1
|
Burboa PC, Gaete PS, Shu P, Araujo PA, Beuve AV, Durán WN, Contreras JE, Lillo MA. Endothelial TRPV4/Cx43 Signaling Complex Regulates Vasomotor Tone in Resistance Arteries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.604930. [PMID: 39091840 PMCID: PMC11291137 DOI: 10.1101/2024.07.25.604930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
S-nitrosylation of Cx43 gap junction channels critically regulates communication between smooth muscle cells and endothelial cells. This posttranslational modification also induces the opening of undocked Cx43 hemichannels. However, its specific impact on vasomotor regulation remains unclear. Considering the role of endothelial TRPV4 channel activation in promoting vasodilation through nitric oxide (NO) production, we investigated the direct modulation of endothelial Cx43 hemichannels by TRPV4 channel activation. Using the proximity ligation assay, we identify that Cx43 and TRPV4 are found in close proximity in the endothelium of resistance arteries. In primary endothelial cell cultures from resistance arteries (ECs), GSK-induced TRPV4 activation enhances eNOS activity, increases NO production, and opens Cx43 hemichannels via direct S-nitrosylation. Notably, the elevated intracellular Ca2+ levels caused by TRPV4 activation were reduced by blocking Cx43 hemichannels. In ex vivo mesenteric arteries, inhibiting Cx43 hemichannels reduced endothelial hyperpolarization without affecting NO production in ECs, underscoring a critical role of TRPV4/Cx43 signaling in endothelial electrical behavior. We perturbed the proximity of Cx43/TRPV4 by disrupting lipid rafts in ECs using β-cyclodextrin. Under these conditions, hemichannel activity, Ca2+ influx, and endothelial hyperpolarization were blunted upon GSK stimulation. Intravital microscopy of mesenteric arterioles in vivo further demonstrated that inhibiting Cx43 hemichannels activity, NO production and disrupting endothelial integrity reduce TRPV4-induced relaxation. These findings underscore a new pivotal role of Cx43 hemichannel associated with TRPV4 signaling pathway in modulating endothelial electrical behavior and vasomotor tone regulation.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Ping Shu
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Priscila A. Araujo
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Annie V. Beuve
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| |
Collapse
|
2
|
The Gatekeepers in the Mouse Ophthalmic Artery: Endothelium-Dependent Mechanisms of Cholinergic Vasodilation. Sci Rep 2016; 6:20322. [PMID: 26831940 PMCID: PMC4735817 DOI: 10.1038/srep20322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/04/2016] [Indexed: 01/25/2023] Open
Abstract
Cholinergic regulation of arterial luminal diameter involves intricate network of intercellular communication between the endothelial and smooth muscle cells that is highly dependent on the molecular mediators released by the endothelium. Albeit the well-recognized contribution of nitric oxide (NO) towards vasodilation, the identity of compensatory mechanisms that maintain vasomotor tone when NO synthesis is deranged remain largely unknown in the ophthalmic artery. This is the first study to identify the vasodilatory signalling mechanisms of the ophthalmic artery employing wild type mice. Acetylcholine (ACh)-induced vasodilation was only partially attenuated when NO synthesis was inhibited. Intriguingly, the combined blocking of cytochrome P450 oxygenase (CYP450) and lipoxygenase (LOX), as well as CYP450 and gap junctions, abolished vasodilation; demonstrating that the key compensatory mechanisms comprise arachidonic acid metabolites which, work in concert with gap junctions for downstream signal transmission. Furthermore, the voltage-gated potassium ion channel, Kv1.6, was functionally relevant in mediating vasodilation. Its localization was found exclusively in the smooth muscle. In conclusion, ACh-induced vasodilation of mouse ophthalmic artery is mediated in part by NO and predominantly via arachidonic acid metabolites, with active involvement of gap junctions. Particularly, the Kv1.6 channel represents an attractive therapeutic target in ophthalmopathologies when NO synthesis is compromised.
Collapse
|
3
|
Flacco N, Segura V, Perez-Aso M, Estrada S, Seller JF, Jiménez-Altayó F, Noguera MA, D'Ocon P, Vila E, Ivorra MD. Different β-adrenoceptor subtypes coupling to cAMP or NO/cGMP pathways: implications in the relaxant response of rat conductance and resistance vessels. Br J Pharmacol 2014; 169:413-25. [PMID: 23373597 DOI: 10.1111/bph.12121] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/07/2013] [Accepted: 01/18/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE To analyse the relative contribution of β1 -, β2 - and β3 -adrenoceptors (Adrb) to vasodilatation in conductance and resistance vessels, assessing the role of cAMP and/or NO/cGMP signalling pathways. EXPERIMENTAL APPROACH Rat mesenteric resistance artery (MRA) and aorta were used to analyse the Adrb expression by real-time-PCR and immunohistochemistry, and for the pharmacological characterization of Adrb-mediated activity by wire myography and tissue nucleotide accumulation. KEY RESULTS The mRNAs and protein for all Adrb were identified in endothelium and/or smooth muscle cells (SMCs) in both vessels. In MRA, Adrb1 signalled through cAMP, Adrb3 through both cAMP and cGMP, but Adrb2, did not activate nucleotide formation; isoprenaline relaxation was inhibited by propranolol (β1 , β2 ), CGP20712A (β1 ), and SQ22536 (adenylyl cyclase inhibitor), but not by ICI118,551 (β2 ), SR59230A (β3 ), ODQ (soluble guanylyl cyclase inhibitor), L-NAME or endothelium removal. In aorta, Adrb1 signalled through cAMP, while β2 - and β3 -subtypes through cGMP; isoprenaline relaxation was inhibited by propranolol, ICI118,551, ODQ, L-NAME, and to a lesser extent, by endothelium removal. CL316243 (β3 -agonist) relaxed aorta, but not MRA. CONCLUSION AND IMPLICATION Despite all three Adrb subtypes being found in both vessels, Adrb1, located in SMCs and acting through the adenylyl cyclase/cAMP pathway, are primarily responsible for vasodilatation in MRA. However, Adrb-mediated vasodilatation in aorta is driven by endothelial Adrb2 and Adrb3, but also by the Adrb2 present in SMCs, and is coupled to the NO/cGMP pathway. These results could help to understand the different physiological roles played by Adrb signalling in regulating conductance and resistance vessels.
Collapse
Affiliation(s)
- N Flacco
- Departament de Farmacologia, Facultat de Farmacia, Universitat de Valencia, Burjassot, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Chan MV, Bubb KJ, Noyce A, Villar IC, Duchene J, Hobbs AJ, Scotland RS, Ahluwalia A. Distinct endothelial pathways underlie sexual dimorphism in vascular auto-regulation. Br J Pharmacol 2013; 167:805-17. [PMID: 22540539 DOI: 10.1111/j.1476-5381.2012.02012.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Pre-menopausal females have a lower incidence of cardiovascular disease compared with age-matched males, implying differences in the mechanisms and pathways regulating vasoactivity. In small arteries, myogenic tone (constriction in response to raised intraluminal pressure) is a major determinant of vascular resistance. Endothelium-derived dilators, particularly NO, tonically moderate myogenic tone and, because the endothelium is an important target for female sex hormones, we investigated whether NO-mediated moderation of myogenic tone differed between the sexes. EXPERIMENTAL APPROACH Pressure-diameter or relaxation concentration-response curves to the NO donor spermine-NO or soluble guanylate cyclase (sGC) stimulation (BAY41-2272) were constructed before and following drug intervention in murine mesenteric resistance arteries. Hypotensive responses to activators of the NO-sGC pathway were determined. Quantitative PCR and Western blotting were used for expression analysis. KEY RESULTS NO synthase inhibition enhanced myogenic tone of arteries of both sexes while block of endothelium-derived hyperpolarizing factor (EDHF) enhanced responses in arteries of females only. Spermine-NO concentration-dependently relaxed mesenteric arteries isolated from either sex. However, while inhibition of sGC activity attenuated responses of arteries from male mice only, endothelial denudation attenuated responses of arteries from females only. BAY41-2272 and spermine-NO-induced vasodilatation and hypotension were greater in males than in females. CONCLUSIONS AND IMPLICATIONS NO moderated myogenic tone in arteries of male mice by a sGC-dependent pathway while EDHF was the predominant endothelial regulator in arteries of females. This is a potentially important sexual dimorphism in NO-mediated reactivity and further implicates EDHF as the predominant endothelial vasodilator in female resistance arteries.
Collapse
Affiliation(s)
- Melissa V Chan
- William Harvey Research Institute, Barts and The London Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gaete PS, Lillo MA, Ardiles NM, Pérez FR, Figueroa XF. Ca2+-activated K+ channels of small and intermediate conductance control eNOS activation through NAD(P)H oxidase. Free Radic Biol Med 2012; 52:860-70. [PMID: 22210378 DOI: 10.1016/j.freeradbiomed.2011.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 11/23/2011] [Accepted: 11/30/2011] [Indexed: 11/24/2022]
Abstract
Ca(2+)-activated K(+) channels (K(Ca)) and NO play a central role in the endothelium-dependent control of vasomotor tone. We evaluated the interaction of K(Ca) with NO production in isolated arterial mesenteric beds of the rat. In phenylephrine-contracted mesenteries, acetylcholine (ACh)-induced vasodilation was reduced by NO synthase (NOS) inhibition with N(ω)-nitro-L-arginine (L-NA), but in the presence of tetraethylammonium, L-NA did not further affect the response. In KCl-contracted mesenteries, the relaxation elicited by 100 nM ACh or 1 μM ionomycin was abolished by L-NA, tetraethylammonium, or simultaneous blockade of small-conductance K(Ca) (SK(Ca)) channels with apamin and intermediate-conductance K(Ca) (IK(Ca)) channels with triarylmethane-34 (TRAM-34). Apamin-TRAM-34 treatment also abolished 100 nM ACh-activated NO production, which was associated with an increase in superoxide formation. Endothelial cell Ca(2+) buffering with BAPTA elicited a similar increment in superoxide. Apamin-TRAM-34 treatment increased endothelial NOS phosphorylation at threonine 495 (P-eNOS(Thr495)). Blockade of NAD(P)H oxidase with apocynin or superoxide dismutation with PEG-SOD prevented the increment in superoxide and changes in P-eNOS(Thr495) observed during apamin and TRAM-34 application. Our results indicate that blockade of SK(Ca) and IK(Ca) activates NAD(P)H oxidase-dependent superoxide formation, which leads to inhibition of NO release through P-eNOS(Thr495). These findings disclose a novel mechanism involved in the control of NO production.
Collapse
Affiliation(s)
- Pablo S Gaete
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
6
|
Berhane Y, Bailey SR, Putignano C, Elliott J. Characterization of agonist-induced endothelium-dependent vasodilatory responses in the vascular bed of the equine digit. J Vet Pharmacol Ther 2008; 31:1-8. [PMID: 18177312 DOI: 10.1111/j.1365-2885.2007.00912.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of endothelium-derived relaxing factors was studied in the regulation of vascular responses in the Krebs perfused equine isolated digit. Perfusion pressure was recorded in response to bolus doses of 5-hydroxytryptamine (6 nmol) alone or co-administered with carbachol (CCh; 0.2 micromol), bradykinin (BK; 0.2 nmol), substance P (SP; 0.2 nmol) or sodium nitroprusside (SNP; 0.2 micromol). N(omega)-Nitro-L-Arginine methyl ester hydrochloride (L-NAME; 300 microm) caused partial but significant inhibition of CCh-induced vasodilatory response, whereas BK and SP-induced responses were resistant to L-NAME. High potassium (K(+), 30 mm) and the cytochrome P-450 (CYP) epoxygenase inhibitor, clotrimazole (10 microm) plus L-NAME (100 microm), completely abolished the CCh, BK and SP-induced vasodilatory responses, whereas the response to SNP was unaffected. In contrast, the L-NAME-resistant proportion of CCh, BK and SP-induced vasodilatory response was not inhibited by the highly selective CYP2C9 inhibitor, sulphaphenazole (10 microm). The cyclo-oxygenase inhibitor, ibuprofen (10 microm) did not affect the CCh, BK and SP-induced responses. These data demonstrate that CCh, BK and SP-induced relaxation in the equine digit involve a combination of the NO and endothelium-derived hyperpolarizing factor (EDHF) pathways. These results do not support the evidence for the involvement of CYP-derived epoxyeicosatrienoic acids and the exact nature of EDHF in the equine digit remains to be established.
Collapse
Affiliation(s)
- Y Berhane
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK.
| | | | | | | |
Collapse
|
7
|
Berhane Y, Elliott J, Bailey SR. Assessment of endothelium-dependent vasodilation in equine digital resistance vessels. J Vet Pharmacol Ther 2006; 29:387-95. [PMID: 16958783 DOI: 10.1111/j.1365-2885.2006.00779.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Haemodynamic disturbances leading to ischaemia and reperfusion injury of the digit are thought to be involved in the pathophysiology of acute equine laminitis. Identification of physiological regulators of blood flow through the equine digit is important in identifying factors, which may predispose animals to laminitis. A method was developed to assess endothelium-dependent responses of the isolated Krebs-perfused equine digit by co-administration of 5-hydroxytryptamine (5-HT) with vasodilator agents, carbachol (CCh), bradykinin (BK) and substance P (SP). Bolus co-administration of CCh (0.02-2 micromol), BK and SP (0.02-0.2 nmol), caused inhibition of the 5-HT pressor response by 50-60%. The vasodilator responses were abolished by the detergent, CHAPS, indicating endothelium dependency; whereas vasoconstrictor responses to 5-HT were potentiated. CCh-induced relaxation was significantly reduced by the nitric oxide synthase inhibitor L-NAME (79.7 +/- 3.4% inhibition), whereas a large proportion of BK and SP-induced relaxation remained (34.1 +/- 6.3% and 33.6 +/- 5.3% inhibition). L-NAME potentiated vasoconstrictor responses to 5-HT. In conclusion, this study demonstrates that endothelium-derived NO modulates the response to vasoconstrictors such as 5-HT and is likely to be an important regulator of blood flow in the digital resistance vascular bed. Other factor(s) released by the endothelium are also important in regulating blood flow, whose identity remains to be established.
Collapse
Affiliation(s)
- Y Berhane
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London, UK
| | | | | |
Collapse
|
8
|
Villar IC, Francis S, Webb A, Hobbs AJ, Ahluwalia A. Novel aspects of endothelium-dependent regulation of vascular tone. Kidney Int 2006; 70:840-53. [PMID: 16837917 DOI: 10.1038/sj.ki.5001680] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vascular endothelium plays a crucial role in the regulation of vascular homeostasis and in preventing the initiation and progress of cardiovascular disease by controlling mechanical functions of the underlying vascular smooth muscle. Three vasodilators: nitric oxide (NO), prostacyclin, and endothelium-derived hyperpolarizing factor, produced by the endothelium, underlie this activity. These substances act in a co-ordinated interactive manner to maintain normal endothelial function and operate as support mechanisms when one pathway malfunctions. In this review, we discuss recent advances in our understanding of how gender influences the interaction of these factors resulting in the vascular protective effects seen in pre-menopausal women. We also discuss how endothelial NO synthase (NOS) can act in both a pro- and anti-inflammatory action and therefore is likely to be pivotal in the initiation and time course of an inflammatory response, particularly with respect to inflammatory cardiovascular disorders. Finally, we review recent evidence demonstrating that it is not solely NOS-derived NO that mediates many of the beneficial effects of the endothelium, in particular, nitrite acts as a store of NO released during pathological episodes associated with NOS inactivity (ischemia/hypoxia). Each of these more recent findings has emphasized new pathways involved in endothelial biology, and following further research and understanding of the significance and mechanisms of these systems, it is likely that new and improved treatments for cardiovascular disease will result.
Collapse
Affiliation(s)
- I C Villar
- Clinical Pharmacology, William Harvey Research Institute, Barts & The London Medical School, Charterhouse Square, London, UK
| | | | | | | | | |
Collapse
|
9
|
Abstract
The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms. In general, EDHF-mediated responses involve an increase in the intracellular calcium concentration, the opening of calcium-activated potassium channels of small and intermediate conductance and the hyperpolarization of the endothelial cells. This results in an endothelium-dependent hyperpolarization of the smooth muscle cells, which can be evoked by direct electrical coupling through myo-endothelial junctions and/or the accumulation of potassium ions in the intercellular space. Potassium ions hyperpolarize the smooth muscle cells by activating inward rectifying potassium channels and/or Na+/K(+)-ATPase. In some blood vessels, including large and small coronary arteries, the endothelium releases arachidonic acid metabolites derived from cytochrome P450 monooxygenases. The epoxyeicosatrienoic acids (EET) generated are not only intracellular messengers but also can diffuse and hyperpolarize the smooth muscle cells by activating large conductance calcium-activated potassium channels. Additionally, the endothelium can produce other factors such as lipoxygenases derivatives or hydrogen peroxide (H2O2). These different mechanisms are not necessarily exclusive and can occur simultaneously.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| | | |
Collapse
|
10
|
Wadsworth R, Stankevicius E, Simonsen U. Physiologically relevant measurements of nitric oxide in cardiovascular research using electrochemical microsensors. J Vasc Res 2005; 43:70-85. [PMID: 16276114 DOI: 10.1159/000089547] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 09/23/2005] [Indexed: 01/04/2023] Open
Abstract
Nitric oxide (NO) plays an important role in the regulation of blood flow. Pharmacological tools and a series of other techniques have been developed for studying the NO/L-arginine pathway, but it has proved difficult to make a quantitative link between effect and tissue NO concentration. NO microsensors have been applied with success for the measurement of NO in suspensions of mitochondria and cells, such as platelets and leukocytes, and in cell cultures, which together with other interventions or measurements are particularly useful for the examination of cell signalling related to the NO/L-arginine pathway. In isolated vascular segments, studies using the NO microsensor have defined the relationship between NO concentration and relaxation and revealed residual NO release in the presence of NO synthase inhibitors. Moreover, simultaneous measurements of NO concentration and vasorelaxation in isometric preparations have shown that agonist-induced relaxation is L-arginine dependent and NO release is reduced in hypertension. By placing NO microsensors in catheters, it is possible to measure NO in the living animal and man. This approach has been applied for the measurements of NO concentration in relation to increases in flow, erection, in conditions of hypoxia, and in endotoxemia. However, further methodological development of NO microsensors is necessary to avoid the influence of changes in temperature, pH and oxygen on the measurements.
Collapse
Affiliation(s)
- Roger Wadsworth
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, Scotland, UK
| | | | | |
Collapse
|
11
|
Jiang ZG, Shi X, Zhao H, Si JQ, Nuttall AL. Basal nitric oxide production contributes to membrane potential and vasotone regulation of guinea pig in vitro spiral modiolar artery. Hear Res 2004; 189:92-100. [PMID: 14987756 DOI: 10.1016/s0378-5955(03)00398-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nitric oxide (NO) is a potent vasodilating agent implicated in cochlear blood flow regulation. We recently demonstrated that exogenously applied NO donor DPTA-NONOate hyperpolarizes both endothelial and smooth muscle cells of in vitro spiral modiolar artery (SMA) via activation of ATP-sensitive K+ channels (K(ATP)). Also, NO was detected in the SMA cells by NO indicator dye in the in vitro basal condition. Using intracellular recording techniques, electrochemical NO-sensing measurement, and a vaso-diameter video tracking method, we investigated the basal release of NO from the in vitro SMA and its role in the vascular function. We found that (1) 300 microM L-NAME, a NO synthase inhibitor, and 3 microM glipizide caused a depolarization of approximately 4.5 and approximately 3.2 mV, respectively, in cells with a resting potential less negative than -60 mV; (2) NO sensor in the close vicinity of the SMA detected a NO concentration of approximately 50 nM that was suppressed by L-NAME and enhanced by L-arginine (1-1000 microM); (3) NO donor DPTA-NONOate (0.1-30 microM) applications produced about 8-245 nM of NO in the recording bath. These data indicate a NO concentration-hyperpolarization relation, with an EC50 of 22 nM. (4) Finally, L-NAME but not glipizide produced a 4.8% reduction in SMA diameter (approximately 50 microm) in the majority of SMAs, whereas NONOate (10 microM) always caused a dilation. Both the induced constriction and dilation were not significantly affected by 3 microM glipizide. We conclude that a significant amount of NO (> 50 nM) is tonically released from the in vitro SMA, which is above the EC50 for activation of K(ATP), and thus contributes to the membrane polarization. The basal release of NO also contributes to vasotone relaxation, but the K(ATP) activation appears to play little role in the relaxation of the in vitro SMA.
Collapse
Affiliation(s)
- Zhi-Gen Jiang
- Oregon Hearing Research Center, NRC-04, Oregon Health and Sciences University, Portland, OR 97201, USA.
| | | | | | | | | |
Collapse
|
12
|
Wimalasundera R, Fexby S, Regan L, Thom SAM, Hughes AD. Effect of tumour necrosis factor-alpha and interleukin 1beta on endothelium-dependent relaxation in rat mesenteric resistance arteries in vitro. Br J Pharmacol 2003; 138:1285-94. [PMID: 12711629 PMCID: PMC1573778 DOI: 10.1038/sj.bjp.0705168] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Pre-eclampsia is associated with elevated proinflammatory cytokine levels and endothelial dysfunction. This study examined the effect of two cytokines, tumour necrosis factor-alpha (TNF) and interleukin-1beta (IL-1) on endothelium-dependent relaxation in response to acetylcholine (ACH), bradykinin (BK) and histamine (HIS) in rat mesenteric small arteries in vitro. 2. Rat mesenteric arteries were mounted in an isometric myograph. Tone was induced with phenylephrine (PE) or a depolarizing solution containing 80 mM KCl (K(80)). Relaxation was measured in response to ACH, BK, HIS and sodium nitroprusside (SNP), an endothelium-independent relaxant. Inhibition of NO synthase by a combination of N(omega)-monomethyl-L-arginine (L-NMMA) and N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly inhibited relaxation in response to ACH and BK. Addition of an inhibitor of cyclooxygenase, indomethacin, had no additional effect when added to L-NMMA and L-NAME. Inhibition of endothelium-derived hyperpolarizing factor (EDHF) by K(80) partially reduced responses to ACH and BK. Inhibition of HIS-induced relaxation was more marked with K(80). L-NMMA and L-NAME largely abolished the remaining relaxation to ACH, BK and HIS in arteries contracted with K(80). 3. Preincubation with TNF for 30 min caused an inhibition of relaxation in response to ACH and BK in arteries contracted with PE. Responses to HIS and SNP were not affected by TNF under these conditions. TNF also inhibited ACH-induced relaxation in arteries contracted with K(80). IL-1 had no effect on responses to ACH and the combination of TNF and IL-1 was not more effective than TNF alone. 4. The inhibitory effect of TNF on ACH-induced relaxation was abolished by coincubation with superoxide dismutase (SOD) and was not seen if NO synthase was inhibited by L-NMMA and L-NAME. 5. TNF inhibits the NO-dependent component of endothelium-dependent relaxation in response to ACH and BK, but does not inhibit the EDHF-dependent component. This effect may be attributable to the ability of TNF to increase levels of superoxide anions (O(2)(-)) and the ability of O(2)(-) to inactivate NO. This mechanism could contribute to the endothelial dysfunction seen in situations where TNF is elevated, such as pre-eclampsia.
Collapse
Affiliation(s)
| | - S Fexby
- Clinical Pharmacology, National Heart & Lung Institute, U.K
| | - L Regan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Imperial College of Science, Technology & Medicine, London W2 1NY, U.K
| | - S A McG Thom
- Clinical Pharmacology, National Heart & Lung Institute, U.K
| | - A D Hughes
- Clinical Pharmacology, National Heart & Lung Institute, U.K
- Author for correspondence:
| |
Collapse
|
13
|
Støen R, Lossius K, Karlsson JOG. Acetylcholine-induced vasodilation may depend entirely upon NO in the femoral artery of young piglets. Br J Pharmacol 2003; 138:39-46. [PMID: 12522071 PMCID: PMC1573628 DOI: 10.1038/sj.bjp.0705001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 To characterize agonist-induced relaxation in femoral artery rings from young piglets, we compared the effect of a NOS-inhibitor N(omega)-nitro-L-arginine (L-NOARG), an NO-inactivator oxyhaemoglobin (HbO) and a soluble guanyl cyclase(sGC)-inhibitor 1H-[1,2,4]Oxadiazolo-[4,3,-alpha]quinoxalin-1-one (ODQ) on acetylcholine(ACh)-induced relaxation. The involvement of K(+) channel activation was studied on relaxations induced by ACh, the two NO donors sodium nitroprusside (SNP) and diethylamine (DEA) NONOate, and the cell membrane permeable guanosine 3'5' cyclic monophosphate (cGMP) analogue 8-Br-cGMP. 2 Full reversal of phenylephrine-mediated precontraction was induced by ACh (1 nM-1 microM) (pD(2) 8.2+/-0.01 and R(max) 98.7+/-0.3%). L-NOARG (100 microM) partly inhibited relaxation (pD(2) 7.4+/-0.02 and R(max) 49.6+/-0.8%). The L-NOARG/indomethacin(IM)-resistant response displayed characteristics typical for endothelium-derived hyperpolarizing factor (EDHF), being sensitive to a combination of the K(+) channel blockers charybdotoxin (CTX) (0.1 microM) and apamin (0.3 microM). 3 ODQ (10 microM) abolished relaxations induced by ACh and SNP. L-NOARG/IM-resistant relaxations to ACh were abolished by HbO (20 microM). 4 Ouabain (1 microM) significantly inhibited ACh-induced L-NOARG/IM-resistant relaxations and relaxations induced by SNP (10 microM) and 8-Br-cGMP (0.1 mM). A combination of ouabain and Ba(2+) (30 microM) almost abolished L-NOARG/IM-resistant ACh-induced relaxation (R(max) 7.7+/-2.5% vs 23.4+/-6.4%, with and without Ba(2+), respectively, P<0.05). 5 The present study demonstrates that in femoral artery rings from young piglets, despite an L-NOARG/IM-resistant component sensitive to K(+) channel blockade with CTX and apamin, ACh-induced relaxation is abolished by sGC-inhibition or a combination of L-NOARG and HbO. These findings suggest that relaxation can be fully explained by the NO/cGMP pathway.
Collapse
Affiliation(s)
- Ragnhild Støen
- Department of Physiology and Biomedical Engineering, Faculty of Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| | | | | |
Collapse
|
14
|
Gschwend S, Pinto-Sietsma SJ, Buikema H, Pinto YM, van Gilst WH, Schulz A, de Zeeuw D, Kreutz R. Impaired coronary endothelial function in a rat model of spontaneous albuminuria. Kidney Int 2002; 62:181-91. [PMID: 12081577 DOI: 10.1046/j.1523-1755.2002.00431.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Albuminuria is an independent risk factor of coronary artery disease and has been proposed to reflect a general endothelial disorder. The Munich Wistar Frömter (MWF) rat strain develops spontaneous albuminuria and, therefore, may be an interesting experimental model to study alterations of endothelial function under conditions of increased albuminuria. Our aim was to investigate if the MWF strain shows generalized endothelial dysfunction or endothelial dysfunction localized to the coronary vascular bed, and if so, determine which endothelial dilative mediators are involved. METHODS Coronary and mesenteric arteries were investigated for endothelium-dependent relaxation and the contribution of prostacyclin, nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) in MWF rats compared to normal Wistar rats. In addition, as MWF rats show increased blood pressure, spontaneously hypertensive rats (SHR) with similar hypertension but without increased albuminuria also were studied. RESULTS Maximal total endothelium-dependent relaxation of coronary arteries was strongly impaired in MWF rats (55 +/- 3%) compared to Wistar (89 +/- 5%) and SHR (89 +/- 2%) P < 0.05, respectively. The NO-mediated relaxation as well as the relaxation mediated by EDH were significantly lower in coronary arteries from MWF compared to Wistar. In mesenteric arteries of MWF the endothelium-dependent relaxation was intact. CONCLUSIONS The strong impairment of coronary endothelium-dependent relaxation in the MWF model of spontaneous albuminuria may be due to defects in production or activity of NO and EDH. The intact mesenteric endothelium-dependent relaxation suggests that increased albuminuria may not be related to generalized endothelial vasodilator dysfunction in this model. Selective impairment of coronary endothelial function in a setting of spontaneous albuminuria may be a feature of the MWF that may be employed to further study cause-effect relations between albuminuria and coronary artery disease.
Collapse
Affiliation(s)
- Simone Gschwend
- Department of Clinical Pharmacology, Division of Nephrology, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Selemidis S, Cocks TM. Endothelium-dependent hyperpolarization as a remote anti-atherogenic mechanism. Trends Pharmacol Sci 2002; 23:213-20. [PMID: 12007998 DOI: 10.1016/s0165-6147(02)01998-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Endothelial cell injury and the loss of cytoprotective mechanisms that involve nitric oxide, prostacyclin and endothelium-dependent hyperpolarization (EDH) are thought to underlie atherosclerosis, although how these mechanisms are anti-atherogenic is unclear. This is particularly so because thrombus formation, one of the major initiators of the disease, usually occurs at discrete luminal sites; thus, only small numbers of endothelial cells can be recruited to initiate anti-inflammatory responses. However, we, and others, have demonstrated that locally generated EDH spreads to endothelial cells and smooth muscle cells throughout a vessel to cause remote vasodilatation. In this article, we propose that, in addition to a widespread inhibitory signalling mechanism, EDH produced by the endothelium also initiates remote anti-inflammatory actions that prevent large blood vessels developing atherosclerosis.
Collapse
Affiliation(s)
- Stavros Selemidis
- Dept of Pharmacology, The University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
16
|
McGuire JJ, Hollenberg MD, Andrade-Gordon P, Triggle CR. Multiple mechanisms of vascular smooth muscle relaxation by the activation of proteinase-activated receptor 2 in mouse mesenteric arterioles. Br J Pharmacol 2002; 135:155-69. [PMID: 11786491 PMCID: PMC1573127 DOI: 10.1038/sj.bjp.0704469] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Activation of PAR2 in second-order mesenteric arteriole (MA) rings from C57BL/6J, NOS3 (-/-) and PAR2 (-/-) mice was assessed for the contributions of NO, cyclo-oxygenases, guanylyl cyclase, adenylyl cyclase, and of K(+) channel activation to vascular smooth muscle relaxation. 2. PAR2 agonist, SLIGRL-NH(2) (0.1 to 30 microM), induced relaxation of cirazoline-precontracted MA from C57BL/6J and NOS3 (-/-), but not PAR2 (-/-) mice. Maximal relaxation (E(max)) was partially reduced by a combination of L-(G)N-nitroarginine methyl ester (L-NAME), 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and indomethacin. An ODQ/L-NAME/indomethacin resistant relaxation was also caused by trypsin (30 nM) in PAR2 (+/+), but not in PAR2 (-/-) mice. Relaxation was endothelium-dependent and inhibited by either 30 mM KCl-precontraction, or pretreatment with apamin, charybdotoxin, and their combination; iberiotoxin did not substitute for charybdotoxin nor did scyllatoxin substitute fully for apamin. 3. Tetraethylammonium (TEA), glibenclamide, tetrodotoxin, 17-octadecynoic acid, carboxy-2-phenyl-4,4,5,5,-tetramethyl-imidazoline-1-oxyl-3-oxide, SQ22536, carbenoxolone, arachidonyl trifluoromethyl ketone, 7-nitroindazole, N-(3-(aminomethyl)benzyl)acetamidine (1400W), N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS-398) and propanolol did not inhibit relaxation. 4-aminopyridine significantly increased the potency of SLIGRL-NH(2). A combination of 30 microM BaCl(2) and 10 microM ouabain significantly reduced the potency for relaxation, and in the presence of L-NAME, ODQ and indomethacin, E(max) was reduced. 4. We conclude PAR2-mediated relaxation of mouse MA utilizes multiple mechanisms that are both NO-cGMP-dependent, and -independent. The data are also consistent with a role for endothelium-dependent hyperpolarization of vascular smooth muscle that involves the activation of an apamin/charybdotoxin-sensitive K(+) channel(s) and, in part, may be mediated by K(+).
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Biological Factors/pharmacology
- Cyclic GMP/physiology
- Cyclooxygenase Inhibitors/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/physiology
- Guanylate Cyclase
- Male
- Membrane Potentials/drug effects
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Mice
- Mice, Inbred C57BL
- Muscle Relaxation/drug effects
- Muscle Relaxation/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/physiology
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase Type II
- Nitric Oxide Synthase Type III
- Oligopeptides/metabolism
- Potassium/pharmacology
- Potassium Channel Blockers/pharmacology
- Receptor, PAR-2
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Thrombin/metabolism
- Soluble Guanylyl Cyclase
Collapse
Affiliation(s)
- John J McGuire
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | |
Collapse
|
17
|
McGuire JJ, Ding H, Triggle CR. Endothelium-derived relaxing factors: A focus on endothelium-derived hyperpolarizing factor(s). Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-025] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF) is defined as the non-nitric oxide (NO) and non-prostacyclin (PGI2) substance that mediates endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells (VSMC). Although both NO and PGI2 have been demonstrated to hyperpolarize VSMC by cGMP- and cAMP-dependent mechanisms, respectively, and in the case of NO by cGMP-independent mechanisms, a considerable body of evidence suggests that an additional cellular mechanism must exist that mediates EDH. Despite intensive investigation, there is no agreement as to the nature of the cellular processes that mediates the non-NO/PGI2 mediated hyperpolarization. Epoxyeicosatrienoic acids (EET), an endogenous anandamide, a small increase in the extracellular concentration of K+, and electronic coupling via myoendothelial cell gap junctions have all been hypothesized as contributors to EDH. An attractive hypothesis is that EDH is mediated via both chemical and electrical transmissions, however, the contribution from chemical mediators versus electrical transmission varies in a tissue- and species-dependent manner, suggesting vessel-specific specialization. If this hypothesis proves to be correct then the potential exists for the development of vessel and organ-selective vasodilators. Because endothelium-dependent vasodilatation is dysfunctional in disease states (i.e., atherosclerosis), selective vasodilators may prove to be important therapeutic agents.Key words: endothelium, nitric oxide, potassium channels, hyperpolarization, gap junctions.
Collapse
|
18
|
Vuylsteke A, Davidson HJ, Ho WS, Ritchie AJ, Callingham BA, White R, Hiley CR. Effect of the blood substitute diaspirin crosslinked hemoglobin in rat mesenteric and human radial collateral arteries. J Cardiovasc Pharmacol 2001; 37:394-405. [PMID: 11300652 DOI: 10.1097/00005344-200104000-00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The actions of the blood substitute diaspirin crosslinked hemoglobin (DCLHb) were investigated in rat (small mesenteric artery) and human (radial collateral artery) resistance vessels mounted in a wire myograph for isometric tension recording. DCLHb did not contract resting vessels from rats, but vasoconstrictor responses were observed in isolated arteries and perfused mesenteric beds prestimulated with threshold concentrations of methoxamine. The DCLHb contractile responses were greatly attenuated by N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME) or endothelial removal, whereas BQ-123 (endothelin A receptor antagonist), prazosin (alpha1-adrenoceptor antagonist), or indomethacin (cyclooxygenase inhibitor) had no effect. Endothelium-dependent relaxations to carbachol in both rat mesenteric and human radial collateral artery were inhibited by DCLHb. Relaxations to carbachol were studied in the presence of L-NAME or 25 mM KCl to investigate the effect of DCLHb on endothelium-derived hyperpolarizing factor (EDHF) and nitric oxide, respectively. In both rat and human vessels, EDHF-mediated relaxations were not affected by DCLHb preincubation, whereas the nitric oxide component of carbachol-induced relaxations was practically abolished. In conclusion, inhibition of the effects of basal nitric oxide release underpins the vasoconstrictor effects of DCLHb. DCLHb effectively abolishes the nitric oxide component of carbachol-induced relaxation, with no effect on the EDHF-mediated component in both isolated rat mesenteric and human radial collateral arteries.
Collapse
Affiliation(s)
- A Vuylsteke
- Department of Anaesthesia, Papworth Hospital, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Ding H, Triggle CR. Novel endothelium-derived relaxing factors. Identification of factors and cellular targets. J Pharmacol Toxicol Methods 2000; 44:441-52. [PMID: 11325586 DOI: 10.1016/s1056-8719(00)00127-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO), together with prostacyclin (PGI2), mediates shear stress and endothelium-dependent vasodilator-mediated vasorelaxation. In the presence of inhibition of NO synthase (NOS) with nitroarginine analogues, such as of N(w)-nitro-L-arginine methyl ester (L-NAME) and N(w)-nitro-L-arginine (L-NNA), and indomethacin, to inhibit cyclooxygenase (COX) and the synthesis of PGI2, many blood vessels still respond with an endothelium-dependent relaxation to either chemical [i.e. acetylcholine (ACh)] or mechanical (shear stress) activation. This non-NO and non-PGI2 vasorelaxation appears to be mediated by hyperpolarization of the vascular smooth muscle cell (VSMC). Although NO can hyperpolarize VSMC, a novel mediator, the endothelium-derived hyperpolarizing factor (EDHF), which opens a VSMC K(+) channel(s) notably in resistance vessels, has been proposed. Little agreement exists as to the nature of this putative factor, but several candidate molecules have been proposed and evidence, notably from the microcirculation, suggests that endothelium-dependent hyperpolarization (EDH) may be mediated via low electrical resistance coupling via myoendothelial gap junctions. We describe a number of techniques that are being used to identify EDHF and present data that address the contribution of a small increase in extracellular K(+) as an EDHF.
Collapse
Affiliation(s)
- H Ding
- Department of Pharmacology and Therapeutics and the Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | |
Collapse
|