1
|
McKenna KZ, Gawne R, Nijhout HF. The genetic control paradigm in biology: What we say, and what we are entitled to mean. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:89-93. [PMID: 35218858 DOI: 10.1016/j.pbiomolbio.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 12/25/2022]
Abstract
We comment on the article by Keith Baverstock (2021) and provide critiques of the concepts of genetic control, genetic blueprint and genetic program.
Collapse
Affiliation(s)
- Kenneth Z McKenna
- Department of Biology, University of California, San Diego, United States
| | - Richard Gawne
- Allen Discovery Center at Tufts University, United States
| | | |
Collapse
|
2
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Chavarria RA, Game M, Arbelaez B, Ramnarine C, Snow ZK, Smith FW. Extensive loss of Wnt genes in Tardigrada. BMC Ecol Evol 2021; 21:223. [PMID: 34961481 PMCID: PMC8711157 DOI: 10.1186/s12862-021-01954-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
Background Wnt genes code for ligands that activate signaling pathways during development in Metazoa. Through the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development, such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate segment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly compact and miniaturized tardigrade body plan. Results We analyzed published genomes for two representatives of Tardigrada, Hypsibius exemplaris and Ramazzottius varieornatus. We identified single orthologs of Wnt4, Wnt5, Wnt9, Wnt11, and WntA, as well as two Wnt16 paralogs in both tardigrade genomes. We only found a Wnt2 ortholog in H. exemplaris. We could not identify orthologs of Wnt1, Wnt6, Wnt7, Wnt8, or Wnt10. We identified most other components of cWnt signaling in both tardigrade genomes. However, we were unable to identify an ortholog of arrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily miniaturized, like tardigrades, are also missing an ortholog of arrow/Lrp5/6. We analyzed the embryonic expression patterns of Wnt genes in H. exemplaris during developmental stages that span the establishment of the AP axis through segmentation and leg development. We detected expression of all Wnt genes in H. exemplaris besides one of the Wnt16 paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and development of legs in H. exemplaris, rather than in broadly overlapping patterns. Conclusions Our results indicate that Wnt signaling has been highly modified in Tardigrada. While most components of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lost Wnt1, Wnt6, Wnt7, Wnt8, and Wnt10, along with arrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specifying posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial interactions among Wnt genes are less important during tardigrade development compared to many other animals. Based on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomical simplification in this lineage. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01954-y.
Collapse
Affiliation(s)
- Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Briana Arbelaez
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Chloe Ramnarine
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Zachary K Snow
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA.
| |
Collapse
|
4
|
McKenna KZ, Wagner GP, Cooper KL. A developmental perspective of homology and evolutionary novelty. Curr Top Dev Biol 2021; 141:1-38. [PMID: 33602485 DOI: 10.1016/bs.ctdb.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development and evolution of multicellular body plans is complex. Many distinct organs and body parts must be reproduced at each generation, and those that are traceable over long time scales are considered homologous. Among the most pressing and least understood phenomena in evolutionary biology is the mode by which new homologs, or "novelties" are introduced to the body plan and whether the developmental changes associated with such evolution deserve special treatment. In this chapter, we address the concepts of homology and evolutionary novelty through the lens of development. We present a series of case studies, within insects and vertebrates, from which we propose a developmental model of multicellular organ identity. With this model in hand, we make predictions regarding the developmental evolution of body plans and highlight the need for more integrative analysis of developing systems.
Collapse
Affiliation(s)
- Kenneth Z McKenna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States.
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Heingård M, Turetzek N, Prpic NM, Janssen R. FoxB, a new and highly conserved key factor in arthropod dorsal-ventral (DV) limb patterning. EvoDevo 2019; 10:28. [PMID: 31728178 PMCID: PMC6842170 DOI: 10.1186/s13227-019-0141-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Forkhead box (Fox) transcription factors evolved early in animal evolution and represent important components of conserved gene regulatory networks (GRNs) during animal development. Most of the researches concerning Fox genes, however, are on vertebrates and only a relatively low number of studies investigate Fox gene function in invertebrates. In addition to this shortcoming, the focus of attention is often restricted to a few well-characterized Fox genes such as FoxA (forkhead), FoxC (crocodile) and FoxQ2. Although arthropods represent the largest and most diverse animal group, most other Fox genes have not been investigated in detail, not even in the arthropod model species Drosophila melanogaster. In a general gene expression pattern screen for panarthropod Fox genes including the red flour beetle Tribolium castaneum, the pill millipede Glomeris marginata, the common house spider Parasteatoda tepidariorum, and the velvet worm Euperipatoides kanangrensis, we identified a Fox gene with a highly conserved expression pattern along the ventral ectoderm of arthropod and onychophoran limbs. Functional investigation of FoxB in Parasteatoda reveals a hitherto unrecognized important function of FoxB upstream of wingless (wg) and decapentaplegic (dpp) in the GRN orchestrating dorsal–ventral limb patterning.
Collapse
Affiliation(s)
- Miriam Heingård
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,4Present Address: Department of Geology, Faculty of Science, Lund University, Sölvegatan 12, Lund, Sweden
| | - Natascha Turetzek
- 2Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Present Address: Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany
| | - Nikola-Michael Prpic
- 2Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,5Present Address: Bereich Allgemeine Zoologie und Entwicklungsbiologie, Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
6
|
Ruiz-Losada M, Blom-Dahl D, Córdoba S, Estella C. Specification and Patterning of Drosophila Appendages. J Dev Biol 2018; 6:jdb6030017. [PMID: 30011921 PMCID: PMC6162442 DOI: 10.3390/jdb6030017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023] Open
Abstract
Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly Drosophilamelanogaster are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages. Importantly, many of the signaling pathways and patterning genes identified and characterized in Drosophila have similar functions during vertebrate appendage development. In this review, we will summarize the genetic and molecular mechanisms that lead to the specification of appendage primordia in the embryo and their posterior patterning during imaginal disc development. The identification of the regulatory logic underlying appendage specification in Drosophila suggests that the evolutionary origin of the insect wing is, in part, related to the development of ventral appendages.
Collapse
Affiliation(s)
- Mireya Ruiz-Losada
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - David Blom-Dahl
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Requena D, Álvarez JA, Gabilondo H, Loker R, Mann RS, Estella C. Origins and Specification of the Drosophila Wing. Curr Biol 2017; 27:3826-3836.e5. [PMID: 29225023 DOI: 10.1016/j.cub.2017.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 01/18/2023]
Abstract
The insect wing is a key evolutionary innovation that was essential for insect diversification. Yet despite its importance, there is still debate about its evolutionary origins. Two main hypotheses have been proposed: the paranotal hypothesis, which suggests that wings evolved as an extension of the dorsal thorax, and the gill-exite hypothesis, which proposes that wings were derived from a modification of a pre-existing branch at the dorsal base (subcoxa) of the leg. Here, we address this question by studying how wing fates are initially specified during Drosophila embryogenesis, by characterizing a cis-regulatory module (CRM) from the snail (sna) gene, sna-DP (for dorsal primordia). sna-DP specifically marks the early primordia for both the wing and haltere, collectively referred to as the DP. We found that the inputs that activate sna-DP are distinct from those that activate Distalless, a marker for leg fates. Further, in genetic backgrounds in which the leg primordia are absent, the DP are still partially specified. However, lineage-tracing experiments demonstrate that cells from the early leg primordia contribute to both ventral and dorsal appendage fates. Together, these results suggest that the wings of Drosophila have a dual developmental origin: two groups of cells, one ventral and one more dorsal, give rise to the mature wing. We suggest that the dual developmental origins of the wing may be a molecular remnant of the evolutionary history of this appendage, in which cells of the subcoxa of the leg coalesced with dorsal outgrowths to evolve a dorsal appendage with motor control.
Collapse
Affiliation(s)
- David Requena
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Jose Andres Álvarez
- Departamento de Biología and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Hugo Gabilondo
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ryan Loker
- Departments of Biochemistry and Molecular Biophysics and Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 701 W. 168th St., HHSC 1104, New York, NY 10032, USA
| | - Richard S Mann
- Departments of Biochemistry and Molecular Biophysics and Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 701 W. 168th St., HHSC 1104, New York, NY 10032, USA.
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Chen B, Piel WH, Monteiro A. Distal-less homeobox genes of insects and spiders: genomic organization, function, regulation and evolution. INSECT SCIENCE 2016; 23:335-352. [PMID: 26898323 DOI: 10.1111/1744-7917.12327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The Distal-less (Dll) genes are homeodomain transcription factors that are present in most Metazoa and in representatives of all investigated arthropod groups. In Drosophila, the best studied insect, Dll plays an essential role in forming the proximodistal axis of the legs, antennae and analia, and in specifying antennal identity. The initiation of Dll expression in clusters of cells in mid-lateral regions of the Drosophila embryo represents the earliest genetic marker of limbs. Dll genes are involved in the development of the peripheral nervous system and sensitive organs, and they also function as master regulators of black pigmentation in some insect lineages. Here we analyze the complete genomes of six insects, the nematode Caenorhabditis elegans and Homo sapiens, as well as multiple Dll sequences available in databases in order to examine the structure and protein features of these genes. We also review the function, expression, regulation and evolution of arthropod Dll genes with emphasis on insects and spiders.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, P.R. China
| | - William H Piel
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
9
|
Santos CG, Hartfelder K. Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae - A morphology/differential gene expression analysis. Genet Mol Biol 2015; 38:263-77. [PMID: 26500430 PMCID: PMC4612609 DOI: 10.1590/s1415-475738320140393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/25/2015] [Indexed: 11/22/2022] Open
Abstract
Phenotypic plasticity is a hallmark of the caste systems of social insects, expressed in their life history and morphological traits. These are best studied in bees. In their co-evolution with angiosperm plants, the females of corbiculate bees have acquired a specialized structure on their hind legs for collecting pollen. In the highly eusocial bees (Apini and Meliponini), this structure is however only present in workers and absent in queens. By means of histological sections and cell proliferation analysis we followed the developmental dynamics of the hind legs of queens and workers in the fourth and fifth larval instars. In parallel, we generated subtractive cDNA libraries for hind leg discs of queen and worker larvae by means of a Representational Difference Analysis (RDA). From the total of 135 unique sequences we selected 19 for RT-qPCR analysis, where six of these were confirmed as differing significantly in their expression between the two castes in the larval spinning stage. The development of complex structures such as the bees' hind legs, requires diverse patterning mechanisms and signaling modules, as indicated by the set of differentially expressed genes related with cell adhesion and signaling pathways.
Collapse
Affiliation(s)
- Carolina Gonçalves Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Nödl MT, Fossati SM, Domingues P, Sánchez FJ, Zullo L. The making of an octopus arm. EvoDevo 2015; 6:19. [PMID: 26052417 PMCID: PMC4458049 DOI: 10.1186/s13227-015-0012-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Most of our current findings on appendage formation and patterning stem from studies on chordate and ecdysozoan model organisms. However, in order to fully understand the evolution of animal appendages, it is essential to include information on appendage development from lophotrochozoan representatives. Here, we examined the basic dynamics of the Octopus vulgaris arm's formation and differentiation - as a highly evolved member of the lophotrochozoan super phylum - with a special focus on the formation of the arm's musculature. RESULTS The octopus arm forms during distinct phases, including an early outgrowth from an epithelial thickening, an elongation, and a late differentiation into mature tissue types. During early arm outgrowth, uniform proliferation leads to the formation of a rounded bulge, which subsequently elongates along its proximal-distal axis by means of actin-mediated epithelial cell changes. Further differentiation of all tissue layers is initiated but end-differentiation is postponed to post-hatching stages. Interestingly, muscle differentiation shows temporal differences in the formation of distinct muscle layers. Particularly, first myocytes appear in the area of the future transverse prior to the longitudinal muscle layer, even though the latter represents the more dominant muscle type at hatching stage. Sucker rudiments appear as small epithelial outgrowths with a mesodermal and ectodermal component on the oral part of the arm. During late differentiation stages, cell proliferation becomes localized to a distal arm region termed the growth zone of the arm. CONCLUSIONS O. vulgaris arm formation shows both, similarities to known model species as well as species-specific patterns of arm formation. Similarities include early uniform cell proliferation and actin-mediated cell dynamics, which lead to an elongation along the proximal-distal axis. Furthermore, the switch to an adult-like progressive distal growth mode during late differentiation stages is reminiscent of the vertebrate progress zone. However, tissue differentiation shows a species-specific delay, which is correlated to a paralarval pelagic phase after hatching and concomitant emerging behavioral modifications. By understanding the general dynamics of octopus arm formation, we established a basis for further studies on appendage patterning, growth, and differentiation in a representative of the lophotrochozoan super phylum.
Collapse
Affiliation(s)
- Marie-Therese Nödl
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sara M Fossati
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Pedro Domingues
- Centro Oceanografico de Vigo, Instituto Español de Oceanografia, Subida Radio Faro, 50 36390 Vigo, Spain
| | - Francisco J Sánchez
- Centro Oceanografico de Vigo, Instituto Español de Oceanografia, Subida Radio Faro, 50 36390 Vigo, Spain
| | - Letizia Zullo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
11
|
Appendage patterning in the primitively wingless hexapods Thermobia domestica (Zygentoma: Lepismatidae) and Folsomia candida (Collembola: Isotomidae). Dev Genes Evol 2013; 223:341-50. [DOI: 10.1007/s00427-013-0449-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
|
12
|
Beermann A, Prühs R, Lutz R, Schröder R. A context-dependent combination of Wnt receptors controls axis elongation and leg development in a short germ insect. Development 2011; 138:2793-805. [PMID: 21652652 DOI: 10.1242/dev.063644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Short germ embryos elongate their primary body axis by consecutively adding segments from a posteriorly located growth zone. Wnt signalling is required for axis elongation in short germ arthropods, including Tribolium castaneum, but the precise functions of the different Wnt receptors involved in this process are unclear. We analysed the individual and combinatorial functions of the three Wnt receptors, Frizzled-1 (Tc-Fz1), Frizzled-2 (Tc-Fz2) and Frizzled-4 (Tc-Fz4), and their co-receptor Arrow (Tc-Arr) in the beetle Tribolium. Knockdown of gene function and expression analyses revealed that Frizzled-dependent Wnt signalling occurs anteriorly in the growth zone in the presegmental region (PSR). We show that simultaneous functional knockdown of the Wnt receptors Tc-fz1 and Tc-fz2 via RNAi resulted in collapse of the growth zone and impairment of embryonic axis elongation. Although posterior cells of the growth zone were not completely abolished, Wnt signalling within the PSR controls axial elongation at the level of pair-rule patterning, Wnt5 signalling and FGF signalling. These results identify the PSR in Tribolium as an integral tissue required for the axial elongation process, reminiscent of the presomitic mesoderm in vertebrates. Knockdown of Tc-fz1 alone interfered with the formation of the proximo-distal and the dorso-ventral axes during leg development, whereas no effect was observed with single Tc-fz2 or Tc-fz4 RNAi knockdowns. We identify Tc-Arr as an obligatory Wnt co-receptor for axis elongation, leg distalisation and segmentation. We discuss how Wnt signalling is regulated at the receptor and co-receptor levels in a dose-dependent fashion.
Collapse
Affiliation(s)
- Anke Beermann
- Universität Rostock, Institut für Biowissenschaften/Abt. Genetik, D-18059 Rostock, Germany.
| | | | | | | |
Collapse
|
13
|
Murat S, Hopfen C, McGregor AP. The function and evolution of Wnt genes in arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:446-452. [PMID: 20685345 DOI: 10.1016/j.asd.2010.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 05/29/2023]
Abstract
Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution.
Collapse
Affiliation(s)
- Sophie Murat
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna, Austria
| | | | | |
Collapse
|
14
|
Niwa N, Akimoto-Kato A, Niimi T, Tojo K, Machida R, Hayashi S. Evolutionary origin of the insect wing via integration of two developmental modules. Evol Dev 2010; 12:168-76. [DOI: 10.1111/j.1525-142x.2010.00402.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Separable functions of wingless in distal and ventral patterning of the Tribolium leg. Dev Genes Evol 2009; 219:469-79. [PMID: 20024581 PMCID: PMC2811246 DOI: 10.1007/s00427-009-0310-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/23/2009] [Indexed: 11/29/2022]
Abstract
The gene wingless (wg) in Drosophila is an important factor in leg development. During embryonic development wg is involved in the allocation of the limb primordia. During imaginal disk development wg is involved in distal development and it has a separate role in ventral development. The expression pattern of wg is highly conserved in all arthropods (comprising data from insects, myriapods, crustaceans, and chelicerates), suggesting that its function in leg development is also conserved. However, recent work in other insects (e.g. the milkweed bug Oncopeltus fasciatus) argued against a role of wg in leg development. We have studied the role of wg in leg development of the flour beetle Tribolium castaneum. Using stage-specific staggered embryonic RNAi in wild-type and transgenic EGFP expressing enhancer trap lines we are able to demonstrate separable functions of Tribolium wg in distal and in ventral leg development. The distal role affects all podomeres distal to the coxa, whereas the ventral role is restricted to cells along the ventral midline of the legs. In addition, severe leg defects after injection into early embryonic stages are evidence that wg is also involved in proximal development and limb allocation in Tribolium. Our data suggest that the roles of wg in leg development are highly conserved in the holometabolous insects. Further studies will reveal the degree of conservation in other arthropod groups.
Collapse
|
16
|
Insertional mutagenesis screening identifies the zinc finger homeodomain 2 (zfh2) gene as a novel factor required for embryonic leg development in Tribolium castaneum. Dev Genes Evol 2009; 219:399-407. [PMID: 19760181 PMCID: PMC2773040 DOI: 10.1007/s00427-009-0303-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/30/2009] [Indexed: 11/18/2022]
Abstract
The genetic control of leg development is well characterized in the fly Drosophila melanogaster. These control mechanisms, however, must differ to some degree between different insect species to account for the morphological diversity of thoracic legs in the insects. The legs of the flour beetle Tribolium castaneum differ from the Drosophila legs in their developmental mode as well as in their specific morphology especially at the larval stage. In order to identify genes involved in the morphogenesis of the Tribolium larval legs, we have analyzed EGFP enhancer trap lines of Tribolium. We have identified the zfh2 gene as a novel factor required for normal leg development in Tribolium. RNA interference with zfh2 function leads to two alternative classes of leg phenotype. The loss of a leg segment boundary and the generation of ectopic outgrowths in one class of phenotype suggest a role in leg segmentation and segment growth. The malformation of the pretarsal claw in the second class of phenotype suggests a role in distal development and the morphogenesis of the claw-shaped morphology of the pretarsus. This suggests that zfh2 is involved in the regulation of an unidentified target gene in a concentration-dependent manner. Our results demonstrate that enhancer trap screens in T. castaneum have the potential to identify novel gene functions regulating specific developmental processes.
Collapse
|
17
|
McKay DJ, Estella C, Mann RS. The origins of the Drosophila leg revealed by the cis-regulatory architecture of the Distalless gene. Development 2009; 136:61-71. [PMID: 19036798 PMCID: PMC2653810 DOI: 10.1242/dev.029975] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2008] [Indexed: 11/20/2022]
Abstract
Limb development requires the elaboration of a proximodistal (PD) axis, which forms orthogonally to previously defined dorsoventral (DV) and anteroposterior (AP) axes. In arthropods, the PD axis of the adult leg is subdivided into two broad domains, a proximal coxopodite and a distal telopodite. We show that the progressive subdivision of the PD axis into these two domains occurs during embryogenesis and is reflected in the cis-regulatory architecture of the Distalless (Dll) gene. Early Dll expression, governed by the Dll304 enhancer, is in cells that can give rise to both domains of the leg as well as to the entire dorsal (wing) appendage. A few hours after Dll304 is activated, the activity of this enhancer fades, and two later-acting enhancers assume control over Dll expression. The LT enhancer is expressed in cells that will give rise to the entire telopodite, and only the telopodite. By contrast, cells that activate the DKO enhancer will give rise to a leg-associated larval sensory structure known as the Keilin's organ (KO). Cells that activate neither LT nor DKO, but had activated Dll304, will give rise to the coxopodite. In addition, we describe the trans-acting signals controlling the LT and DKO enhancers, and show, surprisingly, that the coxopodite progenitors begin to proliferate approximately 24 hours earlier than the telopodite progenitors. Together, these findings provide a complete and high-resolution fate map of the Drosophila appendage primordia, linking the primary domains to specific cis-regulatory elements in Dll.
Collapse
Affiliation(s)
- Daniel J McKay
- Department of Biochemistry and Molecular Biophysics, Integrated Program in Cellular, Molecular, Structural and Genetic Studies, Columbia University, 701 W. 168th Street, HHSC 1104, New York, NY 10032, USA
| | | | | |
Collapse
|
18
|
Chen EH, Christiansen AE, Baker BS. Allocation and specification of the genital disc precursor cells in Drosophila. Dev Biol 2006; 281:270-85. [PMID: 15893978 DOI: 10.1016/j.ydbio.2005.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 02/19/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The adult structures of Drosophila melanogaster are derived from larval imaginal discs, which originate as clusters of cells within the embryonic ectoderm. The genital imaginal disc is composed of three primordia (female genital, male genital, and anal primordia) that originate from the embryonic tail segments A8, A9, and A10, respectively, and produce the sexually dimorphic genitalia and analia. We show that the genital disc precursor cells (GDPCs) are first detectable during mid-embryogenesis as a 22-cell cluster in the ventral epidermis. Analysis of mutant and double mutant phenotypes of embryonic patterning genes in the GDPCs, together with their expression patterns in these cells, revealed the following with respect to the origins and specification of the GDPCs. The allocation of the GDPCs from the ventral epidermis requires the function of ventral patterning genes, including the EGF receptor and the spitz group of genes. The ventral localization of the GDPCs is further restricted by the action of dorsal patterning genes. Along the anterior-posterior axis, several segment polarity genes (wingless, engrailed, hedgehog, and patched) are required for the proper allocation of the GDPCs. These segment polarity genes are expressed in some, but not all of the GDPCs, indicating that anterior and posterior compartments are not fully established in the GDPCs. In addition, we found that the three primordia of the larval genital disc have already been specified in the GDPCs by the coordinated actions of the homeotic (Hox) genes, abdominal-A, Abdominal-B, and caudal. By identifying how these different patterning networks regulate the allocation and primordial organization of the 22 embryonic precursors of the compound genital disc, we demonstrate that at least some of the organization of the larval disc originates as positional information in the embryo, thus providing a context for further studies on the development of the genital disc.
Collapse
Affiliation(s)
- Elizabeth H Chen
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
19
|
Ober KA, Jockusch EL. The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Dev Biol 2006; 294:391-405. [PMID: 16616738 DOI: 10.1016/j.ydbio.2006.02.053] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 11/29/2005] [Accepted: 02/28/2006] [Indexed: 01/09/2023]
Abstract
Axis patterning and appendage development have been well studied in Drosophila melanogaster, a species in which both limb and segment morphogenesis are derived. In Drosophila, positional information from genes important in anteroposterior and dorsoventral axis formation, including wingless (wg) and decapentaplegic (dpp), is required for allocating and patterning the appendage primordia. We used RNA interference to characterize the functions of wg and dpp in the red flour beetle, Tribolium castaneum, which retains more ancestral modes of limb and segment morphogenesis. We also characterized the expression of potential targets of the WG and DPP signaling pathways in these embryos. Tribolium embryos in which dpp had been downregulated had defects in the dorsalmost body wall, but did not appear to have been globally repatterned and had normal appendages. Downregulation of wg led to the loss of segment boundaries, gnathal and thoracic appendages, and lateral head lobes, and to changes in the expression of dpp, Distal-less, and Engrailed. The functions of wg varied along both the anteroposterior and dorsoventral axes of the embryo. Phylogenetic comparisons indicate that the role of WNT signaling in segment boundary formation is evolutionarily old, but that its role in appendage allocation originated in the common ancestor of holometabolous insects.
Collapse
Affiliation(s)
- Karen A Ober
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., U-3043, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
20
|
Angelini DR, Kaufman TC. Insect appendages and comparative ontogenetics. Dev Biol 2005; 286:57-77. [PMID: 16112665 DOI: 10.1016/j.ydbio.2005.07.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/23/2005] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Abstract
It is arguable that the evolutionary and ecological success of insects is due in large part to the versatility of their articulated appendages. Recent advances in our understanding of appendage development in Drosophila melanogaster, as well as functional and expression studies in other insect species have begun to frame the general themes of appendage development in the insects. Here, we review current studies that provide for a comparison of limb developmental mechanisms acting at five levels: (1) the specification of ventral appendage primordia; (2) specification of the limb axes; (3) regulation and interactions of genes expressed in specific domains of the proximal-distal axis, such as Distal-less; (4) the specification of appendage identity; and (5) genetic regulation of appendage allometry.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405-7005, USA
| | | |
Collapse
|
21
|
Bolinger RA, Boekhoff-Falk G. Distal-less functions in subdividing the Drosophila thoracic limb primordium. Dev Dyn 2005; 232:801-16. [PMID: 15712199 DOI: 10.1002/dvdy.20329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The thoracic limb primordium of Drosophila melanogaster is a useful experimental model in which to study how unique tissue types are specified from multipotent founder cell populations. The second thoracic segment limb primordium gives rise to three structures: the wing imaginal disc, the leg imaginal disc, and a larval mechanosensory structure called Keilin's organ. We report that most of the limb primordium arises within neurogenic ectoderm and demonstrate that the neural and imaginal components of the primordium have distinct developmental potentials. We also provide the first analysis of the genetic pathways that subdivide the progenitor cell population into uniquely imaginal and neural identities. In particular, we demonstrate that the imaginal gene escargot represses Keilin's organ fate and that Keilin's organ is specified by Distal-less in conjunction with the downstream achaete-scute complex. This specification involves both the activation of the neural genes cut and couch potato and the repression of escargot. In the absence of achaete-scute complex function, cells adopt mixed identities and subsequently die. We propose that central cells of the primordium previously thought to contribute to the distal leg are Keilin's organ precursors, while both proximal and distal leg precursors are located more peripherally and within the escargot domain.
Collapse
Affiliation(s)
- Reese A Bolinger
- Department of Anatomy, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
22
|
Angelini DR, Kaufman TC. Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Dev Biol 2005; 283:409-23. [PMID: 15939417 DOI: 10.1016/j.ydbio.2005.04.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 04/29/2005] [Accepted: 04/29/2005] [Indexed: 11/16/2022]
Abstract
Specification of the proximal-distal (PD) axis of insect appendages is best understood in Drosophila melanogaster, where conserved signaling molecules encoded by the genes decapentaplegic (dpp) and wingless (wg) play key roles. However, the development of appendages from imaginal discs as in Drosophila is a derived state, while more basal insects produce appendages from embryonic limb buds. Therefore, the universality of the Drosophila limb PD axis specification mechanism has been debated since dpp expression in more basal insect species differs dramatically from Drosophila. Here, we test the function of Wnt signaling in the development of the milkweed bug Oncopeltus fasciatus, a species with the basal state of appendage development from limb buds. RNA interference of wg and pangolin (pan) produce defects in the germband and eyes, but not in the appendages. Distal-less and dachshund, two genes regulated by Wg signaling in Drosophila and expressed in specific PD domains along the limbs of both species, are expressed normally in the limbs of pan-depleted Oncopeltus embryos. Despite these apparently paradoxical results, Armadillo protein, the transducer of Wnt signaling, does not accumulate properly in the nuclei of cells in the legs of pan-depleted embryos. In contrast, engrailed RNAi in Oncopeltus produces cuticular and appendage defects similar to Drosophila. Therefore, our data suggest that Wg signaling is functionally conserved in the development of the germband, while it is not essential in the specification of the limb PD axis in Oncopeltus and perhaps basal insects.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, Bloomington, 47405-7005, USA
| | | |
Collapse
|
23
|
Prpic NM, Damen WGM. A homolog of the hydrolase Notum is expressed during segmentation and appendage formation in the Central American hunting spider Cupiennius salei. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2005; 92:246-9. [PMID: 15834692 DOI: 10.1007/s00114-005-0617-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 02/09/2005] [Indexed: 11/25/2022]
Abstract
The hydrolase Notum (also known as Wingful) has been implicated in shaping the distribution gradient of the morphogen Wingless in Drosophila by modifying the Wingless-binding heparan sulfate proteoglycan (HSPG) core glypicans Dally and Dally-like. Here we report on the expression of a Notum homolog during the embryonic development of the spider Cupiennius salei. Notum is expressed in two to three stripes in the posterior region of the germband where new segments are formed. At this location no Wingless expression is present, suggesting that Notum may be involved in the regulation of another HSPG-binding morphogen, possibly Hedgehog. In older segments, however, expression of Notum and Wingless roughly coincides. In the appendages, Notum is expressed in ventral mesodermal cells, directly adjacent to the Wingless expressing ectodermal cells. This could indicate a role for the mesoderm in regulating morphogen gradient formation in the ectoderm.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Institut für Genetik der Universität zu Köln, Weyertal 121, 50931, Köln, Germany
| | | |
Collapse
|
24
|
Giorgianni MW, Patel NH. Patterning of the branched head appendages in Schistocerca americana and Tribolium castaneum. Evol Dev 2004; 6:402-10. [PMID: 15509222 DOI: 10.1111/j.1525-142x.2004.04049.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Much of our understanding of arthropod limb development comes from studies on the leg imaginal disc of Drosophila melanogaster. The fly limb is a relatively simple unbranched (uniramous) structure extending out from the body wall. The molecular basis for this outgrowth involves the overlap of two signaling molecules, Decapentaplegic (Dpp) and Wingless (Wg), to create a single domain of distal outgrowth, clearly depicted by the expression of the Distal-less gene (Dll). The expression of wg and dpp during the development of other arthropod thoracic limbs indicates that these pathways might be conserved across arthropods for uniramous limb development. The appendages of crustaceans and the gnathal appendages of insects, however, exhibit a diverse array of morphologies, ranging from those with no distal elements, such as the mandible, to appendages with multiple distal elements. Examples of the latter group include branched appendages or those that possess multiple lobes; such complex morphologies are seen for many crustacean limbs as well as the maxillary and labial appendages of many insects. It is unclear how, if at all, the known patterning genes for making a uniramous limb might be deployed to generate these diverse appendage forms. Experiments in Drosophila have shown that by forcing ectopic overlaps of Wg and Dpp signaling it is possible to generate artificially branched legs. To test whether naturally branched appendages form in a similar manner, we detailed the expression patterns of wg, dpp, and Dll in the development of the branched gnathal appendages of the grasshopper, Schistocerca americana, and the flour beetle, Tribolium castaneum. We find that the branches of the gnathal appendages are not specified through the redeployment of the Wg-Dpp system for distal outgrowth, but our comparative studies do suggest a role for Dpp in forming furrows between tissues.
Collapse
Affiliation(s)
- Matt W Giorgianni
- Committee on Developmental Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
25
|
Hejnol A, Scholtz G. Clonal analysis of Distal-less and engrailed expression patterns during early morphogenesis of uniramous and biramous crustacean limbs. Dev Genes Evol 2004; 214:473-85. [PMID: 15300435 DOI: 10.1007/s00427-004-0424-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 06/23/2004] [Indexed: 11/30/2022]
Abstract
In order to investigate the correlation of cell lineage, gene expression, and morphogenesis of uniramous and biramous limbs we studied limb formation in the thorax and pleon of the amphipod Orchestia cavimana and the isopod Porcellio scaber. We took advantage of the fact that in amphipod and isopod crustaceans--both Malacostraca--uniramous limbs evolved independently in the thorax whereas ancestral biramous limbs are formed in the pleon (abdomen). The gene Distal-less is expressed in the early limb buds as in other arthropods. Accordingly, it is likely to be responsible for the development of the proximodistal axis of the appendages. Double staining of Distal-less and Engrailed proteins suggests that Distal-less in the pleon of the amphipod Orchestia might not be under the control of the Wingless protein. Additionally, we studied axis formation of the uniramous and biramous limbs. In both species investigated, biramous limbs originate exclusively by the subdivision of the original limb bud. Both distal elements continuously express Distal-less. There is flexibility in the suppression of the development of additional branches in the crustacean limb. In the amphipod O. cavimana, uniramous thoracopods are formed by downregulation of Distal-less in the area where, in biramous limbs, the exopodites would occur. In contrast, this region never expresses Distal-less in the uniramous thoracopods of the isopod P. scaber. Our results suggest that the gene expression pattern is independent of the cell division pattern. Gene expression domains and morphogenesis of limbs and segments, on the other hand, show a good correlation.
Collapse
Affiliation(s)
- Andreas Hejnol
- Institut für Biologie/Vergleichende Zoologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | | |
Collapse
|
26
|
Jockusch EL, Ober KA. Hypothesis Testing in Evolutionary Developmental Biology: A Case Study from Insect Wings. J Hered 2004; 95:382-96. [PMID: 15388766 DOI: 10.1093/jhered/esh064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Developmental data have the potential to give novel insights into morphological evolution. Because developmental data are time-consuming to obtain, support for hypotheses often rests on data from only a few distantly related species. Similarities between these distantly related species are parsimoniously inferred to represent ancestral aspects of development. However, with limited taxon sampling, ancestral similarities in developmental patterning can be difficult to distinguish from similarities that result from convergent co-option of developmental networks, which appears to be common in developmental evolution. Using a case study from insect wings, we discuss how these competing explanations for similarity can be evaluated. Two kinds of developmental data have recently been used to support the hypothesis that insect wings evolved by modification of limb branches that were present in ancestral arthropods. This support rests on the assumption that aspects of wing development in Drosophila, including similarities to crustacean epipod patterning, are ancestral for winged insects. Testing this assumption requires comparisons of wing development in Drosophila and other winged insects. Here we review data that bear on this assumption, including new data on the functions of wingless and decapentaplegic during appendage allocation in the red flour beetle Tribolium castaneum.
Collapse
Affiliation(s)
- E L Jockusch
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., U-3043, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
27
|
Baena-López LA, Pastor-Pareja JC, Resino J. Wg and Egfr signalling antagonise the development of the peripodial epithelium in Drosophila wing discs. Development 2004; 130:6497-506. [PMID: 14660540 DOI: 10.1242/dev.00884] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Imaginal discs contain a population of cells, known as peripodial epithelium, that differ morphologically and genetically from the rest of imaginal cells. The peripodial epithelium has a small contribution to the adult epidermis, though it is essential for the eversion of the discs during metamorphosis. The genetic mechanisms that control the identity and cellular morphology of the peripodial epithelia are poorly understood. In this report, we investigate the mechanisms that pattern the peripodial side of the wing imaginal disc during early larval development. At this time, the activities of the Wingless (Wg) and Epidermal growth factor receptor (Egfr) signalling pathways specify the prospective wing and notum fields, respectively. We show that peripodial epithelium specification occurs in the absence of Wingless and Egfr signalling. The ectopic activity in the peripodial epithelium of any of these signalling pathways transforms the shape of peripodial cells from squamous to columnar and resets their gene expression profile. Furthermore, peripodial cells where Wingless signalling is ectopically active acquire hinge identity, while ectopic Egfr activation results in notum specification. These findings suggest that suppression of Wg and Egfr activities is an early step in the development of the peripodial epithelium of the wing discs.
Collapse
Affiliation(s)
- Luis Alberto Baena-López
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Facultad de Ciencias, 28049, Madrid, Spain.
| | | | | |
Collapse
|
28
|
Abstract
During development of higher organisms, most patterning events occur in growing tissues. Thus, unraveling the mechanism of how growing tissues are patterned into final morphologies has been an essential subject of developmental biology. Limb or appendage development in both vertebrates and invertebrates has attracted great attention from many researchers for a long time, because they involve almost all developmental processes required for tissue patterning, such as generation of the positional information by morphogen, subdivision of the tissue into distinct parts according to the positional information, localized cell growth and proliferation, and control of adhesivity, movement and shape changes of cells. The Drosophila leg development is a good model system, upon which a substantial amount of knowledge has been accumulated. In this review, the current understanding of the mechanism of Drosophila leg development is described.
Collapse
Affiliation(s)
- Tetsuya Kojima
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|