1
|
Mc Laughlin AM, Helland T, Klima F, Koolen SLW, van Schaik RHN, Mathijssen RHJ, Neven P, Swen JJ, Guchelaar HJ, Dalenc F, White-Koning M, Michelet R, Mikus G, Schroth W, Mürdter T, Brauch H, Schwab M, Søiland H, Mellgren G, Thomas F, Kloft C, Hertz DL. Nonlinear Mixed-Effects Model of Z-Endoxifen Concentrations in Tamoxifen-Treated Patients from the CEPAM Cohort. Clin Pharmacol Ther 2024; 116:690-702. [PMID: 38494911 DOI: 10.1002/cpt.3238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
Tamoxifen is widely used in patients with hormone receptor-positive breast cancer. The polymorphic enzyme CYP2D6 is primarily responsible for metabolic activation of tamoxifen, resulting in substantial interindividual variability of plasma concentrations of its most important metabolite, Z-endoxifen. The Z-endoxifen concentration thresholds below which tamoxifen treatment is less efficacious have been proposed but not validated, and prospective trials of individualized tamoxifen treatment to achieve Z-endoxifen concentration thresholds are considered infeasible. Therefore, we aim to validate the association between Z-endoxifen concentration and tamoxifen treatment outcomes, and identify a Z-endoxifen concentration threshold of tamoxifen efficacy, using pharmacometric modeling and simulation. As a first step, the CYP2D6 Endoxifen Percentage Activity Model (CEPAM) cohort was created by pooling data from 28 clinical studies (> 7,000 patients) with measured endoxifen plasma concentrations. After cleaning, data from 6,083 patients were used to develop a nonlinear mixed-effect (NLME) model for tamoxifen and Z-endoxifen pharmacokinetics that includes a conversion factor to allow inclusion of studies that measured total endoxifen but not Z-endoxifen. The final parent-metabolite NLME model confirmed the primary role of CYP2D6, and contributions from body weight, CYP2C9 phenotype, and co-medication with CYP2D6 inhibitors, on Z-endoxifen pharmacokinetics. Future work will use the model to simulate Z-endoxifen concentrations in patients receiving single agent tamoxifen treatment within large prospective clinical trials with long-term survival to identify the Z-endoxifen concentration threshold below which tamoxifen is less efficacious. Identification of this concentration threshold would allow personalized tamoxifen treatment to improve outcomes in patients with hormone receptor-positive breast cancer.
Collapse
Affiliation(s)
- Anna M Mc Laughlin
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- PharMetrX Graduate Research Training Program, Berlin/Potsdam, Germany
| | - Thomas Helland
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fenja Klima
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- PharMetrX Graduate Research Training Program, Berlin/Potsdam, Germany
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Patrick Neven
- Department of Gynecological Oncology and Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Jesse J Swen
- Department Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Guchelaar
- Department Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Florence Dalenc
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Melanie White-Koning
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
| | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Matthias Schwab
- University Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fabienne Thomas
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Buijs SM, Koolen SLW, Mathijssen RHJ, Jager A. Tamoxifen Dose De-Escalation: An Effective Strategy for Reducing Adverse Effects? Drugs 2024; 84:385-401. [PMID: 38480629 PMCID: PMC11101371 DOI: 10.1007/s40265-024-02010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 05/19/2024]
Abstract
Tamoxifen, a cornerstone in the adjuvant treatment of estrogen receptor-positive breast cancer, significantly reduces breast cancer recurrence and breast cancer mortality; however, its standard adjuvant dose of 20 mg daily presents challenges due to a broad spectrum of adverse effects, contributing to high discontinuation rates. Dose reductions of tamoxifen might be an option to reduce treatment-related toxicity, but large randomized controlled trials investigating the tolerability and, more importantly, efficacy of low-dose tamoxifen in the adjuvant setting are lacking. We conducted an extensive literature search to explore evidence on the tolerability and clinical efficacy of reduced doses of tamoxifen. In this review, we discuss two important topics regarding low-dose tamoxifen: (1) the incidence of adverse effects and quality of life among women using low-dose tamoxifen; and (2) the clinical efficacy of low-dose tamoxifen examined in the preventive setting and evaluated through the measurement of several efficacy derivatives. Moreover, practical tools for tamoxifen dose reductions in the adjuvant setting are provided and further research to establish optimal dosing strategies for individual patients are discussed.
Collapse
Affiliation(s)
- Sanne M Buijs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3015 CN, Rotterdam, The Netherlands.
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3015 CN, Rotterdam, The Netherlands
- Department of Clinical Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3015 CN, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
3
|
El Desoky ES, Taha AF, Mousa HS, Ibrahim A, Saleh MA, Abdelrady MA, Hareedy MS. Value of therapeutic drug monitoring of endoxifen in Egyptian premenopausal patients with breast cancer given tamoxifen adjuvant therapy: A pilot study. J Oncol Pharm Pract 2023; 29:1673-1686. [PMID: 36567618 DOI: 10.1177/10781552221146531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The complex metabolic profile of tamoxifen anticancer drug and polymorphism in its metabolizing enzymes particularly CYP2D6 contribute to the high-observed inter-individual variability in its main active metabolite endoxifen. Therapeutic drug monitoring of endoxifen may play a key role in optimizing tamoxifen therapy, and control of both adverse effects and cancer recurrence. This pilot study aims to assess the clinical benefits of applying endoxifen measurement during tamoxifen therapy in patients with breast cancer. METHODS Adult premenopausal breast cancer patients ≥ 18 years who received tamoxifen at a fixed dose of 20 mg daily were included. The primary endpoint was to identify the inter-subject variability in serum concentration of the drug and its metabolites especially endoxifen, through fixation of the tamoxifen dose. The secondary endpoint was to check the correlation between endoxifen metabolite concentration and the development of tamoxifen's adverse effects and cancer recurrence. RESULTS Sixty patients were included in the study with a mean age of 38.4 ± 0.6 years (range: 26-50). The mean concentration of tamoxifen and endoxifen was 181 ± 9.6 ng/mL and 31.49 ng/mL, respectively. The inter-individual variability in concentrations for the drug and its active metabolite as estimated by the coefficient of variation percentage was in 41% and 31%, respectively. Cancer recurrence was observed in a group of patients (n = 16) with an average endoxifen level of 24.48 ng/mL. Another group of patients (n = 25) developed different tamoxifen adverse effects including hot flashes, vaginal bleeding, endometrial thickness, and ovarian cysts with the average endoxifen level of 38.61 ng/mL. The rest of the patients (n = 19) who responded smoothly to the drug with no complications had an average endoxifen level of 31.37 ng/mL. Analysis of variance test showed a significant difference in endoxifen levels between the three groups (p = 0.002). CONCLUSION The measurement of the endoxifen active metabolite of tamoxifen in breast cancer patients can help dose optimization in light of the observed wide inter-individual variability in drug fixed-dose related concentration of the metabolite. Monitoring of serum concentration of endoxifen can help to reveal, reduce and control tamoxifen's adverse effects and cancer recurrence.
Collapse
Affiliation(s)
- Ehab S El Desoky
- Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Amira F Taha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Egypt
| | - Heba Salah Mousa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Abeer Ibrahim
- Department of Medical Oncology and Hematological Malignancy, South Egypt Cancer Institute, Assiut University, Egypt
| | - Medhat A Saleh
- Department of Public Health and Community Medicine, Faculty of Medicine, Assiut University, Egypt
| | | | | |
Collapse
|
4
|
Souwer ETD, Sanchez-Spitman A, Moes DJAR, Gelderblom H, Swen JJ, Portielje JEA, Guchelaar HJ, van Gelder T. Tamoxifen pharmacokinetics and pharmacodynamics in older patients with non-metastatic breast cancer. Breast Cancer Res Treat 2023; 199:471-478. [PMID: 37067610 PMCID: PMC10175413 DOI: 10.1007/s10549-023-06925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND We aimed to study the pharmacokinetics and -dynamics of tamoxifen in older women with non-metastatic breast cancer. METHODS Data for this analysis were derived from the CYPTAM study (NTR1509) database. Patients were stratified by age (age groups < 65 and 65 and older). Steady-state trough concentrations were measured of tamoxifen, N-desmethyltamoxifen, 4-hydroxy-tamoxifen, and endoxifen. CYP2D6 and CYP3A4 phenotypes were assessed for all patients by genotyping. Multiple linear regression models were used to analyze tamoxifen and endoxifen variability. Outcome data included recurrence-free survival at time of tamoxifen discontinuation (RFSt) and overall survival (OS). RESULTS 668 patients were included, 141 (21%) were 65 and older. Demographics and treatment duration were similar across age groups. Older patients had significantly higher concentrations of tamoxifen 129.4 ng/ml (SD 53.7) versus 112.2 ng/ml (SD 42.0) and endoxifen 12.1 ng/ml (SD 6.6) versus 10.7 ng/ml (SD 5.7, p all < 0.05), independently of CYP2D6 and CYP3A4 gene polymorphisms. Age independently explained 5% of the variability of tamoxifen (b = 0.95, p < 0.001, R2 = 0.051) and 0.1% of the variability in endoxifen concentrations (b = 0.45, p = 0.12, R2 = 0.007). Older patients had worse RFSt (5.8 versus 7.3 years, p = 0.01) and worse OS (7.8 years versus 8.7 years, p = 0.01). This was not related to differences in endoxifen concentration (HR 1.0, 95% CI 0.96-1.04, p = 0.84) or CYP polymorphisms. CONCLUSION Serum concentrations of tamoxifen and its demethylated metabolites are higher in older patients, independent of CYP2D6 or CYP3A4 gene polymorphisms. A higher bioavailability of tamoxifen in older patients may explain the observed differences. However, clinical relevance of these findings is limited and should not lead to a different tamoxifen dose in older patients.
Collapse
Affiliation(s)
- E T D Souwer
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.
| | - A Sanchez-Spitman
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J E A Portielje
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - H J Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - T van Gelder
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Mueller-Schoell A, Michelet R, Klopp-Schulze L, van Dyk M, Mürdter TE, Schwab M, Joerger M, Huisinga W, Mikus G, Kloft C. Computational Treatment Simulations to Assess the Need for Personalized Tamoxifen Dosing in Breast Cancer Patients of Different Biogeographical Groups. Cancers (Basel) 2021; 13:cancers13102432. [PMID: 34069810 PMCID: PMC8157244 DOI: 10.3390/cancers13102432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tamoxifen is a drug often used to treat the most common type of breast cancer. Its metabolite endoxifen is formed by the liver enzyme CYP2D6, whose activity is variable and depends on a patient’s genetic profile. The frequency of CYP2D6 variants with different functional enzymatic activity varies largely between populations. To ensure sufficient efficacy of tamoxifen, a certain target concentration of endoxifen is needed, and 20% of White breast cancer patients have been shown not to reach this target concentration. However, little is known about the risk of not attaining the endoxifen target amongst other ethnic populations. This study investigated the risk for suboptimal endoxifen concentration in nine different biogeographical populations based on their distinct CYP2D6 genetic profile. The variability between the populations was high (up to three-fold), and East Asian breast cancer patients were identified as the population with the highest need for personalized tamoxifen dosing. Abstract Tamoxifen is used worldwide to treat estrogen receptor-positive breast cancer. It is extensively metabolized, and minimum steady-state concentrations of its metabolite endoxifen (CSS,min ENDX) >5.97 ng/mL have been associated with favorable outcome. Endoxifen formation is mediated by the enzyme CYP2D6, and impaired CYP2D6 function has been associated with lower CSS,min ENDX. In the Women’s Healthy Eating and Living (WHEL) study proposing the target concentration, 20% of patients showed subtarget CSS,min ENDX at tamoxifen standard dosing. CYP2D6 allele frequencies vary largely between populations, and as 87% of the patients in the WHEL study were White, little is known about the risk for subtarget CSS,min ENDX in other populations. Applying pharmacokinetic simulations, this study investigated the risk for subtarget CSS,min ENDX at tamoxifen standard dosing and the need for dose individualization in nine different biogeographical groups with distinct CYP2D6 allele frequencies. The high variability in CYP2D6 allele frequencies amongst the biogeographical groups resulted in an up to three-fold difference in the percentages of patients with subtarget CSS,min ENDX. Based on their CYP2D6 allele frequencies, East Asian breast cancer patients were identified as the population for which personalized, model-informed precision dosing would be most beneficial (28% of patients with subtarget CSS,min ENDX).
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.); (L.K.-S.); (G.M.)
- Graduate Research Training Program PharMetrX, 12169 Berlin, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.); (L.K.-S.); (G.M.)
| | - Lena Klopp-Schulze
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.); (L.K.-S.); (G.M.)
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia;
| | - Thomas E. Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University Tübingen, 70376 Tübingen, Germany;
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
- German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research, 69120 Heidelberg, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University Tübingen, 72076 Tübingen, Germany
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital, 9007 St. Gallen, Switzerland;
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, 14476 Potsdam, Germany;
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.); (L.K.-S.); (G.M.)
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, 53113 Bonn, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.); (L.K.-S.); (G.M.)
- Correspondence:
| |
Collapse
|
6
|
Slanař O, Hronová K, Bartošová O, Šíma M. Recent advances in the personalized treatment of estrogen receptor-positive breast cancer with tamoxifen: a focus on pharmacogenomics. Expert Opin Drug Metab Toxicol 2020; 17:307-321. [PMID: 33320718 DOI: 10.1080/17425255.2021.1865310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Tamoxifen is still an important drug in hormone-dependent breast cancer therapy. Personalization of its clinical use beyond hormone receptor positivity could improve the substantial variability of the treatment response.Areas covered: The overview of the current evidence for the treatment personalization using therapeutic drug monitoring, or using genetic biomarkers including CYP2D6 is provided. Although many studies focused on the PK aspects or the impact of CYP2D6 variability the translation into clinical routine is not clearly defined due to the inconsistent clinical outcome data.Expert opinion: We believe that at least the main candidate factors, i.e. CYP2D6 polymorphism, CYP2D6 inhibition, endoxifen serum levels may become important predictors of clinical relevance for tamoxifen treatment personalization in the future. To achieve this aim, however, further research should take into consideration more precise characterization of the disease, epigenetic factors and also utilize an appropriately powered multifactorial approach instead of a single gene evaluating studies.
Collapse
Affiliation(s)
- Ondřej Slanař
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Karolína Hronová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Olga Bartošová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
7
|
Puszkiel A, Arellano C, Vachoux C, Evrard A, Le Morvan V, Boyer JC, Robert J, Delmas C, Dalenc F, Debled M, Venat-Bouvet L, Jacot W, Dohollou N, Bernard-Marty C, Laharie-Mineur H, Filleron T, Roché H, Chatelut E, Thomas F, White-Koning M. Model-Based Quantification of Impact of Genetic Polymorphisms and Co-Medications on Pharmacokinetics of Tamoxifen and Six Metabolites in Breast Cancer. Clin Pharmacol Ther 2020; 109:1244-1255. [PMID: 33047329 DOI: 10.1002/cpt.2077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022]
Abstract
Variations in clinical response to tamoxifen (TAM) may be related to polymorphic cytochromes P450 (CYPs) involved in forming its active metabolite endoxifen (ENDO). We developed a population pharmacokinetic (PopPK) model for tamoxifen and six metabolites to determine clinically relevant factors of ENDO exposure. Concentration-time data for TAM and 6 metabolites come from a prospective, multicenter, 3-year follow-up study of adjuvant TAM (20 mg/day) in patients with breast cancer, with plasma samples drawn every 6 months, and genotypes for 63 genetic polymorphisms (PHACS study, NCT01127295). Concentration data for TAM and 6 metabolites from 928 patients (n = 27,433 concentrations) were analyzed simultaneously with a 7-compartment PopPK model. CYP2D6 phenotype (poor metabolizer (PM), intermediate metabolizer (IM), normal metabolizer (NM), and ultra-rapid metabolizer (UM)), CYP3A4*22, CYP2C19*2, and CYP2B6*6 genotypes, concomitant CYP2D6 inhibitors, age, and body weight had a significant impact on TAM metabolism. Formation of ENDO from N-desmethyltamoxifen was decreased by 84% (relative standard error (RSE) = 14%) in PM patients and by 47% (RSE = 9%) in IM patients and increased in UM patients by 27% (RSE = 12%) compared with NM patients. Dose-adjustment simulations support an increase from 20 mg/day to 40 and 80 mg/day in IM patients and PM patients, respectively, to reach ENDO levels similar to those in NM patients. However, when considering Antiestrogenic Activity Score (AAS), a dose increase to 60 mg/day in PM patients seems sufficient. This PopPK model can be used as a tool to predict ENDO levels or AAS according to the patient's CYP2D6 phenotype for TAM dose adaptation.
Collapse
Affiliation(s)
- Alicja Puszkiel
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Cécile Arellano
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Christelle Vachoux
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Alexandre Evrard
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire Nîmes-Carémeau, Nîmes, France.,IRCM, Inserm, Université de Montpellier, ICM, Montpellier, France
| | - Valérie Le Morvan
- Inserm U1218, Université de Bordeaux, Bordeaux, France.,Institut Bergonié, Bordeaux, France
| | - Jean-Christophe Boyer
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire Nîmes-Carémeau, Nîmes, France
| | - Jacques Robert
- Inserm U1218, Université de Bordeaux, Bordeaux, France.,Institut Bergonié, Bordeaux, France
| | - Caroline Delmas
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Florence Dalenc
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | | | | | - William Jacot
- Institut du Cancer de Montpellier, Montpellier, France
| | | | | | | | - Thomas Filleron
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Henri Roché
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Etienne Chatelut
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Fabienne Thomas
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Melanie White-Koning
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
8
|
Mueller-Schoell A, Klopp-Schulze L, Schroth W, Mürdter T, Michelet R, Brauch H, Huisinga W, Joerger M, Neven P, Koolen SLW, Mathijssen RHJ, Copson E, Eccles D, Chen S, Chowbay B, Tfayli A, Zgheib NK, Schwab M, Kloft C. Obesity Alters Endoxifen Plasma Levels in Young Breast Cancer Patients: A Pharmacometric Simulation Approach. Clin Pharmacol Ther 2020; 108:661-670. [PMID: 32578187 DOI: 10.1002/cpt.1960] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/29/2020] [Indexed: 01/03/2023]
Abstract
Endoxifen is one of the most important metabolites of the prodrug tamoxifen. High interindividual variability in endoxifen steady-state concentrations (CSS,min ENDX ) is observed under tamoxifen standard dosing and patients with breast cancer who do not reach endoxifen concentrations above a proposed therapeutic threshold of 5.97 ng/mL may be at a 26% higher recurrence risk compared with patients with endoxifen concentrations exceeding this value. In this investigation, 10 clinical tamoxifen studies were pooled (1,388 patients) to investigate influential factors on CSS,min ENDX using nonlinear mixed-effects modeling. Age and body weight were found to significantly impact CSS,min ENDX in addition to CYP2D6 phenotype. Compared with postmenopausal patients, premenopausal patients had a 30% higher risk for subtarget CSS,min ENDX at tamoxifen 20 mg per day. In treatment simulations for distinct patient subpopulations, young overweight patients had a 3.1-13.8-fold higher risk for subtarget CSS,min ENDX compared with elderly low-weight patients. Considering ever-rising obesity rates and the clinical importance of tamoxifen for premenopausal patients, this subpopulation may benefit most from individualized tamoxifen dosing.
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin/Potsdam, Germany
| | - Lena Klopp-Schulze
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and of German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Markus Joerger
- Department of Medical Oncology and Haematology, Cantonal Hospital, St. Gallen, Switzerland
| | - Patrick Neven
- Vesalius Research Center - VIB, University Hospitals Leuven, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ellen Copson
- Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Diana Eccles
- Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sylvia Chen
- Clinical Pharmacology Laboratory, Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore
| | - Balram Chowbay
- Clinical Pharmacology Laboratory, Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore
- Center for Clinician-Scientist Development, Duke-NUS Medical School, Singapore
- SingHealth Clinical Pharmacology, SingHealth, Singapore
| | - Arafat Tfayli
- Hematology-Oncology Division, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- German Cancer Consortium (DKTK) and of German Cancer Research Center (DKFZ), Heidelberg, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University Tübingen, Tübingen, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
9
|
Helland T, Hagen KB, Haugstøyl ME, Kvaløy JT, Lunde S, Lode K, Lind RA, Gripsrud BH, Jonsdottir K, Gjerde J, Bifulco E, Hustad S, Jonassen J, Aas T, Lende TH, Lien EA, Janssen EAM, Søiland H, Mellgren G. Drug monitoring of tamoxifen metabolites predicts vaginal dryness and verifies a low discontinuation rate from the Norwegian Prescription Database. Breast Cancer Res Treat 2019; 177:185-195. [PMID: 31144152 DOI: 10.1007/s10549-019-05294-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE Tamoxifen is an important targeted endocrine therapy in breast cancer. However, side effects and early discontinuation of tamoxifen remains a barrier for obtaining the improved outcome benefits of long-term tamoxifen treatment. Biomarkers predictive of tamoxifen side effects remain unidentified. The objective of this prospective population-based study was to investigate the value of tamoxifen metabolite concentrations as biomarkers for side effects. A second objective was to assess the validity of discontinuation rates obtained through pharmacy records with the use of tamoxifen drug monitoring. METHODS Longitudinal serum samples, patient-reported outcome measures and pharmacy records from 220 breast cancer patients were obtained over a 6-year period. Serum concentrations of tamoxifen metabolites were measured by LC-MS/MS. Associations between metabolite concentrations and side effects were analyzed by logistic regression and cross table analyses. To determine the validity of pharmacy records we compared longitudinal tamoxifen concentrations to discontinuation rates obtained through the Norwegian Prescription database (NorPD). Multivariable Cox regression models were performed to identify predictors of discontinuation. RESULTS At the 2nd year of follow-up, a significant association between vaginal dryness and high concentrations of tamoxifen, Z-4'-OHtam and tam-NoX was identified. NorPD showed a tamoxifen-discontinuation rate of 17.9% at 5 years and drug monitoring demonstrated similar rates. Nausea, vaginal dryness and chemotherapy-naive status were significant risk factors for tamoxifen discontinuation. CONCLUSIONS This real-world data study suggests that measurements of tamoxifen metabolite concentrations may be predictive of vaginal dryness in breast cancer patients and verifies NorPD as a reliable source of adherence data.
Collapse
Affiliation(s)
- Thomas Helland
- Hormone Laboratory, Haukeland University Hospital, 5020, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kari Britt Hagen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Breast and Endocrine Surgery, Haukeland University Hospital, Bergen, Norway
| | - Martha Eimstad Haugstøyl
- Hormone Laboratory, Haukeland University Hospital, 5020, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Terje Kvaløy
- Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Siri Lunde
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Kirsten Lode
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Ragna Anne Lind
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Birgitta Haga Gripsrud
- Department of Caring and Ethics, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| | - Kristin Jonsdottir
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Jennifer Gjerde
- Hormone Laboratory, Haukeland University Hospital, 5020, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ersilia Bifulco
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Steinar Hustad
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Janne Jonassen
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Turid Aas
- Department of Breast and Endocrine Surgery, Haukeland University Hospital, Bergen, Norway
| | - Tone Hoel Lende
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ernst Asbjørn Lien
- Hormone Laboratory, Haukeland University Hospital, 5020, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Emiel Adrianus Maria Janssen
- Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, 5020, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Sanchez-Spitman A, Swen J, Dezentje V, Moes D, Gelderblom H, Guchelaar H. Clinical pharmacokinetics and pharmacogenetics of tamoxifen and endoxifen. Expert Rev Clin Pharmacol 2019; 12:523-536. [DOI: 10.1080/17512433.2019.1610390] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- A.B. Sanchez-Spitman
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J.J. Swen
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - V.O. Dezentje
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - D.J.A.R. Moes
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H. Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - H.J. Guchelaar
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Huang B, Luo N, Wu X, Xu Z, Wang X, Pan X. The modulatory role of low concentrations of bisphenol A on tamoxifen-induced proliferation and apoptosis in breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2353-2362. [PMID: 30467747 DOI: 10.1007/s11356-018-3780-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Selective estrogen receptor modulators such as tamoxifen (TAM) significantly reduce the risks of developing estrogen receptor-positive (ER+) breast cancer. Low concentrations (nanomolar range) of bisphenol A (BPA) shows estrogenic effects and further promotes the proliferation of hormone-dependent breast cancer cells. However, whether or not BPA can influence TAM-treatment resistance in breast cancer has not drawn much attention. In the current study, low concentrations of BPA reduced TAM-induced cytotoxicity of MCF-7 cells, which was proved by the suppression of cell apoptosis, transition of cell cycle from G1 to S phase, and upregulation of cyclin D1 and ERα. Simultaneously, the mRNA levels of estrogen-related receptor γ (ERRγ) and its coactivators, peroxisome proliferation-activated receptor γ coactivator-1α (PGC-1α), and PGC-1β, were increased. However, the similar effects were not observed in MDA-MB-231 cells. Our results indicated that low concentrations of BPA decreased the sensitivity of TAM in MCF-7 cells rather than in MDA-MB-231 cells. These different actions likely involved the interaction of relative receptors and coactivators. This study provided a possible support that the exposure of BPA in environmental media may potentially induce TAM resistance to breast cancer treatment.
Collapse
Affiliation(s)
- Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Nao Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xinhao Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xiaoxia Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
12
|
McKeand W, Ermer J, Korth-Bradley J. Assessment of the Effects of Age and Renal Function on Pharmacokinetics of Bazedoxifene in Postmenopausal Women. Clin Pharmacol Drug Dev 2018; 7:920-926. [DOI: 10.1002/cpdd.607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/28/2018] [Indexed: 01/10/2023]
Affiliation(s)
| | - James Ermer
- Formerly of Wyeth Research; Collegeville PA USA
| | | |
Collapse
|
13
|
Mammographic density changes following discontinuation of tamoxifen in premenopausal women with oestrogen receptor-positive breast cancer. Eur Radiol 2018; 28:3176-3184. [PMID: 29626240 DOI: 10.1007/s00330-017-5293-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/10/2017] [Accepted: 12/27/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To evaluate the changes in mammographic density after tamoxifen discontinuation in premenopausal women with oestrogen receptor-positive breast cancers and the underlying factors METHODS: A total of 213 consecutive premenopausal women with breast cancer who received tamoxifen treatment after curative surgery and underwent three mammograms (baseline, after tamoxifen treatment, after tamoxifen discontinuation) were included. Changes in mammographic density after tamoxifen discontinuation were assessed qualitatively (decrease, no change, or increase) by two readers and measured quantitatively by semi-automated software. The association between % density change and clinicopathological factors was evaluated using univariate and multivariate regression analyses. RESULTS After tamoxifen discontinuation, a mammographic density increase was observed in 31.9% (68/213, reader 1) to 22.1% (47/213, reader 2) by qualitative assessment, with a mean density increase of 1.8% by quantitative assessment compared to density before tamoxifen discontinuation. In multivariate analysis, younger age (≤ 39 years) and greater % density decline after tamoxifen treatment (≥ 17.0%) were independent factors associated with density change after tamoxifen discontinuation (p < .001 and p = .003, respectively). CONCLUSIONS Tamoxifen discontinuation was associated with mammographic density change with a mean density increase of 1.8%, which was associated with younger age and greater density change after tamoxifen treatment. KEY POINTS • Increased mammographic density after tamoxifen discontinuation can occur in premenopausal women. • Mean density increase after tamoxifen discontinuation was 1.8%. • Density increase is associated with age and density decrease after tamoxifen.
Collapse
|
14
|
Ravikumara NR, Bharadwaj M, Madhusudhan B. Tamoxifen citrate-loaded poly(d,l) lactic acid nanoparticles: Evaluation for their anticancer activity in vitro and in vivo. J Biomater Appl 2016; 31:755-772. [PMID: 27664187 DOI: 10.1177/0885328216670561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The optimization of tamoxifen citrate entrapment and its release from biodegradable poly(d,l) lactic acid nanoparticles are prepared by modified spontaneous emulsification solvent diffusion method. Since the addition of tamoxifen citrate induces the formation of drug crystals from nanoparticle suspension the influence of several parameters on tamoxifen citrate encapsulation was investigated. In vitro studies for cytotoxicity, DNA ladder, and the expression of Bcl-2-Bax expression were also investigated for MCF-7 and MDA-MB-231 cells after the addition of tamoxifen citrate alone and tamoxifen citrate-poly(d,l) lactic acid-nanoparticles (encapsulated tamoxifen citrate). From results, it was noticed that the size and zeta potential of the drug loaded nanoparticles were not differed much in their physicochemical properties from drug free counterparts. The drug-loaded and drug-free nanoparticles exhibited size of in between 271.4 and 282.7 nm and zeta potential of -34 to -27.4 mV, respectively. There was significant increase in drug incorporation in the particles noticed in dichloromethane + methanol system in comparison to acetone + methanol and ethyl acetate + methanol systems. The drug was partly released from the nanoparticles after 48 h of incubation at 37℃. From Fourier transform infrared spectroscopy and differential scanning calorimetry data demonstrated drug-polymer characteristics within the nanoparticles and unincorporated drug that appeared in the form of crystals from polarized microscopic study. MCF-7 and MDA-MB-231 cells were more sensitive to tamoxifen citrate-poly(d,l) lactic acid-nanoparticles than tamoxifen citrate alone. DNA ladder and the expression of Bax to Bcl-2 ratio were much higher in tamoxifen citrate encapsulated in nanoparticles than that in tamoxifen citrate alone. These results demonstrated the feasibility of encapsulation of tamoxifen citrate and its enhanced efficiency in vitro and in vivo studies.
Collapse
Affiliation(s)
- N R Ravikumara
- Department of Biochemistry, P.G. Centre, Research Center for Nanoscience and Technology, Kuvempu University, Shivagangotri, Davangere, India
| | - Mausumi Bharadwaj
- Institute of Cytology and Preventive Oncology Noida, Uttar Pradesh, India
| | | |
Collapse
|
15
|
Fotoohi AK, Karim H, Lafolie P, Pohanka A, Östervall J, Hatschek T, Vitols S. Pronounced Interindividual But Not Intraindividual Variation in Tamoxifen and Metabolite Levels in Plasma During Adjuvant Treatment of Women With Early Breast Cancer. Ther Drug Monit 2016; 38:239-45. [DOI: 10.1097/ftd.0000000000000257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Yadav H, Kumar P, Sharma V, Sharma G, Raza K, Katare OP. Enhanced efficacy and a better pharmacokinetic profile of tamoxifen employing polymeric micelles. RSC Adv 2016; 6:53351-53357. [DOI: 10.1039/c6ra10874a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023] Open
Abstract
The present work aims to develop tamoxifen-loaded polymeric micelles and explore their potential in topical delivery of the drug to breast cancer cells.
Collapse
Affiliation(s)
- Harsh Yadav
- Department of Pharmacy
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| | - Pramod Kumar
- Department of Pharmacy
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| | - Vikas Sharma
- Department of Pharmacy
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| | - Gajanand Sharma
- Division of Pharmaceutics
- UGC-Centre of Advanced Studies
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh 160014
| | - Kaisar Raza
- Department of Pharmacy
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Ajmer
- India
| | - O. P. Katare
- Division of Pharmaceutics
- UGC-Centre of Advanced Studies
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh 160014
| |
Collapse
|
17
|
Claro de Souza M, Marotta-Oliveira SS, Rocha NHS, Eloy JO, Marchetti JM. Development of a Method to Evaluate the Release Profile of Tamoxifen from Pegylated Hybrid Micelles. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2015.1032418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Marina Claro de Souza
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paolo, Brazil
| | | | - Nathália Helena Souza Rocha
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paolo, Brazil
| | - Josimar O. Eloy
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paolo, Brazil
| | - Juliana Maldonado Marchetti
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paolo, Brazil
| |
Collapse
|
18
|
Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants. Eur J Nutr 2015; 55:1165-80. [PMID: 26014809 PMCID: PMC4819954 DOI: 10.1007/s00394-015-0930-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023]
Abstract
Purpose
Tamoxifen has been used for the treatment of estrogen receptor (ER)-positive breast cancers and in women who are at an increased risk of breast cancer. Acquired resistance to this drug and its toxicity still pose a clinically significant problem, especially in the prevention setting. Isothiocyanates present in cruciferous plants, such as sulforaphane or erucin, have been shown to reduce growth of breast cancer cells in vivo and in vitro. In this study, we explored their ability to sensitize cancer cells to 4-hydroxytamoxifen. Methods
We used three ER-positive breast cancer cell lines, T47D, MCF-7 and BT-474, as well as the drug-resistant T47D and MCF-7 derivatives. We examined the effect of 4-hydroxytamoxifen, isothiocyanates and their combinations on cell viability by MTT and clonogenic assays. Impact of treatments on the levels of proteins engaged in apoptosis and autophagy was determined by Western blotting. Results Isothiocyanates act in a synergistic way with 4-hydroxytamoxifen, and co-treatment reduces breast cancer cell viability and clonogenic potential more effectively than treatment with any single agent. This is connected with a drop in the Bcl-2/Bax ratio and the level of survivin as well as increased PARP cleavage, and elevation in ADRP, the mitochondrial stress marker. Moreover, isothiocyanates sensitize 4-hydroxytamoxifen-resistant T47D and MCF-7 cells to the drug. Conclusion Isothiocyanates enhance response to 4-hydroxytamoxifen, which allows for reduction of the effective drug concentration. Combinatorial strategy may hold promise in development of therapies and chemoprevention strategies against ER-positive breast tumors, even those with acquired resistance to the drug.
Collapse
|
19
|
Helland T, Gjerde J, Dankel S, Fenne IS, Skartveit L, Drangevåg A, Bozickovic O, Flågeng MH, Søiland H, Mellgren G, Lien EA. The active tamoxifen metabolite endoxifen (4OHNDtam) strongly down-regulates cytokeratin 6 (CK6) in MCF-7 breast cancer cells. PLoS One 2015; 10:e0122339. [PMID: 25867603 PMCID: PMC4395096 DOI: 10.1371/journal.pone.0122339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction Tamoxifen is an anti-estrogen drug used in treatment of Estrogen Receptor (ER) positive breast cancer. Effects and side effects of tamoxifen is the sum of tamoxifen and all its metabolites. 4-Hydroxytamoxifen (4OHtam) and 4-hydroxy-N-demethyltamoxifen (4OHNDtam, endoxifen) both have ER affinity exceeding that of the parent drug tamoxifen. 4OHNDtam is considered the main active metabolite of tamoxifen. Ndesmethyltamoxifen (NDtam) is the major tamoxifen metabolite. It has low affinity to the ER and is not believed to influence tumor growth. However, NDtam might mediate adverse effects of tamoxifen treatment. In this study we investigated the gene regulatory effects of the three metabolites of tamoxifen in MCF-7 breast cancer cells. Material and Methods Using concentrations that mimic the clinical situation we examined effects of 4OHtam, 4OHNDtam and NDtam on global gene expression in 17β-estradiol (E2) treated MCF-7 cells. Transcriptomic responses were assessed by correspondence analysis, differential expression, gene ontology analysis and quantitative real time PCR (Q-rt-PCR). E2 deprivation and knockdown of Steroid Receptor Coactivator-3 (SRC-3)/Amplified in Breast Cancer 1 (AIB1) mRNA in MCF-7 cells were performed to further characterize specific effects on gene expression. Results 4OHNDtam and 4OHtam caused major changes in gene expression compared to treatment with E2 alone, with a stronger effect of 4OHNDtam. NDtam had nearly no effect on the global gene expression profile. Treatment of MCF-7 cells with 4OHNDtam led to a strong down-regulation of the CytoKeratin 6 isoforms (KRT6A, KRT6B and KRT6C). The CytoKeratin 6 mRNAs were also down-regulated in MCF-7 cells after E2 deprivation and after SRC-3/AIB1 knockdown. Conclusion Using concentrations that mimic the clinical situation we report global gene expression changes that were most pronounced with 4OHNDtam and minimal with NDtam. Genes encoding CytoKeratin 6, were highly down-regulated by 4OHNDtam, as well as after E2 deprivation and knockdown of SRC-3/AIB1, indicating an estrogen receptor-dependent regulation.
Collapse
Affiliation(s)
- Thomas Helland
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Jennifer Gjerde
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon Dankel
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild S. Fenne
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Linn Skartveit
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Andreas Drangevåg
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olivera Bozickovic
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marianne Hauglid Flågeng
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ernst A. Lien
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
20
|
Kouchakzadeh H, Shojaosadati SA, Shokri F. Efficient loading and entrapment of tamoxifen in human serum albumin based nanoparticulate delivery system by a modified desolvation technique. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2013.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Synergistic anticancer effects of a bioactive subfraction of Strobilanthes crispus and tamoxifen on MCF-7 and MDA-MB-231 human breast cancer cell lines. Altern Ther Health Med 2014; 14:252. [PMID: 25034326 PMCID: PMC4223515 DOI: 10.1186/1472-6882-14-252] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
Background Development of tumour resistance to chemotherapeutic drugs and concerns over their toxic effects has led to the increased use of medicinal herbs or natural products by cancer patients. Strobilanthes crispus is a traditional remedy for many ailments including cancer. Its purported anticancer effects have led to the commercialization of the plant leaves as medicinal herbal tea, although the scientific basis for its use has not been established. We previously reported that a bioactive subfraction of Strobilanthes crispus leaves (SCS) exhibit potent cytotoxic activity against human breast cancer cell lines. The current study investigates the effect of this subfraction on cell death activities induced by the antiestrogen drug, tamoxifen, in estrogen receptor-responsive and nonresponsive breast cancer cells. Methods Cytotoxic activity of SCS and tamoxifen in MCF-7 and MDA-MB-231 human breast cancer cells was determined using lactate dehydrogenase release assay and synergism was evaluated using the CalcuSyn software. Apoptosis was quantified by flow cytometry following Annexin V and propidium iodide staining. Cells were also stained with JC-1 dye to determine changes in the mitochondrial membrane potential. Fluorescence imaging using FAM-FLICA assay detects caspase-8 and caspase-9 activities. DNA damage in the non-malignant breast epithelial cell line, MCF-10A, was evaluated using Comet assay. Results The combined SCS and tamoxifen treatment displayed strong synergistic inhibition of MCF-7 and MDA-MB-231 cell growth at low doses of the antiestrogen. SCS further promoted the tamoxifen-induced apoptosis that was associated with modulation of mitochondrial membrane potential and activation of caspase-8 and caspase-9, suggesting the involvement of intrinsic and extrinsic signaling pathways. Interestingly, the non-malignant MCF-10A cells displayed no cytotoxicity or DNA damage when treated with either SCS or SCS-tamoxifen combination. Conclusions The combined use of SCS and lower tamoxifen dose could potentially reduce the side effects/toxicity of the drug. However, further studies are needed to determine the effectiveness and safety of the combination treatment in vivo.
Collapse
|
22
|
Serum concentrations of tamoxifen and its metabolites increase with age during steady-state treatment. Breast Cancer Res Treat 2013; 141:243-8. [PMID: 23996142 PMCID: PMC3785179 DOI: 10.1007/s10549-013-2677-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/19/2013] [Indexed: 12/11/2022]
Abstract
It has been suggested that the concentrations of tamoxifen and its demethylated metabolites increase with age. We measured the serum concentrations of the active tamoxifen metabolites, 4OHtamoxifen (4OHtam), 4-hydroxy-N-desmethyltamoxifen (4OHNDtam, Endoxifen), tamoxifen and its demethylated metabolites. Their relations to age were examined. One hundred fifty-one estrogen receptor and/or progesterone receptor positive breast cancer patients were included. Their median (range) age was 57 (32-85) years. Due to the long half-life of tamoxifen, only patients treated with tamoxifen for at least 80 days were included in the study in order to insure that the patients had reached steady-state drug levels. Tamoxifen and its metabolites were measured by liquid chromatography-tandem mass spectrometry. Their serum concentrations were related to the age of the patients. To circumvent effects of cytochrome (CYP) 2D6 polymorphisms we also examined these correlations exclusively in homozygous extensive metabolizers. The concentrations of 4OHNDtam, tamoxifen, NDtam (N-desmethyltamoxifen), and NDDtam (N-desdimethyltamoxifen) were positively correlated to age (n = 151, p = 0.017, 0.045, 0.011, and 0.001 respectively). When exclusively studying the CYP2D6 homozygous extensive metabolizers (n = 86) the correlation between 4OHNDtam and age increased (p = 0.008). Up to tenfold inter-patient variation in the serum concentrations was observed. The median (inter-patient range) concentration of 4OHNDtam in the age groups 30-49, 50-69, and >69 years were 65 (24-89), 116 (25-141), and 159 (26-185) ng/ml, respectively. We conclude that the serum concentrations of 4OHNDtam (endoxifen), tamoxifen, and its demethylated metabolites increase with age during steady-state tamoxifen treatment. This may represent an additional explanation why studies on the effects of CYP2D6 polymorphisms on outcome in tamoxifen-treated breast cancer patients have been inconsistent. The observed high inter-patient range in serum concentrations of tamoxifen and its metabolites, especially in the highest age group, suggest that use of therapeutic monitoring of tamoxifen and its metabolites is warranted.
Collapse
|
23
|
Li J, Ma Z, Jiang RW, Wu B. Hormone-related pharmacokinetic variations associated with anti-breast cancer drugs. Expert Opin Drug Metab Toxicol 2013; 9:1085-95. [PMID: 23687971 DOI: 10.1517/17425255.2013.802771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Breast cancer is the most common female cancer, with more than one million new patients diagnosed annually worldwide. Generally speaking, there are three types of drugs used in management of breast cancer namely: hormonal treatment, chemotherapeutic agents and target-based agents. There is increasing evidence that hormones play an important role in development of both hormone-dependent and hormone-independent breast cancers. AREAS COVERED This review summarizes the pharmacokinetics of various types of drugs used to treat breast cancer. Furthermore, the authors discuss hormone-related variations including: the menstrual status, gender and exogenous hormones influencing drug absorption, distribution, metabolism or excretion (ADME). The authors also describe the physiological factors such as body weight and age that affect the pharmacokinetics of several drugs. EXPERT OPINION The factors affecting the pharmacokinetics of anti-breast cancer drugs are multifaceted. Hormones appear to be a key factor determining the pharmacokinetics (and efficacy) of hormonal therapy due to their role in cancer progression. In chemotherapy, the effects of hormones on the drug pharmacokinetics are possibly mediated through P-glycoprotein (P-gp) efflux and/or cytochrome P450 metabolism. In many cases, dosing regimen should be adjusted for drugs used in treatment of breast cancers based on the hormone levels in the body.
Collapse
Affiliation(s)
- Juan Li
- Jinan University, Institute of Traditional Chinese Medicine and Natural Products, Guangzhou, Guangdong 510632, China
| | | | | | | |
Collapse
|
24
|
Yu KD, Wu J, Shen ZZ, Shao ZM. Hazard of breast cancer-specific mortality among women with estrogen receptor-positive breast cancer after five years from diagnosis: implication for extended endocrine therapy. J Clin Endocrinol Metab 2012; 97:E2201-9. [PMID: 22993034 DOI: 10.1210/jc.2012-2423] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE More than half of the patients with estrogen receptor (ER)-positive breast cancers will relapse and die from breast cancer at 5-10 yr after diagnosis despite 5-yr endocrine therapy. Subpopulations of ER-positive patients at high risk of breast cancer-specific mortality (BCSM) at 5-10 yr are undetermined. METHODS Using the Surveillance, Epidemiology, and End-Results program (1990-2003), we analyzed the relative hazard ratio (HR) and absolute HR of BCSM and the cumulative 10-yr breast cancer-specific survival (BCSS) in 111,993 breast cancer patients, stratified by ER, age, and lymph node (LN), and adjusted for other prognostic factors. RESULTS At 5-10 yr after diagnosis, ER-positive patients had increased risk of BCSM [HR, 0.71; 95% confidence interval (CI), 0.66-0.76; ER-positive as reference] compared with ER-negative patients. Specifically, younger ER-positive patients (<40 yr) had a constant plateau of annual hazard rate, a higher hazard of BCSM (HR, 0.43; 95% CI, 0.35-0.52; ER-positive as reference), and poor 10-yr BCSS, despite LN status. Among ER-positive patients aged 40-60 yr having no obvious plateau of hazard rate, only those with LN-positive disease had a significantly increased hazard of BCSM and poor 10-yr BCSS. Elderly ER-positive patients aged 60-74 yr had a hazard of BCSM, similar to that of ER-negative patients, and those with LN-positive disease had poor 10-yr BCSS. CONCLUSION Our findings help to define the ER-positive subpopulations at higher risk of BCSM at 5-10 yr after diagnosis and are useful in choosing candidates for clinical trials of extended endocrine therapy after 5-yr treatment and in guiding individualized treatment.
Collapse
Affiliation(s)
- Ke-Da Yu
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.
| | | | | | | |
Collapse
|
25
|
Dickschen K, Willmann S, Thelen K, Lippert J, Hempel G, Eissing T. Physiologically Based Pharmacokinetic Modeling of Tamoxifen and its Metabolites in Women of Different CYP2D6 Phenotypes Provides New Insight into the Tamoxifen Mass Balance. Front Pharmacol 2012; 3:92. [PMID: 22661948 PMCID: PMC3357105 DOI: 10.3389/fphar.2012.00092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022] Open
Abstract
Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER+) mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6). It is widely accepted that CYP2D6 poor metabolizers exert a pronounced decrease in endoxifen steady-state plasma concentrations compared to CYP2D6 extensive metabolizers. Nevertheless, an in-depth understanding of the chain of cause and effect between CYP2D6 genotype, endoxifen steady-state plasma concentration, and subsequent tamoxifen treatment benefit still remains to be evolved. In this study, physiologically based pharmacokinetic (PBPK)-modeling was applied to mechanistically investigate the impact of CYP2D6 phenotype on endoxifen formation in female breast cancer patients undergoing tamoxifen therapy. A PBPK-model of tamoxifen and its pharmacologically important metabolites N-desmethyltamoxifen (NDM-TAM), 4-hydroxytamoxifen (4-OH-TAM), and endoxifen was developed and validated. This model is able to simulate the pharmacokinetics (PK) after single and repeated oral tamoxifen doses in female breast cancer patients in dependence of the CYP2D6 phenotype. A detailed model-based analysis of the mass balance offered support for a recent hypothesis stating a more prominent role for endoxifen formation from 4-OH-TAM. In the future this model provides a good basis to further investigate the linkage of PK, mode of action, and treatment outcome in dependence of factors such as phenotype, ethnicity, or co-treatment with CYP2D6 inhibitors.
Collapse
Affiliation(s)
- Kristin Dickschen
- Klinische Pharmazie, Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster Münster, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Gjerde J, Gandini S, Guerrieri-Gonzaga A, Haugan Moi LL, Aristarco V, Mellgren G, Decensi A, Lien EA. Tissue distribution of 4-hydroxy-N-desmethyltamoxifen and tamoxifen-N-oxide. Breast Cancer Res Treat 2012; 134:693-700. [PMID: 22562123 PMCID: PMC3401496 DOI: 10.1007/s10549-012-2074-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/17/2012] [Indexed: 11/23/2022]
Abstract
Tamoxifen dosage is based on the one-dose-fits-all approach. The anticancer effect of tamoxifen is believed to be due to the metabolites, 4-hydroxytamoxifen (4OHtam), and 4-hydroxy-N-desmethyltamoxifen (4OHNDtam/endoxifen). These demethylated metabolites of tamoxifen have been associated with its side effects, whereas the effect mediated by tamoxifen-N-oxide (tamNox) is still poorly understood. Our objective was to improve the therapeutic index of tamoxifen by personalizing its dosage and maintaining serum tamoxifen metabolite concentrations within a target range. We examined the levels of tamoxifen, 4OHtam, 4OHNDtam, N-desmethyltamoxifen (NDtam), N-desdimethyltamoxifen (NDDtam), and tamNox in serum and in breast tumors specimens of 115 patients treated with 1, 5 or 20 mg/day of tamoxifen for 4 weeks before surgery in a randomized trial. Furthermore, the metabolism of tamNox in MCF-7 breast cancer cells was also studied. The concentrations of tamoxifen and its metabolites in tumor tissues were significantly correlated to their serum levels. Tumor tissue levels were 5–10 times higher than those measured in serum, with the exception of tamNox. In MCF-7 cells, tamNox was converted back to tamoxifen. In contrast to the tissue distribution of tamNox, the concentrations of 4OHtam and 4OHNDtam in tumor tissues corresponded to their serum levels. The results suggest that implementation of therapeutic drug monitoring may improve the therapeutic index of tamoxifen. Furthermore, the tissue distribution of tamNox deviated from that of the other tamoxifen metabolites.
Collapse
|
27
|
Layek B, Mukherjee B. Tamoxifen citrate encapsulated sustained release liposomes: preparation and evaluation of physicochemical properties. Sci Pharm 2010; 78:507-15. [PMID: 21179362 PMCID: PMC3002818 DOI: 10.3797/scipharm.0911-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 07/12/2010] [Indexed: 12/02/2022] Open
Abstract
The present study was designed for the development of a stable sustained release liposomal drug delivery system for tamoxifen citrate (TC) using soya phosphatidylcholine (SPC), cholesterol (CH) and span 20 as main ingredients. Liposomes were prepared by formation of thin lipid film followed by hydration. The mean vesicle diameter was found to be 203.5 ± 19.5 nm with 21% of the liposomal population having average diameter below 76.72 ± 6.7 nm. There was a good vesicular distribution with the polydispersity index of 0.442 ± 0.03. The maximum loading of drug was determined to be 53.60% of the initial amount that is 34.58 μg of drug per mg of lipid. Amongst the different storage conditions, liposomes stored at 2–8°C were found to be most stable and only 4% of the drug was lost over the storage period of 5 weeks. In vitro release studies of liposomes showed that 50% of drug was released within 3 hours (h) whereas 95% drug was released in 30 h. This indicates the usefulness of the liposomal delivery system for sustaining the in vitro release of tamoxifen citrate.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutical Technology, Division of Pharmaceutics, Jadavpur University, Kolkata-700032, India.
| | | |
Collapse
|
28
|
Gjerde J, Geisler J, Lundgren S, Ekse D, Varhaug JE, Mellgren G, Steen VM, Lien EA. Associations between tamoxifen, estrogens, and FSH serum levels during steady state tamoxifen treatment of postmenopausal women with breast cancer. BMC Cancer 2010; 10:313. [PMID: 20565970 PMCID: PMC2910688 DOI: 10.1186/1471-2407-10-313] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/21/2010] [Indexed: 11/16/2022] Open
Abstract
Background The cytochrome P450 (CYP) enzymes 2C19, 2D6, and 3A5 are responsible for converting the selective estrogen receptor modulator (SERM), tamoxifen to its active metabolites 4-hydroxy-tamoxifen (4OHtam) and 4-hydroxy-N-demethyltamoxifen (4OHNDtam, endoxifen). Inter-individual variations of the activity of these enzymes due to polymorphisms may be predictors of outcome of breast cancer patients during tamoxifen treatment. Since tamoxifen and estrogens are both partly metabolized by these enzymes we hypothesize that a correlation between serum tamoxifen and estrogen levels exists, which in turn may interact with tamoxifen on treatment outcome. Here we examined relationships between the serum levels of tamoxifen, estrogens, follicle-stimulating hormone (FSH), and also determined the genotypes of CYP2C19, 2D6, 3A5, and SULT1A1 in 90 postmenopausal breast cancer patients. Methods Tamoxifen and its metabolites were measured by liquid chromatography-tandem mass spectrometry. Estrogen and FSH levels were determined using a sensitive radio- and chemiluminescent immunoassay, respectively. Results We observed significant correlations between the serum concentrations of tamoxifen, N-dedimethyltamoxifen, and tamoxifen-N-oxide and estrogens (p < 0.05). The genotype predicted CYP2C19 activity influenced the levels of both tamoxifen metabolites and E1. Conclusions We have shown an association between tamoxifen and its metabolites and estrogen serum levels. An impact of CYP2C19 predicted activity on tamoxifen, as well as estrogen kinetics may partly explain the observed association between tamoxifen and its metabolites and estrogen serum levels. Since the role of estrogen levels during tamoxifen therapy is still a matter of debate further prospective studies to examine the effect of tamoxifen and estrogen kinetics on treatment outcome are warranted.
Collapse
Affiliation(s)
- Jennifer Gjerde
- Hormone Laboratory, Haukeland University Hospital, Bergen, N-5021, Norway
| | | | | | | | | | | | | | | |
Collapse
|
29
|
[CYP2D6 polymorphisms and tamoxifen: therapeutic perspectives in the management of hormonodependent breast cancer patients]. Bull Cancer 2010; 97:311-20. [PMID: 20123649 DOI: 10.1684/bdc.2010.1038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tamoxifen is a prodrug mainly metabolized by the CY2D6 cytochrome. More than 80 variants of the CYP2D6 gene have been identified. They predict four different enzymatic phenotypes: ultra-rapid metabolizers (UM), extensive metabolizers (EM), intermediate metabolizers (IM) and poor metabolizers (PM). Six retrospectives studies suggest a link between some polymorphisms of the CYP2D6 and tamoxifen efficacy and two studies have found no statistically significant data. Today, level of proof remains insufficient to recommend the testing of a patient's genotype before tamoxifen prescription. Designing prospective studies is necessary before considering therapy strategies based on pharmacogenetics data. In pre-menopausal breast cancer PM or IM patients, an increase in dosage of tamoxifen or a treatment with LH-RH analogues with aromatase inhibitors (AI) may be beneficial instead of the actual recommendations of a 5-year tamoxifen therapy. In postmenopausal EM patients, tamoxifen may be as efficient as AI. In post-menopausal PM patients, a switch strategy may be inferior to a 5-year IA strategy, which would therefore be the standard of care.
Collapse
|
30
|
Bolanz KA, Kovacs GG, Landowski CP, Hediger MA. Tamoxifen inhibits TRPV6 activity via estrogen receptor-independent pathways in TRPV6-expressing MCF-7 breast cancer cells. Mol Cancer Res 2009; 7:2000-10. [PMID: 19996302 DOI: 10.1158/1541-7786.mcr-09-0188] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epithelial calcium channel TRPV6 is upregulated in breast carcinoma compared with normal mammary gland tissue. The selective estrogen receptor modulator tamoxifen is widely used in breast cancer therapy. Previously, we showed that tamoxifen inhibits calcium uptake in TRPV6-transfected Xenopus oocytes. In this study, we examined the effect of tamoxifen on TRPV6 function and intracellular calcium homeostasis in MCF-7 breast cancer cells transiently transfected with EYFP-C1-TRPV6. TRPV6 activity was measured with fluorescence microscopy using Fura-2. The basal calcium level was higher in transfected cells compared with nontransfected cells in calcium-containing solution but not in nominally calcium-free buffer. Basal influxes of calcium and barium were also increased. In transfected cells, 10 mumol/L tamoxifen reduced the basal intracellular calcium concentration to the basal calcium level of nontransfected cells. Tamoxifen decreased the transport rates of calcium and barium in transfected cells by 50%. This inhibitory effect was not blocked by the estrogen receptor antagonist, ICI 182,720. Similarly, a tamoxifen-induced inhibitory effect was also observed in MDA-MB-231 estrogen receptor-negative cells. The effect of tamoxifen was completely blocked by activation of protein kinase C. Inhibiting protein kinase C with calphostin C decreased TRPV6 activity but did not alter the effect of tamoxifen. These findings illustrate how tamoxifen might be effective in estrogen receptor-negative breast carcinomas and suggest that the therapeutic effect of tamoxifen and protein kinase C inhibitors used in breast cancer therapy might involve TRPV6-mediated calcium entry. This study highlights a possible role of TRPV6 as therapeutic target in breast cancer therapy.
Collapse
Affiliation(s)
- Katrin A Bolanz
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland CH-3012
| | | | | | | |
Collapse
|
31
|
Liu W, Zhang L, Chen S, Duan H, Chen X, Wei Z, Chen G. A method by homemade OH/TSO-PMHS fibre solid-phase microextraction coupling with gas chromatography–mass spectrometry for analysis of antiestrogens in biological matrices. Anal Chim Acta 2009; 631:47-53. [DOI: 10.1016/j.aca.2008.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 09/30/2008] [Accepted: 10/05/2008] [Indexed: 11/28/2022]
|
32
|
Kallio A, Zheng A, Dahllund J, Heiskanen KM, Härkönen P. Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis 2008; 10:1395-410. [PMID: 16215679 DOI: 10.1007/s10495-005-2137-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tamoxifen (Tam) is widely used in chemotherapy of estrogen receptor-positive breast cancer. It inhibits proliferation and induces apoptosis of breast cancer cells by estrogen receptor-dependent modulation of gene expression, but recent reports have shown that Tam (especially at pharmacological concentrations) has also rapid nongenomic effects. Here we studied the mechanisms by which Tam exerts rapid effects on breast cancer cell viability. In serum-free medium 5-7 microM Tam induced death of MCF-7 and MDA-MB-231 cells in a time-dependent manner in less than 60 min. This was associated with release of mitochondrial cytochrome c, a decrease of mitochondrial membrane potential and an increase in production of reactive oxygen species (ROS). This suggests that disruption of mitochondrial function has a primary role in the acute death response of the cells. Accordingly, bongkrekic acid, an inhibitor of mitochondrial permeability transition, was able to protect MCF-7 cells against Tam. Rapid cell death induction by Tam was not associated with immediate activation of caspase-9 or cleavage of poly (ADP-ribose) polymerase. It was not blocked by the caspase inhibitor z-Val-Ala-Asp-fluoromethylketone either. Diphenylene ionodium (DPI), an inhibitor of NADPH oxidase, was able to prevent Tam-induced cell death but not cytochrome c release, which suggests that ROS act distal to cytochrome c. The pure antiestrogen ICI 182780 (1 microM) could partly oppose the effect of Tam in estrogen receptor positive MCF-7 cells, but not in estrogen receptor negative MDA-MB-231 cells. Pre-culturing MCF-7 cells in the absence of 17beta-estradiol (E(2)) or in the presence of a low Tam concentration (1 microM) made the cells even more susceptible to rapid death induction by 5 or 7 microM Tam. This effect was associated with decreased levels of the anti-apoptotic proteins Bcl-X(L) and Bcl-2. In conclusion, our results demonstrate induction of a rapid mitochondrial cell death program in breast cancer cells at pharmacological concentrations of Tam, which are achievable in tumor tissue of Tam-treated breast cancer patients. These mechanisms may contribute to the ability of Tam therapy to induce death of breast cancer cells.
Collapse
Affiliation(s)
- A Kallio
- Department of Anatomy and Medicity Research Laboratory, Institute of Biomedicine, University of Turku, Tykistökatu 6A, 20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
33
|
Zhu YB, Zhang Q, Zou JJ, Yu CX, Xiao DW. Optimizing high-performance liquid chromatography method with fluorescence detection for quantification of tamoxifen and two metabolites in human plasma: Application to a clinical study. J Pharm Biomed Anal 2008; 46:349-55. [DOI: 10.1016/j.jpba.2007.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/29/2007] [Accepted: 10/07/2007] [Indexed: 10/22/2022]
|
34
|
Bollig A, Xu L, Thakur A, Wu J, Kuo TH, Liao JD. Regulation of intracellular calcium release and PP1α in a mechanism for 4-hydroxytamoxifen-induced cytotoxicity. Mol Cell Biochem 2007; 305:45-54. [PMID: 17646931 DOI: 10.1007/s11010-007-9526-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/23/2007] [Indexed: 02/06/2023]
Abstract
Treatment with tamoxifen, or its metabolite 4-hydroxytamoxifen (4OHT), has cytostatic and cytotoxic effects on breast cancer cells in vivo and in culture. Although the effectiveness of 4OHT as an anti-breast cancer agent is due to its action as an estrogen receptor-alpha (ERalpha) antagonist, evidences show that 4OHT is also cytotoxic for ERalpha-negative breast cancer cells and can be effective therapy against tumors that lack estrogen receptors. These findings underscore 4OHT signaling complexities and belie the most basic understandings of 4OHT action and resistance. Here, we have investigated the effects of 4OHT on Ca2+ homeostasis and cell death in breast cancer cells in culture. Measurement of Ca2+ signaling in breast cancer cells showed that 4OHT treatment altered Ca2+ homeostasis and was cytotoxic for both an ERalpha+ and an ERalpha- cell line, MCF-7 and MDA-MB-231, respectively. Further investigation lead us to the novel discovery that 4OHT-induced increase of ATP-dependent Ca2+ release from the endoplasmic reticulum correlated with 4OHT-induced upregulation of protein phosphatase 1alpha (PP1alpha) and the inositol 1,4,5-trisphosphate receptor (IP3R). Blocking 4OHT-induced PP1alpha upregulation by siRNA strategy reduced the effects of 4OHT on both Ca2+ signaling and cytotoxicity. Results from these investigations strongly suggest a role for PP1alpha upregulation in a mechanism for 4OHT-induced changes to Ca2+ signaling that ultimately contribute to the cytotoxic effects of 4OHT.
Collapse
Affiliation(s)
- Aliccia Bollig
- Karmanos Cancer Institute, Wayne State University, 110 E Warren, HWCRC room 731, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
35
|
Furlanut M, Franceschi L, Pasqual E, Bacchetti S, Poz D, Giorda G, Cagol P. Tamoxifen and its main metabolites serum and tissue concentrations in breast cancer women. Ther Drug Monit 2007; 29:349-52. [PMID: 17529893 DOI: 10.1097/ftd.0b013e318067ded7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because of a possible relationship between tamoxifen (T) concentrations and clinical effects, we initiated a preliminary investigation on serum and tissue concentrations of T and its main active metabolites, and 4-hydroxytamoxifen, in women with positive breast cancer estrogen receptor. One hundred forty-eight patients were studied: 80 were admitted for monitoring of therapeutic serum drug concentrations, 22 had tissue concentrations taken at surgery, and 46 patients had uterine mucosa levels measured at diagnostic hysteroscopy. Steady-state serum concentrations were reached after 1 month of continuous treatment, with desmethyltamoxifen being the highest represented derivative from the third week onward. There was no relationship between dose (in mg/kg body weight) and steady-state serum concentrations during therapeutic drug monitoring of patients. The highest tissue concentrations were observed in breast lymph-nodes, cancer tissue, and uterine mucosa. On the basis of these data, we speculate that T and its active metabolites may exert both a defensive role (ie, an obstacle to the diffusion of malignant cells through the local lymphatic system) and a harmful one (induction of uterine malignancies).
Collapse
Affiliation(s)
- Mario Furlanut
- Institute of Clinical Pharmacology and Toxicology, DPMSC, University of Udine, Udine, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wu AH, Pike MC, Williams LD, Spicer D, Tseng CC, Churchwell MI, Doerge DR. Tamoxifen, soy, and lifestyle factors in Asian American women with breast cancer. J Clin Oncol 2007; 25:3024-30. [PMID: 17536081 DOI: 10.1200/jco.2006.10.5023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Soy foods have been a staple in Asia for centuries but the consumption of this food in the West is recent. Intake of soy among women at high risk for or with breast cancer has become a public health concern because genistein, a major component of soy, has weak estrogenic effects on breast epithelium, and has been found to negate the benefit of tamoxifen in some animal and in vitro studies. PATIENTS AND METHODS We conducted a cross-sectional study in Asian Americans with breast cancer who were tamoxifen users (n = 380) to investigate the association between soy intake and circulating levels of tamoxifen and its metabolites (N-desmethyl tamoxifen [N-DMT], 4-hydroxytamoxifen [4-OHT], and 4-hydroxy-N-desmethyl-tamoxifen [endoxifen]). RESULTS Serum levels of tamoxifen or its metabolites were unrelated to self-reported intake of soy or serum levels of isoflavones. Blood levels of tamoxifen were 81% higher in postmenopausal women age 65 or older compared with premenopausal women age 45 or younger (P = .005); similar patterns of results were observed for the tamoxifen metabolites. Levels of N-DMT were 27% (P = .03) lower among women in the highest tertile of body mass index (BMI, > 24.4 kg/m2) compared with those in the lowest category (BMI 21.5). Women who used hypertensive medications had higher levels of tamoxifen (P = .02) and N-DMT (P = .04) compared with nonusers. CONCLUSION We found no evidence that soy intake adversely affected levels of tamoxifen or its metabolites. However, age, menopausal status, BMI, and use of hypertensive medications significantly influenced circulating levels of tamoxifen and its metabolites in this population.
Collapse
Affiliation(s)
- Anna H Wu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Larosche I, Lettéron P, Fromenty B, Vadrot N, Abbey-Toby A, Feldmann G, Pessayre D, Mansouri A. Tamoxifen inhibits topoisomerases, depletes mitochondrial DNA, and triggers steatosis in mouse liver. J Pharmacol Exp Ther 2007; 321:526-35. [PMID: 17277197 DOI: 10.1124/jpet.106.114546] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although tamoxifen can trigger steatohepatitis, the mechanism of steatosis is unclear. We hypothesized that this DNA-intercalating, cationic amphiphilic drug could accumulate within mitochondria to impair fatty acid oxidation, respiration, and mitochondrial DNA relaxation and synthesis. We studied the in vitro effects of tamoxifen on topoisomerases and mouse liver mitochondria and its in vivo hepatic effects in mice treated for 1 to 28 days with a daily dose of tamoxifen reproducing the plasma concentrations observed in humans. In vitro, tamoxifen inhibited topoisomerase-mediated plasmid DNA relaxation. It accumulated 40-fold inside mitochondria and inhibited both respiration and fatty acid oxidation. In vivo, a single dose of tamoxifen inhibited palmitic acid oxidation and hepatic lipoprotein secretion. Tamoxifen administration also decreased mitochondrial DNA synthesis and progressively depleted hepatic mitochondrial DNA, down to 40% of control values at 28 days. The decrease in mitochondrial DNA-encoded respiratory complexes sensitized mitochondria to the inhibitory effects of tamoxifen on mitochondrial respiration. Hepatic steatosis was absent at 5 days, mild at 12 days, and moderate at 28 days. The fatty acid synthase protein was normally expressed at 12 days but was decreased by 52% at 28 days. In conclusion, tamoxifen decreases hepatic triglyceride secretion, and it accumulates electrophoretically in mitochondria, where it impairs beta-oxidation and respiration. Tamoxifen also inhibits topoisomerases and mitochondrial DNA synthesis and progressively depletes hepatic mitochondrial DNA in vivo. These combined effects could decrease fat removal from the liver, thus causing hepatic steatosis despite a secondary down-regulation of hepatic fatty acid synthase expression.
Collapse
Affiliation(s)
- Isabelle Larosche
- Institut National de la Santé et de la Recherche Médicale U773, Equipe Mitochondries, Facultéde Médecine Xavier Bichat, 16 rue Henri Huchard, BP 416, F-75018 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Michael H, Härkönen PL, Kangas L, Väänänen HK, Hentunen TA. Differential effects of selective oestrogen receptor modulators (SERMs) tamoxifen, ospemifene and raloxifene on human osteoclasts in vitro. Br J Pharmacol 2007; 151:384-95. [PMID: 17420779 PMCID: PMC2013975 DOI: 10.1038/sj.bjp.0707232] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Several selective oestrogen receptor modulators (SERMs) with oestrogen agonist effects in bone cells and without increased risk of breast and endometrial cancer have been developed. Here, we have investigated the effects of different types of SERMs on osteoclast differentiation, bone resorption and apoptosis in vitro. EXPERIMENTAL APPROACH Human peripheral blood-derived CD14+ monocytes were cultured on bovine bone slices in the presence of RANKL, M-CSF, TNF-alpha and dexamethasone for seven days. Also, CD14+ monocytes were co-cultured either with human SaOS-2 or MG-63 osteosarcoma cells, in the presence of parathyroid hormone. Osteoclast cultures were treated with different SERMs. TRACP+ multinucleated cells and C-terminal telopeptide of type I collagen were used as markers for osteoclast formation and bone resorption, respectively. KEY RESULTS In CD14+ monocyte cultures, tamoxifen directly inhibited human osteoclast formation and bone resorption, while raloxifene and ospemifene had no inhibitory effect. In the co-cultures either with SaOS-2 or MG-63 cells, ospemifene and raloxifene as well as tamoxifen inhibited osteoclast formation in a concentration-dependent manner. The inhibitory effect was associated with an increased production of osteoprotegerin. The anti-oestrogen ICI 182 780 completely reversed the effects of these SERMs. CONCLUSION AND IMPLICATIONS Tamoxifen had an oestrogen receptor dependent, direct, inhibitory effect on human osteoclast differentiation and bone resorption, whereas ospemifene and raloxifene required osteoblastic cells to achieve a similar inhibition. The effects of ospemifene and raloxifene were mediated by oestrogen receptors by a mechanism involving paracrine induction of osteoprotegerin in cultures with osteoblast derived osteosarcoma cells.
Collapse
Affiliation(s)
- H Michael
- Department of Anatomy, Institute of Biomedicine, University of Turku Turku, Finland
| | - P L Härkönen
- Department of Anatomy, Institute of Biomedicine, University of Turku Turku, Finland
- Department of Laboratory Medicine, Tumor Biology, MAS University Hospital, Lund University Malmö, Sweden
| | - L Kangas
- Hormos Medical Corp., Itäinen Pitkäkatu 4B Turku, Finland
| | - H K Väänänen
- Department of Anatomy, Institute of Biomedicine, University of Turku Turku, Finland
| | - T A Hentunen
- Department of Anatomy, Institute of Biomedicine, University of Turku Turku, Finland
- Author for correspondence:
| |
Collapse
|
39
|
Hu FX, Neoh KG, Kang ET. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials 2006; 27:5725-33. [PMID: 16890989 DOI: 10.1016/j.biomaterials.2006.07.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
The present study deals with the synthesis and characterization of tamoxifen-loaded magnetite/poly(l-lactic acid) composite nanoparticles (TMCN), and their in vitro anti-cancer activity against MCF-7 breast cancer cells. The composite nanoparticles with an average size of approximately 200 nm, were synthesized via a solvent evaporation/extraction technique in an oil/water emulsion. The superparamagnetic property (saturation magnetization value of approximately 7 emu/g) of the TMCN is provided by Fe(3)O(4) nanoparticles of approximately 6 nm encapsulated in the poly(l-lactic acid) matrix. The encapsulation efficiency of the Fe(3)O(4) and tamoxifen as a function of the concentration in the organic phase was investigated. The uptake of TMCN and tamoxifen by MCF-7 was estimated from the intracellular iron concentration. After 4h incubation of MCF-7 with TMCN, significant changes in the cell morphology were discernible from phase contrast microscopy. Cytotoxicity assay shows that while the Fe(3)O(4)-loaded poly(l-lactic acid) composite nanoparticles exhibit no significant cytotoxicity against MCF-7, approximately 80% of the these cells were killed after incubation for 4 days with TMCN.
Collapse
Affiliation(s)
- F X Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260, Singapore
| | | | | |
Collapse
|
40
|
Gianni L, Panzini I, Li S, Gelber RD, Collins J, Holmberg SB, Crivellari D, Castiglione-Gertsch M, Goldhirsch A, Coates AS, Ravaioli A. Ocular toxicity during adjuvant chemoendocrine therapy for early breast cancer. Cancer 2006; 106:505-13. [PMID: 16369994 DOI: 10.1002/cncr.21651] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Others have reported ocular toxicity after adjuvant chemoendocrine therapy, but this study looked at ocular toxicity in similarly treated patients from large randomized clinical trials. METHODS Information was retrieved on incidence and timing of ocular toxicity from the International Breast Cancer Study Group (IBCSG) database of 4948 eligible patients randomized to receive tamoxifen or toremifene alone or in combination with chemotherapy (either concurrently or sequentially). Case reports of patients with ocular toxicity were evaluated to determine whether ocular toxicity occurred during chemotherapy and/or hormonal therapy. Additional information was obtained from participating institutions for patients in whom ocular toxicity occurred after chemotherapy but during administration of tamoxifen or toremifene. RESULTS Ocular toxicity was reported in 538 of 4948 (10.9%) patients during adjuvant treatment, mainly during chemotherapy. Forty-five of 4948 (0.9%) patients had ocular toxicity during hormone therapy alone, but only 30 (0.6%) patients had ocular toxicity reported either without receiving any chemotherapy or beyond 3 months after completing chemotherapy and, thus, possibly related to tamoxifen or toremifene. In 3 cases, retinal alterations, without typical aspects of tamoxifen toxicity, were reported; 4 patients had cataract (2 bilateral), 12 impaired visual acuity, 10 ocular irritation, 1 optical neuritis, and the rest had other symptoms. CONCLUSION Ocular toxicity during adjuvant therapy is a common side effect mainly represented by irritative symptoms due to chemotherapy. By contrast, ocular toxicity during hormonal therapy is rare and does not appear to justify a regular program of ocular examination. However, patients should be informed of this rare side effect so that they may seek prompt ophthalmic evaluation for ocular complaints.
Collapse
Affiliation(s)
- Lorenzo Gianni
- Division of Oncology and Hematology, Hospital degli Infermi, Rimini, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gjerde J, Kisanga ER, Hauglid M, Holm PI, Mellgren G, Lien EA. Identification and quantification of tamoxifen and four metabolites in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2005; 1082:6-14. [PMID: 16038189 DOI: 10.1016/j.chroma.2005.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have developed a method for the determination of tamoxifen (tam) and its metabolites 4-hydroxytamoxifen (4OHtam), N-demethyltamoxifen (NDtam), N-dedimethyltamoxifen (NDDtam), tamoxifen-N-oxide (tamNox), and 4-hydroxy-N-demethyltamoxifen (4OHNDtam) in 50 microl human serum. Serum proteins were precipitated with acetonitrile. Deuterated-tamoxifen (D5 tam) was added as internal standard. Sample supernatant was injected into an on-line reversed-phase extraction column coupled with a C18 analytical column and analytes were detected by tandem mass spectrometry. The lower limits of quantification were 0.25 ng/mL for 4OHtam, NDtam and tam, 1.0 ng/mL for NDDtam and tamNox. Ranges of within- and between-day variation were 2.9-15.4% and 4.4-12.9%, respectively.
Collapse
Affiliation(s)
- J Gjerde
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
42
|
Kisanga ER, Moi LLH, Gjerde J, Mellgren G, Lien EA. Induction of hepatic drug-metabolising enzymes and tamoxifen metabolite profile in relation to administration route during low-dose treatment in nude rats. J Steroid Biochem Mol Biol 2005; 94:489-98. [PMID: 15876414 DOI: 10.1016/j.jsbmb.2004.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 12/20/2004] [Indexed: 11/29/2022]
Abstract
Tamoxifen is the most used anticancer drug and is approved for chemoprevention. Little is known about the enzyme inducing properties of low-dose regimens and the influence of route of administration. In this study, nude rats received 5 mg/kg/day of tamoxifen orally or a 50 mg continuous-release pellet subcutaneously. The mRNAs for cytochrome P450-enzymes (CYPs), flavin-containing monooxygenase 1 (FMO1) and phase II drug-metabolising enzymes were quantified by real-time RT-PCR. Tamoxifen and metabolite concentrations were measured using HPLC. We observed a significant increase in CYP3A18 and FMO1 mRNA expression levels in the orally treated animals, whereas the increase in CYP3A2 expression did not reach statistical significance (p=0.057). No significant induction of enzyme expression was observed in rats that received subcutaneous (S.c.) treatment. After 33 days the serum levels of 4-hydroxytamoxifen (4OHtam), tamoxifen and N-desmethyltamoxifen (NDtam) in orally treated animals were 1.8+/-0.7, 11.1+/-3.2 and 11.4+/-3.8 ng/ml, respectively. In subcutaneously treated animals, tamoxifen and N-desmethyltamoxifen were detected in tissues, but not in serum. These data demonstrate that in contrast to the subcutaneous administration, low-dose oral tamoxifen induced tamoxifen-metabolising enzymes. Furthermore, the different routes of administration resulted in different serum and tissue levels of tamoxifen and metabolites.
Collapse
|
43
|
Kim IY, Han SY, Moon A. Phthalates inhibit tamoxifen-induced apoptosis in MCF-7 human breast cancer cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:2025-2035. [PMID: 15513900 DOI: 10.1080/15287390490514750] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Environmental estrogens represent a class of compounds that can mimic the function or activity of the endogenous estrogen 17 -estradiol (E2). Phthalates including butyl benzyl phthalate (BBP), di(n-butyl) phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP) are used as plasticizers, and also widely used in food wraps and cosmetic formulations. Phthalates have been shown to mimic estrogen and are capable of binding to the estrogen receptor (ER). It has been demonstrated that estrogen promotes drug resistance to tamoxifen (TAM) in breast cancer. In order to further evaluate the potential role of the phthalates as environmental estrogens, the effect of phthalates was investigated on TAM-induced apoptosis in MCF-7 human breast cancer cells. Our results show that phthalates, BBP (100 M), DBP (10 M), and DEHP (10 M), significantly increased cell proliferation in MCF-7, but not in MDA-MB-231 cells. In addition, BBP, DBP, and DEHP mimicked estrogen in the inhibition of TAM-induced apoptosis in MCF-7 cells. Our data suggest that the inhibitory effect of phthalates on TAM-induced apoptosis involves an increase in intracellular Bcl-2 to Bax ratio. Given that the phthalates are widely used in cosmetics mainly for women, our findings that revealed the promoting effect of BBP, DBP, and DEHP on chemotherapeutic drug resistance to TAM in breast cancer may be of biological relevance.
Collapse
Affiliation(s)
- In Young Kim
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | | | | |
Collapse
|
44
|
Levine L. Tamoxifen and the Rafoxifene analog LY117018: their effects on arachidonic acid release from cells in culture and on prostaglandin I2 production by rat liver cells. BMC Cancer 2004; 4:49. [PMID: 15310397 PMCID: PMC514706 DOI: 10.1186/1471-2407-4-49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 08/13/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tamoxifen is being used successfully to treat breast cancer. However, tamoxifen also increases the risk of developing endometrial cancer in postmenopausal women. Raloxifene also decreases breast cancer in women at high risk and may have a lower risk at developing cancer of the uterus. Tamoxifen has been shown to stimulate arachidonic acid release from rat liver cells. I have postulated that arachidonic acid release from cells may be associated with cancer chemoprevention. METHODS Rat liver, rat glial, human colon carcinoma and human breast carcinoma cells were labelled with [3H] arachidonic acid. The release of the radiolabel from these cells during incubation with tamoxifen and the raloxifene analog LY117018 was measured. The prostaglandin I2 produced during incubation of the rat liver cells with microM concentrations of tamoxifen and the raloxifene analog was quantitatively estimated. RESULTS Tamoxifen is about 5 times more effective than LY117018 at releasing arachidonic acid from all the cells tested. In rat liver cells only tamoxifen stimulates basal prostaglandin I2 production and that induced by lactacystin and 12-O-tetradecanoyl-phorbol-13-acetate. LY117018, however, blocks the tamoxifen stimulated prostaglandin production. The stimulated prostaglandin I2 production is rapid and not affected either by preincubation of the cells with actinomycin or by incubation with the estrogen antagonist ICI-182,780. CONCLUSIONS Tamoxifen and the raloxifene analog, LY117018, may prevent estrogen-independent as well as estrogen-dependent breast cancer by stimulating phospholipase activity and initiating arachidonic acid release. The release of arachidonic acid and/or molecular reactions that accompany that release may initiate pathways that prevent tumor growth. Oxygenation of the intracellularly released arachidonic acid and its metabolic products may mediate some of the pharmacological actions of tamoxifen and raloxifene.
Collapse
Affiliation(s)
- Lawrence Levine
- Department of Biochemistry, Brandeis University Waltham, MA 02454, USA.
| |
Collapse
|
45
|
Gallicchio L, Lord G, Tkaczuk K, Danton M, Lewis LM, Lim CK, Flaws JA. Association of tamoxifen (TAM) and TAM metabolite concentrations with self-reported side effects of TAM in women with breast cancer. Breast Cancer Res Treat 2004; 85:89-97. [PMID: 15039600 DOI: 10.1023/b:brea.0000021050.92539.b0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The positive effects of tamoxifen (TAM) on breast cancer recurrence and survival as well as on overall mortality have led to its use as the predominant adjuvant therapy among women with breast cancer. However, the association of TAM intake with undesirable side effects has been reported in numerous studies. This analysis was carried out to assess whether the concentrations of TAM or TAM metabolites, N -desmethyltamoxifen ( N -DMT) and 4-hydroxytamoxifen (4-OHT), were associated with self-reported side effects of TAM. Participants were 99 breast cancer patients who had been taking TAM for at least 30 days. Each participant completed a questionnaire that was used to ascertain whether she experienced certain specific symptoms while taking TAM. In addition, each woman provided a blood sample that was used to measure plasma concentrations of TAM, N -DMT, and 4-OHT by high performance liquid chromatography. Results of the analysis showed that women who experienced at least one TAM-related side effect had significantly higher levels of TAM than women not experiencing any TAM-related side effects. Furthermore, women who reported experiencing visual problems had significantly higher levels of both TAM and N -DMT compared to those women who reported experiencing no visual problems. The levels of 4-OHT were negatively associated with the occurrence of vaginal discharge. The results of this study suggest that the self-reported occurrence of certain symptoms during TAM treatment is related to TAM metabolism. Future studies should assess subgroups of women with specific TAM and TAM metabolite profiles to determine whether alternate, equally effective therapies would decrease their risk of experiencing certain undesirable side effects.
Collapse
Affiliation(s)
- Lisa Gallicchio
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Kisanga ER, Gjerde J, Guerrieri-Gonzaga A, Pigatto F, Pesci-Feltri A, Robertson C, Serrano D, Pelosi G, Decensi A, Lien EA. Tamoxifen and Metabolite Concentrations in Serum and Breast Cancer Tissue during Three Dose Regimens in a Randomized Preoperative Trial. Clin Cancer Res 2004; 10:2336-43. [PMID: 15073109 DOI: 10.1158/1078-0432.ccr-03-0538] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Both therapeutic and adverse effects of tamoxifen may be related to its tissue concentrations. We investigated concentrations of tamoxifen, 4-hydroxytamoxifen, N-desmethyltamoxifen, and N-didesmethyltamoxifen in serum, normal breast, and breast cancer tissues during conventional dosage and two low-dose regimens. Furthermore we studied tamoxifen effects on the cancer proliferation marker Ki-67, and on sex hormone-binding globulin (SHBG). EXPERIMENTAL DESIGN From September 1999 to August 2001, 120 breast cancer patients were randomized to 20-, 5-, or 1-mg tamoxifen daily. We measured serum and tissue concentrations of tamoxifen and three metabolites after 28 days of treatment, and the changes between baseline and post-treatment levels of SHBG and Ki-67. RESULTS The median (range) tamoxifen concentrations (ng/ml) at doses of 1, 5, and 20 mg daily (n = 38, 37, and 36) were 7.5 (2.9-120.9), 25.2 (1.9-180.9), and 83.6 (8.7-134.4) in serum, and 78.2 (35.9-184), 272.3 (122-641), and 744.4 (208.6-2556) in breast cancer tissue, respectively. Tamoxifen levels followed a dose-concentration relationship. The concentrations of tamoxifen and metabolites were related to each other. Serum and tissue concentrations of tamoxifen were associated with corresponding changes of SHBG levels, whereas changes of Ki-67 levels were not related. CONCLUSIONS Estrogen agonistic effects of tamoxifen on SHBG decreased with lower dosage, whereas tamoxifen effects on Ki-67 expression did not change. This together with a >10-fold variation in serum tamoxifen concentrations and a serum to tissue concentration relationship suggest that tamoxifen treatment may be improved by administration of lower doses and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Elton R Kisanga
- Hormone Laboratory, Haukeland University Hospital, Department of Medicine, and Centre for International Health, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Coller JK. Oxidative metabolism of tamoxifen to Z-4-hydroxy-tamoxifen by cytochrome P450 isoforms: An appraisal of in vitro studies. Clin Exp Pharmacol Physiol 2003; 30:845-8. [PMID: 14678248 DOI: 10.1046/j.1440-1681.2003.03921.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Tamoxifen is used for the prevention and treatment of oestrogen receptor-positive breast cancer. 2. Tamoxifen is metabolized extensively and the formation of Z-4-hydroxy-tamoxifen (Z-4-OH-tam), a potent anti-oestrogen with high affinity for the oestrogen receptor, is believed to be strongly related to the therapeutic benefit achieved following tamoxifen treatment. 3. In vitro studies using human liver microsome preparations have shown considerable interindividual variability in the formation rates of Z-4-OH-tam. 4. Cytochrome P450 (CYP) isoform-specific chemical and monoclonal antibody inhibition studies have demonstrated that CYP2B6, CYP2C9, CYP2D6 and CYP3A4 all mediate the formation of Z-4-OH-tam. 5. Significant associations between the percentage inhibition of Z-4-OH-tam by CYP isoform-specific inhibitors and the rate of metabolism of CYP isoform-specific index reactions and between individual expression of CYP2B6, CYP2C9 and CYP2D6 and Z-4-OH-tam formation rates indicate predominant roles for these isoforms in this pathway. 6. Genotyping of patients with regards to CYP2B6, CYP2C9 and CYP2D6 may play a role in prediction of Z-4-OH-tam formation and, consequently, ultimate therapeutic benefit of tamoxifen treatment.
Collapse
Affiliation(s)
- J K Coller
- Department of Clinical and Experimental Pharmacology, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
48
|
Sheth HR, Lord G, Tkaczuk K, Danton M, Lewis LM, Langenberg P, Lim CK, Flaws JA. Aging May Be Associated with Concentrations of Tamoxifen and Its Metabolites in Breast Cancer Patients. J Womens Health (Larchmt) 2003; 12:799-808. [PMID: 14588130 DOI: 10.1089/154099903322447765] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although tamoxifen (TAM) is the predominant adjuvant therapy for estrogen receptor positive (ER(+)) breast tumors, 50% of breast cancer patients do not respond positively to this therapy, or they experience adverse side effects. This variability in TAM responsiveness may be due to differences in TAM metabolism that stem from differences in race, age, and body mass index (BMI). Thus, the purpose of this study was to test the hypothesis that race, age, and BMI are associated with the metabolism of TAM to two primary metabolites, N-desmethyltamoxifen (N-DMT) and 4-hydroxytamoxifen (4-OHT). METHODS The study design was cross-sectional, and data were analyzed using independent sample t tests and multiple linear regression models. Breast cancer patients (n = 99) taking TAM for at least 30 days were recruited from a local hospital clinic. Each participant provided informed consent, completed a questionnaire, and donated a blood sample. The questionnaire was used to ascertain race, age, and BMI. The blood samples were used to measure plasma concentrations of TAM, N-DMT, and 4-OHT. RESULTS Plasma concentrations of TAM, N-DMT, and 4-OHT differed among individual patients. Age, but not race and BMI, was positively associated with plasma concentrations of TAM and N-DMT, even after adjustment for potential confounders (p = 0.02 for TAM and p = 0.03 for N-DMT). CONCLUSIONS This study suggests that aging may alter the metabolism of TAM. As increased levels of TAM and TAM metabolites may provide a possible explanation for why older women taking TAM are at increased risk for adverse side effects, future studies should determine whether age-related differences in the concentrations of TAM and TAM metabolites are associated with differences in TAM toxicity or responsiveness.
Collapse
Affiliation(s)
- Hetal R Sheth
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Levine L. Tamoxifen stimulates arachidonic acid release from rat liver cells by an estrogen receptor-independent, non-genomic mechanism. BMC Cancer 2003; 3:24. [PMID: 14498998 PMCID: PMC212317 DOI: 10.1186/1471-2407-3-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 09/19/2003] [Indexed: 01/19/2023] Open
Abstract
Background Tamoxifen is widely prescribed for the treatment of breast cancer. Its success has been attributed to the modulation of the estrogen receptor. I have previously proposed that the release of arachidonic acid from cells may also mediate cancer prevention. Methods Rat liver cells were radiolabelled with arachidonic acid. The release of [3H] arachidonic acid after various times of incubation of the cells with tamoxifen was measured. Results Tamoxifen, at micromolar concentrations, stimulates arachidonic acid release. The stimulation is rapid and is not affected by pre-incubation of the cells with actinomycin or the estrogen antagonist ICI-182,780. Conclusions The stimulation of AA release by tamoxifen is not mediated by estrogen receptor occupancy and is non-genomic.
Collapse
Affiliation(s)
- Lawrence Levine
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
50
|
Dowsett M, Haynes BP. Hormonal effects of aromatase inhibitors: focus on premenopausal effects and interaction with tamoxifen. J Steroid Biochem Mol Biol 2003; 86:255-63. [PMID: 14623519 DOI: 10.1016/s0960-0760(03)00365-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Third generation aromatase inhibitors have excellent specificity. Some reports indicate that letrozole may have a minor effect on cortisol synthesis but these were not confirmed: valid comparisons with other aromatase inhibitors requires randomised study. The putative use of a third generation inhibitor as a single agent in premenopausal women has been investigated using YM511. It was hypothesised that in this situation site-specific suppression of estrogens in breast carcinomas, without systemic effects, may lead to a down-regulation of tumour proliferation. Plasma levels of androstenedione and testosterone were significantly increased by 2 weeks treatment with YM511. Mean plasma estrone levels were suppressed, but some plasma estradiol levels were abnormally high and others abnormally low. These differential effects of YM511 on circulating estrogens supported the concept that peripheral synthesis of estrogens might be suppressed while ovarian production remained high. However, YM511 did not demonstrate anti-proliferative effects in hormone sensitive breast carcinomas. Consideration of the pharmacology of the estrogen receptor during tamoxifen therapy indicates that tamoxifen effectively saturates the receptor (>99.94% occupancy) in postmenopausal women. The addition of an aromatase inhibitor in this situation would be very unlikely to affect the biological activity of the estrogen receptor. This provides a possible explanation why the clinical efficacy of tamoxifen combined with an aromatase inhibitor appears to be equivalent to that of tamoxifen alone.
Collapse
Affiliation(s)
- M Dowsett
- Academic Department of Biochemistry, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK.
| | | |
Collapse
|