1
|
Coassolo L, Wiggenhorn A, Svensson KJ. Understanding peptide hormones: from precursor proteins to bioactive molecules. Trends Biochem Sci 2025:S0968-0004(25)00063-5. [PMID: 40234176 DOI: 10.1016/j.tibs.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Peptide hormones are fundamental regulators of biological processes involved in homeostasis regulation and are often dysregulated in endocrine diseases. Despite their biological significance and established therapeutic potential, there is still a gap in our knowledge of their processing and post-translational modifications, as well as in the technologies for their discovery and detection. In this review, we cover insights into the peptidome landscape, including the proteolytic processing and post-translational modifications of peptide hormones. Understanding the full landscape of peptide hormones and their modifications could provide insights into leveraging proteolytic mechanisms to identify novel peptides with therapeutic potential. Therefore, we also discuss the need for future research aiming at better predicting, detecting, and characterizing new peptides with biological activities.
Collapse
Affiliation(s)
- Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Amanda Wiggenhorn
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
2
|
Fang H, Shi M, Wang C, Zhang S, Kong N, Ji M, Wang Y, Zhou Y, Zhu Q, Zhang Y, Du S, Xu S, Lei C. PCSK9 potentiates innate immune response to RNA viruses by preventing AIP4-mediated polyubiquitination and degradation of VISA/MAVS. Proc Natl Acad Sci U S A 2025; 122:e2412206122. [PMID: 40233407 PMCID: PMC11874596 DOI: 10.1073/pnas.2412206122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/09/2025] [Indexed: 04/17/2025] Open
Abstract
Upon viral infection, retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) detect viral RNA to initiate antiviral innate immune response, which is mediated by the mitochondrial adaptor protein VISA virus-induced signaling adaptor; also known as mitochondiral antiviral-signaling protein (MAVS). The stability and activity of VISA are tightly regulated by various posttranslational modifications, among which polyubiquitination plays important roles. Various E3 ubiquitin ligases, including atrophin interacting protein 4 (AIP4), mediate polyubiquitination of VISA and result in its degradation. However, how polyubiquitination of VISA is regulated remains unclear. Here, we uncovered a dual function for proprotein convertase subtilisin/kexin type 9 (PCSK9), a key enzyme in cholesterol homeostasis and a well-known therapeutic target in cardiovascular diseases, modulating host responses to RNA viruses both extracellularly and intracellularly. Secreted PCSK9 inhibited sendai virus (SeV) and vesicular stomatitis virus (VSV) infection, while the intracellular PCSK9 potentiated RLRs-mediated interferons (IFNs) induction by stabilizing VISA on mitochondria. Viral infection induced the translocation of PCSK9 to mitochondria where it competed with AIP4 for VISA, thereby inhibiting its polyubiquitination and degradation. Consequently, overexpression of PCSK9 enhanced VISA-mediated innate immune response against RNA viral infection, whereas its deficiency had the opposite effects and resulted in more robust replication of the virus. Pcsk9-/- mice produced lower levels of type I IFNs and proinflammatory cytokines, rendering the increased sensitivity to VSV and influenza A virus infection. Altogether, our findings uncovered an important and unexpected role of PCSK9 in virus-host interaction and contribute to the understanding of the sophisticated mechanism governing the proper and efficient immune response to viral infection.
Collapse
Affiliation(s)
- Han Fang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei430072, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei430072, China
| | - Mengling Shi
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei430072, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei430072, China
| | - Cong Wang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei430072, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei430072, China
| | - Saiting Zhang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei430072, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei430072, China
| | - Na Kong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei430072, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei430072, China
| | - Mengyao Ji
- State Key Laboratory of Animal Disease Prevention and Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730000, China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei430072, China
| | - Yidan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan430071, China
| | - Qiyun Zhu
- State Key Laboratory of Animal Disease Prevention and Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730000, China
| | - Yu Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou730000, China
| | - Shishen Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei430072, China
| | - Shuai Xu
- State Key Laboratory of Animal Disease Prevention and Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730000, China
| | - Caoqi Lei
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei430072, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei430072, China
- School of Basic Medical Sciences, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
3
|
Gong H, Yang X, An L, Zhang W, Liu X, Shu L, Yang L. PCSK5 downregulation promotes the inhibitory effect of andrographolide on glioblastoma through regulating STAT3. Mol Cell Biochem 2025; 480:521-533. [PMID: 38553549 DOI: 10.1007/s11010-024-04977-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 01/03/2025]
Abstract
Proprotein convertase subtilisin/kexin type 5 (PCSK5) is a member of the proprotein convertase (PC) family, which processes immature proteins into functional proteins and plays an important role in the process of cell migration and transformation. Andrographolide is a non-peptide compound with PC inhibition and antitumor activity. Our research aimed to investigate the functional role of PCSK5 downregulation combined with Andro on GBM progression. Results from the cancer genome atlas (TCGA) and clinical samples revealed a significant upregulation of PCSK5 in GBM tissues than in non-tumor brain tissues. Higher expression of PCSK5 was correlated with advanced GBM stages and worse patient prognosis. PCSK5 knockdown attenuated the epithelial-mesenchymal transition (EMT)-like properties of GBM cells induced by IL-6. PCSK5 knockdown in combination with Andro treatment significantly inhibited the proliferation and invasion of GBM cells in vitro, as well as tumor growth in vivo. Mechanistically, PCSK5 downregulation reduced the expression of p-STAT3 and Matrix metalloproteinases (MMPs), which could be rescued by the p-STAT3 agonist. STAT3 silencing downregulated the expression of MMPs without affecting PCSK5. Furthermore, Andro in combination with PCSK5 silencing significantly inhibited STAT3/MMPs axis. These observations provided evidence that PCSK5 functioned as a potential tumor promoter by regulating p-STAT3/MMPs and the combination of Andro with PCSK5 silencing might be a good strategy to prevent GBM progression.
Collapse
Affiliation(s)
- Huiyuan Gong
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaomin Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Lijun An
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wangming Zhang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaohua Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liping Shu
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liuqi Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
4
|
Golinelli L, Geens E, Irvine A, McCoy CJ, Vandewyer E, Atkinson LE, Mousley A, Temmerman L, Beets I. Global analysis of neuropeptide receptor conservation across phylum Nematoda. BMC Biol 2024; 22:223. [PMID: 39379997 PMCID: PMC11462694 DOI: 10.1186/s12915-024-02017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The phylum Nematoda is incredibly diverse and includes many parasites of humans, livestock, and plants. Peptide-activated G protein-coupled receptors (GPCRs) are central to the regulation of physiology and numerous behaviors, and they represent appealing pharmacological targets for parasite control. Efforts are ongoing to characterize the functions and define the ligands of nematode GPCRs, with already most peptide GPCRs known or predicted in Caenorhabditis elegans. However, comparative analyses of peptide GPCR conservation between C. elegans and other nematode species are limited, and many nematode GPCRs remain orphan. A phylum-wide perspective on peptide GPCR profiles will benefit functional and applied studies of nematode peptide GPCRs. RESULTS We constructed a pan-phylum resource of C. elegans peptide GPCR orthologs in 125 nematode species using a semi-automated pipeline for analysis of predicted proteome datasets. The peptide GPCR profile varies between nematode species of different phylogenetic clades and multiple C. elegans peptide GPCRs have orthologs across the phylum Nematoda. We identified peptide ligands for two highly conserved orphan receptors, NPR-9 and NPR-16, that belong to the bilaterian galanin/allatostatin A (Gal/AstA) and somatostatin/allatostatin C (SST/AstC) receptor families. The AstA-like NLP-1 peptides activate NPR-9 in cultured cells and are cognate ligands of this receptor in vivo. In addition, we discovered an AstC-type peptide, NLP-99, that activates the AstC-type receptor NPR-16. In our pan-phylum resource, the phylum-wide representation of NPR-9 and NPR-16 resembles that of their cognate ligands more than those of allatostatin-like peptides that do not activate these receptors. CONCLUSIONS The repertoire of C. elegans peptide GPCR orthologs varies across phylogenetic clades and several peptide GPCRs show broad conservation in the phylum Nematoda. Our work functionally characterizes the conserved receptors NPR-9 and NPR-16 as the respective GPCRs for the AstA-like NLP-1 peptides and the AstC-related peptide NLP-99. NLP-1 and NLP-99 are widely conserved in nematodes and their representation matches that of their receptor in most species. These findings demonstrate the conservation of a functional Gal/AstA and SST/AstC signaling system in nematodes. Our dataset of C. elegans peptide GPCR orthologs also lays a foundation for further functional studies of peptide GPCRs in the widely diverse nematode phylum.
Collapse
Affiliation(s)
- Luca Golinelli
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Allister Irvine
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Ciaran J McCoy
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Elke Vandewyer
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Louise E Atkinson
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Pei J, Kinch LN, Cong Q. Computational analysis of propeptide-containing proteins and prediction of their post-cleavage conformation changes. Proteins 2024; 92:1206-1219. [PMID: 38775337 DOI: 10.1002/prot.26702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 10/26/2024]
Abstract
A propeptide is removed from a precursor protein to generate its active or mature form. Propeptides play essential roles in protein folding, transportation, and activation and are present in about 2.3% of reviewed proteins in the UniProt database. They are often found in secreted or membrane-bound proteins including proteolytic enzymes, hormones, and toxins. We identified a variety of globular and nonglobular Pfam domains in protein sequences designated as propeptides, some of which form intramolecular interactions with other domains in the mature proteins. Propeptide-containing enzymes mostly function as proteases, as they are depleted in other enzyme classes such as hydrolases acting on DNA and RNA, isomerases, and lyases. We applied AlphaFold to generate structural models for over 7000 proteins with propeptides having no less than 20 residues. Analysis of residue contacts in these models revealed conformational changes for over 300 proteins before and after the cleavage of the propeptide. Examples of conformation change occur in several classes of proteolytic enzymes in the families of subtilisins, trypsins, aspartyl proteases, and thermolysin-like metalloproteases. In most of the observed cases, cleavage of the propeptide releases the constraints imposed by the covalent bond between the propeptide and the mature protein, and cleavage enables stronger interactions between the propeptide and the mature protein. These findings suggest that post-cleavage propeptides could play critical roles in regulating the activity of mature proteins.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Gong K, Xue C, Feng Z, Pan R, Wang M, Chen S, Chen Y, Guan Y, Dai L, Zhang S, Jiang L, Li L, Wang B, Yin Z, Ma L, Iwakiri Y, Tang J, Liao C, Chen H, Duan Y. Intestinal Nogo-B reduces GLP1 levels by binding to proglucagon on the endoplasmic reticulum to inhibit PCSK1 cleavage. Nat Commun 2024; 15:6845. [PMID: 39122737 PMCID: PMC11315690 DOI: 10.1038/s41467-024-51352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.
Collapse
Affiliation(s)
- Ke Gong
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Chao Xue
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Zian Feng
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ruru Pan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Mengyao Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Shasha Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Yudong Guan
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lingyun Dai
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Liwei Jiang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ling Li
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Zequn Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Junming Tang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Houzao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
7
|
Xu M, Li J, Xia L, Du Y, Wu B, Shi X, Tian N, Pang Y, Yi L, Chen M, Song W, Dong Z. PCSK6 exacerbates Alzheimer's disease pathogenesis by promoting MT5-MMP maturation. Exp Neurol 2024; 374:114688. [PMID: 38216110 DOI: 10.1016/j.expneurol.2024.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Proprotein convertase subtilisin/kexin type 6 (PCSK6) is a calcium-dependent serine proteinase that regulates the proteolytic activity of various precursor proteins and facilitates protein maturation. Dysregulation of PCSK6 expression or function has been implicated in several pathological processes including nervous system diseases. However, whether and how PCSK6 is involved in the pathogenesis of Alzheimer's disease (AD) remains unclear. In this study, we reported that the expression of PCSK6 was significantly increased in the brain tissues of postmortem AD patients and APP23/PS45 transgenic AD model mice, as well as N2AAPP cells. Genetic knockdown of PCSK6 reduced amyloidogenic processing of APP in N2AAPP cells by suppressing the activation of membrane-type 5-matrix metalloproteinase (MT5-MMP), referred to as η-secretase. We further found that PCSK6 cleaved and activated MT5-MMP by recognizing the RRRNKR sequence in its N-terminal propeptide domain in N2A cells. The mutation or knockout of this cleavage motif prevented PCSK6 from interacting with MT5-MMP and performing cleavage. Importantly, genetic knockdown of PCSK6 with adeno-associated virus (AAV) reduced Aβ production and ameliorated hippocampal long-term potentiation (LTP) and long-term spatial learning and memory in APP23/PS45 transgenic mice. Taken together, these results demonstrate that genetic knockdown of PCSK6 effectively alleviate AD-related pathology and cognitive impairments by inactivating MT5-MMP, highlighting its potential as a novel therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Mingliang Xu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Bin Wu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Na Tian
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lilin Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mulan Chen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Weihong Song
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
8
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Swinerd GW, Alhussini AA, Sczelecki S, Heath D, Mueller TD, McNatty KP, Pitman JL. Molecular forms of BMP15 and GDF9 in mammalian species that differ in litter size. Sci Rep 2023; 13:22428. [PMID: 38104237 PMCID: PMC10725505 DOI: 10.1038/s41598-023-49852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Bone morphogenetic protein (BMP15) and growth differentiation factor (GDF9) are critical for ovarian follicular development and fertility and are associated with litter size in mammals. These proteins initially exist as pre-pro-mature proteins, that are subsequently cleaved into biologically active forms. Thus, the molecular forms of GDF9 and BMP15 may provide the key to understanding the differences in litter size determination in mammals. Herein, we compared GDF9 and BMP15 forms in mammals with high (pigs) and low to moderate (sheep) and low (red deer) ovulation-rate. In all species, oocyte lysates and secretions contained both promature and mature forms of BMP15 and GDF9. Whilst promature and mature GDF9 levels were similar between species, deer produced more BMP15 and exhibited, together with sheep, a higher promature:mature BMP15 ratio. N-linked glycosylation was prominant in proregion and mature GDF9 and in proregion BMP15 of pigs, and present in proregion GDF9 of sheep. There was no evidence of secreted native homo- or hetero-dimers although a GDF9 dimer in red deer oocyte lysate was detected. In summary, GDF9 appeared to be equally important in all species regardless of litter size, whilst BMP15 levels were highest in strict monovulatory species.
Collapse
Affiliation(s)
- Gene W Swinerd
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Abdulaziz A Alhussini
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sarah Sczelecki
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Derek Heath
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-Von-Sachs Institute of the University Würzburg, Würzburg, Germany
| | - Kenneth P McNatty
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
10
|
Luo Q, Tang Z, Wu P, Chen Z, Fang Z, Luo F. A bibliometric analysis of PCSK9 inhibitors from 2007 to 2022. Front Endocrinol (Lausanne) 2023; 14:1218968. [PMID: 38093957 PMCID: PMC10716461 DOI: 10.3389/fendo.2023.1218968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Since the approval of the proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies for marketing in 2015, PCSK9 inhibitors have attracted significant interest in the field of cardiovascular endocrinology. A large number of clinical trials have confirmed the efficacy and safety of PCSK9 inhibitors in reducing cholesterol and the risk of cardiovascular events. No bibliometric analysis of PCSK9 inhibitors has been performed as of yet. This study aims to analyze the research trends and hotspots of PCSK9 inhibitors through bibliometric analysis. METHODS We searched the Web of Science Core Collection (WoSCC) database for PCSK9 inhibitor-related publications from 2007 to 2022. Data visualization analysis was performed using CiteSpace software. Microsoft Excel and Graphpad software were used for the drawing of some tables and figures. RESULTS A total of 1072 pieces of literature were retrieved between 2007 and 2022. The number of publications concerning PCSK9 inhibitors is growing annually. The top five countries with the most articles published were the United States, England, Canada, Italy, and France. Harvard University, Amgen, Brigham & Women's Hospital, Harvard Medical School, and Imperial College London are the five institutions with the highest output. The Journal of Clinical Lipidology is the most popular journal in this field. The most frequently cited journal is the New England Journal of Medicine. As for authors, Sabatine MS and Giugliano RP from Brigham & Women's Hospital have the highest number of published articles. Amgen is the funding agency for most of the research. According to keyword analysis, "low density lipoprotein", "familial hypercholesterolemia", "PCSK9 inhibitor", "PCSK9", and "efficacy" are the five keywords with the highest frequency of co-occurrence. CONCLUSION The past 15 years have witnessed a rapid and fruitful development of PCSK9 inhibitors. The research trend and focus for PCSK9 inhibitors are from the mechanism of reducing low-density lipoprotein cholesterol to related clinical trials. Developed countries such as the United States have contributed prominently in this area. Coronary artery and inflammation are currently at the forefront of research in the field and are in an explosion period.
Collapse
Affiliation(s)
- Qin Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Panyun Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangling Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Wang B, Fang W, Qin D, He Q, Lan C. Susceptibility of PCSK2 Polymorphism to Hirschsprung Disease in Southern Chinese Children. Clin Exp Gastroenterol 2023; 16:59-64. [PMID: 37215434 PMCID: PMC10198172 DOI: 10.2147/ceg.s393340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Hirschsprung's disease (HSCR) is a developmental defect of the enteric nervous system (ENS), which is caused by abnormal development of enteric neural crest cells. Its occurrence is caused by genetic factors and environmental factors. It has been reported that single nucleotide polymorphisms (SNPs) of proprotein convertase subtilisin/kexin type 2 (PCSK2) gene are associated with HSCR. However, the correlation of HSCR in southern Chinese population is still unclear. Methods We assessed the association of rs16998727 with HSCR susceptibility in southern Chinese children using TaqMan SNP genotyping analysis of 2943 samples, including 1470 HSCR patients and 1473 controls. The association test between rs16998727 and phenotypes was performed using multivariable logistic regression analysis. Results We got an unexpected result, PCSK2 SNP rs16998727 was not significantly different from HSCR and its HSCR subtypes: S-HSCR (OR = 1.08, 95% IC: 0.93~1.27, P_adj = 0.3208), L-HSCR (OR = 1.07, 95% IC: 0.84~1.36, P_adj = 0.5958) and TCA (OR = 0.94, 95% IC: 0.61~1.47, P_adj = 0.8001). Conclusion In summary, we report that rs16998727 (PCSK2 and OTOR) is not associated with the risk of HSCR in southern Chinese population.
Collapse
Affiliation(s)
- Bingtong Wang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Wenlin Fang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Dingjiang Qin
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Qiuming He
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Chaoting Lan
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| |
Collapse
|
12
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
13
|
Cui H, Zhou G, Ruan H, Zhao J, Hasi A, Zong N. Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2023; 12:369. [PMID: 36679082 PMCID: PMC9865268 DOI: 10.3390/plants12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Subtilisin-like proteases (subtilases) are found in almost all plant species and are involved in regulating various biotic and abiotic stresses. Although the literature on subtilases in different plant species is vast, the gene function of the serine peptidase S8 family and its maize subfamily is still unknown. Here, a bioinformatics analysis of this gene family was conducted by describing gene structure, conserved motifs, phylogenetic relationships, chromosomal distributions, gene duplications, and promoter cis-elements. In total, we identified 18 ZmSPS8 genes in maize, distributed on 7 chromosomes, and half of them were hydrophilic. Most of these proteins were located at the cell wall and had similar secondary and tertiary structures. Prediction of cis-regulatory elements in promoters illustrated that they were mainly associated with hormones and abiotic stress. Maize inbred lines B73, Zheng58, and Qi319 were used to analyze the spatial-temporal expression patterns of ZmSPS8 genes under drought treatment. Seedling drought results showed that Qi319 had the highest percent survival after 14 d of withholding irrigation, while B73 was the lowest. Leaf relative water content (LRWC) declined more rapidly in B73 and to lower values, and the nitrotetrazolium blue chloride (NBT) contents of leaves were higher in Qi319 than in the other inbreds. The qPCR results indicated that 6 serine peptidase S8 family genes were positively or negatively correlated with plant tolerance to drought stress. Our study provides a detailed analysis of the ZmSPS8s in the maize genome and finds a link between drought tolerance and the family gene expression, which was established by using different maize inbred lines.
Collapse
Affiliation(s)
- Hongwei Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Guyi Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongqiang Ruan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Agula Hasi
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Na Zong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Kim K, Kim MG, Lee GM. Improving bone morphogenetic protein (BMP) production in CHO cells through understanding of BMP synthesis, signaling and endocytosis. Biotechnol Adv 2023; 62:108080. [PMID: 36526238 DOI: 10.1016/j.biotechadv.2022.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors with the clinical potential to regulate cartilage and bone formation. Functionally active mature recombinant human BMPs (rhBMPs), produced primarily in Chinese hamster ovary (CHO) cells for clinical applications, are considered difficult to express because they undergo maturation processes, signaling pathways, or endocytosis. Although BMPs are a family of proteins with similar mature domain sequence identities, their individual properties are diverse. Thus, understanding the properties of individual rhBMPs is essential to improve rhBMP production in CHO cells. In this review, we discuss various approaches to improve rhBMP production in CHO cells by understanding the overall maturation process, signaling pathways and endocytosis of individual rhBMPs.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi Gyeom Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Alannan M, Seidah NG, Merched AJ. PCSK9 in Liver Cancers at the Crossroads between Lipid Metabolism and Immunity. Cells 2022; 11:cells11244132. [PMID: 36552895 PMCID: PMC9777286 DOI: 10.3390/cells11244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolic rewiring and defective immune responses are considered to be the main driving forces sustaining cell growth and oncogenesis in many cancers. The atypical enzyme, proprotein convertase subtilisin/kexin type 9 (PCSK9), is produced by the liver in large amounts and plays a major role in lipid metabolism via the control of the low density lipoprotein receptor (LDLR) and other cell surface receptors. In this context, many clinical studies have clearly demonstrated the high efficacy of PCSK9 inhibitors in treating hyperlipidemia and cardiovascular diseases. Recent data implicated PCSK9 in the degradation of major histocompatibility complex I (MHC-I) receptors and the immune system as well as in other physiological activities. This review highlights the complex crosstalk between PCSK9, lipid metabolism and immunosuppression and underlines the latest advances in understanding the involvement of this convertase in other critical functions. We present a comprehensive assessment of the different strategies targeting PCSK9 and show how these approaches could be extended to future therapeutic options to treat cancers with a main focus on the liver.
Collapse
Affiliation(s)
- Malak Alannan
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, IRCM, University of Montreal, Montreal, QC H2W 1R7, Canada
| | - Aksam J. Merched
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
16
|
Mehranzadeh E, Crende O, Badiola I, Garcia-Gallastegi P. What Are the Roles of Proprotein Convertases in the Immune Escape of Tumors? Biomedicines 2022; 10:biomedicines10123292. [PMID: 36552048 PMCID: PMC9776400 DOI: 10.3390/biomedicines10123292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Protein convertases (PCs) play a significant role in post-translational procedures by transforming inactive precursor proteins into their active forms. The role of PCs is crucial for cellular homeostasis because they are involved in cell signaling. They have also been described in many diseases such as Alzheimer's and cancer. Cancer cells are secretory cells that send signals to the tumor microenvironment (TME), remodeling the surrounding space for their own benefits. One of the most important components of the TME is the immune system of the tumor. In this review, we describe recent discoveries that link PCs to the immune escape of tumors. Among PCs, many findings have determined the role of Furin (PC3) as a paramount enzyme causing the TME to induce tumor immune evasion. The overexpression of various cytokines and proteins, for instance, IL10 and TGF-B, moves the TME towards the presence of Tregs and, consequently, immune tolerance. Furthermore, Furin is implicated in the regulation of macrophage activity that contributes to the increased impairment of DCs (dendritic cells) and T effector cells. Moreover, Furin interferes in the MHC Class_1 proteolytic cleavage in the trans-Golgi network. In tumors, the T cytotoxic lymphocytes (CTLs) response is impeded by the PD1 receptor (PD1-R) located on CTLs and its ligand, PDL1, located on cancer cells. The inhibition of Furin is a subtle means of enhancing the antitumor response by repressing PD-1 expression in tumors or macrophage cells. The impacts of other PCs in tumor immune escape have not yet been clarified to the extent that Furin has. Accordingly, the influence of other types of PCs in tumor immune escape is a promising topic for further consideration.
Collapse
Affiliation(s)
- Elham Mehranzadeh
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Olatz Crende
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Iker Badiola
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Nanokide Therapeutics SL, Ed. ZITEK, Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Patricia Garcia-Gallastegi
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Correspondence:
| |
Collapse
|
17
|
Loss of hypothalamic Furin affects POMC to proACTH cleavage and feeding behavior in high-fat diet-fed mice. Mol Metab 2022; 66:101627. [PMID: 36374777 PMCID: PMC9664468 DOI: 10.1016/j.molmet.2022.101627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The hypothalamus regulates feeding and glucose homeostasis through the balanced action of different neuropeptides, which are cleaved and activated by the proprotein convertases PC1/3 and PC2. However, the recent association of polymorphisms in the proprotein convertase FURIN with type 2 diabetes, metabolic syndrome, and obesity, prompted us to investigate the role of FURIN in hypothalamic neurons controlling glucose and feeding. METHODS POMC-Cre+/- mice were bred with Furinfl/fl mice to generate conditional knockout mice with Furin-deletion in neurons expressing proopiomelanocortin (POMCFurKO), and Furinfl/fl mice were used as controls. POMCFurKO and controls were periodically monitored on both normal chow diet and high fat diet (HFD) for body weight and glucose tolerance by established in-vivo procedures. Food intake was measured in HFD-fed FurKO and controls. Hypothalamic Pomc mRNA was measured by RT-qPCR. ELISAs quantified POMC protein and resulting peptides in the hypothalamic extracts of POMCFurKO mice and controls. The in-vitro processing of POMC was studied by biochemical techniques in HEK293T and CHO cell lines lacking FURIN. RESULTS In control mice, Furin mRNA levels were significantly upregulated on HFD feeding, suggesting an increased demand for FURIN activity in obesogenic conditions. Under these conditions, the POMCFurKO mice were hyperphagic and had increased body weight compared to Furinfl/fl mice. Moreover, protein levels of POMC were elevated and ACTH concentrations markedly reduced. Also, the ratio of α-MSH/POMC was decreased in POMCFurKO mice compared to controls. This indicates that POMC processing was significantly reduced in the hypothalami of POMCFurKO mice, highlighting for the first time the involvement of FURIN in the cleavage of POMC. Importantly, we found that in vitro, the first stage in processing where POMC is cleaved into proACTH was achieved by FURIN but not by PC1/3 or the other proprotein convertases in cell lines lacking a regulated secretory pathway. CONCLUSIONS These results suggest that FURIN processes POMC into proACTH before sorting into the regulated secretory pathway, challenging the dogma that PC1/3 and PC2 are the only convertases responsible for POMC cleavage. Furthermore, its deletion affects feeding behaviors under obesogenic conditions.
Collapse
|
18
|
Kim J, Yoon J, Park JE. Furin cleavage is required for swine acute diarrhea syndrome coronavirus spike protein-mediated cell-cell fusion. Emerg Microbes Infect 2022; 11:2176-2183. [PMID: 35976165 PMCID: PMC9518401 DOI: 10.1080/22221751.2022.2114850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) was reported in China in 2017 and is a causative agent of porcine enteric disease. Recent studies indicate that cells from various hosts are susceptible to SADS-CoV, suggesting the zoonotic potential of this virus. However, little is known about the mechanisms through which this virus enters cells. In this study, we investigated the role of furin in SADS-CoV spike (S)-mediated cell-cell fusion and entry. We found that the SADS-CoV S protein induced the fusion of various cells. Cell-cell fusion was inhibited by the proprotein convertase inhibitor dec-RVKR-cmk, and between cells transfected with mutant S proteins resistant to furin cleavage. These findings revealed that furin-induced cleavage of the SADS-CoV S protein is required for cell-cell fusion. Using mutagenesis analysis, we demonstrated that furin cleaves the SADS-CoV S protein near the S1/S2 cleavage site, 446RYVR449 and 543AVRR546. We used pseudotyped viruses to determine whether furin-induced S cleavage is also required for viral entry. Pseudotyped viruses expressing S proteins with a mutated furin cleavage site could be transduced into target cells, indicating that furin-induced cleavage is not required for pseudotyped virus entry. Our data indicate that S cleavage is critical for SADS-CoV S-mediated cell-cell fusion and suggest that furin might be a host target for SADS-CoV antivirals.
Collapse
Affiliation(s)
- Jinman Kim
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewon Yoon
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.,Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
19
|
Abstract
The neuropeptide system encompasses the most diverse family of neurotransmitters, but their expression, cellular localization, and functional role in the human brain have received limited attention. Here, we study human postmortem samples from prefrontal cortex (PFC), a key brain region, and employ RNA sequencing and RNAscope methods integrated with published single-cell data. Our aim is to characterize the distribution of peptides and their receptors in 17 PFC subregions and to explore their role in chemical signaling. The results suggest that the well-established anatomical and functional heterogeneity of human PFC is also reflected in the expression pattern of the neuropeptides. Our findings support ongoing efforts from academia and pharmaceutical companies to explore the potential of neuropeptide receptors as targets for drug development. Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter–related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine–regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.
Collapse
|
20
|
Dobó J, Kocsis A, Dani R, Gál P. Proprotein Convertases and the Complement System. Front Immunol 2022; 13:958121. [PMID: 35874789 PMCID: PMC9296861 DOI: 10.3389/fimmu.2022.958121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
Proteins destined for secretion - after removal of the signal sequence - often undergo further proteolytic processing by proprotein convertases (PCs). Prohormones are typically processed in the regulated secretory pathway, while most plasma proteins travel though the constitutive pathway. The complement system is a major proteolytic cascade in the blood, serving as a first line of defense against microbes and also contributing to the immune homeostasis. Several complement components, namely C3, C4, C5 and factor I (FI), are multi-chain proteins that are apparently processed by PCs intracellularly. Cleavage occurs at consecutive basic residues and probably also involves the action of carboxypeptidases. The most likely candidate for the intracellular processing of complement proteins is furin, however, because of the overlapping specificities of basic amino acid residue-specific proprotein convertases, other PCs might be involved. To our surprise, we have recently discovered that processing of another complement protein, mannan-binding lectin-associated serine protease-3 (MASP-3) occurs in the blood by PCSK6 (PACE4). A similar mechanism had been described for the membrane protease corin, which is also activated extracellularly by PCSK6. In this review we intend to point out that the proper functioning of the complement system intimately depends on the action of proprotein convertases. In addition to the non-enzymatic components (C3, C4, C5), two constitutively active complement proteases are directly activated by PCs either intracellularly (FI), or extracellularly (MASP-3), moreover indirectly, through the constitutive activation of pro-factor D by MASP-3, the activity of the alternative pathway also depends on a PC present in the blood.
Collapse
Affiliation(s)
| | | | | | - Péter Gál
- *Correspondence: József Dobó, ; Péter Gál,
| |
Collapse
|
21
|
Cai YJ, Li PH, Wang XA, Xu YM, Yang S, Tang YN, Zhu Z, Yang XY, He JY, Luo H, Zhang T, Qi H, Chen X, Qin QW, Sun HY. Epinephelus coioides PCSK9 affect the infection of SGIV by regulating the innate immune response. FISH & SHELLFISH IMMUNOLOGY 2022; 126:113-121. [PMID: 35609761 DOI: 10.1016/j.fsi.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in mammals is a multifunctional protein. In this study, PCSK9 of marine fish Epinephelus coioides was characterized. The full-length cDNA of E. coioides PCSK9 was 2458 bp in length containing 185 bp 5' UTR, 263 bp 3' UTR and 2010 bp open reading frame (ORF) encoding 669 amino acids with the predicted molecular weight of 71 kDa and the theoretical PI of 6.6. Similar to other members of PCSK9 family, E. coioides PCSK9 has three conserved domains: Inhibitor_ I9 super family, Peptidases_ S8_ PCSK9_ Proteinase K_ like, and PCSK9_ C-CRD super family. E. coioides PCSK9 mRNA could be detected in all the tissues examined by real-time quantitative PCR, with the highest expression in the brain, followed by skin, trunk kidney, head kidney, intestine, blood, liver, spleen, gill, muscle and heart. E. coioides PCSK9 was distributed in both the cytoplasm and nucleus. The expression of E. coioides PCSK9 was significantly upregulated during Singapore grouper iridovirus (SGIV) infection. Upregulated PCSK9 could significantly affect the activities of nuclear factor kappaB (NF-κB) promoter, SGIV-induced apoptosis, and the expressions of the key SGIV genes (ICP18, LITAT, MCP, and VP19) and the E. coioides proinflammatory factors (IL-6, IL-1β, IL-8, and TNF-α). The results illustrated that E. coioides PCSK9 might be involved in the pathogen infection by regulating the innate immune response.
Collapse
Affiliation(s)
- Yi-Jie Cai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Pin-Hong Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao-Ai Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yu-Min Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Shan Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yan-Na Tang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zheng Zhu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xin-Yue Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jia-Yang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Hao Luo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Tong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Hong Qi
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| | - Qi-Wei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| | - Hong-Yan Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| |
Collapse
|
22
|
Lee SN, Yoon JH. The Role of Proprotein Convertases in Upper Airway Remodeling. Mol Cells 2022; 45:353-361. [PMID: 35611689 PMCID: PMC9200660 DOI: 10.14348/molcells.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifactorial, heterogeneous disease characterized by persistent inflammation of the sinonasal mucosa and tissue remodeling, which can include basal/progenitor cell hyperplasia, goblet cell hyperplasia, squamous cell metaplasia, loss or dysfunction of ciliated cells, and increased matrix deposition. Repeated injuries can stimulate airway epithelial cells to produce inflammatory mediators that activate epithelial cells, immune cells, or the epithelial-mesenchymal trophic unit. This persistent inflammation can consequently induce aberrant tissue remodeling. However, the molecular mechanisms driving disease within the different molecular CRS subtypes remain inadequately characterized. Numerous secreted and cell surface proteins relevant to airway inflammation and remodeling are initially synthesized as inactive precursor proteins, including growth/differentiation factors and their associated receptors, enzymes, adhesion molecules, neuropeptides, and peptide hormones. Therefore, these precursor proteins require post-translational cleavage by proprotein convertases (PCs) to become fully functional. In this review, we summarize the roles of PCs in CRS-associated tissue remodeling and discuss the therapeutic potential of targeting PCs for CRS treatment.
Collapse
Affiliation(s)
- Sang-Nam Lee
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joo-Heon Yoon
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
23
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
24
|
Zamarbide M, Martinez-Pinilla E, Gil-Bea F, Yanagisawa M, Franco R, Perez-Mediavilla A. Genetic Inactivation of Free Fatty Acid Receptor 3 Impedes Behavioral Deficits and Pathological Hallmarks in the APP swe Alzheimer's Disease Mouse Model. Int J Mol Sci 2022; 23:ijms23073533. [PMID: 35408893 PMCID: PMC8999053 DOI: 10.3390/ijms23073533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023] Open
Abstract
The free fatty acid FFA3 receptor (FFA3R) belongs to the superfamily of G-protein-coupled receptors (GPCRs). In the intestine and adipose tissue, it is involved in the regulation of energy metabolism, but its function in the brain is unknown. We aimed, first, to investigate the expression of the receptor in the hippocampus of Alzheimer disease (AD) patients at different stages of the disease and, second, to assess whether genetic inactivation of the Ffar3 gene could affect the phenotypic features of the APPswe mouse model. The expression of transcripts for FFA receptors in postmortem human hippocampal samples and in the hippocampus of wild-type and transgenic mice was analyzed by RT-qPCR. We generated a double transgenic mouse, FFA3R−/−/APPswe, to perform cognition studies and to assess, by immunoblotting Aβ and tau pathologies and the differential expression of synaptic plasticity-related proteins. For the first time, the occurrence of the FFA3R in the human hippocampus and its overexpression, even in the first stages of AD, was demonstrated. Remarkably, FFA3R−/−/APPswe mice do not have the characteristic memory impairment of 12-month-old APPswe mice. Additionally, this newly generated transgenic line does not develop the most important Alzheimer’s disease (AD)-related features, such as amyloid beta (Aβ) brain accumulations and tau hyperphosphorylation. These findings are accompanied by increased levels of the insulin-degrading enzyme (IDE) and lower activity of the tau kinases GSK3β and Cdk5. We conclude that the brain FFA3R is involved in cognitive processes and that its inactivation prevents AD-like cognitive decline and pathological hallmarks.
Collapse
Affiliation(s)
- Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Eva Martinez-Pinilla
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Francisco Gil-Bea
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Rafael Franco
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Network Center, Neurodegenerative Diseases, CiberNed, Spanish National Health Institute “Carlos III”, 28031 Madrid, Spain
- Correspondence: (R.F.); (A.P.-M.); Tel.: +34-934021208 (R.F.); +34-948194700 (ext. 2033) (A.P.-M.)
| | - Alberto Perez-Mediavilla
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (R.F.); (A.P.-M.); Tel.: +34-934021208 (R.F.); +34-948194700 (ext. 2033) (A.P.-M.)
| |
Collapse
|
25
|
Mallick R, Duttaroy AK. Origin and Structural Biology of Novel Coronavirus (SARS-CoV-2). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:1-13. [PMID: 35132591 DOI: 10.1007/978-3-030-85109-5_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION A recent rapid outbreak of infection around the globe has been caused by a novel coronavirus, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first identified in December 2019 in Wuhan city of Hubei province, People's Republic of China. METHODS We reviewed the currently available literature on coronaviruses. RESULTS Coronaviruses are a group of enveloped viruses with non-segmented, single-stranded, and positive-sense RNA genomes. Although 13 variation sites in open reading frames have been identified among SARS-CoV-2 strains, no mutation has been observed so far in envelop protein. The origin and structural biology of SARS-CoV-2 in details are discussed. CONCLUSIONS Origin and structural biology will help the researchers identify the virus's mechanism in the host and drug design. Currently, no clinical treatments or prevention strategies are available for any human coronavirus.
Collapse
Affiliation(s)
- Rahul Mallick
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
26
|
Suchak V, Sathyanath S, Kakunje A. Neuropeptides in psychiatry. ARCHIVES OF MEDICINE AND HEALTH SCIENCES 2022. [DOI: 10.4103/amhs.amhs_91_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Schuster R, Steffen P, Dreyer B, Rohn S, Schlüter H, Riedner M. Identifying Circulating Urotensin II and Urotensin II-Related Peptide-Generating Enzymes in the Human Plasma Fraction Cohn IV-4. J Proteome Res 2021; 20:5368-5378. [PMID: 34734734 DOI: 10.1021/acs.jproteome.1c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Urotensin II (UII) and UII-related peptide (URP) are vasoactive peptide hormones causing strong vasoconstriction or vasodilation, depending on the type of blood vessel. In humans, the active forms are resulting from proteolytic cleavage of their inactive precursor protein. In blood plasma, a defined protease converting the inactive UII and URP precursors into their active forms has not been identified yet. Using mass spectrometry-based enzyme screening for detecting UII- and URP-converting enzymes, the human plasma fraction Cohn IV-4 was chromatographed, and the resulting fractions were screened for UII- or URP-generating activity. Plasma kallikrein (PK) as a UII- and URP-generating protease was identified. URP generation was also found for the serine protease factor XIa, plasmin, thrombin, and, to a smaller extent, factor XIIa. It was demonstrated that in the Cohn IV-4 fraction, PK accounts for a significant amount of UII- and URP-generating activity.
Collapse
Affiliation(s)
- Raphael Schuster
- Institute of Organic Chemistry, Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - Pascal Steffen
- Bowel Cancer & Biomarker Lab, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Benjamin Dreyer
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany.,Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Riedner
- Institute of Organic Chemistry, Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
28
|
de Souza AA, de Andrade DM, Siqueira FDS, Di Iorio JF, Veloso MP, Coelho CDM, Viegas Junior C, Gontijo VS, Dos Santos MH, Meneghetti MCZ, Nader HB, Tersariol ILDS, Juliano L, Juliano MA, Judice WADS. Semysinthetic biflavonoid Morelloflavone-7,4',7″,3‴,4‴-penta-O-butanoyl is a more potent inhibitor of Proprotein Convertases Subtilisin/Kexin PC1/3 than Kex2 and Furin. Biochim Biophys Acta Gen Subj 2021; 1865:130016. [PMID: 34560176 DOI: 10.1016/j.bbagen.2021.130016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/11/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Garcinia brasiliensis is a species native to the Amazon forest. The white mucilaginous pulp is used in folk medicine as a wound healing agent and for peptic ulcer, urinary, and tumor disease treatments. The activity of the proprotein convertases (PCs) Subtilisin/Kex is associated with the development of viral, bacterial and fungal infections, osteoporosis, hyperglycemia, atherosclerosis, cardiovascular, neurodegenerative and neoplastic diseases. METHODS Morelloflavone (BF1) and semisynthetic biflavonoid (BF2, 3 and 4) from Garcinia brasiliensis were tested as inhibitor of PCs Kex2, PC1/3 and Furin, and determined IC50, Ki, human proinflammatory cytokines secretion in Caco-2 cells, mechanism of inhibition, and performed molecular docking studies. RESULTS Biflavonoids were more effective in the inhibition of neuroendocrine PC1/3 than mammalian Furin and fungal Kex2. BF1 presented a mixed inhibition mechanism for Kex2 and PC1, and competitive inhibition for Furin. BF4 has no good interaction with Kex2 and Furin since carboxypropyl groups results in steric hindrance to ligand-protein interactions. Carboxypropyl groups of BF4 promote steric hindrance with Kex2 and Furin, but effective in the affinity of PC1/3. BF4 was more efficient at inhibiting PCl/3 (IC50 = 1.13 μM and Ki = 0,59 μM, simple linear competitive mechanism of inhibition) than Kex2, Furin. Also, our results strongly suggested that BF4 also inhibits the endogenous cellular PC1/3 activity in Caco-2 cells, since PC1/3 inhibition by BF4 causes a large increase in IL-8 and IL-1β secretion in Caco-2 cells. CONCLUSIONS BF4 is a potent and selective inhibitor of PC1/3. GENERAL SIGNIFICANCE BF4 is the best candidate for further clinical studies on inhibition of PC1/3.
Collapse
Affiliation(s)
- Aline Aparecida de Souza
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Débora Martins de Andrade
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Fábio da Silva Siqueira
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Juliana Fortes Di Iorio
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Marcia Paranho Veloso
- Laboratório de Modelagem Molecular e Simulação Computacional, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Camila de Morais Coelho
- Laboratório de Modelagem Molecular e Simulação Computacional, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Claudio Viegas Junior
- Laboratório de Pesquisa em Química Medicinal, Universidade Federal de Alfenas, 37,133-840 Alfenas, MG, Brazil
| | - Vanessa Silva Gontijo
- Laboratório de Pesquisa em Química Medicinal, Universidade Federal de Alfenas, 37,133-840 Alfenas, MG, Brazil
| | | | - Maria Cecília Zorél Meneghetti
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Ivarne Luis Dos Santos Tersariol
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil; Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Wagner Alves de Souza Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil.
| |
Collapse
|
29
|
Seidah NG. The PCSK9 discovery, an inactive protease with varied functions in hypercholesterolemia, viral infections, and cancer. J Lipid Res 2021; 62:100130. [PMID: 34606887 PMCID: PMC8551645 DOI: 10.1016/j.jlr.2021.100130] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/06/2023] Open
Abstract
In 2003, the sequences of mammalian proprotein convertase subtilisin/kexin type 9 (PCSK9) were reported. Radiolabeling pulse-chase analyses demonstrated that PCSK9 was synthesized as a precursor (proPCSK9) that undergoes autocatalytic cleavage in the endoplasmic reticulum into PCSK9, which is then secreted as an inactive enzyme in complex with its inhibitory prodomain. Its high mRNA expression in liver hepatocytes and its gene localization on chromosome 1p32, a third locus associated with familial hypercholesterolemia, other than LDLR or APOB, led us to identify three patient families expressing the PCSK9 variants S127R or F216L. Although Pcsk9 and Ldlr were downregulated in mice that were fed a cholesterol-rich diet, PCSK9 overexpression led to the degradation of the LDLR. This led to the demonstration that gain-of-function and loss-of-function variations in PCSK9 modulate its bioactivity, whereby PCSK9 binds the LDLR in a nonenzymatic fashion to induce its degradation in endosomes/lysosomes. PCSK9 was also shown to play major roles in targeting other receptors for degradation, thereby regulating various processes, including hypercholesterolemia and associated atherosclerosis, vascular inflammation, viral infections, and immune checkpoint regulation in cancer. Injectable PCSK9 monoclonal antibody or siRNA is currently used in clinics worldwide to treat hypercholesterolemia and could be combined with current therapies in cancer/metastasis. In this review, we present the critical information that led to the discovery of PCSK9 and its implication in LDL-C metabolism. We further analyze the underlying functional mechanism(s) in the regulation of LDL-C, as well as the evolving novel roles of PCSK9 in both health and disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| |
Collapse
|
30
|
Neuropeptide repertoire and 3D anatomy of the ctenophore nervous system. Curr Biol 2021; 31:5274-5285.e6. [PMID: 34587474 DOI: 10.1016/j.cub.2021.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
Ctenophores are gelatinous marine animals famous for locomotion by ciliary combs. Due to the uncertainties of the phylogenetic placement of ctenophores and the absence of some key bilaterian neuronal genes, it has been hypothesized that their neurons evolved independently. Additionally, recent whole-body, single-cell RNA sequencing (scRNA-seq) analysis failed to identify ctenophore neurons using any of the known neuronal molecular markers. To reveal the molecular machinery of ctenophore neurons, we have characterized the neuropeptide repertoire of the ctenophore Mnemiopsis leidyi. Using the machine learning NeuroPID tool, we predicted 129 new putative neuropeptide precursors. Sixteen of them were localized to the subepithelial nerve net (SNN), sensory aboral organ (AO), and epithelial sensory cells (ESCs), providing evidence that they are neuropeptide precursors. Four of these putative neuropeptides had a behavioral effect and increased the animals' swimming speed. Intriguingly, these putative neuropeptides finally allowed us to identify neuronal cell types in single-cell transcriptomic data and reveal the molecular identity of ctenophore neurons. High-resolution electron microscopy and 3D reconstructions of the nerve net underlying the comb plates confirmed a more than 100-year-old hypothesis of anastomoses between neurites of the same cell in ctenophores and revealed that they occur through a continuous membrane. Our work demonstrates the unique ultrastructure of the peptidergic nerve net and a rich neuropeptide repertoire of ctenophores, supporting the hypothesis that the first nervous system(s) evolved as nets of peptidergic cells.
Collapse
|
31
|
Wang TY, Sun MX, Zhang HL, Wang G, Zhan G, Tian ZJ, Cai XH, Su C, Tang YD. Evasion of Antiviral Innate Immunity by Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2021; 12:693799. [PMID: 34512570 PMCID: PMC8430839 DOI: 10.3389/fmicb.2021.693799] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the front line for antiviral immune responses and bridges adaptive immunity against viral infections. However, various viruses have evolved many strategies to evade host innate immunity. A typical virus is the porcine reproductive and respiratory syndrome virus (PRRSV), one of the most globally devastating viruses threatening the swine industry worldwide. PRRSV engages several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by PRRSV to evade pattern recognition receptors signaling pathways, type I interferon (IFN-α/β) receptor (IFNAR)-JAK-STAT signaling pathway, and interferon-stimulated genes. Deciphering the antiviral immune evasion mechanisms by PRRSV will enhance our understanding of PRRSV’s pathogenesis and help us to develop more effective methods to control and eliminate PRRSV.
Collapse
Affiliation(s)
- Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guoqing Zhan
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
32
|
Nikpour M, Nilsson J, Persson A, Noborn F, Vorontsov E, Larson G. Proteoglycan profiling of human, rat and mouse insulin-secreting cells. Glycobiology 2021; 31:916-930. [PMID: 33997891 PMCID: PMC8434799 DOI: 10.1093/glycob/cwab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Proteoglycans (PGs) are proteins with glycosaminoglycan (GAG) chains, such as chondroitin sulfate (CS) or heparan sulfate (HS), attached to serine residues. We have earlier shown that prohormones can carry CS, constituting a novel class of PGs. The mapping of GAG modifications of proteins in endocrine cells may thus assist us in delineating possible roles of PGs in endocrine cellular physiology. With this aim, we applied a glycoproteomic approach to identify PGs, their GAG chains and their attachment sites in insulin-secreting cells. Glycopeptides carrying GAG chains were enriched from human pancreatic islets, rat (INS-1 832/13) and mouse (MIN6, NIT-1) insulinoma cell lines by exchange chromatography, depolymerized with GAG lyases, and analyzed by nanoflow liquid chromatography tandem mass spectrometry. We identified CS modifications of chromogranin-A (CgA), islet amyloid polypeptide, secretogranin-1 and secretogranin-2, immunoglobulin superfamily member 10, and protein AMBP. Additionally, we identified two HS-modified prohormones (CgA and secretogranin-1), which was surprising, as prohormones are not typically regarded as HSPGs. For CgA, the glycosylation site carried either CS or HS, making it a so-called hybrid site. Additional HS sites were found on syndecan-1, syndecan-4, nerurexin-2, protein NDNF and testican-1. These results demonstrate that several prohormones, and other constituents of the insulin-secreting cells are PGs. Cell-targeted mapping of the GAG glycoproteome forms an important basis for better understanding of endocrine cellular physiology, and the novel CS and HS sites presented here provide important knowledge for future studies.
Collapse
Affiliation(s)
- Mahnaz Nikpour
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 405 30 Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Andrea Persson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Fredrik Noborn
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 405 30 Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 405 30 Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| |
Collapse
|
33
|
Seidah NG, Pasquato A, Andréo U. How Do Enveloped Viruses Exploit the Secretory Proprotein Convertases to Regulate Infectivity and Spread? Viruses 2021; 13:v13071229. [PMID: 34202098 PMCID: PMC8310232 DOI: 10.3390/v13071229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the binding of enveloped viruses surface glycoproteins to host cell receptor(s) is a major target of vaccines and constitutes an efficient strategy to block viral entry and infection of various host cells and tissues. Cellular entry usually requires the fusion of the viral envelope with host plasma membranes. Such entry mechanism is often preceded by “priming” and/or “activation” steps requiring limited proteolysis of the viral surface glycoprotein to expose a fusogenic domain for efficient membrane juxtapositions. The 9-membered family of Proprotein Convertases related to Subtilisin/Kexin (PCSK) serine proteases (PC1, PC2, Furin, PC4, PC5, PACE4, PC7, SKI-1/S1P, and PCSK9) participate in post-translational cleavages and/or regulation of multiple secretory proteins. The type-I membrane-bound Furin and SKI-1/S1P are the major convertases responsible for the processing of surface glycoproteins of enveloped viruses. Stefan Kunz has considerably contributed to define the role of SKI-1/S1P in the activation of arenaviruses causing hemorrhagic fever. Furin was recently implicated in the activation of the spike S-protein of SARS-CoV-2 and Furin-inhibitors are being tested as antivirals in COVID-19. Other members of the PCSK-family are also implicated in some viral infections, such as PCSK9 in Dengue. Herein, we summarize the various functions of the PCSKs and present arguments whereby their inhibition could represent a powerful arsenal to limit viral infections causing the present and future pandemics.
Collapse
Affiliation(s)
- Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
- Correspondence: ; Tel.: +1-514-987-5609
| | - Antonella Pasquato
- Antonella Pasquato, Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy;
| | - Ursula Andréo
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
| |
Collapse
|
34
|
Raghav PK, Kalyanaraman K, Kumar D. Human cell receptors: potential drug targets to combat COVID-19. Amino Acids 2021; 53:813-842. [PMID: 33950300 PMCID: PMC8097256 DOI: 10.1007/s00726-021-02991-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19). The World Health Organization (WHO) has announced that COVID-19 is a pandemic having a higher spread rate rather than the mortality. Identification of a potential approach or therapy against COVID-19 is still under consideration. Therefore, it is essential to have an insight into SARS-CoV-2, its interacting partner, and domains for an effective treatment. The present study is divided into three main categories, including SARS-CoV-2 prominent receptor and its expression levels, other interacting partners, and their binding domains. The first section focuses primarily on coronaviruses' general aspects (SARS-CoV-2, SARS-CoV, and the Middle East Respiratory Syndrome Coronaviruses (MERS-CoV)) their structures, similarities, and mode of infections. The second section discusses the host receptors which includes the human targets of coronaviruses like dipeptidyl peptidase 4 (DPP4), CD147, CD209L, Angiotensin-Converting Enzyme 2 (ACE2), and other miscellaneous targets (type-II transmembrane serine proteases (TTSPs), furin, trypsin, cathepsins, thermolysin, elastase, phosphatidylinositol 3-phosphate 5-kinase, two-pore segment channel, and epithelium sodium channel C-α subunit). The human cell receptor, ACE2 plays an essential role in the Renin-Angiotensin system (RAS) pathway and COVID-19. Thus, this section also discusses the ACE2 expression and risk of COVID-19 infectivity in various organs and tissues such as the liver, lungs, intestine, heart, and reproductive system in the human body. Absence of ACE2 protein expression in immune cells could be used for limiting the SARS-CoV-2 infection. The third section covers the current available approaches for COVID-19 treatment. Overall, this review focuses on the critical role of human cell receptors involved in coronavirus pathogenesis, which would likely be used in designing target-specific drugs to combat COVID-19.
Collapse
Affiliation(s)
| | - Keerthana Kalyanaraman
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Dinesh Kumar
- ICMR-National Institute of Cancer Prevention & Research, Noida, 201301, India.
| |
Collapse
|
35
|
Müller P, Maus H, Hammerschmidt SJ, Knaff P, Mailänder V, Schirmeister T, Kersten C. Interfering with Host Proteases in SARS-CoV-2 Entry as a Promising Therapeutic Strategy. Curr Med Chem 2021; 29:635-665. [PMID: 34042026 DOI: 10.2174/0929867328666210526111318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 01/10/2023]
Abstract
Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since currently, there is no causative drug against this viral infection available, science is striving for new drugs and approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARS-CoV-2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.
Collapse
Affiliation(s)
- Patrick Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Stefan Josef Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Philip Knaff
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Christian Kersten
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
36
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Oroszlán G, Dani R, Végh BM, Varga D, Ács AV, Pál G, Závodszky P, Farkas H, Gál P, Dobó J. Proprotein Convertase Is the Highest-Level Activator of the Alternative Complement Pathway in the Blood. THE JOURNAL OF IMMUNOLOGY 2021; 206:2198-2205. [PMID: 33858964 DOI: 10.4049/jimmunol.2000636] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Factor D (FD) is an essential element of the alternative pathway of the complement system, and it circulates predominantly in cleaved, activated form in the blood. In resting blood, mannose-binding lectin-associated serine protease 3 (MASP-3) is the exclusive activator of pro-FD. Similarly to FD, MASP-3 also circulates mainly in the active form. It was not clear, however, how zymogen MASP-3 is activated. To decipher its activation mechanism, we followed the cleavage of MASP-3 in human hirudin plasma. Our data suggest that neither lectin pathway proteases nor any protease controlled by C1-inhibitor are required for MASP-3 activation. However, EDTA and the general proprotein convertase inhibitor decanoyl-RVKR-chloromethylketone completely prevented activation of exogenous MASP-3 added to blood samples. In this study, we show that proprotein convertase subtilisin/kexin (PCSK) 5 and PCSK6 are able to activate MASP-3 in vitro. Unlike PCSK5, PCSK6 was detected in human serum and plasma, and previously PCSK6 had also been shown to activate corin in the circulation. In all, PCSK6 emerges as the MASP-3 activator in human blood. These findings clarify the very first step of the activation of the alternative pathway and also connect the complement and the proprotein convertase systems in the blood.
Collapse
Affiliation(s)
- Gábor Oroszlán
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ráhel Dani
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Barbara M Végh
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary; and
| | - Dóra Varga
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andrea V Ács
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary; and
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Henriette Farkas
- Hungarian Angioedema Center of Reference and Excellence, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary;
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary;
| |
Collapse
|
38
|
You J, Seok JH, Joo M, Bae JY, Kim JI, Park MS, Kim K. Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins. Biomol Ther (Seoul) 2021; 29:249-262. [PMID: 33875625 PMCID: PMC8094071 DOI: 10.4062/biomolther.2021.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/05/2022] Open
Abstract
The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.
Collapse
Affiliation(s)
- Jaehwan You
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Pusan 50612, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
39
|
Zhang D, Hugo W, Redublo P, Miao H, Bergsneider M, Wang MB, Kim W, Yong WH, Heaney AP. A human ACTH-secreting corticotroph tumoroid model: Novel Human ACTH-Secreting Tumor Cell in vitro Model. EBioMedicine 2021; 66:103294. [PMID: 33773184 PMCID: PMC8024915 DOI: 10.1016/j.ebiom.2021.103294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cushing disease (CD), although rare, is a life-threatening disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma, which leads to excess adrenal-derived cortisol. Efficacious and safe medical therapies that control both hormonal hypersecretion and pituitary corticotroph tumor growth remain an unmet need in the management of CD. Translational research in pituitary tumors has been significantly hampered by limited quantities of surgically resected tissue for ex vivo studies, and unavailability of human pituitary tumor cell models. METHODS To characterize human corticotroph tumors at the cellular level, we employed single cell RNA-sequencing (scRNA-seq) to study 4 surgically resected tumors. We also used microarrays to compare individualized paired consecutive culture passages to understand transcriptional shifts as in vitro cultures lost ACTH secretion. Based on these findings, we then modified our in vitro culture methods to develop sustained ACTH-secreting human corticotroph tumoroid cultures. FINDINGS scRNA-seq identified 4 major cell populations, namely corticotroph tumor (73.6%), stromal (11.2%), progenitor (8.3%), and immune cells (6.8%). Microarray analysis revealed striking changes in extracellular matrix, cell adhesion and motility-related genes concordant with loss of ACTH secretion during conventional 2D culture. Based on these findings, we subsequently defined a series of crucial culture nutrients and scaffold modifications that provided a more favorable trophic and structural environment that could maintain ACTH secretion in in vitro human corticotroph tumor cultures for up to 4 months. INTERPRETATION Our human corticotroph tumoroid model is a significant advance in the field of pituitary tumors and will further enable translational research studies to identify critically needed therapies for CD. FUNDING This work was partly funded by NCI P50-CA211015 and the Warley Trust Foundation.
Collapse
Affiliation(s)
- Dongyun Zhang
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Willy Hugo
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Peter Redublo
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Hui Miao
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Marvin Bergsneider
- Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Marilene B Wang
- Departments of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Won Kim
- Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - William H Yong
- Departments of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Anthony P Heaney
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States; Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
40
|
Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG, Muruato A, Zou J, Zhang X, Juelich T, Smith JK, Zhang L, Bopp N, Schindewolf C, Vu M, Vanderheiden A, Winkler ES, Swetnam D, Plante JA, Aguilar P, Plante KS, Popov V, Lee B, Weaver SC, Suthar MS, Routh AL, Ren P, Ku Z, An Z, Debbink K, Diamond MS, Shi PY, Freiberg AN, Menachery VD. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 2021; 591:293-299. [PMID: 33494095 PMCID: PMC8175039 DOI: 10.1038/s41586-021-03237-4] [Citation(s) in RCA: 500] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/13/2021] [Indexed: 01/22/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-a new coronavirus that has led to a worldwide pandemic1-has a furin cleavage site (PRRAR) in its spike protein that is absent in other group-2B coronaviruses2. To explore whether the furin cleavage site contributes to infection and pathogenesis in this virus, we generated a mutant SARS-CoV-2 that lacks the furin cleavage site (ΔPRRA). Here we report that replicates of ΔPRRA SARS-CoV-2 had faster kinetics, improved fitness in Vero E6 cells and reduced spike protein processing, as compared to parental SARS-CoV-2. However, the ΔPRRA mutant had reduced replication in a human respiratory cell line and was attenuated in both hamster and K18-hACE2 transgenic mouse models of SARS-CoV-2 pathogenesis. Despite reduced disease, the ΔPRRA mutant conferred protection against rechallenge with the parental SARS-CoV-2. Importantly, the neutralization values of sera from patients with coronavirus disease 2019 (COVID-19) and monoclonal antibodies against the receptor-binding domain of SARS-CoV-2 were lower against the ΔPRRA mutant than against parental SARS-CoV-2, probably owing to an increased ratio of particles to plaque-forming units in infections with the former. Together, our results demonstrate a critical role for the furin cleavage site in infection with SARS-CoV-2 and highlight the importance of this site for evaluating the neutralization activities of antibodies.
Collapse
Affiliation(s)
- Bryan A Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Adam L Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kumari G Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio Muruato
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Terry Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nathen Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abigail Vanderheiden
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Emma S Winkler
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Daniele Swetnam
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Patricia Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, USA
| | - Kari Debbink
- Department of Natural Sciences Bowie State University, Bowie, MD, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
41
|
Ortutay Z, Grönholm A, Laitinen M, Keresztes-Andrei M, Hermelo I, Pesu M. Identification of Novel Genetic Regulatory Region for Proprotein Convertase FURIN and Interferon Gamma in T Cells. Front Immunol 2021; 12:630389. [PMID: 33679774 PMCID: PMC7930619 DOI: 10.3389/fimmu.2021.630389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
The proprotein convertase enzyme FURIN promotes the proteolytic maturation of pro-proteins and thereby it serves as an important factor for maintaining cellular homeostasis. In T cells, FURIN is critical for maintaining the T regulatory cell dependent peripheral immune tolerance and intact T helper cell polarization. The enzymatic activity of FURIN is directly associated with its expression levels, but genetic determinants for cell-type specific Furin gene regulation have remained elusive. By exploring the histone acetyltransferase p300 binding patterns in T helper cells, a putative regulatory region at ca. 20kB upstream of Furin gene was identified. When this region was deleted with CRISPR/Cas9 the production of Furin mRNA was significantly reduced in activated mouse T cells. Genome-wide RNA profiling by sequencing revealed that the novel Furin regulator region also impacted the expression of several genes that have previously been associated with the Th1 type hall mark cytokine IFNγ regulation or function. Finally, Furin genetic regulatory region was found to specifically promote the secretion of IFNγ by activated T cells. In sum, our data unravels the presence of Furin expression regulatory region in T cells that has characteristics of a super-enhancer for Th1 cell fate.
Collapse
Affiliation(s)
- Zsuzsanna Ortutay
- Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna Grönholm
- Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Melina Laitinen
- Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Melinda Keresztes-Andrei
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Ismail Hermelo
- Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marko Pesu
- Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
42
|
Bhullar KS, Drews SJ, Wu J. Translating bioactive peptides for COVID-19 therapy. Eur J Pharmacol 2021; 890:173661. [PMID: 33098835 PMCID: PMC7577279 DOI: 10.1016/j.ejphar.2020.173661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 (Coronavirus disease 2019) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense RNA virus. This virus has emerged as a threat to global health, social stability, and the global economy. This pandemic continues to cause rampant mortality worldwide with the dire urgency to develop novel therapeutic agents. To meet this task, this article discusses advances in the research and potential application of bioactive peptides for possible mitigation of infection by SARS-CoV-2. Growing insight into the molecular biology of SARS-CoV-2 has revealed potential druggable targets for bioactive peptides. Bioactive peptides with unique amino acid sequences can mitigate such targets including, type II transmembrane serine proteases (TMPRSS2) inhibition, furin cleavage, and renin-angiotensin-aldosterone system (RAAS) members. Based on current evidence and structure-function analysis, multiple bioactive peptides present potency to neutralize the virus. To date, no SARS-CoV-2-explicit drug has been reported, but we here introduce bioactive peptides in the perspective of their potential activity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada; Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Steven J Drews
- Canadian Blood Services, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
43
|
Capillary electrophoresis electrospray ionization-mass spectrometry for peptidomics-based processing site determination. Biochem Biophys Res Commun 2020; 533:872-878. [PMID: 33008600 DOI: 10.1016/j.bbrc.2020.09.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Proteolytic cleavage at specific sites is a key event that modulates protein functions in biological processes. These cleavage sites are identified through mass spectrometry-based peptidomics of overlapping peptide sequences. Here, we assessed to what extent a recent capillary electrophoresis (CE) system interfaced with electrospray ionization-mass spectrometry (ESI-MS) contributes to identifying endogenous peptides present in a biological sample. Peptides released by a human endocrine cell line stimulated for secretion was analyzed for uncovering potential processing sites created by proprotein convertases (PCs) that cleave precursors in the secretory pathway. CE-ESI-MS was conducted, in comparison to a standard liquid chromatography (LC)-ESI-MS platform. LC and CE complemented each other in elucidating processing sites that match PC consensus sequences from known substrates. We suggest that the precursors BIGH3, STC1, LFNG, QSOX1 and CYTC are potential substrates for PCs, and that a CE-ESI system would come in handy and garner greater recognition as a robust tool in peptidomics.
Collapse
|
44
|
Di Natale C, La Manna S, De Benedictis I, Brandi P, Marasco D. Perspectives in Peptide-Based Vaccination Strategies for Syndrome Coronavirus 2 Pandemic. Front Pharmacol 2020; 11:578382. [PMID: 33343349 PMCID: PMC7744882 DOI: 10.3389/fphar.2020.578382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
At the end of December 2019, an epidemic form of respiratory tract infection now named COVID-19 emerged in Wuhan, China. It is caused by a newly identified viral pathogen, the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which can cause severe pneumonia and acute respiratory distress syndrome. On January 30, 2020, due to the rapid spread of infection, COVID-19 was declared as a global health emergency by the World Health Organization. Coronaviruses are enveloped RNA viruses belonging to the family of Coronaviridae, which are able to infect birds, humans and other mammals. The majority of human coronavirus infections are mild although already in 2003 and in 2012, the epidemics of SARS-CoV and Middle East Respiratory Syndrome coronavirus (MERS-CoV), respectively, were characterized by a high mortality rate. In this regard, many efforts have been made to develop therapeutic strategies against human CoV infections but, unfortunately, drug candidates have shown efficacy only into in vitro studies, limiting their use against COVID-19 infection. Actually, no treatment has been approved in humans against SARS-CoV-2, and therefore there is an urgent need of a suitable vaccine to tackle this health issue. However, the puzzled scenario of biological features of the virus and its interaction with human immune response, represent a challenge for vaccine development. As expected, in hundreds of research laboratories there is a running out of breath to explore different strategies to obtain a safe and quickly spreadable vaccine; and among others, the peptide-based approach represents a turning point as peptides have demonstrated unique features of selectivity and specificity toward specific targets. Peptide-based vaccines imply the identification of different epitopes both on human cells and virus capsid and the design of peptide/peptidomimetics able to counteract the primary host-pathogen interaction, in order to induce a specific host immune response. SARS-CoV-2 immunogenic regions are mainly distributed, as well as for other coronaviruses, across structural areas such as spike, envelope, membrane or nucleocapsid proteins. Herein, we aim to highlight the molecular basis of the infection and recent peptide-based vaccines strategies to fight the COVID-19 pandemic including their delivery systems.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano Di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples Federico II, Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Paola Brandi
- Centro Nacional De Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
45
|
Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, Tekwani BL, Sankaranarayanan M. Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg Chem 2020; 104:104269. [PMID: 32947136 PMCID: PMC7476961 DOI: 10.1016/j.bioorg.2020.104269] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022]
Abstract
COVID-19 caused by the novel SARS-CoV-2 has been declared a pandemic by the WHO is causing havoc across the entire world. As of May end, about 6 million people have been affected, and 367 166 have died from COVID-19. Recent studies suggest that the SARS-CoV-2 genome shares about 80% similarity with the SARS-CoV-1 while their protein RNA dependent RNA polymerase (RdRp) shares 96% sequence similarity. Remdesivir, an RdRp inhibitor, exhibited potent activity against SARS-CoV-2 in vitro. 3-Chymotrypsin like protease (also known as Mpro) and papain-like protease, have emerged as the potential therapeutic targets for drug discovery against coronaviruses owing to their crucial role in viral entry and host-cell invasion. Crystal structures of therapeutically important SARS-CoV-2 target proteins, namely, RdRp, Mpro, endoribonuclease Nsp15/NendoU and receptor binding domain of CoV-2 spike protein has been resolved, which have facilitated the structure-based design and discovery of new inhibitors. Furthermore, studies have indicated that the spike proteins of SARS-CoV-2 use the Angiotensin Converting Enzyme-2 (ACE-2) receptor for its attachment similar to SARS-CoV-1, which is followed by priming of spike protein by Transmembrane protease serine 2 (TMPRSS2) which can be targeted by a proven inhibitor of TMPRSS2, camostat. The current treatment strategy includes repurposing of existing drugs that were found to be effective against other RNA viruses like SARS, MERS, and Ebola. This review presents a critical analysis of druggable targets of SARS CoV-2, new drug discovery, development, and treatment opportunities for COVID-19.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist., Hyderabad, 500078 Telangana, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, TamilNadu, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
| | | | - Babu L Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, Birmingham, AL 35205, USA
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India.
| |
Collapse
|
46
|
Park O, Bang JK, Ryu K, Hwang E, Hong KS, Byun Y, Cheong C, Jeon YH. Structure of neuroendocrine regulatory peptide‐2 in membrane‐mimicking environments. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- One‐Sung Park
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Jeong Kyu Bang
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Kyoung‐Seok Ryu
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Eunha Hwang
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Kwan Soo Hong
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Youngjoo Byun
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
| | - Chaejoon Cheong
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Young Ho Jeon
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
| |
Collapse
|
47
|
Amati F, Vancheri C, Latini A, Colona VL, Grelli S, D'Apice MR, Balestrieri E, Passarelli C, Minutolo A, Loddo S, Di Lorenzo A, Rogliani P, Andreoni M, Novelli G. Expression profiles of the SARS-CoV-2 host invasion genes in nasopharyngeal and oropharyngeal swabs of COVID-19 patients. Heliyon 2020; 6:e05143. [PMID: 33024851 PMCID: PMC7528978 DOI: 10.1016/j.heliyon.2020.e05143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
We collect the nasopharyngeal and oropharyngeal swabs of 63 subjects with severe symptoms or contacts with COVID-19 confirmed cases to perform a pilot-study aimed to verify the “in situ” expression of SARS-CoV-2 host invasion genes (ACE2, TMPRSS2, PCSK3, EMILIN1, EMILIN2, MMRN1, MMRN2, DPP4). ACE2 (FC = +1.88, p ≤ 0.05) and DPP4 (FC = +3, p < 0.01) genes showed a significant overexpression in COVID-19 patients. ACE2 and DPP4 expression levels had a good performance (AUC = 0.75; p < 0.001) in distinguishing COVID-19 patients from negative subjects. Interestingly, we found a significant positive association of ACE2 mRNA and PCSK3, EMILIN1, MMRN1 and MMRN2 expression and of DPP4 mRNA and EMILIN2 expression only in COVID-19 patients. Noteworthy, a subgroup of severe COVID-19 (n = 7) patients, showed significant high level of ACE2 mRNA and another subgroup of less severe COVID-19 patients (n = 6) significant raised DPP4 levels. These results indicate that a group of SARS-CoV-2 host invasion genes are functionally related in COVID-19 patients and suggests that ACE2 and DPP4 expression level could act as genomic biomarkers. Moreover, at the best of our knowledge, this is the first study that shows an elevated DPP4 expression in naso- and oropharyngeal swabs of COVID-19 patient thus suggesting a functional role of DPP4 in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Francesca Amati
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133, Rome, RM, Italy.,Department for the Promotion of Human Science and Quality of Life, University San Raffaele, 00166, Rome, RM, Italy
| | - Chiara Vancheri
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133, Rome, RM, Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133, Rome, RM, Italy
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133, Rome, RM, Italy.,Tor Vergata University Hospital, PTV, 00133, Rome, RM, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, RM, Italy
| | - Maria Rosaria D'Apice
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133, Rome, RM, Italy.,Tor Vergata University Hospital, PTV, 00133, Rome, RM, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, RM, Italy
| | | | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, RM, Italy
| | - Sara Loddo
- Bambino Gesù Pediatric Hospital, IRCCS, 00165, Rome, Italy
| | | | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, RM, Italy
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, RM, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133, Rome, RM, Italy.,Tor Vergata University Hospital, PTV, 00133, Rome, RM, Italy.,Neuromed IRCCS Institute, 86077, Pozzilli, IS, Italy.,School of Medicine, Reno University of Nevada, NV, 89557, USA
| |
Collapse
|
48
|
Li X, Zhang Y, Zhang M, Wang Y. GALNT2 regulates ANGPTL3 cleavage in cells and in vivo of mice. Sci Rep 2020; 10:16168. [PMID: 32999434 PMCID: PMC7527996 DOI: 10.1038/s41598-020-73388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
Angiopoietin-like protein 3 (ANGPTL3) is an important inhibitor of lipoprotein lipase and endothelial lipase that plays critical roles in lipoprotein metabolism. It specifically expresses in the liver and undergoes proprotein convertase-mediated cleavage during secretion, which generates an N-terminal coiled-coil domain and C-terminal fibrinogen-like domain that has been considered as the activation step for its function. Previous studies have reported that the polypeptide GalNAc-transferase GALNT2 mediates the O-glycosylation of the ANGPTL3 near the cleavage site, which inhibits the proprotein convertase (PC)-mediated cleavage in vitro and in cultured cells. However, loss-of-function mutation for GALNT2 has no effect on ANGPTL3 cleavage in human. Thus whether GALNT2 regulates the cleavage of ANGPTL3 in vivo is unclear. In present study, we systematically characterized the cleavage of Angptl3 in cultured cells and in vivo of mice. We found that endogenous Angptl3 is cleaved in primary hepatocytes and in vivo of mice, and this cleavage can be blocked by Galnt2 overexpression or PC inhibition. Moreover, suppressing galnt2 expression increases the cleavage of Angptl3 in mice dramatically. Thus, our results support the conclusion that Galnt2 is a key endogenous regulator for Angptl3 cleavage both in vitro and in vivo.
Collapse
Affiliation(s)
- Xuedan Li
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Minzhu Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
49
|
Johnson BA, Xie X, Kalveram B, Lokugamage KG, Muruato A, Zou J, Zhang X, Juelich T, Smith JK, Zhang L, Bopp N, Schindewolf C, Vu M, Vanderheiden A, Swetnam D, Plante JA, Aguilar P, Plante KS, Lee B, Weaver SC, Suthar MS, Routh AL, Ren P, Ku Z, An Z, Debbink K, Shi PY, Freiberg AN, Menachery VD. Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32869021 PMCID: PMC7457603 DOI: 10.1101/2020.08.26.268854] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 has resulted in a global pandemic and shutdown economies around the world. Sequence analysis indicates that the novel coronavirus (CoV) has an insertion of a furin cleavage site (PRRAR) in its spike protein. Absent in other group 2B CoVs, the insertion may be a key factor in the replication and virulence of SARS-CoV-2. To explore this question, we generated a SARS-CoV-2 mutant lacking the furin cleavage site (ΔPRRA) in the spike protein. This mutant virus replicated with faster kinetics and improved fitness in Vero E6 cells. The mutant virus also had reduced spike protein processing as compared to wild-type SARS-CoV-2. In contrast, the ΔPRRA had reduced replication in Calu3 cells, a human respiratory cell line, and had attenuated disease in a hamster pathogenesis model. Despite the reduced disease, the ΔPRRA mutant offered robust protection from SARS-CoV-2 rechallenge. Importantly, plaque reduction neutralization tests (PRNT 50 ) with COVID-19 patient sera and monoclonal antibodies against the receptor-binding domain found a shift, with the mutant virus resulting in consistently reduced PRNT 50 titers. Together, these results demonstrate a critical role for the furin cleavage site insertion in SARS-CoV-2 replication and pathogenesis. In addition, these findings illustrate the importance of this insertion in evaluating neutralization and other downstream SARS-CoV-2 assays. Importance As COVID-19 has impacted the world, understanding how SARS-CoV-2 replicates and causes virulence offers potential pathways to disrupt its disease. By removing the furin cleavage site, we demonstrate the importance of this insertion to SARS-CoV-2 replication and pathogenesis. In addition, the findings with Vero cells indicate the likelihood of cell culture adaptations in virus stocks that can influence reagent generation and interpretation of a wide range of data including neutralization and drug efficacy. Overall, our work highlights the importance of this key motif in SARS-CoV-2 infection and pathogenesis. Article Summary A deletion of the furin cleavage site in SARS-CoV-2 amplifies replication in Vero cells, but attenuates replication in respiratory cells and pathogenesis in vivo. Loss of the furin site also reduces susceptibility to neutralization in vitro .
Collapse
|
50
|
Shedding of cancer susceptibility candidate 4 by the convertases PC7/furin unravels a novel secretory protein implicated in cancer progression. Cell Death Dis 2020; 11:665. [PMID: 32820145 PMCID: PMC7441151 DOI: 10.1038/s41419-020-02893-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
The proprotein convertases (PCs) are responsible for the maturation of precursor proteins, and are involved in multiple and critical biological processes. Over the past 30 years, the PCs have had great translational applications, but the physiological roles of PC7, the seventh member of the family, are still obscure. Searching for new substrates of PC7, a quantitative proteomics screen for selective enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells identified two human type-II transmembrane proteins of unknown function(s): Cancer Susceptibility Candidate 4 (CASC4) and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). Concentrating on CASC4, its mutagenesis characterized the PC7/Furin-shedding site to occur at KR66↓NS, in HEK293 cells. We defined PC7 and Furin trafficking and activity, and demonstrated that CASC4 shedding occurs in acidic endosomes and/or in the trans-Golgi Network. Our data unraveled a cancer-protective role for CASC4, because siRNA silencing of endogenous CASC4 expression in the invasive triple-negative breast cancer human cell line MDA-MB-231 resulted in a significantly increased cellular migration and invasion. Conversely, MDA-MB-231 cells stably expressing CASC4 exhibited reduced migration and invasion, which can be explained by an increased number of paxillin-positive focal adhesions. This phenotypic cancer-protective role of CASC4 is reversed in cells overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, or upon overexpression of the N-terminally convertase-generated membrane-bound segment. This phenotype was associated with increased formation of podosome-like structures, especially evident in cells overexpressing the N-terminal fragment. In accord, breast cancer patients’ data sets show that high CASC4 and PCSK7 expression levels predict a significantly worse prognosis compared to high CASC4 but low PCSK7 levels. In conclusion, CASC4 shedding not only disrupts its anti-migratory/invasive role, but also generates a membrane-bound fragment that drastically modifies the actin cytoskeleton, resulting in an enhanced cellular migration and invasion. This phenotype might be clinically relevant in the prognosis of breast cancer patients.
Collapse
|