1
|
Kuramoto H, Yabe M, Morishita R, Yoshimura R, Sakamoto H. Localization of sensory nerve terminals containing calcitonin gene-related peptide (CGRP) on striated muscle fibers in the rat esophagus: Evidence for triple innervation via motor endplates. Auton Neurosci 2024; 253:103177. [PMID: 38636284 DOI: 10.1016/j.autneu.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Many esophageal striated muscles of mammals are dually innervated by the vagal and enteric nerves. Recently, substance P (SP)-sensory nerve terminals with calcitonin gene-related peptide (CGRP) were found on a few striated muscle fibers in the rat esophagus, implying that these muscle fibers are triply innervated. In this study, we examined the localization and origin of CGRP-nerve endings in striated muscles to consider their possible roles in the esophagus regarding triple innervation. METHODS Wholemounts of the rat esophagus were immunolabeled to detect CGRP-nerve endings in striated muscles. Also, retrograde tracing was performed by injecting Fast Blue (FB) into the esophagus, and cryostat sections of the medulla oblongata, nodose ganglion (NG), and the tenth thoracic (T10) dorsal root ganglion (DRG) were immunostained to identify the origin of the CGRP-nerve endings. RESULTS CGRP-fine, varicose nerve endings were localized in motor endplates on a few esophageal striated muscle fibers (4 %), most of which received nitric oxide (NO) synthase nerve terminals, and most of the CGRP nerve endings were SP- and transient receptor potential vanilloid member 1 (TRPV1)-positive. Retrograde tracing showed many FB-labeled CGRP-neurons positive for SP and TRPV1 in the NG and T10 DGR. CONCLUSIONS This study suggests that the CGRP-varicose nerve endings containing SP and TRPV1 in motor endplates are sensory, and a few esophageal striated muscle fibers are triply innervated. The nerve endings may detect acetylcholine-derived acetic acid from the vagal motor nerve endings and NO from esophageal intrinsic nerve terminals in the motor endplates to regulate esophageal motility.
Collapse
Affiliation(s)
- Hirofumi Kuramoto
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | - Mana Yabe
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ryo Morishita
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Hiroshi Sakamoto
- Department of Physical Therapy, Health Science University, Yamanashi 401-0380, Japan
| |
Collapse
|
2
|
Bai Y, Gu Z, Zhang T, Luo Y, Zhang C, Luo L, Ma Y, Liu J. Toxic effects of subacute exposure to acrylamide on motor endplates of the gastrocnemius in rats. Toxicology 2021; 462:152934. [PMID: 34509579 DOI: 10.1016/j.tox.2021.152934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
Acrylamide (ACR) is a recognized toxin that is known to induce neurotoxicity in humans and experimental animals. This study aimed to investigate the toxic effects of subacute exposure of the motor endplate (MEP) of the gastrocnemius in rats to ACR. All rats were randomly divided into control, 9, 18, and 36 mg/kg ACR groups, and ACR was administered by gastric gavage for 21 days. The behavioral tests were performed weekly. On the 22nd day, the wet weight of the gastrocnemius was measured. The changes in muscle fiber structure, nerve endings, and MEP in the gastrocnemius were examined by hematoxylin-eosin (HE) and gold chloride staining. Acetylcholinesterase (AChE) content in the gastrocnemius was detected by AChE staining. The expression of AChE and calcitonin gene-related peptide was detected by immunohistochemistry and western blot. Rats exposed to ACR showed a significant increase in gait scores and hind limb splay distance compared with the control group, and the wet weight of the gastrocnemius was reduced, HE staining showed that the muscle fiber structure of the gastrocnemius became thin and the arrangement was dense with nuclear aggregation, gold chloride staining showed that nerve branches decreased and became thin, nerve fibers became short and light, the number of MEPs was decreased, the staining became light, and the structure was not clear. AChE staining showed that the number of MEPs was significantly reduced after exposure to ACR, the shape became small, and the AChE content decreased in a dose-dependent manner. Immunohistochemistry and western blot analysis results of the expression levels of AChE and CGRP showed a decreasing trend as compared to the control group with increasing ACR exposure dose. The reduction in protein levels may be the mechanism by which ACR has a toxic effect on the MEP in the gastrocnemius of rats.
Collapse
Affiliation(s)
- Yanxian Bai
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ziting Gu
- Guangdong Medical Academic Exchange Center, Guangzhou 510006, PR China
| | - Tong Zhang
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuyou Luo
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunmei Zhang
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Luo
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxin Ma
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Liu
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Gorzi A, Jamshidi F, Rahmani A, Krause Neto W. Muscle gene expression of CGRP-α, CGRP receptor, nAchR-β, and GDNF in response to different endurance training protocols of Wistar rats. Mol Biol Rep 2020; 47:5305-5314. [PMID: 32621116 DOI: 10.1007/s11033-020-05610-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022]
Abstract
The neuromuscular junction underwent adaptations to meet the demands of muscles following increased muscle activity. This study aimed to investigate the effects of high-intensity interval training (HIIT), endurance training (END), and mixed interval training (MIX) on the gene expression of the calcitonin gene-related peptide-α (CGRP-α), CGRP receptor, nicotinic acetylcholine receptors (nAchR)-β and glial-derived neurotrophic factor (GDNF) among different muscle types. Male Wistar rats were randomly divided into four groups: Control (n = 8), END (n = 8), HIIT (n = 8), and MIX (n = 8). The animals run each training protocol for 8 weeks (five sessions/week). Forty-eight hours after the last training session, the muscles gastrocnemius and soleus were excised under the sterilized situation. After collection, the material was prepared for RNA extraction, Reverse Transcriptase reaction, and qPCR assay. The HIIT training up-regulated the CGRP-α (p < 0.01), CGRP-Rec (p < 0.01), and GDNF (p < 0.01) in soleus as well as the nAchR-β (p < 0.01) and GDNF (p < 0.01) in gastrocnemius muscles. END training down-regulated the gene expression of CGRP-α (p < 0.01), and nAchR-β (p < 0.01) in gastrocnemius but up-regulated nAchR-β (p = 0.037) in soleus and GDNF (p < 0.01) in gastrocnemius muscles. MIX training did not show any significant up or down-regulation. The endurance performance of HIIT and MIX groups was higher than the END group (p < 0.01). All studied genes up-regulated by HIIT training in a muscle type-specific manner. It seems that the improvement of some synaptic indices induced by HIIT resulted in the improvement of endurance performance.
Collapse
MESH Headings
- Animals
- Calcitonin Gene-Related Peptide/genetics
- Calcitonin Gene-Related Peptide/metabolism
- Glial Cell Line-Derived Neurotrophic Factor/genetics
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Male
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Physical Conditioning, Animal/methods
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Calcitonin Gene-Related Peptide/genetics
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
Collapse
Affiliation(s)
- Ali Gorzi
- Department of Sport Sciences, University of Zanjan, P.O. Box: 45371-38791, Zanjan, Iran.
| | - Firooz Jamshidi
- Department of Sport Sciences, University of Zanjan, P.O. Box: 45371-38791, Zanjan, Iran
| | - Ahmad Rahmani
- Department of Sport Sciences, University of Zanjan, P.O. Box: 45371-38791, Zanjan, Iran
| | - Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, Universidade São Judas Tadeu, São Paulo, Brazil
| |
Collapse
|
4
|
Bogacheva P, Balezina O. Delayed increase of acetylcholine quantal size induced by the activity-dependent release of endogenous CGRP but not ATP in neuromuscular junctions. Synapse 2020; 74:e22175. [PMID: 32478912 DOI: 10.1002/syn.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 11/09/2022]
Abstract
In mouse motor synapses tetanic neuromuscular activity (30 Hz, 2 min) led to a delayed posttetanic potentiation of amplitude and duration of spontaneous miniature endplate potentials (MEPPs). Microelectrode recordings of MEPPs before and after nerve stimulation showed an increase in MEPP amplitude and time course by 30% and 15%, respectively, without changes in their frequency. Peak effect was detected 20 min after tetanic activity and progressively faded throughout the next 40 min of recording. The revealed potentiation of MEPPs was fully preserved in preparations from pannexin 1 knockout mice. It means, that myogenic ATP released via pannexin 1 channels from contracting muscle fibers is not likely to participate in the described phenomenon. But posttetanic potentiation of MEPPs was fully prevented by competitive antagonist of calcitonin gene-related peptide (CGRP) receptors CGRP8-37 , ryanodine receptors inhibitor ryanodine and by vesicular acetylcholine transporter inhibitor vesamicol. It is suggested that the combination of intensive synaptic and contractile activity in neuromuscular junctions is required to induce Ca2+ -dependent exocytosis of endogenous CGRP. The accumulation of CGRP in the synaptic cleft and its presynaptic activity may induce posttetanic potentiation of MEPP amplitude due to CGRP-stimulated acetylcholine loading into vesicles and subsequent increase of quantal size.
Collapse
Affiliation(s)
- Polina Bogacheva
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Balezina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Ratliff WA, Saykally JN, Kane MJ, Citron BA. Neuromuscular Junction Morphology and Gene Dysregulation in the Wobbler Model of Spinal Neurodegeneration. J Mol Neurosci 2018; 66:114-120. [PMID: 30105628 DOI: 10.1007/s12031-018-1153-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neuromuscular disease for which there is currently no effective treatment. The progression of ALS includes loss of motor neurons controlling the voluntary muscles, with much of this loss occurring at the neuromuscular junction. In an effort to better understand changes at the neuromuscular junction, we utilized the wobbler mouse model of motor neuron loss. We examined biceps and end plate morphologies and monitored selected factors involved in end plate function. Structural volumes were determined from 3D reconstructions that were generated for the end plates. Wobbler mice exhibited size reductions of both the muscle fibers and the end plates within the biceps, and we found that the end plate volumes were the most sensitive indicator of the degeneration. Concurrently, we found increases in calcitonin gene-related peptide (CGRP) and its receptor in wobbler biceps and spinal cord. We also found increases in gene expression of two acetylcholine receptors within the wobbler biceps, which may be a result of altered CGRP/CALCRL (calcitonin receptor-like receptor) expression.
Collapse
Affiliation(s)
- Whitney A Ratliff
- Laboratory of Molecular Biology, Research and Development, Bay Pines VA Healthcare System, 151, Bldg. 22, Rm. 123, 10000 Bay Pines Blvd., Bay Pines, FL, 33744, USA.,Department of Molecular Medicine, USF College of Medicine, 12901 Bruce B. Downs Blvd., MDC 7, Tampa, FL, 33612, USA
| | - Jessica N Saykally
- Laboratory of Molecular Biology, Research and Development, Bay Pines VA Healthcare System, 151, Bldg. 22, Rm. 123, 10000 Bay Pines Blvd., Bay Pines, FL, 33744, USA.,Department of Molecular Medicine, USF College of Medicine, 12901 Bruce B. Downs Blvd., MDC 7, Tampa, FL, 33612, USA
| | - Michael J Kane
- Laboratory of Molecular Biology, Research and Development, Bay Pines VA Healthcare System, 151, Bldg. 22, Rm. 123, 10000 Bay Pines Blvd., Bay Pines, FL, 33744, USA.,Department of Molecular Medicine, USF College of Medicine, 12901 Bruce B. Downs Blvd., MDC 7, Tampa, FL, 33612, USA.,Biological Basis of Behavior Program, University of Pennsylvania, 425 South University Ave., Philadelphia, PA, 19104, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, Research and Development, Bay Pines VA Healthcare System, 151, Bldg. 22, Rm. 123, 10000 Bay Pines Blvd., Bay Pines, FL, 33744, USA. .,Department of Molecular Medicine, USF College of Medicine, 12901 Bruce B. Downs Blvd., MDC 7, Tampa, FL, 33612, USA. .,Laboratory of Molecular Biology, Research & Development (Mailstop 15), VA New Jersey Health Care System, Bldg. 16, Rm. 16-176, 385 Tremont Ave., East Orange, NJ, 07018, USA.
| |
Collapse
|
6
|
Gaydukov AE, Balezina OP. Ryanodine- and CaMKII-dependent release of endogenous CGRP induces an increase in acetylcholine quantal size in neuromuscular junctions of mice. Brain Behav 2018; 8:e01058. [PMID: 29978952 PMCID: PMC6085904 DOI: 10.1002/brb3.1058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The aim of this study was to identify the mechanism responsible for an increase in miniature endplate potentials (MEPPs) amplitude, induced by ryanodine as an agonist of ryanodine receptors in mouse motor nerve terminals. METHODS Using intracellular microelectrode recordings of MEPPs and evoked endplate potentials (EPPs), the changes in spontaneous and evoked acetylcholine release in motor synapses of mouse diaphragm neuromuscular preparations were studied. RESULTS Ryanodine (0.1 μM) increased both the amplitudes of MEPPs and EPPs to a similar extent (up to 130% compared to control). The ryanodine effect was prevented by blockage of receptors of calcitonin gene-related peptide (CGRP) by a truncated peptide CGRP8-37 . Endogenous CGRP is stored in large dense-core vesicles in motor nerve terminals and may be released as a co-transmitter. The ryanodine-induced increase in MEPPs amplitude may be fully prevented by inhibition of vesicular acetylcholine transporter by vesamicol or by blocking the activity of protein kinase A with H-89, suggesting that endogenous CGRP is released in response to the activation of ryanodine receptors. Activation of CGRP receptors can, in turn, upregulate the loading of acetylcholine into synaptic vesicles, which will increase the quantal size. This new feature of endogenous CGRP activity looks similar to recently described action of exogenous CGRP in motor synapses of mice. The ryanodine effect was prevented by inhibitors of Ca/Calmodulin-dependent kinase II (CaMKII) KN-62 or KN-93. Inhibition of CaMKII did not prevent the increase in MEPPs amplitude, which was caused by exogenous CGRP. CONCLUSIONS We propose that the activity of presynaptic CaMKII is necessary for the ryanodine-stimulated release of endogenous CGRP from motor nerve terminals, but CaMKII does not participate in signaling downstream the activation of CGRP-receptors followed by quantal size increase.
Collapse
Affiliation(s)
- Alexander E Gaydukov
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Department of Physiology, Russian National Research Medical University, Moscow, Russia
| | - Olga P Balezina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
Gaydukov AE, Bogacheva PO, Balezina OP. Calcitonin gene-related peptide increases acetylcholine quantal size in neuromuscular junctions of mice. Neurosci Lett 2016; 628:17-23. [DOI: 10.1016/j.neulet.2016.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022]
|
8
|
Krause Neto W, Ciena AP, Anaruma CA, de Souza RR, Gama EF. Effects of exercise on neuromuscular junction components across age: systematic review of animal experimental studies. BMC Res Notes 2015; 8:713. [PMID: 26601719 PMCID: PMC4658757 DOI: 10.1186/s13104-015-1644-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/28/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND During almost one-third of our life, maturation of the nervous system promotes strength and muscle mass increase. However, as age advances, the nervous system begins to suffer a slow and continue reduction of its functions. Neuromuscular junction (NMJ) is one of the structures of which change due to aging process. Physical training leads to significant adjustments in NMJs of young and aged animals. Nevertheless, studies that aimed to investigate this effect have, in many cases, methodological variables that may have some influence on the result. Thus, this study aimed to carry out a systematic review about the effects of exercise training on the NMJ compartments of young, adult and aged animals. RESULTS We searched PubMed, Google Scholar, Science Direct, Scielo and Lilacs databases for animal experimental studies that studied exercise effects on the NMJs components across age. After inclusion and exclusion criteria, we included nine articles in systematic review and two for meta-analysis (young/adult NMJ). CONCLUSIONS We identified that exercise training cause NMJ hypertrophy on young animals and NMJ compression on aged ones. However, many methodological issues such as age, skeletal muscle and fibers type, and type of exercise and training protocol might influence the results. Graphical abstract: Flow gram is actually to be show at results section as Fig 1.
Collapse
Affiliation(s)
- Walter Krause Neto
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Physical Education Department, São Judas Tadeu University, Unidade Mooca, Rua Taquari, 546, Mooca, P.O Box: 03166-000, São Paulo, SP, Brazil.
| | - Adriano Polican Ciena
- Laboratory of Histology and Electron Microscopy, Physical Education Department, "Julio de Mesquita Filho" São Paulo State University, Rio Claro, SP, Brazil.
| | - Carlos Alberto Anaruma
- Laboratory of Histology and Electron Microscopy, Physical Education Department, "Julio de Mesquita Filho" São Paulo State University, Rio Claro, SP, Brazil.
| | - Romeu Rodrigues de Souza
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Physical Education Department, São Judas Tadeu University, Unidade Mooca, Rua Taquari, 546, Mooca, P.O Box: 03166-000, São Paulo, SP, Brazil.
| | - Eliane Florencio Gama
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Physical Education Department, São Judas Tadeu University, Unidade Mooca, Rua Taquari, 546, Mooca, P.O Box: 03166-000, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Wang J, Sun J, Tang Y, Guo G, Zhou X, Chen Y, Shen M. Basic fibroblast growth factor attenuates the degeneration of injured spinal cord motor endplates. Neural Regen Res 2014; 8:2213-24. [PMID: 25206531 PMCID: PMC4146030 DOI: 10.3969/j.issn.1673-5374.2013.24.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/08/2013] [Indexed: 12/15/2022] Open
Abstract
The distal end of the spinal cord and neuromuscular junction may develop secondary degeneration and damage following spinal cord injury because of the loss of neural connections. In this study, a rat model of spinal cord injury, established using a modified Allen's method, was injected with basic fibroblast growth factor solution via subarachnoid catheter. After injection, rats with spinal cord injury displayed higher scores on the Basso, Beattie and Bresnahan locomotor scale. Motor function was also well recovered and hematoxylin-eosin staining showed that spinal glial scar hyperplasia was not apparent. Additionally, anterior tibial muscle fibers slowly, but progressively, atrophied. nohistochemical staining showed that the absorbance values of calcitonin gene related peptide and acetylcholinesterase in anterior tibial muscle and spinal cord were similar, and injection of basic broblast growth factor increased this absorbance. Results showed that after spinal cord injury, the distal motor neurons and motor endplate degenerated. Changes in calcitonin gene related peptide and acetylcholinesterase in the spinal cord anterior horn motor neurons and motor endplate then occurred that were consistent with this regeneration. Our findings indicate that basic fibroblast growth factor can protect the endplate through attenuating the decreased expression of calcitonin gene related peptide and acetylcholinesterase in anterior horn motor neurons of the injured spinal cord.
Collapse
Affiliation(s)
- Jianlong Wang
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jianfeng Sun
- Department of Orthopedics, Yichang Central People's Hospital, Yichang 443003, Hubei Province, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Gangwen Guo
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiaozhe Zhou
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yanliang Chen
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Minren Shen
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
10
|
Gutiérrez-Pérez O, Rojas-Castañeda JC, Chavez-Saldaña M, Reyes G, Vigueras-Villaseñor RM. Infertility in rats subjected to genitofemoral nerve section is not associated with testicular damage. Andrologia 2013; 46:151-7. [PMID: 23356484 DOI: 10.1111/and.12063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 11/26/2022] Open
Abstract
This work was aimed at assessing the relationship between testicular ascent and infertility induced by genitofemoral nerve (GFN) section in rats. Eighteen male rats were assigned to three experimental groups as follows: (i) Group SGFN was subjected to surgical section of genitofemoral nerve; (ii) Group Sham; (iii) Control group. The GFN was cut at puberty (28D), and the contralateral testis removed at 90D, with fertility tests at 120D. At 150D, maturity index, epithelial area and histopathological index of seminiferous tubules of all rats were determined and statistically compared between superior and inferior testicle poles, and between groups. There were no differences in testicular parameters, sperm morphology or sperm concentrations (P > 0.05). Section of NGF interfered with fertility (58.3 ± 15.4 in SGFN versus 83.3 ± 10.5 in Sham) and litter size (6.2 ± 1.1 in SGFN versus 10.7 ± 1.4 in Sham). Cremaster of SGFN group showed early neuropathy. The GFN section induced partial testicular ascent and diminished fertility without damage on testicular morphology or spermatic parameters, because, cremaster could affect the contractibility and ejaculation mechanisms in which it participates. The study of the damage on cremaster induced by an injury on GFN could have an overview of the mechanisms inherent in the testicular ascent induced by this iatrogenic alteration and their potential risks on fertility.
Collapse
Affiliation(s)
- O Gutiérrez-Pérez
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, México D.F, México
| | | | | | | | | |
Collapse
|
11
|
Effects of endurance and resistance training on calcitonin gene-related Peptide and acetylcholine receptor at slow and fast twitch skeletal muscles and sciatic nerve in male wistar rats. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:962651. [PMID: 22754579 PMCID: PMC3382945 DOI: 10.1155/2012/962651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/10/2012] [Accepted: 04/08/2012] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate effects of endurance and resistance training (ET and RT) on CGRP and AChRs at slow and fast twitch muscles and sciatic nerve in rats. Twenty-five male rats were randomly assigned into three groups including sedentary (SED), endurance training (ET), and resistance training (RT). Animals of ET exercised for 12 weeks, five times/week, and 60 min/day at 30 m/min. Animals of RT were housed in metal cage with 2 m high wire-mesh tower, with water bottles set at the top. 48 h after the last session of training protocol, animals were anaesthetized. The right sciatic nerves were removed; then, Soleus (SOL) and Tibialis anterior (TA) muscles were excised and immediately snap frozen in liquid nitrogen. All frozen tissues were stored at -80°C. Results showed that, after both ET and RT, CGRP content as well as AChR content of SOL and TA muscles significantly increased. But there was no significant difference among groups at sciatic nerve' CGRP content. In conclusion, data demonstrate that ET and RT lead to changes of CGRP and AChR content of ST and FT muscles. The changes indicate to the importance of neuromuscular activity.
Collapse
|
12
|
Calcitonin receptor-like receptor expression in rat skeletal muscle fibers. Brain Res 2010; 1371:1-6. [PMID: 21111722 DOI: 10.1016/j.brainres.2010.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 10/04/2010] [Accepted: 11/08/2010] [Indexed: 11/22/2022]
Abstract
The calcitonin gene related peptide (CGRP) pathway is important in many processes including several in the central and peripheral nervous systems. CGRP is present in motor neurons and in sensory tracts, with its expression likely regulated by its use. This is supported by the fact that axotomy results in increased CGRP production in the nerve cell body. The target CGRP receptor, produced in part from the calcitonin receptor-like receptor (Calcrl) gene, has been thought to be present in multiple forms based on kinetic studies; however, understanding of the regulation of the expression of the Calcrl gene remains incomplete. CALCRL is an important factor in aging and associated disorders. This study focused on the neuromuscular system where it has been unclear whether different proteins are initially translated and whether higher levels of CALCRL are localized to the endplate regions. Rat gracilis muscle neuromuscular junctions were examined by isolating endplate enriched and non-endplate regions identified by staining for acetylcholine esterase or conjugated α-bungarotoxin binding. The CALCRL protein was detected at approximately 60kDa by Western immunoblotting and, in the isolated extracts, we found that the Calcrl mRNA level was elevated 6 fold in the muscle endplate regions and that there were two distinct Calcrl messages present. Sequence analysis showed that the two different Calcrl forms were due to alternative splicing but in a non-coding region of the transcript such that only one translation product would be generated. This indicates that previously identified pharmacologic heterogeneity is most likely due to post-translational modifications and interactions.
Collapse
|
13
|
Edvinsson L, Ho TW. CGRP receptor antagonism and migraine. Neurotherapeutics 2010; 7:164-75. [PMID: 20430315 PMCID: PMC5084097 DOI: 10.1016/j.nurt.2010.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is expressed throughout the central and peripheral nervous systems, consistent with control of vasodilatation, nociception, motor function, secretion, and olfaction. alphaCGRP is prominently localized in primary spinal afferent C and ADelta fibers of sensory ganglia, and betaCGRP is the main isoform in the enteric nervous system. In the CNS there is a wide distribution of CGRP-containing neurons, with the highest levels occurring in striatum, amygdala, colliculi, and cerebellum. The peripheral projections are involved in neurogenic vasodilatation and inflammation, and central release induces hyperalgesia. CGRP is released from trigeminal nerves in migraine. Trigeminal nerve activation results in antidromic release of CGRP to cause non-endothelium-mediated vasodilatation. At the central synapses in the trigeminal nucleus caudalis, CGRP acts postjunctionally on second-order neurons to transmit pain signals centrally via the brainstem and midbrain to the thalamus and higher cortical pain regions. Recently developed CGRP receptor antagonists are effective at aborting acute migraine attacks. They may act both centrally and peripherally to attenuate signaling within the trigeminovascular pathway.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Medicine, Institute of Clinical Sciences, Lund University Hospital, Lund University, 22185 Lund, Sweden.
| | | |
Collapse
|
14
|
Wen G, Hui W, Dan C, Xiao-Qiong W, Jian-Bin T, Chang-Qi L, De-Liang L, Wei-Jun C, Zhi-Yuan L, Xue-Gang L. The effects of exercise-induced fatigue on acetylcholinesterase expression and activity at rat neuromuscular junctions. Acta Histochem Cytochem 2009; 42:137-42. [PMID: 19918322 PMCID: PMC2775104 DOI: 10.1267/ahc.09019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 07/02/2009] [Indexed: 11/26/2022] Open
Abstract
Acetylcholinesterase is the enzyme that terminates neurotransmission by hydrolyzing the acetylcholine released by the motoneurons at the neuromuscular junctions. Although acetylcholinesterase has been studied for almost a century, the underlying relationship between exercise-induced fatigue and acetylcholinesterase activity at the synaptic cleft is not clear. The purpose of this study was to assess the effects of exercise-induced fatigue on the expression and activity of acetylcholinesterase at the neuromuscular junctions. The expression and activity of acetylcholinesterase at the gastrocnemius neuromuscular junctions was decreased transiently by exercise-induced fatigue and then gradually increased over 24 hr. The expression of acetylcholinesterase in the 24 hr recovery group returned to the level of the control (non-exercised) group, but the activity of acetylcholinesterase remained significantly lower. These data suggest that the decrease of acetylcholinesterase expression and activity may be involved in the production and/or maintenance of exercise-induced fatigue.
Collapse
Affiliation(s)
- Guo Wen
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
- Department of Physical Education, Hunan First Normal University, Changsha, Hunan 410012, China
| | - Wang Hui
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Chen Dan
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wu Xiao-Qiong
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Tong Jian-Bin
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Li Chang-Qi
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Lei De-Liang
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Cai Wei-Jun
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Li Zhi-Yuan
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Luo Xue-Gang
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
15
|
Chang IY, Kim SW, Lee KJ, Yoon SP. Calbindin D-28k, Parvalbumin and Calcitonin Gene-Related Peptide Immunoreactivity in the Canine Spinal Cord. Anat Histol Embryol 2008; 37:446-51. [DOI: 10.1111/j.1439-0264.2008.00879.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Dubessy C, Cartier D, Lectez B, Bucharles C, Chartrel N, Montero-Hadjadje M, Bizet P, Chatenet D, Tostivint H, Scalbert E, Leprince J, Vaudry H, Jégou S, Lihrmann I. Characterization of urotensin II, distribution of urotensin II, urotensin II-related peptide and UT receptor mRNAs in mouse: evidence of urotensin II at the neuromuscular junction. J Neurochem 2008; 107:361-74. [PMID: 18710417 DOI: 10.1111/j.1471-4159.2008.05624.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Urotensin II (UII) and UII-related peptide (URP) are paralog neuropeptides whose existence and distribution in mouse have not yet been investigated. In this study, we showed by HPLC/RIA analysis that the UII-immunoreactive molecule in the mouse brain corresponds to a new UII(17) isoform. Moreover, calcium mobilization assays indicated that UII(17) and URP were equally potent in stimulating UII receptor (UT receptor). Quantitative RT-PCR and in situ hybridization analysis revealed that in the CNS UII and URP mRNAs were predominantly expressed in brainstem and spinal motoneurons. Besides, they were differentially expressed in the medial vestibular nucleus, locus coeruleus and the ventral medulla. In periphery, both mRNAs were expressed in skeletal muscle, testis, vagina, stomach, and gall bladder, whereas only URP mRNA could be detected in the seminal vesicle, heart, colon, and thymus. By contrast, the UT receptor mRNA was widely expressed, and notably, very high amounts of transcript occurred in skeletal muscle and prostate. In the biceps femoris muscle, UII-like immunoreactivity was shown to coexist with synaptophysin in muscle motor end plate regions. Altogether these results suggest that (i) UII and URP may have many redundant biological effects, especially at the neuromuscular junction; (ii) URP may more specifically participate to autonomic, cardiovascular and reproductive functions.
Collapse
Affiliation(s)
- Christophe Dubessy
- Neuronal and Neuroendocrine Communication and Differentiation, EA4310, INSERM U413, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zimmerman G, Soreq H. Termination and beyond: acetylcholinesterase as a modulator of synaptic transmission. Cell Tissue Res 2006; 326:655-69. [PMID: 16802134 DOI: 10.1007/s00441-006-0239-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/05/2006] [Indexed: 11/28/2022]
Abstract
Termination of synaptic transmission by neurotransmitter hydrolysis is a substantial characteristic of cholinergic synapses. This unique termination mechanism makes acetylcholinesterase (AChE), the enzyme in charge of executing acetylcholine breakdown, a key component of cholinergic signaling. AChE is now known to exist not as a single entity, but rather as a combinatorial complex of protein products. The diverse AChE molecular forms are generated by a single gene that produces over ten different transcripts by alternative splicing and alternative promoter choices. These transcripts are translated into six different protein subunits. Mature AChE proteins are found as soluble monomers, amphipatic dimers, or tetramers of these subunits and become associated to the cellular membrane by specialized anchoring molecules or members of other heteromeric structural components. A substantial increasing body of research indicates that AChE functions in the central nervous system go far beyond the termination of synaptic transmission. The non-enzymatic neuromodulatory functions of AChE affect neurite outgrowth and synaptogenesis and play a major role in memory formation and stress responses. The structural homology between AChE and cell adhesion proteins, together with the recently discovered protein partners of AChE, predict the future unraveling of the molecular pathways underlying these multileveled functions.
Collapse
Affiliation(s)
- Gabriel Zimmerman
- The Institute of Life Sciences and the Interdisciplinary Center for Neural Computation (ICNC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
18
|
Behzadi G, Ganji F. Morphological alteration in oro-facial CGRP containing motoneurons due to congenital thyroid hypofunction. Peptides 2005; 26:1486-91. [PMID: 15888375 DOI: 10.1016/j.peptides.2005.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under congenital thyroid hypofunction, the oro-facial large and small calcitonin gene-related peptide (CGRP) immunoreactive motoneurons were classified into strong, moderate, weak and negative intensity in offspring weaned rats. While 50% of neurons in the trigeminal motor nucleus (Mo5) were of the large type, this value dropped to 30% in hypothyroid pups. Hypothyroid trigeminal accessory nucleus (Mo5-AC) contained 10% large motoneurons versus about 45% in normal pups. Normal facial nucleus (Mo7) had 20% large motoneurons in contrast with 10% in hypothyroid pups. These values are significant in comparison with the normal pattern of oro-facial CGRP positive immunoreactive motoneurons as well as those devoid of immunostaining.
Collapse
Affiliation(s)
- G Behzadi
- Physiology Department and Neuroscience Research Center, Faculty of Medicine, Shahid Beheshti Medical Sciences University, P.O. Box 19835-181, Tehran, Iran.
| | | |
Collapse
|
19
|
Schiess MC, Poindexter BJ, Brown BS, Bick RJ. The effects of CGRP on calcium transients of dedifferentiating cultured adult rat cardiomyocytes compared to non-cultured adult cardiomyocytes: possible protective and deleterious results in cardiac function. Peptides 2005; 26:525-30. [PMID: 15652660 DOI: 10.1016/j.peptides.2004.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 10/06/2004] [Indexed: 11/16/2022]
Abstract
CGRP has potent cardiovascular effects but its role in heart failure is unclear. Effects of CGRP on calcium concentrations in fresh adult rat cardiomyocytes, cultured adult cardiomyocytes and neonatal cardiomyocytes were determined by real time fluorescence spectrophotometry. Treatment of cultured adult cardiomyocytes with CGRP resulted in a rapid cessation of beating and a reduction in intracellular calcium. Similar results were obtained in cultured neonatal myocytes. However, rod-shaped adult cardiomyocytes revealed a number of responses; (a) non-beating cells began to beat with increased intracellular calcium; (b) spontaneously beating cells exhibited increased intracellular calcium content and a faster beating rate or (c), myocytes increased their beating rate and became arrhythmic, suggesting that CGRP action on cultured dedifferentiated adult and neonatal myocytes depletes intracellular calcium, whereas in the rod-shaped mature myocytes calcium is retained, pointing to a different mode of action for CGRP on developing and dedifferentiating cardiomyocytes, compared to fully developed cardiomyocytes.
Collapse
Affiliation(s)
- Mya C Schiess
- Department of Neurology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
20
|
Gerwin RD, Dommerholt J, Shah JP. An expansion of Simons' integrated hypothesis of trigger point formation. Curr Pain Headache Rep 2005; 8:468-75. [PMID: 15509461 DOI: 10.1007/s11916-004-0069-x] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simons' integrated hypothesis proposed a model of trigger point (TrP) activation to explain known TrP phenomena, particularly endplate noise. We propose an expansion of this hypothesis to account for new experimental data and established muscle pathophysiology.
Collapse
Affiliation(s)
- Robert D Gerwin
- Johns Hopkins University Pain and Rehabilitation Medicine, Bethesda, MD 20814-2432, USA.
| | | | | |
Collapse
|
21
|
Schütz B, Mauer D, Salmon AM, Changeux JP, Zimmer A. Analysis of the cellular expression pattern of beta-CGRP in alpha-CGRP-deficient mice. J Comp Neurol 2004; 476:32-43. [PMID: 15236465 DOI: 10.1002/cne.20211] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study we compared the alpha-calcitonin gene-related peptide (alphaCGRP) and betaCGRP expression patterns in wild-type and knockout mice by using quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry. In dorsal root ganglia and spinal cord of wild-type animals, alphaCGRP mRNA was about two times more abundant than betaCGRP mRNA. The betaCGRP mRNA was the only isoform expressed in the intestine. In alphaCGRP knockout mice, we found no change in betaCGRP mRNA levels in dorsal root ganglia and spinal cord compared with wild-type controls, but a twofold decrease in the intestine. CGRP immunoreactivity (IR) was detected in many small and some large neurons in the dorsal root ganglia, was found in sensory fibers and motor neurons in the spinal cord, and labeled neuromuscular junctions in wild-type mice. In the dorsal root ganglia of alphaCGRP knockout mice, punctate betaCGRP-IR again was predominantly found in small neurons. In the spinal cord, betaCGRP-IR fibers were localized to the outermost layer of the dorsal horn. IR was found in the cell bodies of motor neurons, but it was undetectable in neuromuscular junctions. In the intestine, CGRP-IR was localized to neurons of the myenteric plexus and to fibers in the mucosal folds, with similar staining intensity in both wild-type and knockout mice. Finally, CGRP-IR was undetectable in preganglionic fibers and postganglionic sympathetic neurons in mice from both genotypes. Our results indicate that alphaCGRP and betaCGRP are variably coexpressed in different functional aspects of the mouse nervous system. This pattern suggests distinct roles for betaCGRP in pain, neuromuscular, and gastrointestinal systems.
Collapse
Affiliation(s)
- Burkhard Schütz
- Laboratory of Molecular Neurobiology, Clinic for Psychiatry, University Medical Center, 53127 Bonn, Germany
| | | | | | | | | |
Collapse
|
22
|
Samuelsson S, Lange JS, Hinkle RT, Tarnopolsky M, Isfort RJ. Corticotropin-releasing factor 2 receptor localization in skeletal muscle. J Histochem Cytochem 2004; 52:967-77. [PMID: 15208363 DOI: 10.1369/jhc.4a6279.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our objective in this study was to localize the corticotropin-releasing factor 2 receptor (CRF2R) in rodent and human skeletal muscle. We found CRF2R protein to be abundant in neural tissues in skeletal muscle, including large nerve fibers and bundles, neural tissue associated with mechanoreceptors, muscle spindles, and the Golgi tendon organ. CRF2R protein was also abundant in blood vessels in skeletal muscle. CRF2R protein was also observed, although with less abundance, in the endo/perimysial regions in skeletal muscle. The localization of the CRF2R to blood vessels is consistent with the CRF2R-mediated vascular phenomena observed previously, but the observation of CRF2R in neural tissue in skeletal muscle is a novel finding with an unknown function.
Collapse
Affiliation(s)
- Steven Samuelsson
- Research Division, Procter & Gamble Pharmaceuticals, Health Care Research Center, 8700 Mason-Montgomery Road, Mason, OH 45040-9317, USA
| | | | | | | | | |
Collapse
|
23
|
Maison SF, Emeson RB, Adams JC, Luebke AE, Liberman MC. Loss of alpha CGRP reduces sound-evoked activity in the cochlear nerve. J Neurophysiol 2003; 90:2941-9. [PMID: 12904337 DOI: 10.1152/jn.00596.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
alpha-Calcitonin gene-related peptide (alphaCGRP) is one of several neurotransmitters immunolocalized in the unmyelinated component of the cochlear efferent innervation, the lateral olivocochlear (OC) system, which makes axo-dendritic synapses with cochlear sensory neurons. In rodents, CGRP is also immunocolocalized in the myelinated medial OC system, which contacts cochlear outer hair cells (OHCs). To understand the role(s) of this neuropeptide in the OC system, we characterized the auditory phenotype of alphaCGRP-null mice. Cochlear threshold sensitivity was normal in mutant mice, both via a neural metric, the auditory brain stem response (ABR), and an OHC-based metric, distortion product otoacoustic emissions (DPOAEs). Medial OC function and resistance to acoustic injury were also unaffected by alphaCGRP deletion: the former was assessed by measuring cochlear response suppression with electrical stimulation of the OC bundle, the latter by measuring temporary threshold shifts after exposure to high level sound. However, significant abnormality in alphaCGRP-null mice was seen in the growth of cochlear neural responses with increasing stimulus level. This observation, contrasted with normal amplitude-versus-level functions for DPOAEs, is consistent with a selective, postsynaptic effect on cochlear neurons via alphaCGRP release from lateral OC terminals. This constitutes the most direct evidence to date for a functional role of the lateral OC system in the auditory periphery.
Collapse
Affiliation(s)
- Stephane F Maison
- Department of Otology and Laryngology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
24
|
Fernandez HL, Chen M, Nadelhaft I, Durr JA. Calcitonin gene-related peptides: their binding sites and receptor accessory proteins in adult mammalian skeletal muscles. Neuroscience 2003; 119:335-45. [PMID: 12770550 DOI: 10.1016/s0306-4522(03)00163-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This work addresses the presence, pharmacological properties, and anatomical localization of calcitonin gene-related peptide-alpha (CGRPalpha) binding sites and the receptor's accessory proteins in endplate-enriched and non-endplate muscle membrane samples from adult rat gracilis muscles. We examined the binding of (125)I-[Tyr(0)]-CGRPalpha, the competitive binding of CGRPalpha analogs, the immunohistochemical localization of the receptor's accessory proteins, and Western blots of the receptor component protein. Results show that: (a). (125)I-[Tyr(0)]-CGRPalpha binding is saturable, specific, and consistent with the presence of a homogeneous population of binding sites (Hill coefficients=1.0) in endplate and non-endplate samples exhibiting dissociation constants of 0.39 nM and 0.38 nM, respectively; (b). the density of binding sites in the endplate samples (71.0 fmoles/mg protein) is considerably higher than that in their non-endplate counterparts (34.6 fmoles/mg protein); (c). unlabeled CGRPalpha, hCGRP8-37 and calcitonin compete with the radioligand with the same order of potency in the endplate and non-endplate samples; and (d). the localization of the receptor accessory proteins, including the receptor activity-modifying protein (RAMP1) and the receptor component protein (RCP), for the most part matches that of the motor end-plates. Thus, gracilis muscles express CGRPalpha-specific binding sites which are predominantly localized in the muscle's motor endplate regions where RAMP1, RCP, CGRPalpha, acetylcholine receptors, and acetylcholinesterase are detected in high concentrations. These findings imply that the CGRPalpha binding sites reflect the presence of physiologically functional receptors with a pharmacological profile consistent with that of the CGRPalpha receptor type 1 (CGRP1). When considered together with earlier studies on the same neuromuscular preparation, the present work further suggests that the motoneuron-dependent trophic control of acetylcholine receptors and acetylcholinesterase in skeletal muscle endplates is partly mediated by nerve-derived CGRPalpha activating specific receptors which are highly sensitive to the truncated peptide hCGRP8-37.
Collapse
Affiliation(s)
- H L Fernandez
- Research and Development Service (151), Department of Veterans Affairs Medical Center, PO Box 4125, Bay Pines, FL 33744, USA.
| | | | | | | |
Collapse
|
25
|
Rossi SG, Dickerson IM, Rotundo RL. Localization of the calcitonin gene-related peptide receptor complex at the vertebrate neuromuscular junction and its role in regulating acetylcholinesterase expression. J Biol Chem 2003; 278:24994-5000. [PMID: 12707285 DOI: 10.1074/jbc.m211379200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) is released by motor neurons where it exerts both short and long term effects on skeletal muscle fibers. In addition, sensory neurons release CGRP on the surrounding vasculature where it is in part responsible for local vasodilation following muscle contraction. Although CGRP-binding sites have been demonstrated in whole muscle tissue, the type of CGRP receptor and its associated proteins or its cellular localization within the tissue have not been described. Here we show that the CGRP-binding protein referred to as the calcitonin receptor-like receptor is highly concentrated at the avian neuromuscular junction together with its two accessory proteins, receptor activity modifying protein 1 and CGRP-receptor component protein, required for ligand specificity and signal transduction. Using tissue-cultured skeletal muscle we show that CGRP stimulates an increase in intracellular cAMP that in turn initiates down-regulation of acetylcholinesterase expression at the transcriptional level, and, more specifically, inhibits expression of the synaptically localized collagen-tailed form of the enzyme. Together, these studies suggest a specific role for CGRP released by spinal cord motoneurons in modulating synaptic transmission at the neuromuscular junction by locally inhibiting the expression of acetylcholinesterase, the enzyme responsible for terminating acetylcholine neurotransmission.
Collapse
Affiliation(s)
- Susana G Rossi
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101, USA
| | | | | |
Collapse
|
26
|
Godinho RO, Costa VL. Regulation of intracellular cyclic AMP in skeletal muscle cells involves the efflux of cyclic nucleotide to the extracellular compartment. Br J Pharmacol 2003; 138:995-1003. [PMID: 12642402 PMCID: PMC1573740 DOI: 10.1038/sj.bjp.0705130] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(1) This report analyses the intracellular and extracellular accumulation of cyclic AMP in primary rat skeletal muscle cultures, after direct and receptor-dependent stimulation of adenylyl cyclase (AC). (2) Isoprenaline, calcitonin gene-related peptide (CGRP) and forskolin induced a transient increase in the intracellular cyclic AMP that peaked 5 min after onset stimulation. (3) Under stimulation with isoprenaline or CGRP, the intracellular cyclic AMP initial rise was followed by an exponential decline, reaching 46 and 52% of peak levels in 10 min, respectively. (4) Conversely, the forskolin-dependent accumulation of intracellular cyclic AMP decreased slowly and linearly, reaching 49% of the peak level in 30 min. (5) The loss of intracellular cyclic AMP from peak levels, induced by direct or receptor-induced activation of AC, was followed by an increase in the extracellular cyclic AMP. (6) This effect was independent on PDEs, since it was obtained in the presence of 3-isobutyl-1-methylxanthine (IBMX). (7) Besides, in isoprenaline treated cells, the beta-adrenoceptor antagonist propranolol reduced both intra- and extracellular accumulation of cyclic AMP, whereas the organic anion transporter inhibitor probenecid reduced exclusively the extracellular accumulation. (8) Together our data show that direct or receptor-dependent activation of skeletal muscle AC results in a transient increase in the intracellular cyclic AMP, despite the continuous presence of the stimulus. The temporal declining of intracellular cyclic AMP was not dependent on the cyclic AMP breakdown but associated to the efflux of cyclic nucleotide to the extracellular compartment, by an active transport since it was prevented by probenecid.
Collapse
Affiliation(s)
- Rosely Oliveira Godinho
- Department of Pharmacology (INFAR), Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio, 100, São Paulo, SP, Brazil-04044-020.
| | | |
Collapse
|
27
|
Rojas-Fernandez CH, Chen M, Fernandez HL. Implications of amyloid precursor protein and subsequent beta-amyloid production to the pharmacotherapy of Alzheimer's disease. Pharmacotherapy 2002; 22:1547-63. [PMID: 12495166 DOI: 10.1592/phco.22.17.1547.34116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease is the most common type of dementia in older people. It is highly prevalent, affecting 35-45% of those aged 85 years or older. This disease has devastating consequences to patients, their families, caregivers, and the health care system. Much has been learned about its pathobiology, which has led to the beta-amyloid (Abeta) hypothesis. This hypothesis continues to be the predominant postulate of the pathobiology of Alzheimer's disease. Under this hypothesis, abnormal accumulation of Abeta is followed by a cascade of neurotoxic effects, which eventually result in neurodegeneration and development of Alzheimer's disease. This is thought to be the result of altered processing of the amyloid precursor protein (APP), preferentially by beta- and gamma-secretase enzymes rather than nonamyloidogenic processing by alpha-secretase. The growing body of knowledge regarding the processing of APP to various forms of Abeta has resulted in new approaches to the investigation of putative anti-Alzheimer's disease compounds, including immune-based therapies and various agents that can positively affect APP processing.
Collapse
Affiliation(s)
- Carlos H Rojas-Fernandez
- Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, TX 79106-1712, USA.
| | | | | |
Collapse
|
28
|
González-Forero D, De La Cruz RR, Delgado-García JM, Alvarez FJ, Pastor AM. Correlation between CGRP immunoreactivity and firing activity in cat abducens motoneurons. J Comp Neurol 2002; 451:201-12. [PMID: 12210133 DOI: 10.1002/cne.10267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A relationship between motoneuron activity and calcitonin gene-related peptide (CGRP) expression was previously suggested based on indirect inferences. We show here a positive correlation between CGRP immunoreactivity and firing activity in an experimental model that used tetanus neurotoxin (TeNT) to alter basal firing levels. A low dose (0.5 ng/kg) of TeNT injected in the lateral rectus muscle raised the basal firing rate of ipsilateral abducens motoneurons, estimated as the firing rate at straight-ahead gaze (F(0)); the firing rate returned to control values after 2 weeks. In contrast, a high dose (5 ng/kg) of TeNT decreased basal firing, which recovered slowly over a 7-week period. Expression of CGRP immunoreactivity by abducens motoneurons, preferentially related to betaCGRP gene expression, was analyzed during these periods of altered firing activity. The number of CGRP-immunofluorescent abducens motoneurons increased to approximately 120% by 7 days after low-dose TeNT, to include all available motoneurons in the nucleus. In addition, the average CGRP immunofluorescence optical density inside motoneurons almost doubled after 4 days and returned toward control values in the following 2 weeks. In contrast, a high-dose injection of TeNT reduced the number of CGRP-immunofluorescent motoneurons to 5.4% of control 7 days post injection, and the number returned to 77.6% after 42 days. CGRP immunofluorescence intensity inside motoneurons was also reduced. Regression analysis of F(0) values with either the number of CGRP-immunolabeled motoneurons, their average immunofluorescence intensity, or both factors combined resulted in positive correlations with regression coefficients of 0.87 or higher. Therefore, CGRP expression and firing activity in abducens motoneurons are positively correlated.
Collapse
Affiliation(s)
- David González-Forero
- Departamento de Fisiología y Biología Animal, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
29
|
Ritz LA, Murray CR, Foli K. Crossed and uncrossed projections to the cat sacrocaudal spinal cord: III. Axons expressing calcitonin gene-related peptide immunoreactivity. J Comp Neurol 2001; 438:388-98. [PMID: 11559895 DOI: 10.1002/cne.1322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have investigated the projection patterns of peptidergic small-diameter primary afferent fibers to the cat sacrocaudal spinal cord, a region associated with midline structures of the lower urogenital system and of the tail. Calcitonin gene-related peptide (CGRP)-immunoreactive (CGRP-IR) primary afferent fibers were observed within the superficial laminae, rostrally as the typical inverted U-shaped band that capped the separate dorsal horns (S1 to rostral S2) and caudally as a broad band that spanned the entire mediolateral extent of the fused dorsal horns (caudal S2 and caudal). Within the dorsal gray commissure, labeling was seen as a periodic vertical, midline band. CGRP-IR labeling was prevalent in an extensive mediolateral distribution at the base of the dorsal horn, originating from both lateral and medial collateral bundles that extend from the superficial dorsal horn. Some bundles, in part traveling within the dorsal commissure, conspicuously crossed the midline. In addition to the robust projection to the superficial dorsal horn, there was a more extensive distribution of CGRP-IR fibers within the deeper portions of the cat sacrocaudal dorsal horn than has been reported for other regions of the cat spinal cord. Presumably, these deep projections convey visceral information to projection or segmental neurons at the neck of the dorsal horn and in the region of the central canal. This deep distribution overlaps the reported projections of the pelvic and pudendal nerves. In addition, the contralateral projections of CGRP-IR fibers may form an anatomical substrate of the bilateral receptive fields for selective dorsal horn neurons. The density and variety of CGRP-IR projection patterns is a reflection of the functional attributes of the innervated structures.
Collapse
Affiliation(s)
- L A Ritz
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida 32610, USA.
| | | | | |
Collapse
|