1
|
Carboni AD, Di Renzo T, Nazzaro S, Marena P, Puppo MC, Reale A. A Comprehensive Review of Edible Flowers with a Focus on Microbiological, Nutritional, and Potential Health Aspects. Foods 2025; 14:1719. [PMID: 40428498 PMCID: PMC12111728 DOI: 10.3390/foods14101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Edible flowers have been used since ancient times directly as food, flavoring agents, and garnish in food products, and are now reappearing in modern cuisine. Edible flowers have gained popularity due to changing consumer habits focused on healthier food options. In addition to contributing to the esthetics and flavor of various dishes, edible flowers are now recognized for their nutritional value, as they contain bioactive components with different health benefits. However, a significant concern regarding edible flowers is the potential contamination by undesirable microorganisms. Since edible flowers are often consumed fresh or minimally processed, they can pose a microbiological risk. Edible flowers may be susceptible to contamination by various pathogenic microorganisms, particularly Bacillus spp., Enterobacter spp., Salmonella spp., and Staphylococcus aureus. In addition, mycotoxin-producing fungi, such as Aspergillus, Penicillium, Alternaria, or Fusarium, can be found in various flowers. Good agricultural practices, hygienic handling, and appropriate storage are essential to reduce contamination and guarantee the safe consumption of edible flowers. Since current investigations on the microbiological safety aspects of edible flowers are scarce, this review aims to provide an overview of the consumption of edible flowers and a discussion of their uses, health benefits, and risks, focusing on microbiological aspects.
Collapse
Affiliation(s)
- Angela Daniela Carboni
- Center for Research and Development in Food Science and Technology, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata RA1900, Argentina;
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, ISA–CNR, 83100 Avellino, Italy; (T.D.R.); (S.N.); (P.M.)
| | - Stefania Nazzaro
- Institute of Food Sciences, National Research Council, ISA–CNR, 83100 Avellino, Italy; (T.D.R.); (S.N.); (P.M.)
| | - Pasquale Marena
- Institute of Food Sciences, National Research Council, ISA–CNR, 83100 Avellino, Italy; (T.D.R.); (S.N.); (P.M.)
| | - Maria Cecilia Puppo
- Center for Research and Development in Food Science and Technology, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata RA1900, Argentina;
| | - Anna Reale
- Institute of Food Sciences, National Research Council, ISA–CNR, 83100 Avellino, Italy; (T.D.R.); (S.N.); (P.M.)
| |
Collapse
|
2
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
3
|
Wu JJ, Zhang SY, Mu L, Dong ZG, Zhang YJ. Heyingwuzi formulation alleviates diabetic retinopathy by promoting mitophagy via the HIF-1α/BNIP3/NIX axis. World J Diabetes 2024; 15:1317-1339. [PMID: 38983802 PMCID: PMC11229969 DOI: 10.4239/wjd.v15.i6.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the primary cause of visual problems in patients with diabetes. The Heyingwuzi formulation (HYWZF) is effective against DR. AIM To determine the HYWZF prevention mechanisms, especially those underlying mitophagy. METHODS Human retinal capillary endothelial cells (HRCECs) were treated with high glucose (hg), HYWZF serum, PX-478, or Mdivi-1 in vitro. Then, cell counting kit-8, transwell, and tube formation assays were used to evaluate HRCEC proliferation, invasion, and tube formation, respectively. Transmission electron microscopy was used to assess mitochondrial morphology, and Western blotting was used to determine the protein levels. Flow cytometry was used to assess cell apoptosis, reactive oxygen species (ROS) production, and mitochondrial membrane potential. Moreover, C57BL/6 mice were established in vivo using streptozotocin and treated with HYWZF for four weeks. Blood glucose levels and body weight were monitored continuously. Changes in retinal characteristics were evaluated using hematoxylin and eosin, tar violet, and periodic acid-Schiff staining. Protein levels in retinal tissues were determined via Western blotting, immunohistochemistry, and immunostaining. RESULTS HYWZF inhibited excessive ROS production, apoptosis, tube formation, and invasion in hg-induced HRCECs via mitochondrial autophagy in vitro. It increased the mRNA expression levels of BCL2-interacting protein 3 (BNIP3), FUN14 domain-containing 1, BNIP3-like (BNIP3L, also known as NIX), PARKIN, PTEN-induced kinase 1, and hypoxia-inducible factor (HIF)-1α. Moreover, it downregulated the protein levels of vascular endothelial cell growth factor and increased the light chain 3-II/I ratio. However, PX-478 and Mdivi-1 reversed these effects. Additionally, PX-478 and Mdivi-1 rescued the effects of HYWZF by decreasing oxidative stress and apoptosis and increasing mitophagy. HYWZF intervention improved the symptoms of diabetes, tissue damage, number of acellular capillaries, and oxidative stress in vivo. Furthermore, in vivo experiments confirmed the results of in vitro experiments. CONCLUSION HYWZF alleviated DR and associated damage by promoting mitophagy via the HIF-1α/BNIP3/NIX axis.
Collapse
Affiliation(s)
- Jia-Jun Wu
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shu-Yan Zhang
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lin Mu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Zhi-Guo Dong
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yin-Jian Zhang
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
4
|
Yang K, Wang Y. Dandelion root extracts and taraxasterol inhibit LPS‑induced colorectal cancer cell viability by blocking TLR4‑NFκB‑driven ACE2 and TMPRSS2 pathways. Exp Ther Med 2024; 27:256. [PMID: 38766306 PMCID: PMC11099608 DOI: 10.3892/etm.2024.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/14/2024] [Indexed: 05/22/2024] Open
Abstract
Colorectal cancer is the fourth leading cause of cancer-related death worldwide. Notably, abnormalities in intestinal bacteria may contribute to the initiation or progression of colorectal cancer. Lipopolysaccharide (LPS), a bacterial endotoxin, is elevated in patients with colorectal cancer. The present study investigated the protective effects of dandelion root extracts and taraxasterol (TS; a major pharmacologically active compound in dandelion root extracts) on LPS-induced colorectal cancer cell viability, as well as the underlying mechanisms. Cell viability was assessed by MTT assay, and protein and gene expression levels were determined by western blotting and quantitative PCR. It was revealed that LPS at a low dose (0.5 µg/ml) significantly promoted the viability of human colorectal cancer cells but did not affect normal colon epithelial cells. The addition of dandelion root extracts (0.1-1 mg/ml) or TS (0.05-1 µg/ml) was able to reverse the LPS-induced increase in colorectal cancer cell viability and colony formation. Mechanistically, dandelion root extracts or TS may inhibit the LPS-promoted toll-like receptor 4 (TLR4)/NFκB-p65 pathway and transcription levels of pro-inflammatory genes (TNFα, IL4 and IL6). Compared with normal colon epithelial cells, human colorectal cancer cells had higher expression levels of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), which could be further enhanced by LPS treatment but this was reversed by co-incubation with dandelion root extracts or TS. In addition, suppression of the TLR4/NFκB-p65 pathway with CLI095 significantly reversed the stimulatory effect of LPS on the expression levels of ACE2 and TMPRSS2, whereas TNFα (10 ng/ml) markedly induced the expression levels of ACE2 and TMPRSS2. In conclusion, the present study suggested that dandelion root extracts and TS could be used as prevention strategies for reversing bacteria-driven colorectal cancer cell viability.
Collapse
Affiliation(s)
- Kerry Yang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Yuehong Wang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
- State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
5
|
Li Y, Mei J, Wang J, Liu H. Effects of dandelion (Taraxacum sp.,) supplements on lactation performance, antioxidative activity, and plasma metabolome in primiparous dairy cows. Anim Biosci 2023; 36:229-237. [PMID: 36108692 PMCID: PMC9834724 DOI: 10.5713/ab.22.0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study evaluated the effects of dandelion supplements on lactation performance, circulating antioxidative activity and plasma metabolomics in primiparous dairy cows. METHODS A total of 60 mid-lactation dairy cows (milk yield = 34.29±0.34 kg/d; days in milk = 151.72±2.36 days) were divided into 4 treatment groups randomly, comprising the addition of dandelion at 0, 100, 200, 400 g/d per head. The experiment lasted for 8 weeks with an extra 10 days' pre-feeding period. Milk and blood samples were collected, and plasma samples were selected to perform metabolomics analysis. RESULTS Supplementing 200 g/d of dandelion increased the yield of milk and lactose (p≤ 0.05). The milk somatic cell counts (p≤0.05) were lower in all dandelion groups than those in the control group. The activity of glutathione peroxidase (p≤0.05) and superoxide dismutase (p≤0.05) were increased and plasma malondialdehyde (p = 0.01) was decreased when cows were fed 200 g/d dandelion. Plasma metabolomics analysis showed that 23 hub differential metabolites were identified in the 200 g/d dandelion group. These metabolites such as ribose, glutamic acid, valine, and phenylalanine were enriched in D-glutamine and D-glutamate metabolism (p = 0.06, impact value = 1), phenylalanine, tyrosine, and tryptophan biosynthesis (p = 0.05, impact value = 0.5), and starch and sucrose metabolism (p = 0.21, impact value = 0.13). Moreover, correlation analysis showed that circulating ribose, mannose, and glutamic acid were positively related to milk yield. CONCLUSION Dandelion supplementation could improve lactation performance and elevate the plasma carbohydrate and amino acids metabolism and antioxidative activity. Supplementation of 200 g/d dandelion is recommended for lactating dairy cows.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Jie Mei
- College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Jiaqi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China,Corresponding Author: Hongyun Liu, Tel: +86-571-8898-2965, Fax: +86-571-8898-2930, E-mail:
| |
Collapse
|
6
|
Sharma M, Pal P, Pottoo F, Kumar S. Mechanistic Role of Methanolic Extract of Taraxacum officinale Roots as Cardioprotective Against Ischemia-Reperfusion Injury-Induced Myocardial Infarction in Rats. Appl Biochem Biotechnol 2023; 195:3384-3405. [PMID: 36595191 DOI: 10.1007/s12010-022-04282-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
Taraxacum officinale play an important role in the prophylaxis and treatment of cardiovascular disease (CVD). Taraxacum officinale is proven as promising antioxidant in earlier studies and one of its constituent "cichoric acid" is shown to have vasorelaxant property. Therefore, present study mainly designed to investigate the cardioprotective effects of Taraxacum officinale against ischemia-reperfusion injury (I/R injury)-induced myocardial dysfunction in rats. This study not only explored the overall cardioprotective potential but also tried to explore its molecular mechanism using pharmacological inhibition via L-NAME and glibenclamide. Pretreatment of methanolic extract of Taraxacum officinale significantly attenuated (p < 0.001) increased levels of lactate dehydrogenase (LDH), creatine kinase (CK), infarct size, and thiobarbituric acid reactive substance (TBARS), while it increased the reduced levels of protein content, glutathione (GSH), and catalase (CAT) activity. Results showed that pretreatment with methanolic extract of Taraxacum officinale provides cardioprotection against I/R induced myocardial dysfunction, at least, may be mediated through the endogenous release of nitric oxide.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Lovely Institute of Technology (Pharmacy), Lovely Professional University (LPU), Phagwara, Punjab, 144411, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India.,Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - FaheemHyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Damman, Kingdom of Saudi Arabia
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India.
| |
Collapse
|
7
|
Yassien EE, Mohamed AMS, Mahmoud ME, Zaki AM. Sodium benzoate induced toxicities in albino male rats: mitigating effects of Ficus carica and Cymbopogon citratus leave extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90567-90579. [PMID: 35871196 DOI: 10.1007/s11356-022-22020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Herbal products have become widely used in managing and treating a wide range of illnesses. Therefore, this study aimed to evaluate the total phenolic and flavonoid contents, antioxidant and protective effects of Cymbopogon citratus ethyl acetate and Ficus carica hexane leave extract (200 mg/kg b.w for both) on sodium benzoate (SB) (200 mg/kg b.w) toxicity in rats. For 6 weeks, four groups of five rats each (control, SB, F. carica + SB, and C. citrates + SB). Blood sample (liver, kidney) tissue and histological examination were used at the end of the experiment. According to the findings, the extracts have significant concentrations of total flavonoids, total phenolics, and antioxidant activity. Oxidative stress caused by SB exposure induced an increase in ALT, AST, ALP, glucose, urea, creatinine, uric acid, TG, TC, LDL, and MDA, while insulin and SOD were decreased. Furthermore, the biochemical alterations generated by SB in the blood serum, homogenate, liver, and kidney tissue were significantly reduced by C. citratus ethyl acetate and F. carica hexane leave extracts (P < 0.05). The leaf extracts of the examined plants had significant curative and preventive effects in SB-induced liver and kidney damage, resulting in diminished liver and kidney biomarker enzymes, an improved antioxidant defense system, and lipid peroxidation inhibition.
Collapse
Affiliation(s)
- Eman E Yassien
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt.
| | - Amina M S Mohamed
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Magda E Mahmoud
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Adel M Zaki
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt
| |
Collapse
|
8
|
Kania-Dobrowolska M, Baraniak J. Dandelion (Taraxacum officinale L.) as a Source of Biologically Active Compounds Supporting the Therapy of Co-Existing Diseases in Metabolic Syndrome. Foods 2022; 11:foods11182858. [PMID: 36140985 PMCID: PMC9498421 DOI: 10.3390/foods11182858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Nowadays, many people are struggling with obesity, type 2 diabetes, and atherosclerosis, which are called the scourge of the 21st century. These illnesses coexist in metabolic syndrome, which is not a separate disease entity because it includes several clinical conditions such as central (abdominal) obesity, elevated blood pressure, and disorders of carbohydrate and fat metabolism. Lifestyle is considered to have an impact on the development of metabolic syndrome. An unbalanced diet, the lack of sufficient physical activity, and genetic factors result in the development of type 2 diabetes and atherosclerosis, which significantly increase the risk of cardiovascular complications. The treatment of metabolic syndrome is aimed primarily at reducing the risk of the development of coexisting diseases, and the appropriate diet is the key factor in the treatment. Plant raw materials containing compounds that regulate lipid and carbohydrate metabolism in the human body are investigated. Dandelion (Taraxacum officinale F.H. Wigg.) is a plant, the consumption of which affects the regulation of lipid and sugar metabolism. The growth of this plant is widely spread in Eurasia, both Americas, Africa, New Zealand, and Australia. The use and potential of this plant that is easily accessible in the world in contributing to the treatment of type 2 diabetes and atherosclerosis have been proved by many studies.
Collapse
|
9
|
Green Synthesis of Silver Nanoparticles Using Euphorbia wallichii Leaf Extract: Its Antibacterial Action against Citrus Canker Causal Agent and Antioxidant Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113525. [PMID: 35684463 PMCID: PMC9182241 DOI: 10.3390/molecules27113525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Biologically synthesized silver nanoparticles are emerging as attractive alternatives to chemical pesticides due to the ease of their synthesis, safety and antimicrobial activities in lower possible concentrations. In the present study, we have synthesized silver nanoparticles (AgNPs) using the aqueous extract of the medicinal plant Euphorbia wallichii and tested them against the plant pathogenic bacterium Xanthomonas axonopodis, the causative agent of citrus canker, via an in vitro experiment. The synthesized silver nanoparticles were characterized by techniques such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis and transmission electron microscopy. Moreover, the plant species were investigated for phenolics, flavonoids and antioxidant activity. The antioxidant potential of the extract was determined against a DPPH radical. The extract was also evaluated for phenolic compounds using the HPLC technique. The results confirmed the synthesis of centered cubic, spherical-shaped and crystalline nanoparticles by employing standard characterization techniques. A qualitative and quantitative phytochemical analysis revealed the presence of phenolics (41.52 mg GAE/g), flavonoids (14.2 mg QE/g) and other metabolites of medicinal importance. Different concentrations (1000 µg/mL to 15.62 µg/mL—2 fold dilutions) of AgNPs and plant extract (PE) alone, and both in combination (AgNPs-PE), exhibited a differential inhibition of X. axanopodis in a high throughput antibacterial assay. Overall, AgNPs-PE was superior in terms of displaying significant antibacterial activity, followed by AgNPs alone. An appreciable antioxidant potential was recorded as well. The observed antibacterial and antioxidant potential may be attributed to eight phenolic compounds identified in the extract. The Euphorbia wallichii leaf-extract-induced synthesized AgNPs exhibited strong antibacterial activity against X. axanopodis, which could be exploited as effective alternative preparations against citrus canker in planta in a controlled environment. In addition, as a good source of phenolic compounds, the plant could be further exploited for potent antioxidants.
Collapse
|
10
|
Choi JY, Jang TW, Song PH, Choi SH, Ku SK, Song CH. Combination Effects of Metformin and a Mixture of Lemon Balm and Dandelion on High-Fat Diet-Induced Metabolic Alterations in Mice. Antioxidants (Basel) 2022; 11:antiox11030580. [PMID: 35326230 PMCID: PMC8945168 DOI: 10.3390/antiox11030580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Metformin, the first-line drug for type 2 diabetes mellitus (T2DM), has additional effects on improvements of nonalcoholic fatty liver disease (NAFLD); however, there are no treatments for both T2DM and NAFLD. Previous studies have shown hepatoprotective effects of a mixture of lemon balm and dandelion (LD) through its antioxidant and anti-steatosis properties. Thus, combination effects of metformin and LD were examined in a high-fat diet (HFD)-induced metabolic disease mouse model. The model received an oral administration of distilled water, monotherapies of metformin and LD, or a metformin combination with LD for 12 weeks. The HFD-induced weight gain and body fat deposition were reduced more by the combination than either monotherapy. Blood parameters for NAFLD (i.e., alanine aminotransferase and triglyceride), T2DM (i.e., glucose and insulin), and renal functions (i.e., blood urea nitrogen and creatinine) were reduced in the combination. The combination further enhanced hepatic antioxidant activities, and improved insulin resistance via the AMP-activated protein kinase and lipid metabolism pathways. Histopathological analyses revealed that the metformin combination ameliorated the hepatic hypertrophy/steatosis, pancreatic endocrine/exocrine alteration, fat tissue hypertrophy, and renal steatosis, more than either monotherapy. These results suggest that metformin combined with LD can be promising for preventing and treating metabolic diseases involving insulin resistance.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Korea; (J.Y.C.); (P.H.S.)
| | - Tae-Woo Jang
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea;
| | - Phil Hyun Song
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Korea; (J.Y.C.); (P.H.S.)
| | - Seong Hoon Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea;
- Correspondence: (S.H.C.); (S.-K.K.); (C.-H.S.); Tel.: +82-53-819-1872 (S.H.C.); +82-53-819-1549 (S.-K.K.); +82-53-819-1822 (C.-H.S.)
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea;
- Correspondence: (S.H.C.); (S.-K.K.); (C.-H.S.); Tel.: +82-53-819-1872 (S.H.C.); +82-53-819-1549 (S.-K.K.); +82-53-819-1822 (C.-H.S.)
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea;
- Correspondence: (S.H.C.); (S.-K.K.); (C.-H.S.); Tel.: +82-53-819-1872 (S.H.C.); +82-53-819-1549 (S.-K.K.); +82-53-819-1822 (C.-H.S.)
| |
Collapse
|
11
|
Zhang Y, Hu YF, Li W, Xu GY, Wang KR, Li L, Luo H, Zou L, Wu JS. Updates and advances on pharmacological properties of Taraxacum mongolicum Hand.-Mazz and its potential applications. Food Chem 2021; 373:131380. [PMID: 34710697 DOI: 10.1016/j.foodchem.2021.131380] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
As a well-recognized dietary and medicinal plant, Taraxacum mongolicum Hand.-Mazz (TMHM) has been used for making wines, candies, energy drinks, and other functional foods. The TMHM contains a diverse range of active phytoconstituents, including flavonoids, triterpenoids, phenolic acids, sesquiterpene lactones, pigments, coumarins and sterols. Recent pharmacological evidence has revealed multiple biological effects of TMHM, including anti-inflammatory, antioxidant, antibacterial, and gastric-protective effects, which contribute to the ameliorative effects of TMHM on inflammation-associated diseases, constipation, gastric disorders, empyrosis, hyperlipidemia, and swollen carbuncles. Although recent advances have highlighted the potential of TMHM to be applied in the clinical practice, food, and nutraceutical industry, the mechanistic understanding and systematic information on TMHM are still scarce. Here, in this timeline review, we have attempted to compile literary documents on pharmacological potential of TMHM concerning its chemical composition, biological activities, toxicity, and pharmacokinetics to promote further researches on clinical and therapeutic potential of TMHM and its food/nutraceutical applications.
Collapse
Affiliation(s)
- Yan Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Ying-Fan Hu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Guang-Ya Xu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Kun-Rong Wang
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Lin Li
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Hao Luo
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry, Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Jia-Si Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Majewski M, Lis B, Juśkiewicz J, Ognik K, Jedrejek D, Stochmal A, Olas B. The composition and vascular/antioxidant properties of Taraxacum officinale flower water syrup in a normal-fat diet using an obese rat model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113393. [PMID: 32941970 DOI: 10.1016/j.jep.2020.113393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taraxacum officinale (L.), commonly called dandelion has been used for centuries as a natural medicine to treat inflammatory diseases including some metabolic alterations associated with obesity. AIM OF THE STUDY Based on animal experiments this study aims to explore the potential mechanisms of action of T. officinale flower water syrup (TOFS) together with a normal-fat diet in the intervention of obesity. MATERIALS AND METHODS Obese male albino-Wistar rats (n = 8) at 25 weeks of age were fed with a normal-fat diet with or without added 27.82% TOFS (w/w) for 4 weeks. The reactivity of thoracic aorta and antioxidant capacity were studied. RESULTS TOFS delivered daily 926.8 μg of L-chicoric acid, 20.19 μg of luteolin and 3.379 g of sucrose. TOFS showed beneficial effects by regulating blood lipids (HDL, x1.11-fold increase), thereby lowering the risk factors for atherosclerosis (TC/HDL, x0.90-fold). The antioxidant status was improved via an increase in plasma superoxide radical scavenging (SOD, x1.6-fold) and a decrease in lipid peroxidation (MDA, x0.81-fold). Moreover, the following were decreased: Cu (x0.53-fold), Zn (x0.72-fold) and the Cu/Zn molar ratio (x0.60-fold). A marker for liver damage/disease was beneficially decreased (ALP, x0.87-fold). TOFS modulated in a significant way COX-depended relaxation to ACh (p = 0.05) but not to CORM-2 (p = 0.1651) in isolated thoracic arteries, by decreased participation of vasoconstrictor prostanoids. The vascular contraction to prostaglandin F2α was also decreased (x0.62-fold). We observed no change in the feed intake, body weight, organ-to-body weight ratio, blood glucose, CAT, FRAP, AST, ALT, TBARS/carbonyls (in heart, liver, kidneys, spleen) and carbonyls (in blood plasma, thoracic arteries); as well as F2-isoprostanes in urine. Vascular response to the vasodilators ACh, SNP, A23187, CORM-2, pinacidil, NS-1619 and to the vasoconstrictors NA, U-46619, ET-1 as well as hyperpolarizing mechanism(s) were not modified. CONCLUSIONS TOFS possesses beneficial properties by regulating prostanoids and antioxidant status.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, 10-082, Olsztyn, Poland.
| | - Bernadetta Lis
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950, Lublin, Poland
| | - Dariusz Jedrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland
| |
Collapse
|
13
|
Ignat MV, Coldea TE, Salanță LC, Mudura E. Plants of the Spontaneous Flora with Beneficial Action in the Management of Diabetes, Hepatic Disorders, and Cardiovascular Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:216. [PMID: 33498684 PMCID: PMC7911329 DOI: 10.3390/plants10020216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
The current pharmacological agents advised for the management of diabetes as well as cardiovascular and hepatic diseases are subject to numerous studies for safety and efficacy. Therefore, it is worth looking into alternative therapeutic aids such as natural products of medicinal plants. By a broad review of in vitro and in vivo studies on the various dandelion, chicory, and mulberry extracts, this work highlights their bioactive compounds and therapeutic action when used as a prevention and management aid in public health such as diabetes, cardiovascular disease, and hepatic disorders like non-alcoholic steatohepatitis. Natural products of dandelion leaves and root extracts can suppress the development of liver cancer, decrease insulin resistance, and suppress total triglyceride and cholesterol levels. Recent studies on mulberry leaves extracts indicated that they could decrease palmitic acid-induced lipotoxicity, increase total cholesterol and bile acid excretion, improve superoxide dismutase expression, and improve insulin resistance. Chicory root extracts boost satiety, reverse insulin resistance, and augment lipid metabolism thanks to their contents in chicoric acid, chlorogenic acid, and polysaccharides. Taraxacum officinale L., Morus nigra L., and Cichorium intybus L. present hepatoprotective, anti-inflammatory, antioxidant, hypolipidemic, and hypoglycemic activities and are shown to be advantageous in the management of obesity, dyslipidemia, Type 2 diabetes, and non-alcoholic fatty liver diseases. These plants are commonly available in the European spontaneous flora and more attention could be paid to their natural products.
Collapse
Affiliation(s)
- Maria Valentina Ignat
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.V.I.); (T.E.C.)
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.V.I.); (T.E.C.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.V.I.); (T.E.C.)
| |
Collapse
|
14
|
Salma B, Janhavi P, Muthaiah S, Veeresh P, Santhepete Nanjundaiah M, Divyashree S, Serva Peddha M. Ameliorative Efficacy of the Cassia auriculata Root Against High-Fat-Diet + STZ-Induced Type-2 Diabetes in C57BL/6 Mice. ACS OMEGA 2021; 6:492-504. [PMID: 33458501 PMCID: PMC7807783 DOI: 10.1021/acsomega.0c04940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 05/10/2023]
Abstract
Diabetes mellitus is a major metabolic disorder worldwide. Several herbs are being tested for the management of diabetes. Cassia auriculata is one of those herbs known for its nutritional value and health benefits. However, limited scientific evidence has been shown on the elucidation of its root bioactives as well as biological activity. This study attempted to identify and characterize phenolic compounds from the potent root extract and to evaluate its antioxidant as well as antidiabetic properties in both in vitro and in vivo models. The results revealed that the total polyphenol and flavonoid contents were highest in the methanolic extract. The methanolic extract of the C. auriculata root showed the highest antioxidant and antidiabetic activities in vitro than other extracts. These biological activities may be because the extract is rich in coumaric acid and -OH groups as revealed by high-performance liquid chromatography and Fourier-transform infrared spectroscopy analyses, respectively. Further, the antidiabetic activity of the methanolic extract was studied in a diet-induced type-2 diabetes mellitus (T2DM) C57BL/6 mouse model. A significant increase in fasting blood glucose and decreased plasma insulin levels in T2DM mice confirmed the development of the diabetic condition. In addition, the T2DM mice showed oxidative stress in the plasma as well as muscle tissue and significant alterations in the plasma biochemistry, viz., lipid profile, liver, and renal function tests. However, the administration of the ethanolic extract of the C. auriculata root (150 mg/kg body weight) to T2DM mice normalized the condition comparable to that of control mice. Thus, the extract can be used as a potent antioxidant and antidiabetic agent in pharmaceutical companies.
Collapse
Affiliation(s)
- Babu Salma
- Department of Pharmacology,
JSS College of Pharmacy, JSS Academy of
Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Prakash Janhavi
- Department of Biochemistry, CSIR-CFTRI, Mysuru 570020, Karnataka, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saravanan Muthaiah
- Department of Biochemistry, CSIR-CFTRI, Mysuru 570020, Karnataka, India
- Vipragen Biosciences
Private Limited, Hootagalli, Mysuru 570018, Karnataka, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pattar Veeresh
- PG Wing of SBRR Mahajana First Grade College, Pooja Bhagavat Memorial Mahajana Education Centre, Metagalli, Mysuru 570016, Karnataka, India
| | - Manjula Santhepete Nanjundaiah
- Department of Pharmacology,
JSS College of Pharmacy, JSS Academy of
Higher Education & Research, Mysuru 570015, Karnataka, India
| | | | - Muthukumar Serva Peddha
- Department of Biochemistry, CSIR-CFTRI, Mysuru 570020, Karnataka, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Xu X, Wang W, Lin L, Chen P. Liraglutide in combination with human umbilical cord mesenchymal stem cell could improve liver lesions by modulating TLR4/NF-kB inflammatory pathway and oxidative stress in T2DM/NAFLD rats. Tissue Cell 2020; 66:101382. [PMID: 32933722 DOI: 10.1016/j.tice.2020.101382] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/27/2022]
Abstract
Studies have shown that liraglutide, or human umbilical cord mesenchymal stem cell (hUC-MSCs) can improve non-alcoholic fatty liver disease (NAFLD). However there have been no studies on the combination of the two used to treat NAFLD. This study aimed to explore the therapeutic effects of combination of liraglutide and hUC-MSCs on liver injury in rats with type 2 diabetes mellitus (T2DM) and NAFLD, and further investigate their mechanisms. Sprague Dawley rats fed by a high fat and high sucrose diet were randomly divided into 5 groups, including NC group, T2DM/NAFLD group, liraglutide group (treated with liraglutide, 200 μg/kg, twice daily for 8 weeks), hUC-MSCs group (treated with hUC-MSCs at the first and fifth weeks), liraglutid+hUC-MSCs group (treated with liraglutide and hUC-MSCs). Liver tissue was procured for histological examination, real-time qRT-PCR and Western blot analysis. After treatment, liraglutide and hUC-MSCs reduced serum ALT and AST levels, alleviate liver inflammation and improved liver histopathology. The expressions of inflammatory cytokines, TLR4 and NF-κB in serum and liver were significantly inhibited, particularly in the combination treatment group. Eight weeks after liraglutide or hUC-MSCs administration, FBG, HbA1c, HOMA-IR, ALT, AST, Liver wet eight and hepatic TLR4, NF-κB, IL-6, TNF-α, 8-OHdG mRNA and proteins were significantly decreased, and the levels of SOD expression were significantly increased in three treatment groups compared with T2DM/NAFLD group. This study suggests that liraglutide in combination with hUC-MSCs could significantly improve glycolipid metabolism, insulin resistance and liver injury in T2DM/NAFLD rats. Its mechanism may be related to the down-regulation of the TLR4/NF-κB inflammatory pathway and improvement in oxidative stress.
Collapse
Affiliation(s)
- Xiangjin Xu
- 900 Hospital of the Joint Logistics Team, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 365000, Fujian, China
| | - Wenqing Wang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Lu Lin
- 900 Hospital of the Joint Logistics Team, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 365000, Fujian, China
| | - Pin Chen
- 900 Hospital of the Joint Logistics Team, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 365000, Fujian, China.
| |
Collapse
|
16
|
Majewski M, Lis B, Juśkiewicz J, Ognik K, Borkowska-Sztachańska M, Jedrejek D, Stochmal A, Olas B. Phenolic Fractions from Dandelion Leaves and Petals as Modulators of the Antioxidant Status and Lipid Profile in an In Vivo Study. Antioxidants (Basel) 2020; 9:antiox9020131. [PMID: 32028583 PMCID: PMC7071135 DOI: 10.3390/antiox9020131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic leaf and petal fractions of Taraxacum officinale (dandelion) were previously demonstrated to exert in vitro antioxidant and antithrombotic activities in blood plasma and platelets. Eight-week-old male Wistar rats (n = 6) were supplemented for four weeks with dandelion fractions (694 mg/kg of diet = 11.9 ± 0.6 mg daily). Dandelion leaf and petal fractions, which delivered daily 4.10 ± 0.05 and 1.41 ± 0.07 mg l-chicoric acid, respectively, were shown to exert antioxidative actions, measured as decreased levels of thiobarbituric acid-reactive substances (TBARS) in the spleen (≈0.8-fold, leaves and petals), brain (0.53-fold, leaves) and thoracic arteries (0.59-fold, petals). Moreover, petal fraction increased thiols in the blood plasma (1.58-fold), while leaf fraction decreased protein carbonylation levels (0.59-fold). Additionally, dandelion leaf fractions modified the lipid profile: decreased triglyceride (0.44-fold), total cholesterol (0.73-fold), lipoprotein combine index (0.32-fold) and the atherogenic index of plasma (0.62-fold). Dandelion fractions showed a beneficial decrease effect in the participation of cyclooxygenase products in the noradrenaline-induced vascular contractions of thoracic arteries. Meanwhile, only the dandelion leaf fraction augmented acetylcholine-induced vasodilation and upregulated KATP channels. The heart rate and blood pressure were not modified. Dandelion leaf and petal phenolic fractions, enriched with l-chicoric acid, are promising plant materials that may exert in vivo beneficial antioxidant effects.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-668-342-965
| | - Bernadetta Lis
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland; (B.L.); (B.O.)
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland;
| | | | - Dariusz Jedrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (D.J.); (A.S.)
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (D.J.); (A.S.)
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland; (B.L.); (B.O.)
| |
Collapse
|
17
|
Kim YJ, Wang SG, Park UK, Oh JH, Hwang SY. Antidiabetic and Antioxidative Effects of Bitter Melon on Streptozotocin-induced Diabetic Rats. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.4.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yeon-Jeoung Kim
- Department of Food and Nutrition, Daejeon University, Daejeon, Korea
| | - Soo-Gyoung Wang
- Department of Food and Nutrition, Daejeon University, Daejeon, Korea
| | - Un-Kyu Park
- Department of Biomedical Laboratory Science, Daejeon University, Daejeon, Korea
| | - Ji-Hye Oh
- Department of Biomedical Laboratory Science, Daejeon University, Daejeon, Korea
| | - Seock-Yeon Hwang
- Department of Biomedical Laboratory Science, Daejeon University, Daejeon, Korea
| |
Collapse
|
18
|
Kamble SP, Ghadyale VA, Patil RS, Haldavnekar VS, Arvindekar AU. Inhibition of GLUT2 transporter by geraniol from Cymbopogon martinii: a novel treatment for diabetes mellitus in streptozotocin-induced diabetic rats. J Pharm Pharmacol 2019; 72:294-304. [DOI: 10.1111/jphp.13194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Objective
To isolate and identify the bioactive component from Cymbopogon martinii having GLUT2 transporter inhibitory activity – towards development of a novel strategy for treatment of diabetes mellitus.
Method
Isolation of bioactive component was carried out using differential solvent extraction, HPTLC and HPLC, and identification was done by GC-MS. In-vitro studies on intestine, liver, kidney and in-vivo assessment by OGTT and long-term treatment on diabetic rats were carried out.
Key findings
Geraniol was isolated and identified as bioactive component. Intestinal glucose absorption demonstrated 60.28% inhibition of transport at 648.34 μm of geraniol. It was found to inhibit glucose release from liver on adrenaline challenge by 89.82% at 324.17 μm/ml. Kidney glycogen content doubled using 648.34 μm of geraniol as compared to control. Geraniol demonstrated 2.14 times higher renal glucose output than diabetic control. OGTT demonstrated prevention of postprandial spikes. Prolonged treatment for 60 days with 29.37 mm/kg B.W. twice a day of geraniol improved the lipid profile, HbA1C levels and renal parameters. In mRNA studies for 10 days, over expression of GLUT2 was prevented by geraniol.
Conclusions
Inhibition of GLUT2 by geraniol has the potential to reduce hyperglycaemia and prevent secondary complications in diabetes.
Collapse
|
19
|
Sun Z, Tan X, Xu M, Liu Q, Ye H, Zou C, Zhou Y, Su N, Chen L, Wang A, Ye C. Effects of dietary dandelion extracts on growth performance, liver histology, immune-related gene expression and CCl 4 resistance of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH & SHELLFISH IMMUNOLOGY 2019; 88:126-134. [PMID: 30779997 DOI: 10.1016/j.fsi.2019.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The study investigated the effects of dietary supplementation with dandelion extracts (DE) on growth performance, feed utilization, body composition, serum biochemical, liver histology, immune-related gene expression and CCl4 resistance of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). A basal diet supplemented with DE at 0% (diet 0%), 0.1% (diet 0.1%), 0.2% (diet 0.2%), 0.4% (diet 0.4%) and 0.8% (diet 0.8%) were fed to hybrid grouper for 8 weeks. The results revealed that dietary DE had not a significant impact on growth performance and feed utilization (P > 0.05), but it could decrease the percent of crude lipids in whole body and increase the percent of crude protein in muscle (P < 0.05). Dietary DE increased the mRNA levels of antioxidant enzymes (catalase, glutathione peroxidase and glutathione reductase) and reduced inflammatory factor in the spleen and head-kidney of fish (P < 0.05), but reduced the expression of the liver antioxidant gene except for glutathione reductase (P < 0.05). Dietary supplementation with 0.2%-0.4% DE could effectively improve liver health. After injection of CCL4 by 72 h, fish fed Diet0.2% and Diet0.4% showed regular hepatocyte morphology while fish fed Diet 0%, Diet 0.1% and Diet 0.8% showed hepatocyte damage. Higher survival rate and total blood cell count was observed in fish fed 0.1%-0.4% dietary DE (P < 0.05). In conclusion, DE could be used as a functional feed additive to enhance liver function of farmed fish. The best level of it should be between 0.2% and 0.4%.
Collapse
Affiliation(s)
- Zhenzhu Sun
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaohong Tan
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Minglei Xu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qingying Liu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Huaqun Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Cuiyun Zou
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuanyuan Zhou
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Ningning Su
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Leling Chen
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Anli Wang
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| | - Chaoxia Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
20
|
Althnaian T, Albokhadai I, El-Bahr SM. Hepatic Gene Expression, Antioxidant Enzymes and Anti-diabetic Effect of Nigella sativa in Diabetic Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.265.273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Akbar MU, Zia KM, Akash MSH, Nazir A, Zuber M, Ibrahim M. In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: Curcumin therapeutic potential. Int J Biol Macromol 2018; 120:2418-2430. [DOI: 10.1016/j.ijbiomac.2018.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022]
|
22
|
Costus afer Protects Cardio-, Hepato-, and Reno-Antioxidant Status in Streptozotocin-Intoxicated Wistar Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4907648. [PMID: 30596093 PMCID: PMC6286743 DOI: 10.1155/2018/4907648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/17/2018] [Accepted: 11/11/2018] [Indexed: 02/04/2023]
Abstract
Medicinal plants are efficient modulators of oxidative stress associated with diabetes mellitus. This study evaluated the cardio-, reno-, and hepato-antioxidant status of hydroethanolic extract of Costus afer on streptozotocin-intoxicated diabetic rats. Experimental animals were daily administered with hydroethanolic extract of C. afer by oral intubation for eight weeks (60 days), after which the levels of catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and lipid peroxidation marker (MDA) were evaluated in the heart, liver, and kidney homogenates. Plasma biochemical parameters such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total protein, creatinine, and urea were determined. Meanwhile, parts of the heart, kidneys, and liver were histopathologically examined. Streptozotocin administration induced toxicity in the cardiac, hepatic, and renal tissues by stimulating significant increases (p<0.05) in the levels of CAT and SOD, GSH, and MDA. Similarly, significant increases (P<0.05) in the levels of ALT, AST, urea, and total protein were observed in streptozotocin treated rats, whereas decreases were observed in the levels of ALP, LDH, and creatinine. Following the treatments with C. afer hydroethanolic extract prevented the effect of streptozotocin by maintaining the tissue antioxidant status (CAT, SOD, GSH, and MDA) and the plasma biochemical parameters (AST, ALT, ALP, LDH, creatinine, and urea) towards the normal ranges. The histopathological examination revealed hepatovascular congestion and leucocyte infiltration as well as renovascular congestion, glomerulosclerosis, and tubular clarification in the untreated diabetic control and their absence in the group of animals treated with a high dose of C. afer extract. The findings of the present investigation suggest that C. afer possesses antioxidant activities capable of regulating drug induced tissue damage.
Collapse
|
23
|
Dandelion Chloroform Extract Promotes Glucose Uptake via the AMPK/GLUT4 Pathway in L6 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1709587. [PMID: 30524480 PMCID: PMC6247471 DOI: 10.1155/2018/1709587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023]
Abstract
The number of patients with type 2 diabetes mellitus (T2DM) is increasing rapidly worldwide. Glucose transporter 4 (GLUT4) is one of the main proteins that transport blood glucose into the cells and is a target in the treatment of T2DM. In this study, we investigated the mechanism of action of dandelion chloroform extract (DCE) on glucose uptake in L6 cells. The glucose consumption of L6 cell culture supernatant was measured by a glucose uptake assay kit, and the dynamic changes of intracellular GLUT4 and calcium (Ca2+) levels were monitored by laser scanning confocal microscopy in L6 cell lines stably expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM) was traced via myc-GLUT4-mOrange. GLUT4 expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), protein kinase C (PKC), and phosphorylation levels were determined by performing western blotting. GLUT4 mRNA expression was detected by real-time PCR. DCE up-regulated GLUT4 expression, promoted GLUT4 translocation and fusion to the membrane eventually leading to glucose uptake, and induced AMPK phosphorylation in L6 cells. The AMPK inhibitory compound C significantly inhibited DCE-induced GLUT4 expression and translocation while no inhibitory effect was observed by the phosphatidylinositol 3-kinase (PI3K) inhibitor Wortmannin and PKC inhibitor Gö6983. These data suggested that DCE promoted GLUT4 expression and transport to the membrane through the AMPK signaling pathway, thereby stimulating GLUT4 fusion with PM to enhance glucose uptake in L6 cells. DCE-induced GLUT4 translocation was also found to be Ca2+-independent. Together, these findings indicate that DCE could be a new hypoglycemic agent for the treatment of T2DM.
Collapse
|
24
|
|
25
|
Lis B, Jędrejek D, Stochmal A, Olas B. Assessment of effects of phenolic fractions from leaves and petals of dandelion in selected components of hemostasis. Food Res Int 2018; 107:605-612. [DOI: 10.1016/j.foodres.2018.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 02/20/2018] [Accepted: 03/04/2018] [Indexed: 10/17/2022]
|
26
|
Chatterji S, Fogel D. Study of the effect of the herbal composition SR2004 on hemoglobin A1c, fasting blood glucose, and lipids in patients with type 2 diabetes mellitus. Integr Med Res 2018; 7:248-256. [PMID: 30271713 PMCID: PMC6160498 DOI: 10.1016/j.imr.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/23/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by raised blood glucose levels and peripheral insulin resistance. It is an increasingly prevalent global healthcare concern. Conventional treatment options are limited and in this context, there is renewed interest in evaluating the clinical and biological effects of traditional therapies. We assess the effect of a new herbal composition SR2004 on the hemoglobin A1c (HbA1c), fasting blood glucose, and lipid profiles of patients with T2DM. Methods This is a single center, unblinded, prospective interventional study conducted in Israel. The composition SR2004 includes Morus alba, Artemisia dracunculus, Urtica dioica, Cinnamomum zeylanicum, and Taraxacum officinale. One hundred and nineteen patients with diagnosed T2DM were enrolled and received SR2004 in addition to their usual medications. HbA1c, fasting blood glucose, and lipid profiles at 12 weeks were compared with baseline. In addition, the tolerability and side effects of SR2004 were recorded. Results One hundred and three patients completed 12 weeks of follow-up (87%) and were included in the results. At 12 weeks, HbA1c reduced from 9.0% to 7.1% (22%; p < 0.0001), mean blood glucose decreased from 211 mg/dL to 133 mg/dL (37% reduction; p < 0.0001), mean total cholesterol to 185 mg/dL (13% reduction; p < 0.01) and mean serum triglycerides to160 mg/dL (a reduction of 40% from baseline; p < 0.001). Twelve patients (12%) had no response with SR2004 supplementation. In addition, of thirteen patients who took insulin at baseline, five required only oral hypoglycemics and another five reduced their daily insulin requirements by 30% at 12 weeks. Clinical observations included improvements in vasculopathy, including reversal of established retinopathic changes in two patients. No major adverse effects were observed, with minor abdominal symptoms reported in sixteen patients (16%). Conclusion SR2004 supplementation significantly reduced HbA1c, blood glucose, and lipids with good tolerability and no observed adverse interactions with conventional medications. Some interesting findings relating to the reversal of microvascular phenomena warrant further research to elucidate the mechanisms of action of this novel composition.
Collapse
Affiliation(s)
| | - Dov Fogel
- D.S. Polyclinic, Givat Shmuel, Israel
| |
Collapse
|
27
|
Sarkar P, Bhowmick A, Banu S. Comparative analysis of different dietary antioxidants on oxidative stress pathway genes in L6 myotubes under oxidative stress. Cytotechnology 2018. [PMID: 29541961 DOI: 10.1007/s10616-018-0209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Enhanced oxidative stress plays an important role in the progression and onset of diabetes and its complications. Strategies or efforts meant to reduce the oxidative stress are needed which may mitigate these pathogenic processes. The present study aims to investigate the in vitro ameliorative potential of nine antioxidant molecules in L6 myotubes under oxidative stress condition induced by 4-hydroxy-2-nonenal and also to comprehend the gene expression patterns of oxidative stress genes upon the supplementation of different antioxidants in induced stress condition. The study results demonstrated a marked increase in the level of malondialdehyde and protein carbonyl content with a subsequent increase in the free radicals that was reversed by the pretreatment of different dietary antioxidant. From the expression analysis of the oxidative stress genes, it is evident that the expression of these genes is modulated by the presence of antioxidants. The highest expression was found in the cells treated with Insulin in conjugation with an antioxidant. Resveratrol is the most potent modulator followed by Mangiferin, Estragole, and Capsaicin. This comparative analysis ascertains the potency of Resveratrol along with Insulin in scavenging the reactive oxygen species (ROS) generated under induced stress conditions through antioxidant defense mechanism against excessive ROS production, contributing to the prevention of oxidative damage in L6 myotubes.
Collapse
Affiliation(s)
- Purabi Sarkar
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Ananya Bhowmick
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Sofia Banu
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
28
|
Rashid K, Chowdhury S, Ghosh S, Sil PC. Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochem Pharmacol 2017; 143:140-155. [PMID: 28711624 DOI: 10.1016/j.bcp.2017.07.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
Abstract
The present study was aimed to determine the curative role of curcumin against diabetes induced oxidative stress and its associated splenic complications. Diabetes was induced in the experimental rats via the intraperitoneal administration of a single dose of STZ (65mgkg-1body weight). Increased blood glucose and intracellular ROS levels along with decreased body weight, the activity of cellular antioxidant enzymes and GSH/GSSG ratio were observed in the diabetic animals. Histological assessment showed white pulp depletion and damaged spleen anatomy in these animals. Oral administration of curcumin at a dose of 100mgkg-1 body weight daily for 8weeks, however, restored these alterations. Investigation of the mechanism of hyperglycemia induced oxidative stress mediated inflammation showed upregulation of inflammatory cytokines, chemokines, adhesion molecules and increased translocation of NFκB into the nucleus. Moreover, ER stress dependent cell death showed induction of eIF2α and CHOP mediated signalling pathways as well as increment in the expression of GRP78, Caspase-12, Calpain-1, phospho JNK, phospho p38 and phospho p53 in the diabetic group. Alteration of Bax/Bcl-2 ratio; disruption of mitochondrial membrane potential, release of cytochrome-C from mitochondria and upregulation of caspase 3 along with the formation of characteristic DNA ladder in the diabetic animals suggest the involvement of mitochondria dependent apoptotic pathway in the splenic cells. Treatment with curcumin could, however, protect cells from inflammatory damage and ER as well as mitochondrial apoptotic death by restoring the alterations of these parameters. Our results suggest that curcumin has the potential to act as an anti-diabetic, anti-oxidant, anti-inflammatory and anti-apoptotic therapeutic against diabetes mediated splenic damage.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
29
|
Sadek KM, Lebda MA, Nasr SM, Shoukry M. Spirulina platensis prevents hyperglycemia in rats by modulating gluconeogenesis and apoptosis via modification of oxidative stress and MAPK-pathways. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Imran M, Nadeem M, Saeed F, Imran A, Khan MR, Khan MA, Ahmed S, Rauf A. Immunomodulatory perspectives of potential biological spices with special reference to cancer and diabetes. FOOD AGR IMMUNOL 2017; 28:543-572. [DOI: 10.1080/09540105.2016.1259293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Muhammad Imran
- Department of Diet and Nutritional Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asif Khan
- University of Agriculture Faisalabad, Sub-campus, Burewala/Vehari, Pakistan
| | - Sheraz Ahmed
- Department of Food Science and Technology, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
31
|
Rodriguez-Casado A. The Health Potential of Fruits and Vegetables Phytochemicals: Notable Examples. Crit Rev Food Sci Nutr 2017; 56:1097-107. [PMID: 25225771 DOI: 10.1080/10408398.2012.755149] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fruit and vegetables are essential components of a healthy diet. The World Health Organization (WHO) recommends an intake of five to eight portions (400-600 g) daily of fruits and vegetables to reduce risk of cardiovascular disease, cancer, poor cognitive performance, and other diet-related diseases, as well as for the prevention of micronutrient deficiencies. Much of their potential for disease prevention is thought to be provided by phytochemicals, among which the preventive activity of antioxidants is most well documented. Since numerous meta-studies published indicate variable and often contradictory results about the impact of isolated phytochemicals on health, their consumption as supplements must be carried out with care, because doses may exceed the recommended nutritional intake. Nonetheless, there is a general consensus that whole fruit and vegetable intake is more important in providing health benefits than that of only one of their constituent, because of additive and synergistic effects. This review describes the most recent literature regarding the health benefits of some selected fruits and vegetables. Importantly, since some phytochemicals regulate the same genes and pathways targeted by drugs, diets rich in fruits and vegetables in combination with medical therapies are being considered as novel approaches to treatment. Therefore, phytochemicals in fruits and vegetable might be a promising tool for the prevention and/or amelioration of a wide range of diseases.
Collapse
|
32
|
Evaluation of antioxidant activity of phenolic fractions from the leaves and petals of dandelion in human plasma treated with H 2O 2 and H 2O 2/Fe. Chem Biol Interact 2016; 262:29-37. [PMID: 27923645 DOI: 10.1016/j.cbi.2016.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/14/2016] [Accepted: 12/02/2016] [Indexed: 11/23/2022]
Abstract
Taraxacum officinale (dandelion) is a widespread perennial of the Asteraceae family. Dandelion is a rich source of different bioactive compounds, including phenolic compounds, terpenes, carbohydrates, proteins, fatty acids, vitamin and minerals. However, the content of phenolics in tested extracts by various authors was not always well described. Dandelion is also a commonly available food with a long history of human use and as such poses little risk of harm. In this study, we focused on four different phenolic fractions from leaves and petals of dandelion, which might be of great interest. The objective was to investigate the antioxidant properties of the phenolic fractions from dandelion leaves and petals in vitro. Effects of four different phenolic fractions from dandelion leaves and petals on the production of thiobarbituric acid reactive substances (TBARS, a marker of lipid peroxidation) in human plasma were studied in vitro. Their antioxidant properties against human plasma protein carbonylation and oxidation of protein thiols induced by a strong biological oxidant - hydrogen peroxide (H2O2) or H2O2/Fe (a donor of hydroxyl radicals) were also examined. The tested fractions of dandelion (0.5-50 μg/mL; the incubation time - 30 min) inhibited plasma lipid peroxidation induced by H2O2 or H2O2/Fe. However, their antioxidant properties were not concentration-dependent. All tested samples also inhibited plasma protein carbonylation and oxidation of thiol groups in plasma proteins stimulated by oxidants (H2O2 and OH∙). The obtained results suggest that four tested dandelion fractions, especially phenolic fractions from petals which are recognized as better than leaves source of flavonoids, may be a new and promising source of natural compounds with antioxidant activity beneficial for diseases-associated with oxidative stress, and with changes of hemostasis.
Collapse
|
33
|
Osakabe N, Yamagishi M, Natsume M, Yasuda A, Osawa T. Ingestion of Proanthocyanidins Derived from Cacao Inhibits Diabetes-Induced Cataract Formation in Rats. Exp Biol Med (Maywood) 2016; 229:33-9. [PMID: 14709774 DOI: 10.1177/153537020422900104] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proanthocyanidins derived from cacao (CLP) have various antipathophysiological functions. We have tested whether dietary supplementation with CLP prevents cataract formation in rats with diabetes induced by streptozotocin (STZ), using histological, histochemical, and biochemical analyses. Starting at 7 days after the streptozotocin challenge, the animals were fed either a normal diet or a diet containing 0.5% w/w CLP over 10 weeks. There were no significant differences in plasma and urine glucose concentrations, plasma fructose amines, and plasma thiobarbituric reactive substances (TBARS) between the two dietary groups. Antioxidant status as assessed by measuring lipid peroxide production in plasma in response to azocompounds was lower in the STZ-rats fed control diet than in animals fed CLP. Opacity was first detected in the lenses of the control dietary group 5 weeks after STZ injection and cataracts had developed in the majority of these animals by 10 weeks. These changes were rarely seen in the STZ/CLP diet group. Histological examinations of the eyes of the STZ-treated normal diet group revealed focal hyperplasia of the lens epithelium and liquefaction of cortical fibers. There were similar but considerably less severe changes in the animals fed CLP. Hydroxynonenal (HNE), a marker of oxidative stress, was detected immunohistochemically in the lenses of the STZ-treated normal diet group, but not of those receiving CLP. Our findings suggest that CLP inhibits diabetes-induced cataract formation possibly by virtue of its antioxidative activity.
Collapse
Affiliation(s)
- Naomi Osakabe
- Health and Bioscience Laboratory, Meiji Seika Kaisha Ltd., 5-3-1, Chiyoda Sakado 350-0289, Japan.
| | | | | | | | | |
Collapse
|
34
|
Wirngo FE, Lambert MN, Jeppesen PB. The Physiological Effects of Dandelion (Taraxacum Officinale) in Type 2 Diabetes. Rev Diabet Stud 2016; 13:113-131. [PMID: 28012278 DOI: 10.1900/rds.2016.13.113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The tremendous rise in the economic burden of type 2 diabetes (T2D) has prompted a search for alternative and less expensive medicines. Dandelion offers a compelling profile of bioactive components with potential anti-diabetic properties. The Taraxacum genus from the Asteraceae family is found in the temperate zone of the Northern hemisphere. It is available in several areas around the world. In many countries, it is used as food and in some countries as therapeutics for the control and treatment of T2D. The anti-diabetic properties of dandelion are attributed to bioactive chemical components; these include chicoric acid, taraxasterol (TS), chlorogenic acid, and sesquiterpene lactones. Studies have outlined the useful pharmacological profile of dandelion for the treatment of an array of diseases, although little attention has been paid to the effects of its bioactive components on T2D to date. This review recapitulates previous work on dandelion and its potential for the treatment and prevention of T2D, highlighting its anti-diabetic properties, the structures of its chemical components, and their potential mechanisms of action in T2D. Although initial research appears promising, data on the cellular impact of dandelion are limited, necessitating further work on clonal β-cell lines (INS-1E), α-cell lines, and human skeletal cell lines for better identification of the active components that could be of use in the control and treatment of T2D. In fact, extensive in-vitro, in-vivo, and clinical research is required to investigate further the pharmacological, physiological, and biochemical mechanisms underlying the effects of dandelion-derived compounds on T2D.
Collapse
Affiliation(s)
- Fonyuy E Wirngo
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 C, Denmark
| | - Max N Lambert
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 C, Denmark
| | - Per B Jeppesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 C, Denmark
| |
Collapse
|
35
|
Nakib I, Martin-Eauclaire MF, Laraba-Djebari F. Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom. Inflammation 2016; 39:1670-80. [PMID: 27395044 DOI: 10.1007/s10753-016-0401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bot III neurotoxin is the most lethal α neurotoxin purified from Buthus occitanus tunetanus scorpion venom. This toxin binds to the voltage-gated sodium channel of excitable cells and blocks its inactivation, inducing an increased release of neurotransmitters (acetylcholine and catecholamines). This study aims to elucidate the involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response triggered by this toxin. Injection of Bot III to animals induces an increase of peroxidase activities, an imbalance of oxidative status, tissue damages in lung parenchyma, and myocardium correlated with metabolic disorders. The pretreatment with nicotine (nicotinic receptor agonist) or atropine (muscarinic receptor antagonist) protected the animals from almost all disorders caused by Bot III toxin, especially the immunological alterations. Bisoprolol administration (selective β1 adrenergic receptor antagonist) was also efficient in the protection of animals, mainly on tissue damage. Propranolol (non-selective adrenergic receptor antagonist) showed less effect. These results suggest that both cholinergic and adrenergic receptors are activated in the cardiopulmonary manifestations induced by Bot III. Indeed, the muscarinic receptor appears to be more involved than the nicotinic one, and the β1 adrenergic receptor seems to dominate the β2 receptor. These results showed also that the activation of nicotinic receptor leads to a significant protection of animals against Bot III toxin effect. These findings supply a supplementary data leading to better understanding of the mechanism triggered by scorpionic neurotoxins and suggest the use of drugs targeting these receptors, especially the nicotinic one in order to counteract the inflammatory response observed in scorpion envenomation.
Collapse
Affiliation(s)
- Imene Nakib
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria
| | - Marie-France Martin-Eauclaire
- Aix-Marseille University, CNRS UMR7290 CRN2M, IFR Jean-Roche, Université de la Méditerranée, Faculté de Médecine Nord, Bd Pierre Dramard, 13916, Marseille, Cedex 20, France
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| |
Collapse
|
36
|
Hfaiedh M, Brahmi D, Zourgui L. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:339-349. [PMID: 25270677 DOI: 10.1002/tox.22048] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Taraxacum officinale (L.) Weber, commonly known as Dandelion, has been widely used as a folkloric medicine for the treatment of liver and kidney disorders and some women diseases such as breast and uterus cancers. The main objective of the present study was to assess the efficiency of T. officinale leaf extract (TOE) in treating sodium dichromate hazards; it is a major environmental pollutant known for its wide toxic manifestations witch induced liver injury. TOE at a dose of 500 mg/kg b.w was orally administered once per day for 30 days consecutively, followed by 10 mg/kg b.w sodium dichromate was injected (intraperitoneal) for 10 days. Our results using Wistar rats showed that sodium dichromate significantly increased serum biochemical parameters. In the liver, it was found to induce an oxidative stress, evidenced from increase in lipid peroxidation and changes in antioxidative activities. In addition, histopathological observation revealed that sodium dichromate causes acute liver damage, necrosis of hepatocytes, as well as DNA fragmentation. Interestingly, animals that were pretreated with TOE, prior to sodium dichromate administration, showed a significant hepatoprotection, revealed by a significant reduction of sodium dichromate-induced oxidative damage for all tested markers. These finding powerfully supports that TOE was effective in the protection against sodium dichromate-induced hepatotoxicity and genotoxicity and, therefore, suggest a potential therapeutic use of this plant as an alternative medicine for patients with acute liver diseases.
Collapse
Affiliation(s)
- Mbarka Hfaiedh
- Research unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences Gafsa, 2112, University of Gafsa, Tunisia
| | - Dalel Brahmi
- Research unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences Gafsa, 2112, University of Gafsa, Tunisia
| | - Lazhar Zourgui
- Research unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences Gafsa, 2112, University of Gafsa, Tunisia
- Higher Institute of Applied Biology ISBAM Medenine, University of Gabes, Tunisia
| |
Collapse
|
37
|
Turecký L, Kupčová V, Uhlíková E, Mojto V. Peroxisomal enzymes in the liver of rats with experimental diabetes mellitus type 2. Physiol Res 2015; 63:S585-91. [PMID: 25669689 DOI: 10.33549/physiolres.932918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Diabetes mellitus is relatively frequently associated with fatty liver disease. Increased oxidative stress probably plays an important role in the development of this hepatopathy. One of possible sources of reactive oxygen species in liver is peroxisomal system. There are several reports about changes of peroxisomal enzymes in experimental diabetes, mainly enzymes of fatty acid oxidation. The aim of our study was to investigate the possible changes of activities of liver peroxisomal enzymes, other than enzymes of beta-oxidation, in experimental diabetes mellitus type 2. Biochemical changes in liver of experimental animals suggest the presence of liver steatosis. The changes of serum parameters in experimental group are similar to changes in serum of patients with non-alcoholic fatty liver disease. We have shown that diabetes mellitus influenced peroxisomal enzymes by the different way. Despite of well-known induction of peroxisomal beta-oxidation, the activities of catalase, aminoacid oxidase and NADH-cytochrome b(5) reductase were not significantly changed and the activities of glycolate oxidase and NADP-isocitrate dehydrogenase were significantly decreased. The effect of diabetes on liver peroxisomes is probably due to the increased supply of fatty acids to liver in diabetic state and also due to increased oxidative stress. The changes of metabolic activity of peroxisomal compartment may participate on the development of diabetic hepatopathy.
Collapse
Affiliation(s)
- L Turecký
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical School, Comenius University, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
38
|
|
39
|
Ezeja MI, Anaga AO, Asuzu IU. Antidiabetic, antilipidemic, and antioxidant activities of Gouania longipetala methanol leaf extract in alloxan-induced diabetic rats. PHARMACEUTICAL BIOLOGY 2015; 53:605-614. [PMID: 25330778 DOI: 10.3109/13880209.2014.935864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Gouania longipetala Hemsl. (Rhamnaceae) is used in folkloric medicine for treating diabetes mellitus and its associated symptoms. OBJECTIVE This study evaluated the antidiabetic antilipidemic and antioxidant activities of the plant methanol leaf extract. MATERIALS AND METHODS Diabetes was induced in rats by intraperitoneal injection of alloxan monohydrate (160 mg/kg). Three test doses (50, 100, and 150 mg/kg) of G. longipetala extract (GLE) were administered orally and the effects were compared with glibenclamide (2 mg/kg). The effect of GLE on hyperglycemia and sub-acute study for 21 d were carried out using its effect on fasting blood sugar (FBS) level. Serum biochemistry and antioxidant activity were evaluated. Histopathological evaluation of the pancreas was also done. RESULTS The LD50 of G. longipetala was found to be >4000 mg/kg. The extract significantly (p < 0.0001) decreased the FBS levels of treated rats from 16.2 ± 2.03 to 6.5 ± 1.52 mM/L at 150 mg/kg within 24 h. The extract decreased FBS levels of rats by 62.0, 74.8, and 75.0% on day 21 at 50, 100, and 150 mg/kg, respectively. GLE reduced the level of malondiadehyde from 23.0 ± 1.34 to 10.3 ± 0.43 mg/dL, increased superoxide dismutase activities from 2.97 ± 0.34 to 5.80 ± 0.53 IU/L at 150 mg/kg, and improved the serum lipid profile of treated rats. GLE also caused restoration of the altered histopathological changes of the pancreas. DISCUSSION AND CONCLUSION Gouania longipetala demonstrated significant antidiabetic, antilipidemic, and antioxidant activities that may be due to its multiple effects involving both pancreatic and extra-pancreatic mechanisms.
Collapse
Affiliation(s)
- Maxwell Ikechukwu Ezeja
- Department of Veterinary Physiology, Pharmacology and Biochemistry, Michael Okpara University of Agriculture , Umudike, Abia State , Nigeria and
| | | | | |
Collapse
|
40
|
Park CH, Xu FH, Roh SS, Song YO, Uebaba K, Noh JS, Yokozawa T. Astaxanthin and Corni Fructus protect against diabetes-induced oxidative stress, inflammation, and advanced glycation end product in livers of streptozotocin-induced diabetic rats. J Med Food 2015; 18:337-44. [PMID: 25569034 DOI: 10.1089/jmf.2014.3174] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study was conducted to compare the protective effects of astaxanthin (ASX) with Corni Fructus (CF) against diabetes-induced pathologies such as oxidative stress-induced inflammation and advanced glycation end product (AGE) formation in the liver of type 1 diabetic rats. ASX (50 mg/kg body weight/day) or CF (200 mg/kg body weight/day) was orally administered every day for 18 days to streptozotocin (STZ)-induced diabetic rats, and their effects were compared with nondiabetic and diabetic control rats. The administration of CF, but not ASX, decreased both the elevated serum and hepatic glucose concentration in diabetic rats. In diabetic rats, increased levels of AGE, reactive oxygen species, and lipid peroxidation were significantly decreased by treatment with both ASX and CF in the liver of diabetic rats. STZ treatment markedly augmented the protein expressions of AGE, and both ASX and CF efficiently attenuated these increases in hepatic protein expressions. In addition, oxidative stress and proinflammatory protein expressions were upregulated in the diabetic rats. On the contrary, these upregulations of protein expressions were decreased by the administration of ASX or CF. These results suggest that the inhibitory effect of ASX on diabetes-induced hepatic dysfunction could be derived from the blocking of AGE formation and further anti-inflammation and that CF exhibited beneficial effects through the attenuation of hyperglycemia, and thus the inhibition of AGE formation and the inflammatory responses. Therefore, ASX as well as CF may help prevent ongoing diabetes-induced hepatic injury.
Collapse
Affiliation(s)
- Chan Hum Park
- 1 College of Korean Medicine, Daegu Haany University , Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Protective effect of chemically modified SOD on lipid peroxidation and antioxidant status in diabetic rats. Int J Biol Macromol 2014; 72:79-87. [PMID: 25124383 DOI: 10.1016/j.ijbiomac.2014.07.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/23/2022]
Abstract
Reactive oxygen species mediated oxidative stress play an important role on the injury of tissue damage and increased attention has been focused on the role of free radicals in diabetes mellitus (DM). In the present study firstly superoxide dismutase (SOD) enzyme was chemically modified with two different polymer and physicochemical properties of these conjugates clearly analyzed. Then, the stability of carboxymethylcellulose-SOD (CMC-SOD) and poly methyl vinyl ether-co-maleic anhydride-SOD (PMVE/MA-SOD) conjugates was investigated against temperature and externally added H2O2. Moreover, we investigated the effect of chemically modified SOD enzyme on lipid peroxidation and antioxidant status in streptozotocin (STZ)-induced diabetic rats. PMVE/MA-SOD conjugate treatment significantly reduced MDA level compared with the control groups, native and CMC-SOD conjugate treated groups in brain, kidney and liver tissue. GSH and SOD enzyme activity in diabetic groups was significantly increased by treatment of CMC-SOD and PMVE/MA-SOD conjugates. The protective effects on degenerative changes in diabetic rats were also further confirmed by histopathological examination. This study provides the preventative activity of SOD-polymer conjugates against complication of oxidative stress in experimentally induced diabetic rats. These results suggest that chemically modified SOD is effective on the oxidative stress-associated disease and offer a therapeutic advantage in clinical use.
Collapse
|
42
|
Hypolipidemic effect of dandelion (Taraxacum officinale) extracts via fecal lipid excretion in C57BL/6 mice fed an atherogenic diet. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0113-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
43
|
Deprem T, Yıldız SE, Sari EK, Bingol SA, Tasci SK, Aslan S, Sozmen M, Nur G. Distribution of glutathione peroxidase 1 in liver tissues of healthy and diabetic rats treated with capsaisin. Biotech Histochem 2014; 90:1-7. [PMID: 24867493 DOI: 10.3109/10520295.2014.919024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the immunohistochemical localization of glutathione peroxidase 1 (GPx 1) and the structural changes that occur in the livers of healthy and diabetic rats that were treated with capsaisin (CAP). Fifty female rats were divided into five groups: group 1, sham; group 2, untreated control; group 3, CAP-treated; group 4, streptozotocin (STZ) diabetic; group 5, STZ diabetic + CAP-treated. STZ was administered to groups 4 and 5; after verifying diabetes, CAP was administered daily for 2 weeks to groups 3 and 5. Diffuse, microvesicular and some macrovesicular fatty degeneration were observed in the cytoplasms of hepatocytes in the livers of the diabetic group. In the CAP-treated diabetic group, fat degeneration in the livers decreased slightly by day 7. Irregularity of the external contours of nuclei of the hepatocytes, swelling of the nuclei, and slight anisocytosis and anisokaryosis were observed in the hepatocytes of the diabetic group. In the CAP-treated diabetic groups, the severity of anisocytosis and anisokaryosis decreased slightly by day 7. In all groups, GPx 1 showed similar immunolocalization, but in the diabetic and diabetic + CAP groups, GPx 1 immunoreactivity was less than in the other groups. GPx 1 immunoreactivity in the CAP-treated diabetic group was weaker than in the diabetic group. In all groups, GPx 1 immunoreactivity was diffusely cytoplasmic in some of the hepatocytes, and diffusely cytoplasmic and diffusely nuclear in other hepatocytes. Also, GPx 1 immunoreactivity in the liver was more intense in the hepatocytes around Kiernan's space. We found that CAP caused a decrease in GPx 1.
Collapse
Affiliation(s)
- T Deprem
- Department of Histology-Embryology, Faculty of Veterinary Medicine, University of Kafkas
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chaudhari HN, Yun JW. Gender-dimorphic regulation of liver proteins in Streptozotocin-induced diabetic rats. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0612-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Free Radicals Scavenging Capacity, Antidiabetic and Antihypertensive Activities of Flavonoid-Rich Fractions from Leaves of Trichilia emetica and Opilia amentacea in an Animal Model of Type 2 Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:867075. [PMID: 24616741 PMCID: PMC3926250 DOI: 10.1155/2014/867075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023]
Abstract
Trichilia emetica and Opilia amentacea traditional Burkinabe medicinal plants were investigated to determine their therapeutic potential to inhibit key enzymes in carbohydrate metabolism, which has relevance to the management of type 2 diabetes. In vitro and in vivo antioxidant and antihypertensive potential and antilipidemia and antihyperglycemia activities in an animal model of type 2 diabetes mellitus have been studied. The antioxidant activity of the flavonoids from leaves of Trichilia emetica and Opilia amentacea has been evaluated using β -carotene-linoleic acid system, 1,1-diphenyl-2-picrylhydrazyl inhibitory activity, chelation of iron (II) ions, and lipid peroxidation which showed more pronounced antioxidant capacities of Trichilia emetica. Total cholesterol concentrations decreased in an animal model of type 2 diabetes mellitus under effects of flavonoid-rich fractions from leaves of Trichilia emetica and Opilia amentacea has been observed. Extract of flavonoid-rich fractions from Trichilia emetica shown maximum radical scavenging activity and possessed marked antiamylase activity which may be due to the presence of certain secondary metabolites. Suggested better antihyperglycemia, antilipidemia, and antihypertensive properties of flavonoid-rich fractions from Trichilia emetica compared to the extract of Opilia amentacea are demonstrating antidiabetic potential of Trichilia emetica as therapeutic targets for the management of type 2 diabetes.
Collapse
|
46
|
El-Bahr SM. Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:368. [PMID: 24364912 PMCID: PMC3877970 DOI: 10.1186/1472-6882-13-368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/16/2013] [Indexed: 02/07/2023]
Abstract
Background The effects of curcumin on the activities and gene expression of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (G-ST), B-cell CLL/lymphoma 2 (Bcl-2) and insulin like growth factor-1 (IGF-1) in diabetic rats were studied. Methods Twenty four rats were assigned to three groups (8 rats for each). Rats of first group were non diabetic and rats of the second group were rendered diabetic by streptozotocin (STZ). Both groups received vehicle, corn oil only (5 ml/kg body weight) and served as negative and positive controls, respectively. Rats of the third group were rendered diabetic and received oral curcumin dissolved in corn oil at a dose of 15 mg/5 ml/kg body weight for 6 weeks. Results Diabetic rats showed significant increase of blood glucose, thiobarbituric acid reactive substances (TBARS) and activities of all antioxidant enzymes with significant reduction of reduced glutathione (GSH) compare to the control non diabetic group. Gene expression of Bcl2, SOD, CAT, GPX and GST was increased significantly in diabetic untreated rats compare to the control non diabetic group. The administration of curcumin to diabetic rats normalized significantly their blood sugar level and TBARS values and increased the activities of all antioxidant enzymes and GSH concentration. In addition, curcumin treated rats showed significant increase in gene expression of IGF-1, Bcl2, SOD and GST compare to non diabetic and diabetic untreated rats. Conclusion Curcumin was antidiabetic therapy, induced hypoglycemia by up-regulation of IGF-1 gene and ameliorate the diabetes induced oxidative stress via increasing the availability of GSH, increasing the activities and gene expression of antioxidant enzymes and Bcl2. Further studies are required to investigate the actual mechanism of action of curcumin regarding the up regulation of gene expression of examined parameters.
Collapse
|
47
|
Bera TK, Ali KM, Jana K, Ghosh A, Ghosh D. Protective effect of aqueous extract of seed of Psoralea corylifolia (Somraji) and seed of Trigonella foenum-graecum L. (Methi) in streptozotocin-induced diabetic rat: A comparative evaluation. Pharmacognosy Res 2013; 5:277-85. [PMID: 24174822 PMCID: PMC3807993 DOI: 10.4103/0974-8490.118840] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 12/21/2012] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Psoralea corylifolia (Somraji) and Trigonella foenum-graecum L. (Methi), important medicinal plants widely used in India as folk medicine. Local people of West Bengal traditionally used the seeds of these plants to cure diabetes. OBJECTIVE Present study was designed to investigate the antidiabetic efficacy of aqueous extract of seeds of these plants in separate or in composite manner in streptozotocin (STZ)-induced diabetic rat. MATERIALS AND METHODS Diabetes was induced by intramuscular injection of STZ at the dose of 40 mg/ml of citrate buffer/kg body weight. Fasting blood glucose (FBG), glyclated hemoglobin (HbA1C) and activities of hexokinase, glucose-6-phosphate dehydrogenase and glucose-6-phosphatase of liver in experimental animals were assessed. Hyperlipidemic state developed in the experimental diabetic rat was assessed by measuring the levels of total cholesterol, triglyceride, and lipoproteins in serum. RESULTS There was significant increased in the levels of FBG, HbA1C and lipid profiles along with diminution (P < 0.001) in the activities of hepatic hexokinase, glucose-6-phosphate dehydrogenase and elevation in glucose-6-phosphatase in diabetic control animals in respect to the untreated control. Significant recovery (P < 0.05) in the activities of above mentioned enzymes along with the correction in the levels of FBG, HbA1C and serum lipid profiles were noted towards the control level after the treatment of composite extract (i.e. 100 mg of Somraji: 100 mg of Methi, total 200 mg/kg body weight) than the individual extract (i.e. 200 mg of Somraji or 200 mg of Methi, per kg body weight) treatment. CONCLUSION Results suggest that composite extract of above plant parts has more potent antidiabetic efficacy than the individual extract.
Collapse
Affiliation(s)
- Tushar Kanti Bera
- Department of Bio-Medical Laboratory Science and Management, (UGC Innovative Funded Department), Vidyasagar University, West Bengal, India
- Department of Pharmaceutical Division, Southern Health Improvement Samity (SHIS), Bhangar, South 24 Paraganas, West Bengal, India
| | - Kazi Monjur Ali
- Department of Bio-Medical Laboratory Science and Management, (UGC Innovative Funded Department), Vidyasagar University, West Bengal, India
| | - Kishalay Jana
- Department of Bio-Medical Laboratory Science and Management, (UGC Innovative Funded Department), Vidyasagar University, West Bengal, India
| | - Abhinandan Ghosh
- Department of Bio-Medical Laboratory Science and Management, (UGC Innovative Funded Department), Vidyasagar University, West Bengal, India
| | - Debidas Ghosh
- Department of Bio-Medical Laboratory Science and Management, (UGC Innovative Funded Department), Vidyasagar University, West Bengal, India
| |
Collapse
|
48
|
Kim SO, Kim HJ. Berberine ameliorates cold and mechanical allodynia in a rat model of diabetic neuropathy. J Med Food 2013; 16:511-7. [PMID: 23734996 DOI: 10.1089/jmf.2012.2648] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study evaluated the antiallodynic properties of berberine on cold and mechanical allodynia after streptozotocin (STZ)-induced diabetes using a rat model. Diabetic neuropathy was induced in rats by intraperitoneal injection of STZ. To measure cold and mechanical allodynia, a 4°C plate and von Frey filament were used, respectively. Cold and mechanical allodynia induced by diabetes were significantly decreased by single and repeated intraperitoneal treatment of amitriptyline at 10 mg/kg, and berberine at 10 and 20 mg/kg. The hepatic malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase activities were significantly increased in diabetic rats as compared with those in intact rats; however, in amitriptyline- and berberine-treated rats, they were significantly decreased as compared to the STZ control. The overall effects of berberine 20 mg/kg on cold and mechanical allodynia were quite similar to those of amitriptyline 10 mg/kg, and berberine exhibited similar antioxidant effects as the same dosage of amitriptyline. In conclusion, berberine (10 and 20 mg/kg) was observed to have antiallodynic effects against diabetes, which are presumed to be associated with antioxidative effects. It can be considered that the anti-inflammatory or antidepressant capacity of berberine could contribute to the antiallonynic effects shown in this study.
Collapse
Affiliation(s)
- Si Oh Kim
- Department of Anesthesiology and Pain Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | | |
Collapse
|
49
|
Latha R, Shanthi P, Sachdanandam P. Kalpaamruthaa modulates oxidative stress in cardiovascular complication associated with type 2 diabetes mellitus through PKC-β/Akt signaling. Can J Physiol Pharmacol 2013; 91:901-12. [PMID: 24117257 DOI: 10.1139/cjpp-2012-0443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study aimed at investigating the efficacy of Kalpaamruthaa (KA) on cardiovascular damage (CVD) associated with type 2 diabetes mellitus in experimental rats by reducing oxidative stress and the modulation of the protein kinase C-β (PKC-β)/Akt signaling pathway. CVD-induced rats were treated with KA (200 mg·(kg body mass)(-1)·(day)(-1)) orally for 4 weeks. KA effectively reduced insulin resistance with alterations in blood glucose, hemoglobin, and glycosylated hemoglobin in CVD-induced rats. Elevated levels of lipids in CVD-induced rats were decreased upon KA administration. In CVD-induced rats the levels of lipoproteins were returned to normal by KA treatment. KA effectively reduced the lipid peroxidative product and protein carbonyl content in liver of CVD-induced rats. KA increased the activities and (or) levels of enzymatic and nonenzymatic antioxidants in liver of CVD-induced rats. KA treatment reduced the fatty inclusion and mast cell infiltration in liver of CVD-induced rats. Further, treatment with KA reduced the chromatin condensation and marginization in myocardium of CVD-induced rats. KA alters insulin signaling by decreasing PKC-β and increasing p-Akt and GLUT4 expressions in heart of CVD-induced rats. The above findings suggest that KA renders protection against CVD induced by type 2 diabetes mellitus by augmenting the cellular antioxidant defense capacity and modulating PKC-β and the p-Akt signaling pathway.
Collapse
Affiliation(s)
- Raja Latha
- a Department of Medical Biochemistry, Dr. A.L.M. Post-Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | | | | |
Collapse
|
50
|
Davaatseren M, Hur HJ, Yang HJ, Hwang JT, Park JH, Kim HJ, Kim MJ, Kwon DY, Sung MJ. Taraxacum official (dandelion) leaf extract alleviates high-fat diet-induced nonalcoholic fatty liver. Food Chem Toxicol 2013; 58:30-6. [PMID: 23603008 DOI: 10.1016/j.fct.2013.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/26/2022]
Abstract
The purpose of this study is to determine the protective effect of Taraxacum official (dandelion) leaf extract (DLE) on high-fat-diet (HFD)-induced hepatic steatosis, and elucidate the molecular mechanisms behind its effects. To determine the hepatoprotective effect of DLE, we fed C57BL/6 mice with normal chow diet (NCD), high-fat diet (HFD), HFD supplemented with 2g/kg DLE DLE (DL), and HFD supplemented with 5 g/kg DLE (DH). We found that the HFD supplemented by DLE dramatically reduced hepatic lipid accumulation compared to HFD alone. Body and liver weights of the DL and DH groups were significantly lesser than those of the HFD group, and DLE supplementation dramatically suppressed triglyceride (TG), total cholesterol (TC), insulin, fasting glucose level in serum, and Homeostatic Model Assessment Insulin Resistance (HOMA-IR) induced by HFD. In addition, DLE treatment significantly increased activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) in liver and muscle protein. DLE significantly suppressed lipid accumulation in the liver, reduced insulin resistance, and lipid in HFD-fed C57BL/6 mice via the AMPK pathway. These results indicate that the DLE may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Munkhtugs Davaatseren
- Research Division Emerging Innovative Technology, Korea Food Research Institute, Songnam, Keongki 463-746, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|