1
|
Lim D, Matute C, Cavaliere F, Verkhratsky A. Neuroglia in neurodegeneration: Alzheimer, Parkinson, and Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:9-44. [PMID: 40148060 DOI: 10.1016/b978-0-443-19102-2.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The conspicuous rise of chronic neurodegenerative diseases, including Alzheimer (AD), Parkinson (PD), and Huntington (HD) diseases, is currently without disease-modifying therapies and accompanied by an excessive rate of unsuccessful clinical trials. This reflects a profound lack of understanding of the pathogenesis of these diseases, indicating that the current paradigms guiding disease modeling and drug development are in need of reconsideration. The role of neuroglia, namely astrocytes, microglial cells, and oligodendrocytes, in the pathogenesis of neurodegenerative diseases emerged during the last decades. This chapter provides the state-of-the-art update on the changes of astrocytes, microglial cells, and oligodendrocytes in AD, PD, and HD. A growing body of evidence suggests that homeostatic and defensive functions of glial cells are compromised at different disease stages, leading to increased susceptibility of neurons to noxious stimuli, eventually resulting in their malfunction and degeneration. Investments are needed in the generation of novel preclinical models suitable for studying glial pathology, in "humanizing" research, and in-depth investigation of glial cell alterations to slow down and, possibly, halt and prevent the rise of neurodegenerative disease. Targeting glial cells opens new therapeutic avenues to treat AD, PD, and HD.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain
| | - Fabio Cavaliere
- The Basque Biomodels Platform for Human Research (BBioH), Achucarro Basque Center for Neuroscience & Fundación Biofisica Bizkaia, Leioa, Spain
| | - Alexei Verkhratsky
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
De Plano LM, Saitta A, Oddo S, Caccamo A. Navigating Alzheimer's Disease Mouse Models: Age-Related Pathology and Cognitive Deficits. Biomolecules 2024; 14:1405. [PMID: 39595581 PMCID: PMC11592094 DOI: 10.3390/biom14111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Since the mid-1990s, scientists have been generating mouse models of Alzheimer's disease to elucidate key mechanisms underlying the onset and progression of the disease and aid in developing potential therapeutic approaches. The first successful mouse model of Alzheimer's disease was reported in 1995 with the generation of the PDAPP mice, which were obtained by the overexpression of gene coding for the amyloid precursor protein (APP). Since then, scientists have used different approaches to develop other APP overexpression mice, mice overexpressing tau, or a combination of them. More recently, Saito and colleagues generated a mouse model by knocking in mutations associated with familial Alzheimer's disease into the APP gene. In this review, we will describe the most used animal models and provide a practical guide for the disease's age of onset and progression. We believe that this guide will be valuable for the planning and experimental design of studies utilizing these mouse models.
Collapse
Affiliation(s)
| | | | | | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (L.M.D.P.); (A.S.); (S.O.)
| |
Collapse
|
3
|
Lin N, Gao XY, Li X, Chu WM. Involvement of ubiquitination in Alzheimer's disease. Front Neurol 2024; 15:1459678. [PMID: 39301473 PMCID: PMC11412110 DOI: 10.3389/fneur.2024.1459678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) consist of senile plaques, which are formed by extracellular β-amyloid (Aβ) deposition, and neurofibrillary tangles, which are formed by the hyperphosphorylation of intra-neuronal tau proteins. With the increase in clinical studies, the in vivo imbalance of iron homeostasis and the dysfunction of synaptic plasticity have been confirmed to be involved in AD pathogenesis. All of these mechanisms are constituted by the abnormal accumulation of misfolded or conformationally altered protein aggregates, which in turn drive AD progression. Proteostatic imbalance has emerged as a key mechanism in the pathogenesis of AD. Ubiquitination modification is a major pathway for maintaining protein homeostasis, and protein degradation is primarily carried out by the ubiquitin-proteasome system (UPS). In this review, we provide an overview of the ubiquitination modification processes and related protein ubiquitination degradation pathways in AD, focusing on the microtubule-associated protein Tau, amyloid precursor protein (APP), divalent metal transporter protein 1 (DMT1), and α-amino-3-hyroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. We also discuss recent advances in ubiquitination-based targeted therapy for AD, with the aim of contributing new ideas to the development of novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Nan Lin
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xi-Yan Gao
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiao Li
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wen-Ming Chu
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Heit BS, Chu A, McRay A, Richmond JE, Heckman CJ, Larson J. Interference with glutamate antiporter system x c - enables post-hypoxic long-term potentiation in hippocampus. Exp Physiol 2024; 109:1572-1592. [PMID: 39153228 PMCID: PMC11363115 DOI: 10.1113/ep092045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/19/2024]
Abstract
Our group previously showed that genetic or pharmacological inhibition of the cystine/glutamate antiporter, system xc -, mitigates excitotoxicity after anoxia by increasing latency to anoxic depolarization, thus attenuating the ischaemic core. Hypoxia, however, which prevails in the ischaemic penumbra, is a condition where neurotransmission is altered, but excitotoxicity is not triggered. The present study employed mild hypoxia to further probe ischaemia-induced changes in neuronal responsiveness from wild-type and xCT KO (xCT-/-) mice. Synaptic transmission was monitored in hippocampal slices from both genotypes before, during and after a hypoxic episode. Although wild-type and xCT-/- slices showed equal suppression of synaptic transmission during hypoxia, mutant slices exhibited a persistent potentiation upon re-oxygenation, an effect we termed 'post-hypoxic long-term potentiation (LTP)'. Blocking synaptic suppression during hypoxia by antagonizing adenosine A1 receptors did not preclude post-hypoxic LTP. Further examination of the induction and expression mechanisms of this plasticity revealed that post-hypoxic LTP was driven by NMDA receptor activation, as well as increased calcium influx, with no change in paired-pulse facilitation. Hence, the observed phenomenon engaged similar mechanisms as classical LTP. This was a remarkable finding as theta-burst stimulation-induced LTP was equivalent between genotypes. Importantly, post-hypoxic LTP was generated in wild-type slices pretreated with system xc - inhibitor, S-4-carboxyphenylglycine, thereby confirming the antiporter's role in this phenomenon. Collectively, these data indicate that system xc - interference enables neuroplasticity in response to mild hypoxia, and, together with its regulation of cellular damage in the ischaemic core, suggest a role for the antiporter in post-ischaemic recovery of the penumbra.
Collapse
Affiliation(s)
- Bradley S. Heit
- Department of Neuroscience and Department of Biomedical EngineeringNorthwestern UniversityChicagoIllinoisUSA
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Alex Chu
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Alyssa McRay
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Janet E. Richmond
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Charles J. Heckman
- Department of Neuroscience and Department of Biomedical EngineeringNorthwestern UniversityChicagoIllinoisUSA
| | - John Larson
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
5
|
Princen K, Van Dooren T, van Gorsel M, Louros N, Yang X, Dumbacher M, Bastiaens I, Coupet K, Dupont S, Cuveliers E, Lauwers A, Laghmouchi M, Vanwelden T, Carmans S, Van Damme N, Duhamel H, Vansteenkiste S, Prerad J, Pipeleers K, Rodiers O, De Ridder L, Claes S, Busschots Y, Pringels L, Verhelst V, Debroux E, Brouwer M, Lievens S, Tavernier J, Farinelli M, Hughes-Asceri S, Voets M, Winderickx J, Wera S, de Wit J, Schymkowitz J, Rousseau F, Zetterberg H, Cummings JL, Annaert W, Cornelissen T, De Winter H, De Witte K, Fivaz M, Griffioen G. Pharmacological modulation of septins restores calcium homeostasis and is neuroprotective in models of Alzheimer's disease. Science 2024; 384:eadd6260. [PMID: 38815015 PMCID: PMC11827694 DOI: 10.1126/science.add6260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-β and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-β and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.
Collapse
Affiliation(s)
| | | | | | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Xiaojuan Yang
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | | | | | - Shana Dupont
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Eva Cuveliers
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Carmans
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Hein Duhamel
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Jovan Prerad
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Claes
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | | | - Marinka Brouwer
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sam Lievens
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | | | | | - Marieke Voets
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Joris Winderickx
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- Functional Biology, Department of Biology, KU Leuven, 3001 Leuven-Heverlee, Belgium
| | - Stefaan Wera
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- ViroVet NV, 3001 Leuven-Heverlee, Belgium
| | - Joris de Wit
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jeffrey L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Koen De Witte
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Marc Fivaz
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | |
Collapse
|
6
|
Chockanathan U, Padmanabhan K. Differential disruptions in population coding along the dorsal-ventral axis of CA1 in the APP/PS1 mouse model of Aβ pathology. PLoS Comput Biol 2024; 20:e1012085. [PMID: 38709845 PMCID: PMC11098488 DOI: 10.1371/journal.pcbi.1012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Alzheimer's Disease (AD) is characterized by a range of behavioral alterations, including memory loss and psychiatric symptoms. While there is evidence that molecular pathologies, such as amyloid beta (Aβ), contribute to AD, it remains unclear how this histopathology gives rise to such disparate behavioral deficits. One hypothesis is that Aβ exerts differential effects on neuronal circuits across brain regions, depending on the neurophysiology and connectivity of different areas. To test this, we recorded from large neuronal populations in dorsal CA1 (dCA1) and ventral CA1 (vCA1), two hippocampal areas known to be structurally and functionally diverse, in the APP/PS1 mouse model of amyloidosis. Despite similar levels of Aβ pathology, dCA1 and vCA1 showed distinct disruptions in neuronal population activity as animals navigated a virtual reality environment. In dCA1, pairwise correlations and entropy, a measure of the diversity of activity patterns, were decreased in APP/PS1 mice relative to age-matched C57BL/6 controls. However, in vCA1, APP/PS1 mice had increased pair-wise correlations and entropy as compared to age matched controls. Finally, using maximum entropy models, we connected the microscopic features of population activity (correlations) to the macroscopic features of the population code (entropy). We found that the models' performance increased in predicting dCA1 activity, but decreased in predicting vCA1 activity, in APP/PS1 mice relative to the controls. Taken together, we found that Aβ exerts distinct effects across different hippocampal regions, suggesting that the various behavioral deficits of AD may reflect underlying heterogeneities in neuronal circuits and the different disruptions that Aβ pathology causes in those circuits.
Collapse
Affiliation(s)
- Udaysankar Chockanathan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Krishnan Padmanabhan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Center for Visual Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Intellectual and Developmental Disabilities Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
7
|
Tzavellas NP, Tsamis KI, Katsenos AP, Davri AS, Simos YV, Nikas IP, Bellos S, Lekkas P, Kanellos FS, Konitsiotis S, Labrakakis C, Vezyraki P, Peschos D. Firing Alterations of Neurons in Alzheimer's Disease: Are They Merely a Consequence of Pathogenesis or a Pivotal Component of Disease Progression? Cells 2024; 13:434. [PMID: 38474398 PMCID: PMC10930991 DOI: 10.3390/cells13050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, yet its underlying causes remain elusive. The conventional perspective on disease pathogenesis attributes alterations in neuronal excitability to molecular changes resulting in synaptic dysfunction. Early hyperexcitability is succeeded by a progressive cessation of electrical activity in neurons, with amyloid beta (Aβ) oligomers and tau protein hyperphosphorylation identified as the initial events leading to hyperactivity. In addition to these key proteins, voltage-gated sodium and potassium channels play a decisive role in the altered electrical properties of neurons in AD. Impaired synaptic function and reduced neuronal plasticity contribute to a vicious cycle, resulting in a reduction in the number of synapses and synaptic proteins, impacting their transportation inside the neuron. An understanding of these neurophysiological alterations, combined with abnormalities in the morphology of brain cells, emerges as a crucial avenue for new treatment investigations. This review aims to delve into the detailed exploration of electrical neuronal alterations observed in different AD models affecting single neurons and neuronal networks.
Collapse
Affiliation(s)
- Nikolaos P. Tzavellas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Konstantinos I. Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Andreas P. Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Athena S. Davri
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Stefanos Bellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Panagiotis Lekkas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Foivos S. Kanellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 451 10 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
8
|
Ferini-Strambi L, Liguori C, Lucey BP, Mander BA, Spira AP, Videnovic A, Baumann C, Franco O, Fernandes M, Gnarra O, Krack P, Manconi M, Noain D, Saxena S, Kallweit U, Randerath W, Trenkwalder C, Rosenzweig I, Iranzo A, Bradicich M, Bassetti C. Role of sleep in neurodegeneration: the consensus report of the 5th Think Tank World Sleep Forum. Neurol Sci 2024; 45:749-767. [PMID: 38087143 DOI: 10.1007/s10072-023-07232-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/26/2023] [Indexed: 01/18/2024]
Abstract
Sleep abnormalities may represent an independent risk factor for neurodegeneration. An international expert group convened in 2021 to discuss the state-of-the-science in this domain. The present article summarizes the presentations and discussions concerning the importance of a strategy for studying sleep- and circadian-related interventions for early detection and prevention of neurodegenerative diseases. An international expert group considered the current state of knowledge based on the most relevant publications in the previous 5 years; discussed the current challenges in the field of relationships among sleep, sleep disorders, and neurodegeneration; and identified future priorities. Sleep efficiency and slow wave activity during non-rapid eye movement (NREM) sleep are decreased in cognitively normal middle-aged and older adults with Alzheimer's disease (AD) pathology. Sleep deprivation increases amyloid-β (Aβ) concentrations in the interstitial fluid of experimental animal models and in cerebrospinal fluid in humans, while increased sleep decreases Aβ. Obstructive sleep apnea (OSA) is a risk factor for dementia. Studies indicate that positive airway pressure (PAP) treatment should be started in patients with mild cognitive impairment or AD and comorbid OSA. Identification of other measures of nocturnal hypoxia and sleep fragmentation could better clarify the role of OSA as a risk factor for neurodegeneration. Concerning REM sleep behavior disorder (RBD), it will be crucial to identify the subset of RBD patients who will convert to a specific neurodegenerative disorder. Circadian sleep-wake rhythm disorders (CSWRD) are strong predictors of caregiver stress and institutionalization, but the absence of recommendations or consensus statements must be considered. Future priorities include to develop and validate existing and novel comprehensive assessments of CSWRD in patients with/at risk for dementia. Strategies for studying sleep-circadian-related interventions for early detection/prevention of neurodegenerative diseases are required. CSWRD evaluation may help to identify additional biomarkers for phenotyping and personalizing treatment of neurodegeneration.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, Università Vita-Salute San Raffaele, Milan, Italy.
| | - Claudio Liguori
- Sleep Medicine Center, University of Rome Tor Vergata, Rome, Italy
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Adam P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aleksandar Videnovic
- Department of Neurology, Division of Sleep Medicine, Massachussets General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Baumann
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Oscar Franco
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Oriella Gnarra
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Paul Krack
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Mauro Manconi
- Sleep Medicine Unit, Faculty of Biomedical Sciences, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Daniela Noain
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Ulf Kallweit
- Clinical Sleep and Neuroimmunology, University Witten/Herdecke, Witten, Germany
| | | | - C Trenkwalder
- Department of Neurosurgery, Paracelsus-Elena Klinik, University Medical Center, KasselGoettingen, Germany
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, King's College London, London, UK
| | - Alex Iranzo
- Sleep Center, Neurology Service, Hospital Clinic de Barcelona, Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Matteo Bradicich
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
9
|
Yang J, Ran K, Ma W, Chen Y, Chen Y, Zhang C, Ye H, Lu Y, Ran C. Degradation of Amyloid-β Species by Multi-Copper Oxidases. J Alzheimers Dis 2024; 101:525-539. [PMID: 39213075 DOI: 10.3233/jad-240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Reduction of the production of amyloid-β (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. Objective To investigate the potential of multi-copper oxidases (MCOs) in degrading Aβ peptides and their potential benefits for AD treatment. Methods We investigated the degradation efficiency of MCOs by using electrophoresis and validated the ceruloplasmin (CP)-Aβ interaction using total internal reflection fluorescence microscopy, fluorescence photometer, and fluorescence polarization measurement. We also investigated the therapeutic effect of ascorbate oxidase (AO) by using induced pluripotent stem (iPS) neuron cells and electrophysiological analysis with brain slices. Results We discovered that CP, an important MCO in human blood, could degrade Aβ peptides. We also found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that AO had the strongest degrading effect among the tested MCOs. Using iPS neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Aβ-induced deficit in synaptic transmission in the hippocampus. Conclusions To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Kathleen Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Wenzhe Ma
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Yanshi Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Yanxin Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Can Zhang
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, IL, USA
| | - Ying Lu
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Chongzhao Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| |
Collapse
|
10
|
Zhang S, Ai H, Wang J, Liu T, Zheng X, Tian X, Bai W. Reduced Prefrontal-Thalamic Theta Flow During Working Memory Retrieval in APP/PS1 Mice. J Alzheimers Dis 2024; 97:1737-1749. [PMID: 38306044 PMCID: PMC10894573 DOI: 10.3233/jad-231078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 02/03/2024]
Abstract
Background Working memory deficits in Alzheimer's disease (AD) are linked to impairments in the retrieval of stored memory information. However, research on the mechanism of impaired working memory retrieval in Alzheimer's disease is still lacking. Objective The medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD) are involved in memory retrieval. The purpose of this study is to investigate the functional interactions and information transmission between mPFC and MD in the AD model. Methods We recorded local field potentials from mPFC and MD while the mice (APP/PS1 transgenic model and control) performed a T-maze spatial working memory task. The temporal dynamics of oscillatory activity and bidirectional information flow between mPFC and MD were assessed during the task phases. Results We mainly found a significant decrease in theta flow from mPFC to MD in APP/PS1 mice during retrieval. Conclusions Our results indicate an important role of the mPFC-MD input for retrieval and the disrupted information transfer from mPFC to MD may be the underlying mechanism of working memory deficits in APP/PS1 mice.
Collapse
Affiliation(s)
- Shengnan Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Hongrui Ai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Jia Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xin Tian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
12
|
Yang J, Ran K, Ma W, Chen L, Chen C, Zhang C, Ye H, Lu Y, Ran C. Degradation of amyloid beta species by multi-copper oxidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547398. [PMID: 37461701 PMCID: PMC10350030 DOI: 10.1101/2023.07.02.547398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Reduction of the production of amyloid beta (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. In this study, we discovered that ceruloplasmin (CP), an important multi-copper oxidase (MCO) in human blood, could degrade Aβ peptides. We also found that the presence of Vitamin C could enhance the degrading effect in a concentration-dependent manner. We then validated the CP-Aβ interaction using total internal reflection fluorescence (TIRF) microscopy, fluorescence photometer, and fluorescence polarization measurement. Based on the above discovery, we hypothesized that other MCOs had similar Aβ-degrading functions. Indeed, we found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that ascorbate oxidase (AO) had the strongest degrading effect among the tested MCOs. Using induced pluripotent stem (iPS) neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Ab-induced deficit in synaptic transmission in the hippocampus. To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.
Collapse
Affiliation(s)
- Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Kathleen Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Wenzhe Ma
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Lucy Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Cindy Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| |
Collapse
|
13
|
Heit BS, Chu A, Sane A, Featherstone DE, Park TJ, Larson J. Tonic extracellular glutamate and ischaemia: glutamate antiporter system x c - regulates anoxic depolarization in hippocampus. J Physiol 2023; 601:607-629. [PMID: 36321247 PMCID: PMC10107724 DOI: 10.1113/jp283880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
In stroke, the sudden deprivation of oxygen to neurons triggers a profuse release of glutamate that induces anoxic depolarization (AD) and leads to rapid cell death. Importantly, the latency of the glutamate-driven AD event largely dictates subsequent tissue damage. Although the contribution of synaptic glutamate during ischaemia is well-studied, the role of tonic (ambient) glutamate has received far less scrutiny. The majority of tonic, non-synaptic glutamate in the brain is governed by the cystine/glutamate antiporter, system xc - . Employing hippocampal slice electrophysiology, we showed that transgenic mice lacking a functional system xc - display longer latencies to AD and altered depolarizing waves compared to wild-type mice after total oxygen deprivation. Experiments which pharmacologically inhibited system xc - , as well as those manipulating tonic glutamate levels and those antagonizing glutamate receptors, revealed that the antiporter's putative effect on ambient glutamate precipitates the ischaemic cascade. As such, the current study yields novel insight into the pathogenesis of acute stroke and may direct future therapeutic interventions. KEY POINTS: Ischaemic stroke remains the leading cause of adult disability in the world, but efforts to reduce stroke severity have been plagued by failed translational attempts to mitigate glutamate excitotoxicity. Elucidating the ischaemic cascade, which within minutes leads to irreversible tissue damage induced by anoxic depolarization, must be a principal focus. Data presented here show that tonic, extrasynaptic glutamate supplied by system xc - synergizes with ischaemia-induced synaptic glutamate release to propagate AD and exacerbate depolarizing waves. Exploiting the role of system xc - and its obligate release of ambient glutamate could, therefore, be a novel therapeutic direction to attenuate the deleterious effects of acute stroke.
Collapse
Affiliation(s)
- Bradley S Heit
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA.,Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Alex Chu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Abhay Sane
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - David E Featherstone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - John Larson
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Arzuaga AL, Edmison DD, Mroczek J, Larson J, Ragozzino ME. Prenatal stress and fluoxetine exposure in mice differentially affect repetitive behaviors and synaptic plasticity in adult male and female offspring. Behav Brain Res 2023; 436:114114. [DOI: 10.1016/j.bbr.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
15
|
Frame G, Schuller A, Smith MA, Crish SD, Dengler-Crish CM. Alterations in Retinal Signaling Across Age and Sex in 3xTg Alzheimer’s Disease Mice. J Alzheimers Dis 2022; 88:471-492. [PMID: 35599482 PMCID: PMC9398084 DOI: 10.3233/jad-220016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: Visual disturbances often precede cognitive dysfunction in patients with Alzheimer’s disease (AD) and may coincide with early accumulation of amyloid-β (Aβ) protein in the retina. These findings have inspired critical research on in vivo ophthalmic Aβ imaging for disease biomarker detection but have not fully answered mechanistic questions on how retinal pathology affects visual signaling between the eye and brain. Objective: The goal of this study was to provide a functional and structural assessment of eye-brain communication between retinal ganglion cells (RGCs) and their primary projection target, the superior colliculus, in female and male 3xTg-AD mice across disease stages. Methods: Retinal electrophysiology, axonal transport, and immunofluorescence were used to determine RGC projection integrity, and retinal and collicular Aβ levels were assessed with advanced protein quantitation techniques. Results: 3xTg mice exhibited nuanced deficits in RGC electrical signaling, axonal transport, and synaptic integrity that exceeded normal age-related decrements in RGC function in age- and sex-matched healthy control mice. These deficits presented in sex-specific patterns among 3xTg mice, differing in the timing and severity of changes. Conclusion: These data support the premise that retinal Aβ is not just a benign biomarker in the eye, but may contribute to subtle, nuanced visual processing deficits. Such disruptions might enhance the biomarker potential of ocular amyloid and differentiate patients with incipient AD from patients experiencing normal age-related decrements in visual function.
Collapse
Affiliation(s)
- Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, USA
| | - Adam Schuller
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH, USA
| | - Samuel D. Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | | |
Collapse
|
16
|
Thiankhaw K, Chattipakorn N, Chattipakorn SC. PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118320. [PMID: 34634399 DOI: 10.1016/j.envpol.2021.118320] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter with a diameter of less than 2.5 μm or PM2.5 is recognized worldwide as a cause of public health problems, mainly associated with respiratory and cardiovascular diseases. There is accumulating evidence to show that exposure to PM2.5 has a crucial causative role in various neurological disorders, the main ones being dementia and Alzheimer's disease (AD). PM2.5 can activate glial and microglial activity, resulting in neuroinflammation, increased intracellular ROS production, and ultimately neuronal apoptosis. PM2.5 also causes the alteration of neuronal morphology and synaptic changes and increases AD biomarkers, including amyloid-beta and hyperphosphorylated-tau, as well as raising the levels of enzymes involved in the amyloidogenic pathway. Clinical trials have highlighted the correlation between exposure to PM2.5, dementia, and AD diagnosis. This correlation is also displayed by concordant evidence from animal models, as indicated by increased AD biomarkers in cerebrospinal fluid and markers of vascular injury. Blood-brain barrier disruption is another aggravated phenomenon demonstrated in people at risk who are exposed to PM2.5. This review summarizes and discusses studies from in vitro, in vivo, and clinical studies on causative relationships of PM2.5 exposure to AD-related neuropathology. Conflicting data are also examined in order to determine the actual association between ambient air pollution and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kitti Thiankhaw
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
18
|
García-Morales V, González-Acedo A, Melguizo-Rodríguez L, Pardo-Moreno T, Costela-Ruiz VJ, Montiel-Troya M, Ramos-Rodríguez JJ. Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer's Disease. Biomedicines 2021; 9:1910. [PMID: 34944723 PMCID: PMC8698840 DOI: 10.3390/biomedicines9121910] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. It is characterized by cognitive decline and progressive memory loss. The aim of this review was to update the state of knowledge on the pathophysiological mechanisms, diagnostic methods and therapeutic approach to AD. Currently, the amyloid cascade hypothesis remains the leading theory in the pathophysiology of AD. This hypothesis states that amyloid-β (Aβ) deposition triggers a chemical cascade of events leading to the development of AD dementia. The antemortem diagnosis of AD is still based on clinical parameters. Diagnostic procedures in AD include fluid-based biomarkers such as those present in cerebrospinal fluid and plasma or diagnostic imaging methods. Currently, the therapeutic armory available focuses on symptom control and is based on four pillars: pharmacological treatment where acetylcholinesterase inhibitors stand out; pharmacological treatment under investigation which includes drugs focused on the control of Aβ pathology and tau hyperphosphorylation; treatment focusing on risk factors such as diabetes; or nonpharmacological treatments aimed at preventing development of the disease or treating symptoms through occupational therapy or psychological help. AD remains a largely unknown disease. Further research is needed to identify new biomarkers and therapies that can prevent progression of the pathology.
Collapse
Affiliation(s)
- Victoria García-Morales
- Department of Biomedicine, Biotechnology and Public Health, Physiology Area, Faculty of Medicine, University of Cádiz, 11003 Cádiz, Spain;
| | - Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain; (A.G.-A.); (V.J.C.-R.)
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain; (A.G.-A.); (V.J.C.-R.)
- Instituto de Investigación Biosanitaria, Ibs Granada, 18012 Granada, Spain
| | - Teresa Pardo-Moreno
- Instituto Nacional de Gestión Sanitaria (INGESA), Primary Health Care, 51003 Ceuta, Spain;
| | - Víctor Javier Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain; (A.G.-A.); (V.J.C.-R.)
- Instituto de Investigación Biosanitaria, Ibs Granada, 18012 Granada, Spain
| | - María Montiel-Troya
- Department of Nursing, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| |
Collapse
|
19
|
Smit T, Deshayes NAC, Borchelt DR, Kamphuis W, Middeldorp J, Hol EM. Reactive astrocytes as treatment targets in Alzheimer's disease-Systematic review of studies using the APPswePS1dE9 mouse model. Glia 2021; 69:1852-1881. [PMID: 33634529 PMCID: PMC8247905 DOI: 10.1002/glia.23981] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Astrocytes regulate synaptic communication and are essential for proper brain functioning. In Alzheimer's disease (AD) astrocytes become reactive, which is characterized by an increased expression of intermediate filament proteins and cellular hypertrophy. Reactive astrocytes are found in close association with amyloid-beta (Aβ) deposits. Synaptic communication and neuronal network function could be directly modulated by reactive astrocytes, potentially contributing to cognitive decline in AD. In this review, we focus on reactive astrocytes as treatment targets in AD in the APPswePS1dE9 AD mouse model, a widely used model to study amyloidosis and gliosis. We first give an overview of the model; that is, how it was generated, which cells express the transgenes, and the effect of its genetic background on Aβ pathology. Subsequently, to determine whether modifying reactive astrocytes in AD could influence pathogenesis and cognition, we review studies using this mouse model in which interventions were directly targeted at reactive astrocytes or had an indirect effect on reactive astrocytes. Overall, studies specifically targeting astrocytes to reduce astrogliosis showed beneficial effects on cognition, which indicates that targeting astrocytes should be included in developing novel therapies for AD.
Collapse
Affiliation(s)
- Tamar Smit
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain Center, Utrecht UniversityUtrechtThe Netherlands
- Swammerdam Institute for Life SciencesCenter for Neuroscience, University of AmsterdamAmsterdamThe Netherlands
| | - Natasja A. C. Deshayes
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain Center, Utrecht UniversityUtrechtThe Netherlands
- Swammerdam Institute for Life SciencesCenter for Neuroscience, University of AmsterdamAmsterdamThe Netherlands
| | - David R. Borchelt
- Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, Department of NeuroscienceUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Willem Kamphuis
- Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Jinte Middeldorp
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain Center, Utrecht UniversityUtrechtThe Netherlands
- Department of ImmunobiologyBiomedical Primate Research CentreRijswijkThe Netherlands
| | - Elly M. Hol
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain Center, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
20
|
Piccioni G, Mango D, Saidi A, Corbo M, Nisticò R. Targeting Microglia-Synapse Interactions in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052342. [PMID: 33652870 PMCID: PMC7956551 DOI: 10.3390/ijms22052342] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
In this review, we focus on the emerging roles of microglia in the brain, with particular attention to synaptic plasticity in health and disease. We present evidence that ramified microglia, classically believed to be "resting" (i.e., inactive), are instead strongly implicated in dynamic and plastic processes. Indeed, there is an intimate relationship between microglia and neurons at synapses which modulates activity-dependent functional and structural plasticity through the release of cytokines and growth factors. These roles are indispensable to brain development and cognitive function. Therefore, approaches aimed at maintaining the ramified state of microglia might be critical to ensure normal synaptic plasticity and cognition. On the other hand, inflammatory signals associated with Alzheimer's disease are able to modify the ramified morphology of microglia, thus leading to synapse loss and dysfunction, as well as cognitive impairment. In this context, we highlight microglial TREM2 and CSF1R as emerging targets for disease-modifying therapy in Alzheimer's disease (AD) and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Gaia Piccioni
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (G.P.); (R.N.)
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Amira Saidi
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milan, Italy;
| | - Robert Nisticò
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: (G.P.); (R.N.)
| |
Collapse
|
21
|
Heit BS, Dykas P, Chu A, Sane A, Larson J. Synaptic and Network Contributions to Anoxic Depolarization in Mouse Hippocampal Slices. Neuroscience 2021; 461:102-117. [PMID: 33636244 DOI: 10.1016/j.neuroscience.2021.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023]
Abstract
Ischemic stroke remains the third leading cause of death and leading cause of adult disability worldwide. A key event in the pathophysiology of stroke is the anoxic depolarization (AD) of neurons in the ischemic core. Previous studies have established that both the latency to AD and the time spent in AD prior to re-oxygenation are predictors of neuronal death. The present studies used hippocampal slices from male and female mice to investigate the electrophysiological events that affect latency to AD after oxygen deprivation. The results confirm that the epoch between AD and re-oxygenation largely determines the magnitude of synaptic recovery after anoxic challenge. Using a selective antagonist of adenosine A1 receptors, we also confirmed that adenosine released during anoxia (ANOX) suppresses synaptic glutamate release; however, this action has no effect on AD latency or the potential for post-anoxic recovery of synaptic transmission. In contrast, antagonism of AMPA- and NMDA-type glutamate receptors significantly prolongs the latency to AD and alters the speed and synchrony of associated depolarizing waves. Experiments using slices with fields Cornu ammonis 3 (CA3) and Cornu ammonis 1 (CA1) disconnected showed that AD latency is longer in CA1 than in CA3; however, the early AD in CA3 is propagated to CA1 in intact slices. Finally, AD latency in CA1 was found to be longer in slices from female mice than in those from age-matched male mice. The results have implications for stroke prevention and for understanding brain adaptations in hypoxia-tolerant animals.
Collapse
Affiliation(s)
- Bradley S Heit
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60612, United States; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Patricia Dykas
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Alex Chu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Abhay Sane
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - John Larson
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
22
|
Puzzo D, Argyrousi EK, Staniszewski A, Zhang H, Calcagno E, Zuccarello E, Acquarone E, Fa' M, Li Puma DD, Grassi C, D'Adamio L, Kanaan NM, Fraser PE, Arancio O. Tau is not necessary for amyloid-β-induced synaptic and memory impairments. J Clin Invest 2021; 130:4831-4844. [PMID: 32544084 DOI: 10.1172/jci137040] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
The amyloid hypothesis posits that the amyloid-beta (Aβ) protein precedes and requires microtubule-associated protein tau in a sort of trigger-bullet mechanism leading to Alzheimer's disease (AD) pathology. This sequence of events has become dogmatic in the AD field and is used to explain clinical trial failures due to a late start of the intervention when Aβ already activated tau. Here, using a multidisciplinary approach combining molecular biological, biochemical, histopathological, electrophysiological, and behavioral methods, we demonstrated that tau suppression did not protect against Aβ-induced damage of long-term synaptic plasticity and memory, or from amyloid deposition. Tau suppression could even unravel a defect in basal synaptic transmission in a mouse model of amyloid deposition. Similarly, tau suppression did not protect against exogenous oligomeric tau-induced impairment of long-term synaptic plasticity and memory. The protective effect of tau suppression was, in turn, confined to short-term plasticity and memory. Taken together, our data suggest that therapies downstream of Aβ and tau together are more suitable to combat AD than therapies against one or the other alone.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Elentina K Argyrousi
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Agnieszka Staniszewski
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Hong Zhang
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Elisa Calcagno
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Elisa Zuccarello
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Erica Acquarone
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Mauro Fa'
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Domenica D Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico A. Gemelli-IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico A. Gemelli-IRCCS, Rome, Italy
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, New Jersey, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, and.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
23
|
Ca 2+ Dyshomeostasis Disrupts Neuronal and Synaptic Function in Alzheimer's Disease. Cells 2020; 9:cells9122655. [PMID: 33321866 PMCID: PMC7763805 DOI: 10.3390/cells9122655] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ homeostasis is essential for multiple neuronal functions and thus, Ca2+ dyshomeostasis can lead to widespread impairment of cellular and synaptic signaling, subsequently contributing to dementia and Alzheimer's disease (AD). While numerous studies implicate Ca2+ mishandling in AD, the cellular basis for loss of cognitive function remains under investigation. The process of synaptic degradation and degeneration in AD is slow, and constitutes a series of maladaptive processes each contributing to a further destabilization of the Ca2+ homeostatic machinery. Ca2+ homeostasis involves precise maintenance of cytosolic Ca2+ levels, despite extracellular influx via multiple synaptic Ca2+ channels, and intracellular release via organelles such as the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) and IP3R, lysosomes via transient receptor potential mucolipin channel (TRPML) and two pore channel (TPC), and mitochondria via the permeability transition pore (PTP). Furthermore, functioning of these organelles relies upon regulated inter-organelle Ca2+ handling, with aberrant signaling resulting in synaptic dysfunction, protein mishandling, oxidative stress and defective bioenergetics, among other consequences consistent with AD. With few effective treatments currently available to mitigate AD, the past few years have seen a significant increase in the study of synaptic and cellular mechanisms as drivers of AD, including Ca2+ dyshomeostasis. Here, we detail some key findings and discuss implications for future AD treatments.
Collapse
|
24
|
Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, Bringas-Vega ML, García-del-Barco-Herrera D, Berlanga-Saez JO, García-Ojalvo A, Valdés-Sosa MJ, Valdés-Sosa PA. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne) 2020; 11:560375. [PMID: 33224105 PMCID: PMC7674493 DOI: 10.3389/fendo.2020.560375] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin plays a major neuroprotective and trophic function for cerebral cell population, thus countering apoptosis, beta-amyloid toxicity, and oxidative stress; favoring neuronal survival; and enhancing memory and learning processes. Insulin resistance and impaired cerebral glucose metabolism are invariantly reported in Alzheimer's disease (AD) and other neurodegenerative processes. AD is a fatal neurodegenerative disorder in which progressive glucose hypometabolism parallels to cognitive impairment. Although AD may appear and progress in virtue of multifactorial nosogenic ingredients, multiple interperpetuative and interconnected vicious circles appear to drive disease pathophysiology. The disease is primarily a metabolic/energetic disorder in which amyloid accumulation may appear as a by-product of more proximal events, especially in the late-onset form. As a bridge between AD and type 2 diabetes, activation of c-Jun N-terminal kinase (JNK) pathway with the ensued serine phosphorylation of the insulin response substrate (IRS)-1/2 may be at the crossroads of insulin resistance and its subsequent dysmetabolic consequences. Central insulin axis bankruptcy translates in neuronal vulnerability and demise. As a link in the chain of pathogenic vicious circles, mitochondrial dysfunction, oxidative stress, and peripheral/central immune-inflammation are increasingly advocated as major pathology drivers. Pharmacological interventions addressed to preserve insulin axis physiology, mitochondrial biogenesis-integral functionality, and mitophagy of diseased organelles may attenuate the adjacent spillover of free radicals that further perpetuate mitochondrial damages and catalyze inflammation. Central and/or peripheral inflammation may account for a local flood of proinflammatory cytokines that along with astrogliosis amplify insulin resistance, mitochondrial dysfunction, and oxidative stress. All these elements are endogenous stressor, pro-senescent factors that contribute to JNK activation. Taken together, these evidences incite to identify novel multi-mechanistic approaches to succeed in ameliorating this pandemic affliction.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén-Nieto
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Nadia Rodríguez-Rodríguez
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maria Luisa Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | | | - Jorge O. Berlanga-Saez
- Applied Mathematics Department, Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariana García-Ojalvo
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mitchell Joseph Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | - Pedro A. Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| |
Collapse
|
25
|
Schirinzi T, Canevelli M, Suppa A, Bologna M, Marsili L. The continuum between neurodegeneration, brain plasticity, and movement: a critical appraisal. Rev Neurosci 2020; 31:723-742. [DOI: 10.1515/revneuro-2020-0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 01/09/2023]
Abstract
Abstract
While the “physiological” aging process is associated with declines in motor and cognitive features, these changes do not significantly impair functions and activities of daily living. Differently, motor and cognitive impairment constitute the most common phenotypic expressions of neurodegeneration. Both manifestations frequently coexist in the same disease, thus making difficult to detect “pure” motor or cognitive conditions. Movement disorders are often characterized by cognitive disturbances, and neurodegenerative dementias often exhibit the occurrence of movement disorders. Such a phenotypic overlap suggests approaching these conditions by highlighting the commonalities of entities traditionally considered distinct. In the present review, we critically reappraised the common clinical and pathophysiological aspects of neurodegeneration in both animal models and patients, looking at motricity as a trait d’union over the spectrum of neurodegeneration and focusing on synaptopathy and oscillopathy as the common pathogenic background. Finally, we discussed the possible role of movement as neuroprotective intervention in neurodegenerative conditions, regardless of the etiology. The identification of commonalities is critical to drive future research and develop novel possible disease-modifying interventions.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Department of Systems Medicine , University of Rome Tor Vergata , Rome , Italy
| | - Marco Canevelli
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- National Center for Disease Prevention and Health Promotion, National Institute of Health , Rome , Italy
| | - Antonio Suppa
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- IRCCS Neuromed , Pozzilli , IS , Italy
| | - Matteo Bologna
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- IRCCS Neuromed , Pozzilli , IS , Italy
| | - Luca Marsili
- Department of Neurology, Gardner Family Center for Parkinson’s Disease and Movement Disorders , University of Cincinnati , 260 Stetson Street , Cincinnati , 45219, OH , USA
| |
Collapse
|
26
|
Müller-Thomsen L, Borgmann D, Morcinek K, Schröder S, Dengler B, Moser N, Neumaier F, Schneider T, Schröder H, Huggenberger S. Consequences of hyperphosphorylated tau on the morphology and excitability of hippocampal neurons in aged tau transgenic mice. Neurobiol Aging 2020; 93:109-123. [PMID: 32278495 DOI: 10.1016/j.neurobiolaging.2020.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
The intracellular accumulation of hyperphosphorylated tau characterizes many neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. A critical role for tau is supported by studies in transgenic mouse models expressing the P301L mutation with accumulation of hyperphosphorylated human tau in hippocampal pyramidal neurons of aged mice. Especially, the somatodendritic mislocalization of hyperphosphorylated tau seems to affect the neuronal network of the hippocampus. To show the consequences of aggregation of hyperphosphorylated tau within hippocampal neurons of aged mice, the CA1 pyramidal cells were analyzed morphologically and electrophysiologically. Here we demonstrate in the P301L pR5 mouse model that hyperphosphorylated tau leads to an increase in stubby spines and filopodia, as well as a decrease in total dendritic length of hippocampal pyramidal neurons due to a decrease in apical dendritic length and nodes. This atrophy is in line with the significant reduction in CA1 long-term potentiation. Furthermore, mutant tau induced a depolarized threshold for action potential initiation and an increased current of inward rectifying potassium channels, which should lead, together with the long-term potentiation decrease, to a decreased excitability of CA1 neurons.
Collapse
Affiliation(s)
| | - Diba Borgmann
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Kerstin Morcinek
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Sophia Schröder
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Brigitte Dengler
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Natasha Moser
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Stefan Huggenberger
- Department II of Anatomy, University of Cologne, Cologne, Germany; Institute of Anatomy and Clinical Morphology, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
27
|
Dissociation of somatostatin and parvalbumin interneurons circuit dysfunctions underlying hippocampal theta and gamma oscillations impaired by amyloid β oligomers in vivo. Brain Struct Funct 2020; 225:935-954. [PMID: 32107637 PMCID: PMC7166204 DOI: 10.1007/s00429-020-02044-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022]
Abstract
Accumulation of amyloid β oligomers (AβO) in Alzheimer’s disease (AD) impairs hippocampal theta and gamma oscillations. These oscillations are important in memory functions and depend on distinct subtypes of hippocampal interneurons such as somatostatin-positive (SST) and parvalbumin-positive (PV) interneurons. Here, we investigated whether AβO causes dysfunctions in SST and PV interneurons by optogenetically manipulating them during theta and gamma oscillations in vivo in AβO-injected SST-Cre or PV-Cre mice. Hippocampal in vivo multi-electrode recordings revealed that optogenetic activation of channelrhodopsin-2 (ChR2)-expressing SST and PV interneurons in AβO-injected mice selectively restored AβO-induced reduction of the peak power of theta and gamma oscillations, respectively, and resynchronized CA1 pyramidal cell (PC) spikes. Moreover, SST and PV interneuron spike phases were resynchronized relative to theta and gamma oscillations, respectively. Whole-cell voltage-clamp recordings in CA1 PC in ex vivo hippocampal slices from AβO-injected mice revealed that optogenetic activation of SST and PV interneurons enhanced spontaneous inhibitory postsynaptic currents (IPSCs) selectively at theta and gamma frequencies, respectively. Furthermore, analyses of the stimulus–response curve, paired-pulse ratio, and short-term plasticity of SST and PV interneuron-evoked IPSCs ex vivo showed that AβO increased the initial GABA release probability to depress SST/PV interneuron’s inhibitory input to CA1 PC selectively at theta and gamma frequencies, respectively. Our results reveal frequency-specific and interneuron subtype-specific presynaptic dysfunctions of SST and PV interneurons’ input to CA1 PC as the synaptic mechanisms underlying AβO-induced impairments of hippocampal network oscillations and identify them as potential therapeutic targets for restoring hippocampal network oscillations in early AD.
Collapse
|
28
|
Ben-Nejma IRH, Keliris AJ, Daans J, Ponsaerts P, Verhoye M, Van der Linden A, Keliris GA. Increased soluble amyloid-beta causes early aberrant brain network hypersynchronisation in a mature-onset mouse model of amyloidosis. Acta Neuropathol Commun 2019; 7:180. [PMID: 31727182 PMCID: PMC6857138 DOI: 10.1186/s40478-019-0810-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. According to the amyloid hypothesis, the accumulation and deposition of amyloid-beta (Aβ) peptides play a key role in AD. Soluble Aβ (sAβ) oligomers were shown to be involved in pathological hypersynchronisation of brain resting-state networks in different transgenic developmental-onset mouse models of amyloidosis. However, the impact of protein overexpression during brain postnatal development may cause additional phenotypes unrelated to AD. To address this concern, we investigated sAβ effects on functional resting-state networks in transgenic mature-onset amyloidosis Tet-Off APP (TG) mice. TG mice and control littermates were raised on doxycycline (DOX) diet from 3d up to 3 m of age to suppress transgenic Aβ production. Thereafter, longitudinal resting-state functional MRI was performed on a 9.4 T MR-system starting from week 0 (3 m old mice) up to 28w post DOX treatment. Ex-vivo immunohistochemistry and ELISA analysis was performed to assess the development of amyloid pathology. Functional Connectivity (FC) analysis demonstrated early abnormal hypersynchronisation in the TG mice compared to the controls at 8w post DOX treatment, particularly across regions of the default mode-like network, known to be affected in AD. Ex-vivo analyses performed at this time point confirmed a 20-fold increase in total sAβ levels preceding the apparition of Aβ plaques and inflammatory responses in the TG mice compared to the controls. On the contrary at week 28, TG mice showed an overall hypoconnectivity, coinciding with a widespread deposition of Aβ plaques in the brain. By preventing developmental influence of APP and/or sAβ during brain postnatal development, we demonstrated FC abnormalities potentially driven by sAβ neurotoxicity on resting-state neuronal networks in mature-induced TG mice. Thus, the Tet-Off APP mouse model could be a powerful tool while used as a mature-onset model to shed light into amyloidosis mechanisms in AD.
Collapse
|
29
|
Egawa J, Zemljic-Harpf A, Mandyam CD, Niesman IR, Lysenko LV, Kleschevnikov AM, Roth DM, Patel HH, Patel PM, Head BP. Neuron-Targeted Caveolin-1 Promotes Ultrastructural and Functional Hippocampal Synaptic Plasticity. Cereb Cortex 2019; 28:3255-3266. [PMID: 28981594 DOI: 10.1093/cercor/bhx196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
A delicate interneuronal communication between pre- and postsynaptic membranes is critical for synaptic plasticity and the formation of memory. Evidence shows that membrane/lipid rafts (MLRs), plasma membrane microdomains enriched in cholesterol and sphingolipids, organize presynaptic proteins and postsynaptic receptors necessary for synaptic formation and signaling. MLRs establish a cell polarity that facilitates transduction of extracellular cues to the intracellular environment. Here we show that neuron-targeted overexpression of an MLR protein, caveolin-1 (SynCav1), in the adult mouse hippocampus increased the number of presynaptic vesicles per bouton, total excitatory type I glutamatergic synapses, number of same-dendrite multiple-synapse boutons, increased myelination, increased long-term potentiation, and increased MLR-localized N-methyl-d-aspartate receptor subunits (GluN1, GluN2A, and GluN2B). Immunogold electron microscopy revealed that Cav-1 localizes to both the pre- and postsynaptic membrane regions as well as in the synaptic cleft. These findings, which are consistent with a significant increase in ultrastructural and functional synaptic plasticity, provide a fundamental framework that underlies previously demonstrated improvements in learning and memory in adult and aged mice by SynCav1. Such observations suggest that Cav-1 and MLRs alter basic aspects of synapse biology that could serve as potential therapeutic targets to promote neuroplasticity and combat neurodegeneration in a number of neurological disorders.
Collapse
Affiliation(s)
- Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alice Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chitra D Mandyam
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Larisa V Lysenko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Wang M, Ramasamy VS, Samidurai M, Jo J. Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer's disease. Sci Rep 2019; 9:10955. [PMID: 31358853 PMCID: PMC6662902 DOI: 10.1038/s41598-019-47452-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.
Collapse
Affiliation(s)
- Ming Wang
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea.,Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-757, South Korea
| | - Vijay Sankar Ramasamy
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea.,Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-757, South Korea
| | - Manikandan Samidurai
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea.,Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-757, South Korea
| | - Jihoon Jo
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea. .,Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-757, South Korea. .,Department of Neurology, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
31
|
Shi Y, Fang YY, Wei YP, Jiang Q, Zeng P, Tang N, Lu Y, Tian Q. Melatonin in Synaptic Impairments of Alzheimer's Disease. J Alzheimers Dis 2019; 63:911-926. [PMID: 29710712 DOI: 10.3233/jad-171178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) underlies dementia for millions of people worldwide with no effective treatment. The dementia of AD is thought stem from the impairments of the synapses because of their critical roles in cognition. Melatonin is a neurohormone mainly released by the pineal gland in a circadian manner and it regulates brain functions in various manners. It is reported that both the melatonin deficit and synaptic impairments are present in the very early stage of AD and strongly contribute to the progress of AD. In the mammalian brains, the effects of melatonin are mainly relayed by two of its receptors, melatonin receptor type 1a (MT1) and 1b (MT2). To have a clear idea on the roles of melatonin in synaptic impairments of AD, this review discussed the actions of melatonin and its receptors in the stabilization of synapses, modulation of long-term potentiation, as well as their contributions in the transmissions of glutamatergic, GABAergic and dopaminergic synapses, which are the three main types of synapses relevant to the synaptic strength. The synaptic protective roles of melatonin in AD treatment were also summarized. Regarding its protective roles against amyloid-β neurotoxicity, tau hyperphosphorylation, oxygenation, inflammation as well as synaptic dysfunctions, melatonin may be an ideal therapeutic agent against AD at early stage.
Collapse
Affiliation(s)
- Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ping Wei
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Integrated TCM and Western Medicine Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Ameen-Ali KE, Simpson JE, Wharton SB, Heath PR, Sharp PS, Brezzo G, Berwick J. The Time Course of Recognition Memory Impairment and Glial Pathology in the hAPP-J20 Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2019; 68:609-624. [DOI: 10.3233/jad-181238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kamar E. Ameen-Ali
- Department of Psychology, University of Sheffield, Sheffield, UK
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle-Upon-Tyne, UK
| | - Julie E. Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Stephen B. Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R. Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul S. Sharp
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Gaia Brezzo
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
33
|
Li S, Jin M, Liu L, Dang Y, Ostaszewski BL, Selkoe DJ. Decoding the synaptic dysfunction of bioactive human AD brain soluble Aβ to inspire novel therapeutic avenues for Alzheimer's disease. Acta Neuropathol Commun 2018; 6:121. [PMID: 30409172 PMCID: PMC6225562 DOI: 10.1186/s40478-018-0626-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Pathologic, biochemical and genetic evidence indicates that accumulation and aggregation of amyloid β-proteins (Aβ) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Several therapeutic interventions attempting to lower Aβ have failed to ameliorate cognitive decline in patients with clinical AD significantly, but most such approaches target only one or two facets of Aβ production/clearance/toxicity and do not consider the heterogeneity of human Aβ species. As synaptic dysfunction may be among the earliest deficits in AD, we used hippocampal long-term potentiation (LTP) as a sensitive indicator of the early neurotoxic effects of Aβ species. Here we confirmed prior findings that soluble Aβ oligomers, much more than fibrillar amyloid plaque cores or Aβ monomers, disrupt synaptic function. Interestingly, not all (84%) human AD brain extracts are able to inhibit LTP and the degree of LTP impairment by AD brain extracts does not correlate with Aβ levels detected by standard ELISAs. Bioactive AD brain extracts also induce neurotoxicity in iPSC-derived human neurons. Shorter forms of Aβ (including Aβ1-37, Aβ1-38, Aβ1-39), pre-Aβ APP fragments (- 30 to - 1) and N-terminally extended Aβs (- 30 to + 40) each showed much less synaptotoxicity than longer Aβs (Aβ1-42 - Aβ1-46). We found that antibodies which target the N-terminus, not the C-terminus, efficiently rescued Aβ oligomer-impaired LTP and oligomer-facilitated LTD. Our data suggest that preventing soluble Aβ oligomer formation and targeting their N-terminal residues with antibodies could be an attractive combined therapeutic approach.
Collapse
|
34
|
Dietrich K, Bouter Y, Müller M, Bayer TA. Synaptic Alterations in Mouse Models for Alzheimer Disease-A Special Focus on N-Truncated Abeta 4-42. Molecules 2018; 23:E718. [PMID: 29561816 PMCID: PMC6017701 DOI: 10.3390/molecules23040718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
This commentary reviews the role of the Alzheimer amyloid peptide Aβ on basal synaptic transmission, synaptic short-term plasticity, as well as short- and long-term potentiation in transgenic mice, with a special focus on N-terminal truncated Aβ4-42. Aβ4-42 is highly abundant in the brain of Alzheimer's disease (AD) patients. It demonstrates increased neurotoxicity compared to full length Aβ, suggesting an important role in the pathogenesis of AD. Transgenic Tg4-42 mice, a model for sporadic AD, express human Aβ4-42 in Cornu Ammonis (CA1) neurons, and develop age-dependent hippocampal neuron loss and neurological deficits. In contrast to other transgenic AD mouse models, the Tg4-42 model exhibits synaptic hyperexcitability, altered synaptic short-term plasticity with no alterations in short- and long-term potentiation. The outcomes of this study are discussed in comparison with controversial results from other AD mouse models.
Collapse
Affiliation(s)
- Katharina Dietrich
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Humboldtallee 23, 37073 Göttingen, Germany.
- Center for Physiology and Pathophysiology, Institute for Neuro- and Sense Physiology, University Medical Center (UMG), Georg-August-University, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| |
Collapse
|
35
|
Rajmohan R, Reddy PH. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer's disease Neurons. J Alzheimers Dis 2018; 57:975-999. [PMID: 27567878 DOI: 10.3233/jad-160612] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid-beta (Aβ) and hyperphosphorylated tau are hallmark lesions of Alzheimer's disease (AD). However, the loss of synapses and dysfunctions of neurotransmission are more directly tied to disease severity. The role of these lesions in the pathoetiological progression of the disease remains contested. Biochemical, cellular, molecular, and pathological studies provided several lines of evidence and improved our understanding of how Aβ and hyperphosphorylated tau accumulation may directly harm synapses and alter neurotransmission. In vitro evidence suggests that Aβ and hyperphosphorylated tau have both direct and indirect cytotoxic effects that affect neurotransmission, axonal transport, signaling cascades, organelle function, and immune response in ways that lead to synaptic loss and dysfunctions in neurotransmitter release. Observations in preclinical models and autopsy studies support these findings, suggesting that while the pathoetiology of positive lesions remains elusive, their removal may reduce disease severity and progression. The purpose of this article is to highlight the need for further investigation of the role of tau in disease progression and its interactions with Aβ and neurotransmitters alike.
Collapse
Affiliation(s)
- Ravi Rajmohan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
36
|
Adiele RC, Adiele CA. Mitochondrial Regulatory Pathways in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2018; 53:1257-70. [PMID: 27392851 DOI: 10.3233/jad-150967] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative brain disorder with progressive cognitive decline that leads to terminal dementia and death. For decades, amyloid-beta (Aβ) and neurofibrillary tangle (NFT) aggregation hypotheses have dominated studies on the pathogenesis and identification of potential therapeutic targets in AD. Little attention has been paid to the mitochondrial molecular/biochemical pathways leading to AD. Mitochondria play a critical role in cell viability and death including neurons and neuroglia, not only because they regulate energy and oxygen metabolism but also because they regulate cell death pathways. Mitochondrial impairment and oxidative stress are implicated in the pathogenesis of AD. Interestingly, current therapeutics provide symptomatic benefits to AD patients resulting in the use of preventive trials on presymptomatic subjects. This review article elucidates the pathophysiology of AD and emphasizes the need to explore the mitochondrial pathways to provide solutions to unanswered questions in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Reginald C Adiele
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chiedukam A Adiele
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
37
|
Yang J, Zhang X, Zhu Y, Lenczowski E, Tian Y, Yang J, Zhang C, Hardt M, Qiao C, Tanzi RE, Moore A, Ye H, Ran C. The double-edged role of copper in the fate of amyloid beta in the presence of anti-oxidants. Chem Sci 2017; 8:6155-6164. [PMID: 28989646 PMCID: PMC5627602 DOI: 10.1039/c7sc01787a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
The biological fate of amyloid beta (Aβ) species is a fundamental question in Alzheimer's disease (AD) pathogenesis. The competition between clearance and aggregation of Aβs is critical for the onset of AD. Copper has been widely considered to be an inducer of harmful crosslinking of Aβs, and an important triggering factor for the onset of AD. In this report, however, we present data to show that copper can also be an inducer of Aβ degradation in the presence of a large excess of well-known intrinsic (such as dopamine) or extrinsic (such as vitamin C) anti-oxidants. The degraded fragments were identified using SDS-Page gels, and validated via nanoLC-MS/MS. A tentative mechanism for the degradation was proposed and validated with model peptides. In addition, we performed electrophysiological analysis to investigate the synaptic functions in brain slices, and found that in the presence of a significant excess of vitamin C, Cu(ii) could prevent an Aβ-induced deficit in synaptic transmission in the hippocampus. Collectively, our evidence strongly indicated that a proper combination of copper and anti-oxidants might have a positive effect on the prevention of AD. This double-edged function of copper in AD has been largely overlooked in the past. We believe that our report is very important for fully understanding the function of copper in AD pathology.
Collapse
Affiliation(s)
- Jing Yang
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,College of Pharmaceutical Sciences , Soochow University , Suzhou , 215006 , China
| | - Xueli Zhang
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,Center for Drug Discovery , School of Pharmacy , China Pharmaceutical University , Nanjing , 210009 , China
| | - Yiying Zhu
- Department of Applied Oral Sciences , The Forsyth Institute , Cambridge , MA 02142 , USA
| | - Emily Lenczowski
- Department of Biology , Loyola University Chicago , Chicago , IL 60660 , USA .
| | - Yanli Tian
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,Department of Parasitology , Zhongshan School of Medicine , Sun Yat-Sen University , Guangzhou , 510080 , China
| | - Jian Yang
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,Center for Drug Discovery , School of Pharmacy , China Pharmaceutical University , Nanjing , 210009 , China
| | - Can Zhang
- Alzheimer's Disease Research Unit , Department of Neurology , Massachusetts General Hospital , Building 114 , Charlestown , Massachusetts 02129 , USA
| | - Markus Hardt
- Department of Applied Oral Sciences , The Forsyth Institute , Cambridge , MA 02142 , USA
| | - Chunhua Qiao
- College of Pharmaceutical Sciences , Soochow University , Suzhou , 215006 , China
| | - Rudolph E Tanzi
- Alzheimer's Disease Research Unit , Department of Neurology , Massachusetts General Hospital , Building 114 , Charlestown , Massachusetts 02129 , USA
| | - Anna Moore
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA .
| | - Hui Ye
- Department of Biology , Loyola University Chicago , Chicago , IL 60660 , USA .
| | - Chongzhao Ran
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA .
| |
Collapse
|
38
|
Singh A, Abraham WC. Astrocytes and synaptic plasticity in health and disease. Exp Brain Res 2017; 235:1645-1655. [PMID: 28299411 DOI: 10.1007/s00221-017-4928-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
Abstract
Activity-dependent synaptic plasticity phenomena such as long-term potentiation and long-term depression are candidate mechanisms for storing information in the brain. Regulation of synaptic plasticity is critical for healthy cognition and learning and this is provided in part by metaplasticity, which can act to maintain synaptic transmission within a dynamic range and potentially prevent excitotoxicity. Metaplasticity mechanisms also allow neurons to integrate plasticity-associated signals over time. Interestingly, astrocytes appear to be critical for certain forms of synaptic plasticity and metaplasticity mechanisms. Synaptic dysfunction is increasingly viewed as an early feature of AD that is correlated with the severity of cognitive decline, and the development of these pathologies is correlated with a rise in reactive astrocytes. This review focuses on the contributions of astrocytes to synaptic plasticity and metaplasticity in normal tissue, and addresses whether astroglial pathology may lead to aberrant engagement of these mechanisms in neurological diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- A Singh
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
39
|
Hosseini N, Alaei H, Reisi P, Radahmadi M. The effects of NBM- lesion on synaptic plasticity in rats. Brain Res 2017; 1655:122-127. [DOI: 10.1016/j.brainres.2016.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/20/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023]
|
40
|
Hayden EY, Conovaloff JL, Mason A, Bitan G, Teplow DB. Preparation of pure populations of covalently stabilized amyloid β-protein oligomers of specific sizes. Anal Biochem 2016; 518:78-85. [PMID: 27810329 DOI: 10.1016/j.ab.2016.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 12/23/2022]
Abstract
Evidence suggests that amyloid β-protein (Aβ) oligomers may be seminal pathogenic agents in Alzheimer's disease (AD). If so, developing oligomer-targeted therapeutics requires an understanding of oligomer structure. This has been difficult due to the instability of these non-covalently associated Aβ assemblies. We previously used rapid, zero-length, in situ chemical cross-linking to stabilize oligomers of Aβ40. These enabled us to isolate pure, stable populations of dimers, trimers, and tetramers and to determine their structure-activity relationships. However, equivalent methods applied to Aβ42 did not produce stable oligomers. We report here that the use of an Aβ42 homologue, [F10, Y42]Aβ42, coupled with sequential denaturation/dissociation and gel electrophoresis procedures, provides the means to produce highly pure, stable populations of oligomers of sizes ranging from dimer through dodecamer that are suitable for structure-activity relationship determination.
Collapse
Affiliation(s)
- Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine, and Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | - Joseph L Conovaloff
- Department of Neurology, David Geffen School of Medicine, and Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | - Ashley Mason
- Department of Neurology, David Geffen School of Medicine, and Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, and Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine, and Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
41
|
Ferando I, Faas G, Mody I. Diminished KCC2 confounds synapse specificity of LTP during senescence. Nat Neurosci 2016; 19:1197-200. [PMID: 27500406 PMCID: PMC5003660 DOI: 10.1038/nn.4357] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
The synapse specificity of long-term potentiation (LTP) ensures that no interference arises from inputs irrelevant to the memory to be encoded. In hippocampi of aged (21-28 months) mice, LTP was relayed to unstimulated synapses, blemishing its synapse specificity. Diminished levels of the K(+)/Cl(-) cotransporter KCC2 and a depolarizing GABAA receptor-mediated synaptic component following LTP were the most likely causes for the spreading of potentiation, unveiling mechanisms hindering information storage in the aged brain and identifying KCC2 as a potential target for intervention.
Collapse
Affiliation(s)
- Isabella Ferando
- Departments of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Guido Faas
- Departments of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Istvan Mody
- Departments of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Physiology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
42
|
Balu D, Larson JR, Schmidt JV, Wirtshafter D, Yevtodiyenko A, Leonard JP. Behavioral and physiological characterization of PKC-dependent phosphorylation in the Grin2a∆PKC mouse. Brain Res 2016; 1646:315-326. [PMID: 27317637 PMCID: PMC4976052 DOI: 10.1016/j.brainres.2016.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
Activity-dependent plasticity in NMDA receptor-containing synapses can be regulated by phosphorylation of serines and tyrosines in the C-terminal domain of the receptor subunits by various kinases. We have previously identified S1291/S1312 as important sites for PKC phosphorylation; while Y1292/Y1312 are the sites indirectly phosphorylated by PKC via Src kinase. In the oocyte expression system, mutation of those Serine sites to Alanine (that cannot be phosphorylated) in the GluN2A subunit, resulted in a decreased PKC stimulated current enhancement through the receptors compared to wild-type NMDA receptors. To investigate the behavioral and physiological significance of those PKC-mediated phosphorylation sites in vivo, the Grin2a∆PKC mouse expressing GluN2A with four mutated amino acids: S1291A, S1312A, Y1292F and Y1387F was generated using homologous recombination. The Grin2a∆PKC mice exhibit reduced anxiety in the open field test, light dark emergence test, and elevated plus maze. The mutant mice show reduced alternation in a Y maze spontaneous alternation task and a in a non-reinforced T maze alternation task. Interestingly, when the mutant mice were exposed to novel environments, there was no increase in context-induced Fos levels in hippocampal CA1 and CA3 compared to home-cage Fos levels, while the Fos increased in the WT mice in CA1, CA3 and DG. When the SC-CA1 synapses in slices from mutant mice were stimulated using a theta-burst protocol, there was no impairment in LTP. Overall, these results suggest that at least one of those PKC-mediated phosphorylation sites regulates NMDAR-mediated signaling that modulates anxiety.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - John R Larson
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - Jennifer V Schmidt
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - David Wirtshafter
- Department of Psychology, University of Illinois at Chicago, IL 60607, USA
| | - Aleksey Yevtodiyenko
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - John P Leonard
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA.
| |
Collapse
|
43
|
Balez R, Steiner N, Engel M, Muñoz SS, Lum JS, Wu Y, Wang D, Vallotton P, Sachdev P, O’Connor M, Sidhu K, Münch G, Ooi L. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease. Sci Rep 2016; 6:31450. [PMID: 27514990 PMCID: PMC4981845 DOI: 10.1038/srep31450] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/21/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, yet current therapeutic treatments are inadequate due to a complex disease pathogenesis. The plant polyphenol apigenin has been shown to have anti-inflammatory and neuroprotective properties in a number of cell and animal models; however a comprehensive assessment has not been performed in a human model of AD. Here we have used a human induced pluripotent stem cell (iPSC) model of familial and sporadic AD, in addition to healthy controls, to assess the neuroprotective activity of apigenin. The iPSC-derived AD neurons demonstrated a hyper-excitable calcium signalling phenotype, elevated levels of nitrite, increased cytotoxicity and apoptosis, reduced neurite length and increased susceptibility to inflammatory stress challenge from activated murine microglia, in comparison to control neurons. We identified that apigenin has potent anti-inflammatory properties with the ability to protect neurites and cell viability by promoting a global down-regulation of cytokine and nitric oxide (NO) release in inflammatory cells. In addition, we show that apigenin is able to protect iPSC-derived AD neurons via multiple means by reducing the frequency of spontaneous Ca(2+) signals and significantly reducing caspase-3/7 mediated apoptosis. These data demonstrate the broad neuroprotective action of apigenin against AD pathogenesis in a human disease model.
Collapse
Affiliation(s)
- Rachelle Balez
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Nicole Steiner
- School of Medicine, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yizhen Wu
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Dadong Wang
- CSIRO Informatics and Statistics, Locked Bag 17, North Ryde, NSW 1670, Australia
| | - Pascal Vallotton
- CSIRO Informatics and Statistics, Locked Bag 17, North Ryde, NSW 1670, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing School of Medicine, University of New South Wales, High Street, Kensington,. NSW, 2052, Australia
| | - Michael O’Connor
- School of Medicine, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
- Molecular Medicine Research Group, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing School of Medicine, University of New South Wales, High Street, Kensington,. NSW, 2052, Australia
| | - Gerald Münch
- School of Medicine, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
- Centre of Complementary Medicine Research (CompleMed), Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
44
|
Dore K, Aow J, Malinow R. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging. Front Synaptic Neurosci 2016; 8:20. [PMID: 27516738 PMCID: PMC4963461 DOI: 10.3389/fnsyn.2016.00020] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/06/2016] [Indexed: 01/19/2023] Open
Abstract
The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction.
Collapse
Affiliation(s)
- Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego San Diego, CA, USA
| | - Jonathan Aow
- Genome Institute of Singapore Singapore, Singapore
| | - Roberto Malinow
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego San Diego, CA, USA
| |
Collapse
|
45
|
Huh S, Baek SJ, Lee KH, Whitcomb DJ, Jo J, Choi SM, Kim DH, Park MS, Lee KH, Kim BC. The reemergence of long-term potentiation in aged Alzheimer's disease mouse model. Sci Rep 2016; 6:29152. [PMID: 27377368 PMCID: PMC4932605 DOI: 10.1038/srep29152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
Mouse models of Alzheimer’s disease (AD) have been developed to study the pathophysiology of amyloid β protein (Aβ) toxicity, which is thought to cause severe clinical symptoms such as memory impairment in AD patients. However, inconsistencies exist between studies using these animal models, specifically in terms of the effects on synaptic plasticity, a major cellular model of learning and memory. Whereas some studies find impairments in plasticity in these models, others do not. We show that long-term potentiation (LTP), in the CA1 region of hippocampal slices from this mouse, is impared at Tg2576 adult 6–7 months old. However, LTP is inducible again in slices taken from Tg2576 aged 14–19 months old. In the aged Tg2576, we found that the percentage of parvalbumin (PV)-expressing interneurons in hippocampal CA1-3 region is significantly decreased, and LTP inhibition or reversal mediated by NRG1/ErbB signaling, which requires ErbB4 receptors in PV interneurons, is impaired. Inhibition of ErbB receptor kinase in adult Tg2576 restores LTP but impairs depotentiation as shown in aged Tg2576. Our study suggests that hippocampal LTP reemerges in aged Tg2576. However, this reemerged LTP is an insuppressible form due to impaired NRG1/ErbB signaling, possibly through the loss of PV interneurons.
Collapse
Affiliation(s)
- Seonghoo Huh
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Soo-Ji Baek
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Daniel J Whitcomb
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Jihoon Jo
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.,Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Seong-Min Choi
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences and Dong-A Anti-aging Research Center, Dong-A University, Busan 49315, Republic of Korea
| | - Man-Seok Park
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kun Ho Lee
- National Research Center for Dementia, Gwangju 61452, Republic of Korea
| | - Byeong C Kim
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.,Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.,National Research Center for Dementia, Gwangju 61452, Republic of Korea
| |
Collapse
|
46
|
Harwell CS, Coleman MP. Synaptophysin depletion and intraneuronal Aβ in organotypic hippocampal slice cultures from huAPP transgenic mice. Mol Neurodegener 2016; 11:44. [PMID: 27287430 PMCID: PMC4903008 DOI: 10.1186/s13024-016-0110-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background To date, there are no effective disease-modifying treatments for Alzheimer’s disease (AD). In order to develop new therapeutics for stages where they are most likely to be effective, it is important to identify the first pathological alterations in the disease cascade. Changes in Aβ concentration have long been reported as one of the first steps, but understanding the source, and earliest consequences, of pathology requires a model system that represents all major CNS cell types, is amenable to repeated observation and sampling, and can be readily manipulated. In this regard, long term organotypic hippocampal slice cultures (OHSCs) from neonatal amyloid mice offer an excellent compromise between in vivo and primary culture studies, largely retaining the cellular composition and neuronal architecture of the in vivo hippocampus, but with the in vitro advantages of accessibility to live imaging, sampling and intervention. Results Here, we report the development and characterisation of progressive pathological changes in an organotypic model from TgCRND8 mice. Aβ1-40 and Aβ1-42 rise progressively in transgenic slice culture medium and stabilise when regular feeding balances continued production. In contrast, intraneuronal Aβ continues to accumulate in close correlation with a specific decline in presynaptic proteins and puncta. Plaque pathology is not evident even when Aβ1-42 is increased by pharmacological manipulation (using calpain inhibitor 1), indicating that soluble Aβ species, or other APP processing products, are sufficient to cause the initial synaptic changes. Conclusions Organotypic brain slices from TgCRND8 mice represent an important new system for understanding mechanisms of Aβ generation, release and progressive toxicity. The pathology observed in these cultures will allow for rapid assessment of disease modifying compounds in a system amenable to manipulation and observation. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0110-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire S Harwell
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Michael P Coleman
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK. .,Present Address: John van Geest Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
47
|
Shah D, Praet J, Latif Hernandez A, Höfling C, Anckaerts C, Bard F, Morawski M, Detrez JR, Prinsen E, Villa A, De Vos WH, Maggi A, D'Hooge R, Balschun D, Rossner S, Verhoye M, Van der Linden A. Early pathologic amyloid induces hypersynchrony of BOLD resting-state networks in transgenic mice and provides an early therapeutic window before amyloid plaque deposition. Alzheimers Dement 2016; 12:964-976. [PMID: 27107518 DOI: 10.1016/j.jalz.2016.03.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 03/19/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION In Alzheimer's disease (AD), pathologic amyloid-beta (Aβ) is synaptotoxic and impairs neuronal function at the microscale, influencing brain networks at the macroscale before Aβ deposition. The latter can be detected noninvasively, in vivo, using resting-state functional MRI (rsfMRI), a technique used to assess brain functional connectivity (FC). METHODS RsfMRI was performed longitudinally in TG2576 and PDAPP mice, starting before Aβ deposition to determine the earliest FC changes. Additionally, the role of pathologic Aβ on early FC alterations was investigated by treating TG2576 mice with the 3D6 anti-Aβ-antibody. RESULTS Both transgenic models showed hypersynchronized FC before Aβ deposition and hyposynchronized FC at later stages. Early anti-Aβ treatment in TG2576 mice prevented hypersynchronous FC and the associated synaptic impairments and excitatory/inhibitory disbalances. DISCUSSION Hypersynchrony of FC may be used as a new noninvasive read out of early AD and can be recovered by anti-Aβ treatment, encouraging preventive treatment strategies in familial AD.
Collapse
Affiliation(s)
- Disha Shah
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium.
| | - Jelle Praet
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Amira Latif Hernandez
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, Leipzig, Germany
| | - Cynthia Anckaerts
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | | | - Markus Morawski
- Paul Flechsig Institute for Brain Research, Leipzig, Germany
| | - Jan R Detrez
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium; Cell Systems and Imaging, Department Molecular Biotechnology, University of Ghent, Ghent, Belgium
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Steffen Rossner
- Paul Flechsig Institute for Brain Research, Leipzig, Germany
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| |
Collapse
|
48
|
Guntupalli S, Widagdo J, Anggono V. Amyloid-β-Induced Dysregulation of AMPA Receptor Trafficking. Neural Plast 2016; 2016:3204519. [PMID: 27073700 PMCID: PMC4814684 DOI: 10.1155/2016/3204519] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/28/2016] [Indexed: 01/22/2023] Open
Abstract
Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aβ) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer's disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aβ levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aβ-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aβ.
Collapse
Affiliation(s)
- Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
49
|
Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity. Neural Plast 2016; 2016:7969272. [PMID: 27019755 PMCID: PMC4785275 DOI: 10.1155/2016/7969272] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/31/2016] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.
Collapse
|
50
|
Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2016; 144:121-41. [PMID: 26797041 DOI: 10.1016/j.pneurobio.2016.01.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta protein triggers reactive gliosis, a prominent neuropathological feature in the brains of Alzheimer's patients. The cytoskeletal and morphological changes of astrogliosis are its evident features, while changes in oxidative stress defense, cholesterol metabolism, and gene transcription programs are less manifest. However, these latter molecular changes may underlie a disruption in homeostatic regulation that keeps the brain environment balanced. Astrocytes in Alzheimer's disease show changes in glutamate and GABA signaling and recycling, potassium buffering, and in cholinergic, purinergic, and calcium signaling. Ultimately the dysregulation of homeostasis maintained by astrocytes can have grave consequences for the stability of microcircuits within key brain regions. Specifically, altered inhibition influenced by astrocytes can lead to local circuit imbalance with farther reaching consequences for the functioning of larger neuronal networks. Healthy astrocytes have a role in maintaining and modulating normal neuronal communication, synaptic physiology and energy metabolism, astrogliosis interferes with these functions. This review considers the molecular and functional changes occurring during astrogliosis in Alzheimer's disease, and proposes that astrocytes are key players in the development of dementia.
Collapse
|