths for measurement of agonist or electrical stimulation-evoked nerve-mediated tension responses. Maximum nitrergic nerve-mediated relaxation of phenylephrine-precontracted cavernosum was approximately 35% reduced by diabetes; FeTMPyP treatment reversed this deficit by 45%. The concentration response-curve for nitric oxide-mediated endothelium-dependent relaxation to acetylcholine was attenuated by diabetes; FeTMPyP restored the deficit to the nondiabetic range. Sensitivity (EC50) to the nitric oxide donor, sodium nitroprusside, was reduced by approximately 0.56 log10 M units in diabetes; however, FeTMPyP treatment failed to significantly reverse this deficit. Therefore, the peroxynitrite mechanism contributes to nitric oxide-dependent diabetic autonomic neuropathy and vasculopathy and may be a potential target for clinical trials using peroxynitrite decomposition catalysts.
Collapse
Affiliation(s)
- Matthew R Nangle
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | |
Collapse
|
29
|
Sharma SS, Munusamy S, Thiyagarajan M, Kaul CL. Neuroprotective effect of peroxynitrite decomposition catalyst and poly(adenosine diphosphate—ribose) polymerase inhibitor alone and in combination in rats with focal ischemia. J Neurosurg 2004; 101:669-75. [PMID: 15481724 DOI: 10.3171/jns.2004.101.4.0669] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. The authors evaluated the neuroprotective effect of 5,10,15,20-tetrakis(N-methyl-4′-pyridyl)porphyrinatoiron(III) (FeTMPyP), a peroxynitrite decomposition catalyst, and 1,5-isoquinolinediol (ISO), a poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitor, alone and in combination in rats with focal cerebral ischemia induced by middle cerebral artery occlusion (MCAO).
Methods. Male Sprague—Dawley rats were subjected to 2 hours of MCAO followed by 22 hours of reperfusion. Cerebral infarction and neurological deficits were estimated after ischemia. Intraperitoneal injections of FeTMPyP (1 and 2 mg/kg) and ISO (0.05 and 0.1 mg/kg) were administered alone or in combination in ischemic animals. The PARP activity in vehicle- and drug-treated groups was estimated using anti—poly(ADP-ribose) antibody in immunofluorescence and immunoblotting studies.
Two hours of MCAO and 22 hours of reperfusion produced significant cerebral infarction and neurological deficits. Treatment with FeTMPyP (1 and 2 mg/kg) and ISO (0.05 and 0.1 mg/kg) produced a significant reduction in cerebral infarction and neurological deficits. Combination therapy (2 mg/kg FeTMPyP and 0.1 mg/kg ISO) enhanced the inhibition of ischemic volume (77.81 ± 0.86%) compared with monotherapies (FeTMPyP 54.07 ± 5.6% and ISO 53.06 ± 3.88%). Immunoblotting and immunofluorescence studies showed PARP activation after ischemia, which was reduced by drug treatment.
Conclusions. Neuroprotection observed with FeTMPyP and ISO alone and in combination may be attributed to inhibition of the peroxynitrite—PARP cascade of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Shyam S Sharma
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| | | | | | | |
Collapse
|
30
|
Thiyagarajan M, Kaul CL, Sharma SS. Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats. Br J Pharmacol 2004; 142:899-911. [PMID: 15197101 PMCID: PMC1575059 DOI: 10.1038/sj.bjp.0705811] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Free radicals have been implicated in cerebral ischemia reperfusion (IR) injury. Massive production of nitric oxide and superoxide results in continuous formation of peroxynitrite even several hours after IR insult. This can produce DNA strand nicks, hydroxylation and/or nitration of cytosolic components of neuron, leading to neuronal death. Peroxynitrite decomposition catalysts 5,10,15,20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron (III) (FeTMPyP) and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III) (FeTPPS) have been demonstrated to protect neurons in in vitro cultures; however, their neuroprotective efficacy in cerebral IR injury has not been explored. In the present study, we investigated the efficacy and the therapeutic time window of FeTMPyP and FeTPPS in focal cerebral ischemia (FCI). FCI was induced according to the middle cerebral artery occlusion (MCAO) method. After 2 h of MCAO and 70 h of reperfusion, the extent of neurological deficits, infarct and edema volume were measured in Sprague-Dawley rats. FeTMPyP and FeTPPS were administered at different time points 2, 6, 9 and 12 h post MCAO. FeTMPyP and FeTPPS (3 mg kg(-1), i.v.) treatment at 2 and 6 h post MCAO produced significant reduction in infarct volume, edema volume and neurological deficits. However, treatment at latter time points did not produce significant neuroprotection. Significant reduction of peroxynitrite in blood and nitrotyrosine in brain sections was observed on FeTMPyP and FeTPPS treatment. As delayed treatment of FeTMPyP and FeTPPS produced neuroprotection, we tested whether treatment had any influence over the apoptotic neuronal death. DNA fragmentation and in situ nick end-labeling assays showed that FeTMPyP and FeTPPS treatment reduced IR injury-induced DNA fragmentation. In conclusion, peroxynitrite decomposition catalysts (FeTMPyP and FeTPPS) produced prominent neuroprotection even if administered 6 h post MCAO and the neuroprotective effect is at least in part due to the reduction of peroxynitrite and apoptosis.
Collapse
Affiliation(s)
- Meenakshisundaram Thiyagarajan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali, Punjab, India
| | - Chaman Lal Kaul
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali, Punjab, India
| | - Shyam Sundar Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali, Punjab, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali, Punjab, India. E-mail: ,
| |
Collapse
|
31
|
Colado MI, O'Shea E, Green AR. Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology (Berl) 2004; 173:249-63. [PMID: 15083264 DOI: 10.1007/s00213-004-1788-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/22/2003] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES The majority of experimental and clinical studies on the pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) tend to focus on its action on 5-HT biochemistry and function. However, there is considerable evidence for MDMA having marked acute effects on dopamine release. Furthermore, while MDMA produces long-term effects on 5-HT neurones in most species examined, in mice its long-term effects appear to be restricted to the dopamine system. The objective of this review is to examine the actions of MDMA on dopamine biochemistry and function in mice, rats, guinea pigs, monkeys and humans. RESULTS AND DISCUSSION MDMA appears to produce a major release of dopamine from its nerve endings in all species investigated. This release plays a significant role in the expression of many of the behaviours that occur, including behavioural changes, alterations of the mental state in humans and the potentially life-threatening hyperthermia that can occur. While MDMA appears to be a selective 5-HT neurotoxin in most species examined (rats, guinea pigs and primates), it is a selective dopamine neurotoxin in mice. Selectivity may be a consequence of what neurotoxic metabolites are produced (which may depend on dosing schedules), their selectivity for monoamine nerve endings, or the endogenous free radical trapping ability of specific nerve endings, or both. We suggest more focus be made on the actions of MDMA on dopamine neurochemistry and function to provide a better understanding of the acute and long-term consequences of using this popular recreational drug.
Collapse
Affiliation(s)
- M Isabel Colado
- Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | | | | |
Collapse
|
32
|
Kuhn DM, Geddes TJ. Tetrahydrobiopterin prevents nitration of tyrosine hydroxylase by peroxynitrite and nitrogen dioxide. Mol Pharmacol 2003; 64:946-53. [PMID: 14500751 DOI: 10.1124/mol.64.4.946] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the synthesis of the neurotransmitter dopamine. TH is inhibited and nitrated at tyrosine residues in vitro by the reactive nitrogen species peroxynitrite and nitrogen dioxide (NO2) and in vivo by drugs that damage dopamine neurons. Tetrahydrobiopterin, which is the essential cofactor for TH and is concentrated in dopamine neurons, completely blocks nitration of tyrosine residues in TH caused by peroxynitrite or NO2. Various tetrahydro- and dihydro-analogs of tetrahydrobiopterin, including 6,7-dimethyl-tetrahydropterin, 6-methyl-tetrahydropterin, 6-hydroxymethyl-tetrahydropterin, tetrahydropterin, 7,8-dihydrobiopterin, 7,8-dihydroxanthopterin, and sepiapterin, also prevent nitration of tyrosines caused by the reactive nitrogen species. Biopterin and pterin, the fully oxidized forms of the pterin molecule, fail to block peroxynitrite- or NO2-induced nitration of TH. Reduced pterins prevent neither the inhibition of TH activity nor cysteine modification caused by peroxynitrite or NO2, despite blocking tyrosine nitration. However, dithiothreitol prevents and reverses these effects on TH of tetrahydrobiopterin and reactive nitrogen species. Using an enhanced green fluorescent protein-TH fusion construct as a real-time reporter of intracellular tyrosine nitration, tetrahydrobiopterin was found to prevent NO2-induced tyrosine nitration in intact cells but to leave TH activity inhibited. These results indicate that tetrahydrobiopterin prevents the tyrosine-nitrating properties of peroxynitrite and NO2. Tetrahydrobiopterin-derived radical species formed by reaction with reactive nitrogen species may account for inhibition of TH via mechanisms that do not involve tyrosine nitration.
Collapse
Affiliation(s)
- Donald M Kuhn
- Wayne State University School of Medicine, 2125 Scott Hall, 540 E. Canfield, Detroit, MI 48201, USA.
| | | |
Collapse
|
33
|
Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"). Pharmacol Rev 2003; 55:463-508. [PMID: 12869661 DOI: 10.1124/pr.55.3.3] [Citation(s) in RCA: 806] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The amphetamine derivative (+/-)-3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is a popular recreational drug among young people, particularly those involved in the dance culture. MDMA produces an acute, rapid enhancement in the release of both serotonin (5-HT) and dopamine from nerve endings in the brains of experimental animals. It produces increased locomotor activity and the serotonin behavioral syndrome in rats. Crucially, it produces dose-dependent hyperthermia that is potentially fatal in rodents, primates, and humans. Some recovery of 5-HT stores can be seen within 24 h of MDMA administration. However, cerebral 5-HT concentrations then decline due to specific neurotoxic damage to 5-HT nerve endings in the forebrain. This neurodegeneration, which has been demonstrated both biochemically and histologically, lasts for months in rats and years in primates. In general, other neurotransmitters appear unaffected. In contrast, MDMA produces a selective long-term loss of dopamine nerve endings in mice. Studies on the mechanisms involved in the neurotoxicity in both rats and mice implicate the formation of tissue-damaging free radicals. Increased free radical formation may result from the further breakdown of MDMA metabolic products. Evidence for the occurrence of MDMA-induced neurotoxic damage in human users remains equivocal, although some biochemical and functional data suggest that damage may occur in the brains of heavy users. There is also some evidence for long-term physiological and psychological changes occurring in human recreational users. However, such evidence is complicated by the lack of knowledge of doses ingested and the fact that many subjects studied are or have been poly-drug users.
Collapse
|
34
|
Park S, Geddes TJ, Javitch JA, Kuhn DM. Dopamine prevents nitration of tyrosine hydroxylase by peroxynitrite and nitrogen dioxide: is nitrotyrosine formation an early step in dopamine neuronal damage? J Biol Chem 2003; 278:28736-42. [PMID: 12771134 DOI: 10.1074/jbc.m304362200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxynitrite and nitrogen dioxide (NO2) are reactive nitrogen species that have been implicated as causal factors in neurodegenerative conditions. Peroxynitrite-induced nitration of tyrosine residues in tyrosine hydroxylase (TH) may even be one of the earliest biochemical events associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage to dopamine neurons. Exposure of TH to peroxynitrite or NO2 results in nitration of tyrosine residues and modification of cysteines in the enzyme as well as inactivation of catalytic activity. Dopamine (DA), its precursor 3,4-dihydroxyphenylalanine, and metabolite 3,4-dihydroxyphenylacetic acid completely block the nitrating effects of peroxynitrite and NO2 on TH but do not relieve the enzyme from inhibition. o-Quinones formed in the reaction of catechols with either peroxynitrite or NO2 react with cysteine residues in TH and inhibit catalytic function. Using direct, real-time evaluation of tyrosine nitration with a green fluorescent protein-TH fusion protein stably expressed in intact cells (also stably expressing the human DA transporter), DA was also found to prevent NO2-induced nitration while leaving TH activity inhibited. These results show that peroxynitrite and NO2 react with DA to form quinones at the expense of tyrosine nitration. Endogenous DA may therefore play an important role in determining how DA neurons are affected by reactive nitrogen species by shifting the balance of their effects away from tyrosine nitration and toward o-quinone formation.
Collapse
Affiliation(s)
- Samuel Park
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, 2125 Scott Hall, 540 E. Canfield, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
35
|
Sanchez V, Zeini M, Camarero J, O'Shea E, Bosca L, Green AR, Colado MI. The nNOS inhibitor, AR-R17477AR, prevents the loss of NF68 immunoreactivity induced by methamphetamine in the mouse striatum. J Neurochem 2003; 85:515-524. [PMID: 12675928 DOI: 10.1046/j.1471-4159.2003.01714.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study examined the time-course and regionally-selective changes in the levels of the neurofilament protein NF68 in the mouse brain induced by methamphetamine (METH). The ability of low ambient temperature, or of the specific neuronal nitric oxide synthase (nNOS) inhibitor AR-R17477AR, to protect against both long-term striatal NF68 and dopamine loss induced by METH (3 mg/kg, i.p.) was also studied. Seven days after METH administration (3, 6 and 9 mg/kg, i.p., three times at 3 h intervals), mice showed a reduction of about 40% in immunoreactivity for NF68 in the striatum. This effect was not produced in cortex after METH administration at the dose of 3 mg/kg. No difference from controls was observed when measurements were carried out 1 h and 24 h after the last METH injection at the dose of 3 mg/kg. The loss of NF68 immunoreactivity seems to be associated with the long-term dopamine depletion induced by METH, since no change in serotonin concentration is observed in either the striatum or cortex 7 days after dosing. Animals kept at a room temperature of 4 degrees C showed a loss of NF68 similar to those treated at 22 degrees C but an attenuation of dopamine depletion in the striatum. Pre-treatment with AR-R17477AR (5 mg/kg, s.c.) 30 min before each of the three METH (3 mg/kg, i.p.) injections provided complete protection against METH-induced loss of NF68 immunoreactivity and attenuated the decrease in striatal dopamine and HVA concentrations by about 50%. These data indicate that both the reduction of NF68 immunoreactivity and the loss of dopamine concentration are due to an oxidative stress process mediated by reactive nitrogen species, and are not due to changes in body temperature.
Collapse
Affiliation(s)
- Veronica Sanchez
- Departamento de Farmacologia and Facultad de Medicina Instituto de Bioquimica CSIC-UCM, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
36
|
Sriram K, Benkovic SA, Miller DB, O'Callaghan JP. Obesity exacerbates chemically induced neurodegeneration. Neuroscience 2003; 115:1335-46. [PMID: 12453501 DOI: 10.1016/s0306-4522(02)00306-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obesity is a major risk factor associated with a variety of human disorders. While its involvement in disorders such as diabetes, coronary heart disease and cancer have been well characterized, it remains to be determined if obesity has a detrimental effect on the nervous system. To address this issue we determined whether obesity serves as a risk factor for neurotoxicity. Model neurotoxicants, methamphetamine (METH) and kainic acid (KA), which are known to cause selective neurodegeneration of anatomically distinct areas of the brain, were evaluated using an animal model of obesity, the ob/ob mouse. Administration of METH and KA resulted in mortality among ob/ob mice but not among their lean littermates. While METH caused dopaminergic nerve terminal degeneration as indicated by decreased striatal dopamine (49%) and tyrosine hydroxylase protein (68%), as well as an increase in glial fibrillary acidic protein by 313% in the lean mice, these effects were exacerbated under the obese condition (96%, 86% and 602%, respectively). Similarly, a dosage of KA that did not increase glial fibrillary acidic protein in lean mice increased the hippocampal content of this protein (93%) in ob/ob mice. KA treatment resulted in extensive neuronal degeneration as determined by Fluoro-Jade B staining, decreased hippocampal microtubule-associated protein-2 immunoreactivity and increased reactive gliosis in ob/ob mice. The neurotoxic outcome in ob/ob mice remained exacerbated even when lean and ob/ob mice were dosed with METH or KA based only on a lean body mass. Administration of METH or KA resulted in up-regulation of the mitochondrial uncoupling protein-2 to a greater extent in the ob/ob mice, an effect known to reduce ATP yield and facilitate oxidative stress and mitochondrial dysfunction. These events may underlie the enhanced neurotoxicity seen in the obese mice. In summary, our results implicate obesity as a risk factor associated with chemical- and possibly disease-induced neurodegeneration.
Collapse
Affiliation(s)
- K Sriram
- HELD/TMBB, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Mailstop L-3014, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | | | | | | |
Collapse
|
37
|
Flora G, Lee YW, Nath A, Hennig B, Maragos W, Toborek M. Methamphetamine potentiates HIV-1 Tat protein-mediated activation of redox-sensitive pathways in discrete regions of the brain. Exp Neurol 2003; 179:60-70. [PMID: 12504868 DOI: 10.1006/exnr.2002.8048] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tat is a major regulatory protein encoded by human immunodeficiency viral genome, which has been implicated in the pathogenesis of HIV infection, including neurologic complications associated with this disease. In addition, drug abuse has been identified as a major risk factor of HIV infection. We hypothesize that abusive drugs, such as methamphetamine (METH), can directly influence specific molecular processes that can further contribute to toxic effects of Tat. To elucidate the molecular signaling pathways of Tat- and/or METH-induced toxicity, we investigated the effects of a single injection of Tat (25 microg/microl into the right hippocampus) and/or METH (10 mg/kg, intraperitoneally) on the generation of cellular oxidative stress, DNA-binding activity of specific redox-responsive transcription factors, and expression of inflammatory genes. Administration of Tat or METH resulted in stimulation of cellular oxidative stress and activation of redox-regulated transcription factors in the cortical, striatal, and hippocampal regions of the mouse brain. In addition, DNA-binding activities of NF-kappaB, AP-1, and CREB in the frontal cortex and hippocampus were more pronounced in mice injected with Tat plus METH compared to the effects of Tat or METH alone. Intercellular adhesion molecule-1 gene expression also was upregulated in a synergistic manner in cortical, striatal, and hippocampal regions in mice which received injections of Tat combined with METH compared to the effects of these agents alone. Moreover, synergistic effects of Tat plus METH on the tumor necrosis factor-alpha and interleukin-1beta mRNA levels were observed in the striatal region. These results indicate that Tat and METH can cross-amplify their cellular effects, leading to alterations of redox-regulated inflammatory pathways in the brain. Such synergistic proinflammatory stimulation may have significant implications in HIV-infected patients who abuse drugs.
Collapse
Affiliation(s)
- Govinder Flora
- Department of Surgery, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
38
|
Jara-Prado A, Ortega-Vazquez A, Martinez-Ruano L, Rios C, Santamaria A. Homocysteine-induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotox Res 2003; 5:237-43. [PMID: 12835115 DOI: 10.1007/bf03033381] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of homocysteine (HCY) on lipid peroxidation (LP), a current mechanism of oxidative neurotoxicity, was investigated in rat brain synaptosomes. LP was assessed by measuring the amount of thiobarbituric acid-reactive substances (TBARS) formed from synaptosomal fractions following HCY treatment. Increasing HCY concentrations (5-1000 micro M) enhanced the TBARS formation in brain synaptosomes in a concentration-dependent manner. When compared at equimolar concentrations (100 micro M), the oxidative potency of HCY was lower than that of the oxidant ferrous sulfate, similar to that produced by glutamate (Glu) and the mitochondrial toxin 3-nitropropionic acid, and higher than that of the Glu agonists, kainate and quinolinate. The N-methyl-D-aspartate receptor (NMDAr) antagonist dizocilpine (MK-801) completely blocked the HCY-induced LP at concentrations between 5 to 1000 micro M, whereas the well-known antioxidant N-acetylcysteine (NAC) was less effective, but still protective against the HCY oxidative toxicity at higher concentrations (400 and 1000 micro M). Three nitric oxide synthase (NOS) inhibitors, 7-nitroindazole (7-NI), Nomega-nitro-L-arginine (L-NARG) and Nomega-nitro-L-arginine methyl ester (L-NAME), were also tested on HCY-induced LP at increasing concentrations. Both nonspecific NOS inhibitors (L-NARG and L-NAME) decreased more effectively the HCY-induced LP than did the selective neuronal NOS inhibitor, 7-NI. These results show that submillimolar concentrations of HCY can induce oxidative injury to nerve terminals, and this effect involves NMDAr stimulation, NOS activation, and associated free radicals formation.
Collapse
Affiliation(s)
- Aurelio Jara-Prado
- Departamento de Genetica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A. Insurgentes Sur # 3877, México D.F., 14269, México
| | | | | | | | | |
Collapse
|
39
|
Abstract
Oxidative stress is a ubiquitously observed hallmark of neurodegenerative disorders. Neuronal cell dysfunction and cell death due to oxidative stress may causally contribute to the pathogenesis of progressive neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, as well as acute syndromes of neurodegeneration, such as ischaemic and haemorrhagic stroke. Neuroprotective antioxidants are considered a promising approach to slowing the progression and limiting the extent of neuronal cell loss in these disorders. The clinical evidence demonstrating that antioxidant compounds can act as protective drugs in neurodegenerative disease, however, is still relatively scarce. In the following review, the available data from clinical, animal and cell biological studies regarding the role of antioxidant neuroprotection in progressive neurodegenerative disease will be summarised, focussing particularly on Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. The general complications in developing potent neuroprotective antioxidant drugs directed against these long-term degenerative conditions will also be discussed. The major challenges for drug development are the slow kinetics of disease progression, the unsolved mechanistic questions concerning the final causalities of cell death, the necessity to attain an effective permeation of the blood-brain barrier and the need to reduce the high concentrations currently required to evoke protective effects in cellular and animal model systems. Finally, an outlook as to which direction antioxidant drug development and clinical practice may be leading to in the near future will be provided.
Collapse
Affiliation(s)
- Bernd Moosmann
- Center for Neuroscience and Aging, The Burnham Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
40
|
Lee YW, Son KW, Flora G, Hennig B, Nath A, Toborek M. Methamphetamine activates DNA binding of specific redox-responsive transcription factors in mouse brain. J Neurosci Res 2002; 70:82-9. [PMID: 12237866 DOI: 10.1002/jnr.10370] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cellular oxidative stress and alterations in redox status can be implicated in methamphetamine (METH)-induced neurotoxicity. To elucidate the molecular signaling pathways of METH-induced neurotoxicity, we investigated the effects of a single intraperitoneal injection of METH (1.0, 10, or 20 mg/kg) on DNA-binding activity of specific redox-sensitive transcription factors in mouse brain. Transcription factors studied included activator protein-1 (AP-1), nuclear factor-kappaB (NF-kappaB), cAMP-responsive element-binding protein (CREB), SP-1, and signal transducers and activators of transcription (STAT1 and STAT3). Significant and dose-dependent inductions of AP-1 and CREB DNA-binding activities were observed in four different regions (striatum, frontal cortex, hippocampus, and cerebellum) isolated from the brains of mice injected with METH. However, injections with METH did not affect DNA binding activities of NF-kappaB, SP-1, STAT1, and STAT3. These results suggest that METH-induced oxidative stress may trigger the molecular signaling pathways via specific and selective activation of AP-1 and CREB.
Collapse
Affiliation(s)
- Yong Woo Lee
- Division of Neurosurgery, Department of Surgery, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
41
|
Martín-Romero FJ, Gutiérrez-Martín Y, Henao F, Gutiérrez-Merino C. The NADH oxidase activity of the plasma membrane of synaptosomes is a major source of superoxide anion and is inhibited by peroxynitrite. J Neurochem 2002; 82:604-14. [PMID: 12153484 DOI: 10.1046/j.1471-4159.2002.00983.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plasma membrane vesicles from adult rat brain synaptosomes (PMV) have an ascorbate-dependent NADH oxidase activity of 35-40 nmol/min/(mg protein) at saturation by NADH. NADPH is a much less efficient substrate of this oxidase activity, with a Vmax 10-fold lower than that measured for NADH. Ascorbate-dependent NADH oxidase activity accounts for more than 90% of the total NADH oxidase activity of PMV and, in the absence of NADH and in the presence of 1 mm ascorbate, PMV produce ascorbate free radical (AFR) at a rate of 4.0 +/- 0.5 nmol AFR/min/(mg protein). NADH-dependent *O2- production by PMV occurs with a rate of 35 +/- 3 nmol/min/(mg protein), and is a coreaction product of the NADH oxidase activity, because: (i) it is inhibited by more than 90% by addition of ascorbate oxidase, (ii) it is inhibited by 1 micro g/mL wheat germ agglutinin (a potent inhibitor of the plasma membrane AFR reductase activity), and (iii) the KM(NADH) of the plasma membrane NADH oxidase activity and of NADH-dependent *O2- production are identical. Treatment of PMV with repetitive micromolar ONOO- pulses produced almost complete inhibition of the ascorbate-dependent NADH oxidase and *O2- production, and at 50% inhibition addition of coenzyme Q10 almost completely reverts this inhibition. Cytochrome c stimulated 2.5-fold the plasma membrane NADH oxidase, and pretreatment of PMV with repetitive 10 microm ONOO- pulses lowers the K0.5 for cytochrome c stimulation from 6 +/- 1 (control) to 1.5 +/- 0.5 microm. Thus, the ascorbate-dependent plasma membrane NADH oxidase activity can act as a source of neuronal.O2-, which is up-regulated by cytosolic cytochrome c and down-regulated under chronic oxidative stress conditions producing ONOO-.
Collapse
Affiliation(s)
- Francisco Javier Martín-Romero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias and Escuela de Ingenierías Agrarias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
42
|
Dryhurst G. Are dopamine, norepinephrine, and serotonin precursors of biologically reactive intermediates involved in the pathogenesis of neurodegenerative brain disorders? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:373-96. [PMID: 11764972 DOI: 10.1007/978-1-4615-0667-6_61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- G Dryhurst
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| |
Collapse
|
43
|
Peroxynitrite inactivates the human dopamine transporter by modification of cysteine 342: potential mechanism of neurotoxicity in dopamine neurons. J Neurosci 2002. [PMID: 12040046 DOI: 10.1523/jneurosci.22-11-04399.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peroxynitrite (ONOO(-)) has been implicated as a causative factor in dopamine neuronal damage resulting from exposure to methamphetamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and it may be involved in the etiology of Parkinson's Disease. ONOO(-) causes a concentration-dependent and irreversible reduction in dopamine uptake by EM4 cells stably expressing the human dopamine transporter (hDAT). The effect of ONOO(-) is manifested as a reduction in V(max). Cysteine, dithiothreitol, glutathione, and N-acetyl-cysteine, reagents that interact directly with ONOO(-), prevent this inhibition, whereas a scavenger of hydroxyl radical (dimethylsulfoxide), hydrogen peroxide (catalase), and superoxide (superoxide dismutase) did not. Dopamine in the extracellular medium protects the hDAT from ONOO(-), whereas intracellular dopamine does not. Parachloromercuribenzoic acid and 2-aminoethyl methanethiosulfonate (MTSEA), which share with ONOO(-) the ability to modify cysteine sulfhydryls, also inhibit hDAT function. ONOO(-) treatment lowers cysteine-specific labeling of the hDAT by MTSEA-biotin, suggesting that ONOO(-) reacts with one or more cysteines in hDAT. A mutant of hDAT (X7C) in which all intracellular and extracellular loop cysteines were mutated was resistant to inhibition by ONOO(-). Sensitivity to ONOO(-) was restored in mutants of hDAT in which reduced cysteines were present only in the first (C135) and third (C342) intracellular loops (CD-DAT), or in which C342 alone had been reintroduced into X7C (X7C-M342C). These results indicate that the hDAT is inhibited by ONOO(-) through oxidation of cysteine 342. Our studies also substantiate the possibility that drugs known to decrease DAT function in vivo (e.g., methamphetamine and MPTP) may exert their effects through ONOO(-)-mediated oxidative stress.
Collapse
|
44
|
Kuhn DM, Geddes TJ. Reduced nicotinamide nucleotides prevent nitration of tyrosine hydroxylase by peroxynitrite. Brain Res 2002; 933:85-9. [PMID: 11929639 DOI: 10.1016/s0006-8993(02)02307-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine (DA). TH activity is inhibited by peroxynitrite (ONOO(-)) by a mechanism that involves nitration of tyrosine residues and oxidation of cysteine residues in the enzyme. Reduced forms of the nicotinamide adenine dinucleotide cofactors, NADH and NADPH, protect TH from inhibition by ONOO(-) and prevent nitration of tyrosine residues. NAD, the oxidized form of the cofactors, neither protects TH from ONOO(-)-induced inhibition nor prevents the nitration of tyrosine residues in the enzyme. These results suggest that the redox status of the nicotinamide nucleotide cofactors could influence the ability of ONOO(-) to modify proteins that are important to the function of DA neurons.
Collapse
Affiliation(s)
- Donald M Kuhn
- Department of Psychiatry and Behavioral Neurosciences, Detroit, MI 48201, USA.
| | | |
Collapse
|
45
|
Colado MI, Camarero J, Mechan AO, Sanchez V, Esteban B, Elliott JM, Green AR. A study of the mechanisms involved in the neurotoxic action of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') on dopamine neurones in mouse brain. Br J Pharmacol 2001; 134:1711-23. [PMID: 11739248 PMCID: PMC1572911 DOI: 10.1038/sj.bjp.0704435] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Administration of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') to mice produces acute hyperthermia and long-term degeneration of striatal dopamine nerve terminals. Attenuation of the hyperthermia decreases the neurodegeneration. We have investigated the mechanisms involved in producing the neurotoxic loss of striatal dopamine. 2. MDMA produced a dose-dependent loss in striatal dopamine concentration 7 days later with 3 doses of 25 mg kg(-1) (3 h apart) producing a 70% loss. 3. Pretreatment 30 min before each MDMA dose with either of the N-methyl-D-aspartate antagonists AR-R15896AR (20, 5, 5 mg kg(-1)) or MK-801 (0.5 mg kg(-1)x3) failed to provide neuroprotection. 4. Pretreatment with clomethiazole (50 mg kg(-1)x3) was similarly ineffective in protecting against MDMA-induced dopamine loss. 5. The free radical trapping compound PBN (150 mg kg(-1)x3) was neuroprotective, but it proved impossible to separate neuroprotection from a hypothermic effect on body temperature. 6. Pretreatment with the nitric oxide synthase (NOS) inhibitor 7-NI (50 mg kg(-1)x3) produced neuroprotection, but also significant hypothermia. Two other NOS inhibitors, S-methyl-L-thiocitrulline (10 mg kg(-1)x3) and AR-R17477AR (5 mg kg(-1)x3), provided significant neuroprotection and had little effect on MDMA-induced hyperthermia. 7. MDMA (20 mg kg(-1)) increased 2,3-dihydroxybenzoic acid formation from salicylic acid perfused through a microdialysis tube implanted in the striatum, indicating increased free radical formation. This increase was prevented by AR-R17477AR administration. Since AR-R17477AR was also found to have no radical trapping activity this result suggests that MDMA-induced neurotoxicity results from MDMA or dopamine metabolites producing radicals that combine with NO to form tissue-damaging peroxynitrites.
Collapse
Affiliation(s)
- M Isabel Colado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
| | - Jorge Camarero
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
| | - Annis O Mechan
- Pharmacology Research Group, School of Pharmacy, De Montfort University, Leicester LE1 9RH
| | - Veronica Sanchez
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
| | - Blanca Esteban
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
- Pharmacology Research Group, School of Pharmacy, De Montfort University, Leicester LE1 9RH
| | - J Martin Elliott
- Pharmacology Research Group, School of Pharmacy, De Montfort University, Leicester LE1 9RH
| | - A Richard Green
- Pharmacology Research Group, School of Pharmacy, De Montfort University, Leicester LE1 9RH
- AstraZeneca R&D Charnwood, Bakewell Road, Loughborough LE11 5RH
- Author for correspondence:
| |
Collapse
|
46
|
Thiriet N, Zwiller J, Ali SF. Induction of the immediate early genes egr-1 and c-fos by methamphetamine in mouse brain. Brain Res 2001; 919:31-40. [PMID: 11689160 DOI: 10.1016/s0006-8993(01)02991-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Methamphetamine (METH) is one of the most commonly abused psychostimulant, and is known to induce dopaminergic neurotoxicity by generating oxidative stress and free radicals. In the present study we investigated the effects of METH on egr-1 and c-fos immediate early gene induction in different regions of mouse brain, at different doses and different time courses. We also measured the tissue levels of monoamines in order to correlate their changes with gene expression. A single injection of METH (40 mg/kg) significantly increased egr-1 and c-fos mRNA expression within 30 min in frontal cortex, nucleus accumbens, caudate putamen, septum and CA1 region of hippocampus. Time course studies showed that in most cases, both genes were expressed within 30 min and decreased after 60 min. METH produced a significant decrease in striatal dopamine level, reaching a very low level after 24 h. Striatal serotonin level significantly increased and returned to control levels after 2 h. These data show that METH induced egr-1 and c-fos mRNA expression in selective brain areas, which correlated with an alteration in monoamines.
Collapse
Affiliation(s)
- N Thiriet
- INSERM U338, Centre de Neurochimie, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | | | | |
Collapse
|
47
|
Lee YW, Hennig B, Yao J, Toborek M. Methamphetamine induces AP-1 and NF-kappaB binding and transactivation in human brain endothelial cells. J Neurosci Res 2001; 66:583-91. [PMID: 11746378 DOI: 10.1002/jnr.1248] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cellular and molecular mechanisms of methamphetamine (METH)-induced neurotoxicity may involve alterations of cellular redox status and induction of inflammatory genes in endothelial cells. To study these hypotheses, molecular signaling pathways of METH-induced inflammatory responses via activation of redox-sensitive transcription factors were investigated in human brain microvascular endothelial cells (HBMEC). A dose-dependent depletion of total glutathione levels was detected in HBMEC exposed to METH. In addition, electrophoretic mobility shift assay (EMSA) showed significant increases in DNA binding activities of redox-responsive transcription factors, AP-1 and NF-kappaB, in HBMEC treated with METH. METH-mediated AP-1 or NF-kappaB activation was accompanied by induction of transactivation of AP-1 or NF-kappaB, as measured by dual luciferase assay using specific reporter plasmids. Because NF-kappaB and AP-1 are known to regulate expression of inflammatory genes, expression of the gene encoding for tumor necrosis factor-alpha (TNF-alpha) was also studied in METH-treated HBMEC. A dose-dependent overexpression of the TNF-alpha gene was observed in HBMEC treated with METH. The importance of AP-1 and NF-kappaB in METH-induced TNF-alpha gene was confirmed in functional promoter studies using constructs of the TNF-alpha promoter with mutated AP-1 or NF-kappaB sites. These results indicate that METH-induced disturbances in cellular redox status and activation of AP-1 and NF-kappaB can play critical roles in the signaling pathways leading to upregulation of inflammatory genes in human brain endothelial cells.
Collapse
MESH Headings
- Amphetamine-Related Disorders/genetics
- Amphetamine-Related Disorders/metabolism
- Amphetamine-Related Disorders/physiopathology
- Binding Sites/drug effects
- Binding Sites/physiology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/physiology
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Encephalitis/chemically induced
- Encephalitis/genetics
- Encephalitis/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Genes, Reporter/drug effects
- Genes, Reporter/physiology
- Glutathione/drug effects
- Glutathione/metabolism
- Humans
- Methamphetamine/toxicity
- Microcirculation/drug effects
- Microcirculation/metabolism
- Microcirculation/physiopathology
- NF-kappa B/drug effects
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oxidation-Reduction/drug effects
- Oxidative Stress/drug effects
- Oxidative Stress/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription Factor AP-1/drug effects
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transfection
- Tumor Necrosis Factor-alpha/drug effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Y W Lee
- Department of Surgery, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
48
|
Gluck MR, Moy LY, Jayatilleke E, Hogan KA, Manzino L, Sonsalla PK. Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. J Neurochem 2001; 79:152-60. [PMID: 11595767 DOI: 10.1046/j.1471-4159.2001.00549.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neurotoxic actions of methamphetamine (METH) may be mediated in part by reactive oxygen species (ROS). Methamphetamine administration leads to increases in ROS formation and lipid peroxidation in rodent brain; however, the extent to which proteins may be modified or whether affected brain regions exhibit similar elevations of lipid and protein oxidative markers have not been investigated. In this study we measured concentrations of TBARs, protein carbonyls and monoamines in various mouse brain regions at 4 h and 24 h after the last of four injections of METH (10 mg/kg/injection q 2 h). Substantial increases in TBARs and protein carbonyls were observed in the striatum and hippocampus but not the frontal cortex nor the cerebellum of METH-treated mice. Furthermore, lipid and protein oxidative markers were highly correlated within each brain region. In the hippocampus and striatum elevations in oxidative markers were significantly greater at 24 h than at 4 h. Monoamine levels were maximally reduced within 4 h (striatal dopamine [DA] by 95% and serotonin [5-HT] in striatum, cortex and hippocampus by 60-90%). These decrements persisted for 7 days after METH, indicating effects reflective of nerve terminal damage. Interestingly, NE was only transiently depleted in the brain regions investigated (hippocampus and cortex), suggesting a pharmacological and non-toxic action of METH on the noradrenergic nerve terminals. This study provides the first evidence for concurrent formation of lipid and protein markers of oxidative stress in several brain regions of mice that are severely affected by large neurotoxic doses of METH. Moreover, the differential time course for monoamine depletion and the elevations in oxidative markers indicate that the source of oxidative stress is not derived directly from DA or 5HT oxidation.
Collapse
Affiliation(s)
- M R Gluck
- Department of Neurology, Bronx Veterans Medical CenterBronx, New York, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Imam SZ, Ali SF. Aging increases the susceptiblity to methamphetamine-induced dopaminergic neurotoxicity in rats: correlation with peroxynitrite production and hyperthermia. J Neurochem 2001; 78:952-9. [PMID: 11553669 DOI: 10.1046/j.1471-4159.2001.00477.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methamphetamine (METH) produces dopaminergic neurotoxicity by the production of reactive oxygen (ROS) and nitrogen (RNS) species. The role of free radicals has also been implicated in the process of aging. The present study was designed to evaluate whether METH-induced dopaminergic neurotoxicity and hyperthermia is a result of peroxynitrite production and if these effects correlate with age. One-, six- and 12-month-old male rats (n = 8) were administered a single dose of METH (0, 5, 10, 20, and 40 mg/kg, intraperitoneally). The formation of 3-nitrotyrosine (3-NT) as a marker of peroxynitrite production as well as dopamine and its metabolites DOPAC and HVA were measured in the striatum 4-h after METH-administration. Rectal temperature was monitored every 30 min after METH administration until 4 h. At 40 mg/kg METH, a 100% mortality in 12-month-old animals was observed, whereas no deaths occurred in 1- or 6-month-old rats. An age-dependent increase in hyperthermia was observed after METH-administration. A similar pattern of dose-dependent increase in the formation of 3-NT and in the depletion of dopamine and its metabolites with age was observed in the striatum. Furthermore, no effect was observed at 5 mg/kg METH in 1-month-old animals, whereas the effect was significant in 6- and 12-month-old animals. These data suggest that aging increases the susceptibility of the animals toward METH-induced peroxynitrite generation and striatal dopaminergic neurotoxicity.
Collapse
Affiliation(s)
- S Z Imam
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research/US FDA, Jefferson, Arkansas, USA
| | | |
Collapse
|
50
|
Imam SZ, Itzhak Y, Cadet JL, Islam F, Slikker W, Ali SF. Methamphetamine-induced alteration in striatal p53 and bcl-2 expressions in mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 91:174-8. [PMID: 11457507 DOI: 10.1016/s0169-328x(01)00139-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Methamphetamine (METH)-induced alterations in the expression of p53 and bcl-2 protein were studied in the striatum of wild type, neuronal nitric oxide synthase knockout (nNOS -/-) and copper zinc superoxide dismutase overexpressed (SOD-Tg) mice. METH treatment up-regulated p53 and down-regulated bcl-2 expression in the striatum of wild type mice. No significant alterations were observed in the expression of these proteins in the nNOS -/- or SOD-Tg mice. These data suggest that METH might cause its neurotoxic effects via the production of free radicals and secondary perturbations in the expression of genes known to be involved in apoptosis and cell death machinery.
Collapse
Affiliation(s)
- S Z Imam
- Neurochemistry Laboratory, Division of Neurotoxicology, HFT-132, National Center for Toxicological Research/FDA, 3900 NCTR Rd., Jefferson, AR 72079-9502, USA
| | | | | | | | | | | |
Collapse
|