1
|
Biose IJ, Oremosu J, Bhatnagar S, Bix GJ. Promising Cerebral Blood Flow Enhancers in Acute Ischemic Stroke. Transl Stroke Res 2023; 14:863-889. [PMID: 36394792 PMCID: PMC10640530 DOI: 10.1007/s12975-022-01100-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Ischemic stroke presents a major global economic and public health burden. Although recent advances in available endovascular therapies show improved functional outcome, a good number of stroke patients are either ineligible or do not have access to these treatments. Also, robust collateral flow during acute ischemic stroke independently predicts the success of endovascular therapies and the outcome of stroke. Hence, adjunctive therapies for cerebral blood flow (CBF) enhancement are urgently needed. A very clear overview of the pial collaterals and the role of genetics are presented in this review. We review available evidence and advancement for potential therapies aimed at improving CBF during acute ischemic stroke. We identified heme-free soluble guanylate cyclase activators; Sanguinate, remote ischemic perconditioning; Fasudil, S1P agonists; and stimulation of the sphenopalatine ganglion as promising potential CBF-enhancing therapeutics requiring further investigation. Additionally, we outline and discuss the critical steps required to advance research strategies for clinically translatable CBF-enhancing agents in the context of acute ischemic stroke models.
Collapse
Affiliation(s)
- Ifechukwude Joachim Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, 131 S. Robertson, Ste 1300, Room 1349, New Orleans, LA, 70112, USA
| | - Jadesola Oremosu
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Somya Bhatnagar
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Gregory Jaye Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, 131 S. Robertson, Ste 1300, Room 1349, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70122, USA.
| |
Collapse
|
2
|
Kopf PG, Phelps LE, Schupbach CD, Johnson AK, Peuler JD. Differential effects of long-term slow-pressor and subpressor angiotensin II on contractile and relaxant reactivity of resistance versus conductance arteries. Physiol Rep 2018; 6:e13623. [PMID: 29504268 PMCID: PMC5835495 DOI: 10.14814/phy2.13623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 01/09/2023] Open
Abstract
Vascular reactivity was evaluated in three separate arteries isolated from rats after angiotensin II (Ang II) was infused chronically in two separate experiments, one using a 14-day high, slow-pressor dose known to produce hypertension and the other using a 7-day low, subpressor but hypertensive-sensitizing dose. There were three new findings. First, there was no evidence of altered vascular reactivity in resistance arteries that might otherwise explain the hypertension due to the high Ang II or the hypertensive-sensitizing effect of the low Ang II dose. Second, the high Ang II dose exerted a novel differential effect on arterial contractile responsiveness to the sympathetic neurotransmitter, norepinephrine, depending on the level of sympathetic innervation. It clearly enhanced that responsiveness in the sparsely innervated aorta but not in small mesenteric resistance arteries or the proximal (conductance) portion of the caudal artery, both of which are densely innervated. This suggests that the increased expression of alpha adrenergic receptors after long-term exposure to Ang II as previously reported for aortic smooth muscle, is prevented in densely innervated arteries, likely due to long-term Ang II-mediated increase in sympathetic neural traffic to those vessels. Third, the same high dose of Ang II impaired aortic relaxation in response to the nitric oxide (NO) donor nitroprusside without impairing aortic endothelium-dependent relaxation. NO is the main relaxing substance released by aortic endothelium. Accordingly, it is possible that this dose of Ang II is also associated with enhanced release of and/or enhanced smooth muscle responsiveness to other endothelial relaxing substances in a compensatory capacity.
Collapse
Affiliation(s)
- Phillip G. Kopf
- Department of PharmacologyMidwestern UniversityDowners GroveIllinois
| | - Laura E. Phelps
- Department of PharmacologyMidwestern UniversityDowners GroveIllinois
| | - Chad D. Schupbach
- Department of PharmacologyMidwestern UniversityDowners GroveIllinois
| | - Alan K. Johnson
- Departments of Psychological and Brain SciencesHealth and Human Physiology, and Pharmacologythe University of IowaIowa CityIowa
| | - Jacob D. Peuler
- Department of PharmacologyMidwestern UniversityDowners GroveIllinois
| |
Collapse
|
3
|
Rippe C, Zhu B, Krawczyk KK, Bavel EV, Albinsson S, Sjölund J, Bakker ENTP, Swärd K. Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep 2017; 7:1334. [PMID: 28465505 PMCID: PMC5430981 DOI: 10.1038/s41598-017-01392-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a dominating risk factor for cardiovascular disease. To characterize the genomic response to hypertension, we administered vehicle or angiotensin II to mice and performed gene expression analyses. AngII treatment resulted in a robust increase in blood pressure and altered expression of 235 genes in the aorta, including Gucy1a3 and Gucy1b3 which encode subunits of soluble guanylyl cyclase (sGC). Western blotting and immunohistochemistry confirmed repression of sGC associated with curtailed relaxation via sGC activation. Analysis of transcription factor binding motifs in promoters of differentially expressed genes identified enrichment of motifs for RBPJ, a component of the Notch signaling pathway, and the Notch coactivators FRYL and MAML2 were reduced. Gain and loss of function experiments demonstrated that JAG/NOTCH signaling controls sGC expression together with MAML2 and FRYL. Reduced expression of sGC, correlating with differential expression of MAML2, in stroke prone and spontaneously hypertensive rats was also seen, and RNA-Seq data demonstrated correlations between JAG1, NOTCH3, MAML2 and FRYL and the sGC subunits GUCY1A3 and GUCY1B3 in human coronary artery. Notch signaling thus provides a constitutive drive on expression of the major nitric oxide receptor (GUCY1A3/GUCY1B3) in arteries from mice, rats, and humans, and this control mechanism is disturbed in hypertension.
Collapse
Affiliation(s)
- Catarina Rippe
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Baoyi Zhu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Ed Van Bavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Jonas Sjölund
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Crassous PA, Couloubaly S, Huang C, Zhou Z, Baskaran P, Kim DD, Papapetropoulos A, Fioramonti X, Durán WN, Beuve A. Soluble guanylyl cyclase is a target of angiotensin II-induced nitrosative stress in a hypertensive rat model. Am J Physiol Heart Circ Physiol 2012; 303:H597-604. [PMID: 22730391 DOI: 10.1152/ajpheart.00138.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) by activating soluble guanylyl cyclase (sGC) is involved in vascular homeostasis via induction of smooth muscle relaxation. In cardiovascular diseases (CVDs), endothelial dysfunction with altered vascular reactivity is mostly attributed to decreased NO bioavailability via oxidative stress. However, in several studies, relaxation to NO is only partially restored by exogenous NO donors, suggesting sGC impairment. Conflicting results have been reported regarding the nature of this impairment, ranging from decreased expression of one or both subunits of sGC to heme oxidation. We showed that sGC activity is impaired by thiol S-nitrosation. Recently, angiotensin II (ANG II) chronic treatment, which induces hypertension, was shown to generate nitrosative stress in addition to oxidative stress. We hypothesized that S-nitrosation of sGC occurs in ANG II-induced hypertension, thereby leading to desensitization of sGC to NO hence vascular dysfunction. As expected, ANG II infusion increases blood pressure, aorta remodeling, and protein S-nitrosation. Intravital microscopy indicated that cremaster arterioles are resistant to NO-induced vasodilation in vivo in anesthetized ANG II-treated rats. Concomitantly, NO-induced cGMP production decreases, which correlated with S-nitrosation of sGC in hypertensive rats. This study suggests that S-nitrosation of sGC by ANG II contributes to vascular dysfunction. This was confirmed in vitro by using A7r5 smooth muscle cells infected with adenoviruses expressing sGC or cysteine mutants: ANG II decreases NO-stimulated activity in the wild-type but not in one mutant, C516A. This result indicates that cysteine 516 of sGC mediates ANG II-induced desensitization to NO in cells.
Collapse
Affiliation(s)
- Pierre-Antoine Crassous
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Buys ES, Raher MJ, Kirby A, Shahid M, Mohd S, Baron DM, Hayton SR, Tainsh LT, Sips PY, Rauwerdink KM, Yan Q, Tainsh RET, Shakartzi HR, Stevens C, Decaluwé K, Rodrigues-Machado MDG, Malhotra R, Van de Voorde J, Wang T, Brouckaert P, Daly MJ, Bloch KD. Genetic modifiers of hypertension in soluble guanylate cyclase α1-deficient mice. J Clin Invest 2012; 122:2316-25. [PMID: 22565307 DOI: 10.1172/jci60119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 03/21/2012] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO) plays an essential role in regulating hypertension and blood flow by inducing relaxation of vascular smooth muscle. Male mice deficient in a NO receptor component, the α1 subunit of soluble guanylate cyclase (sGCα1), are prone to hypertension in some, but not all, mouse strains, suggesting that additional genetic factors contribute to the onset of hypertension. Using linkage analyses, we discovered a quantitative trait locus (QTL) on chromosome 1 that was linked to mean arterial pressure (MAP) in the context of sGCα1 deficiency. This region is syntenic with previously identified blood pressure-related QTLs in the human and rat genome and contains the genes coding for renin. Hypertension was associated with increased activity of the renin-angiotensin-aldosterone system (RAAS). Further, we found that RAAS inhibition normalized MAP and improved endothelium-dependent vasorelaxation in sGCα1-deficient mice. These data identify the RAAS as a blood pressure-modifying mechanism in a setting of impaired NO/cGMP signaling.
Collapse
Affiliation(s)
- Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res 2011; 34:665-73. [PMID: 21512515 DOI: 10.1038/hr.2011.39] [Citation(s) in RCA: 348] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic arterial hypertension is a highly prevalent cardiovascular risk factor that causes significant morbidity and mortality, and is becoming an increasingly common health problem because of the increasing longevity and prevalence of predisposing factors such as sedentary lifestyle, obesity and nutritional habits. Further complicating the impact of this disease, mild and moderate hypertension are usually asymptomatic, and their presence (and the subsequent increase in cardiovascular risk) is often unrecognized. The pathophysiology of hypertension involves a complex interaction of multiple vascular effectors including the activation of the sympathetic nervous system, of the renin-angiotensin-aldosterone system and of the inflammatory mediators. Subsequent vasoconstriction and inflammation ensue, leading to vessel wall remodeling and, finally, to the formation of atherosclerotic lesions as the hallmark of advanced disease. Oxidative stress and endothelial dysfunction are consistently observed in hypertensive subjects, but emerging evidence suggests that they also have a causal role in the molecular processes leading to hypertension. Reactive oxygen species (ROS) may directly alter vascular function or cause changes in vascular tone by several mechanisms including altered nitric oxide (NO) bioavailability or signaling. ROS-producing enzymes involved in the increased vascular oxidative stress observed during hypertension include the NADPH oxidase, xanthine oxidase, the mitochondrial respiratory chain and an uncoupled endothelial NO synthase. In the current review, we will summarize our current understanding of the molecular mechanisms in the development of hypertension with an emphasis on oxidative stress and endothelial dysfunction.
Collapse
Affiliation(s)
- Eberhard Schulz
- II. Medizinische Klinik, Universitätsmedizin Mainz, Kardiologie, Angiologie und Internistische Intensivmedizin, Mainz, Germany
| | | | | |
Collapse
|
7
|
Schulz E, Jansen T, Wenzel P, Daiber A, Münzel T. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal 2008; 10:1115-26. [PMID: 18321209 DOI: 10.1089/ars.2007.1989] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial dysfunction in the setting of cardiovascular risk factors such as hypercholesterolemia, diabetes mellitus, chronic smoking, as well hypertension, is, at least in part, dependent of the production of reactive oxygen species (ROS) and the subsequent decrease in vascular bioavailability of nitric oxide (NO). ROS-producing enzymes involved in increased oxidative stress within vascular tissue include NADPH oxidase, xanthine oxidase, and mitochondrial superoxide producing enzymes. Superoxide produced by the NADPH oxidase may react with NO, thereby stimulating the production of the NO/superoxide reaction product peroxynitrite. Peroxynitrite in turn has been shown to uncouple eNOS, therefore switching an antiatherosclerotic NO producing enzyme to an enzyme that may accelerate the atherosclerotic process by producing superoxide. Increased oxidative stress in the vasculature, however, is not restricted to the endothelium and also occurs within the smooth muscle cell layer. Increased superoxide production has important consequences with respect to signaling by the soluble guanylate cyclase and the cGMP-dependent kinase I, which activity and expression is regulated in a redox-sensitive fashion. The present review will summarize current concepts concerning eNOS uncoupling, with special focus on the role of tetrahydrobiopterin in mediating eNOS uncoupling.
Collapse
Affiliation(s)
- Eberhard Schulz
- II Medizinische Klinik, Mainz, Kardiologie, Angiologie und Internistische Intensivmedizin, Mainz, Germany
| | | | | | | | | |
Collapse
|
8
|
Vanecková I, Kramer HJ, Novotná J, Kazdová L, Opocenský M, Bader M, Ganten D, Cervenka L. Roles of Nitric Oxide and Oxidative Stress in the Regulation of Blood Pressure and Renal Function in Prehypertensive Ren-2 Transgenic Rats. Kidney Blood Press Res 2005; 28:117-26. [PMID: 15795515 DOI: 10.1159/000084649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2004] [Indexed: 11/19/2022] Open
Abstract
AIMS The present study was performed to evaluate the role of nitric oxide (NO) and its interaction with superoxide anion (O2-) in the regulation of blood pressure (BP) and renal function during the developmental phase of hypertension in Ren-2 transgenic rats (TGR). The first aim was to compare BP and renal functional responses to acute NO synthase (NOS) inhibition achieved by intravenous (i.v.) infusion of Nomega-nitro-L-arginine-methyl ester (L-NAME) in prehypertensive heterozygous TGR and in transgene-negative Hannover Sprague-Dawley (HanSD) rats. The second aim was to evaluate whether scavenging of O2- by infusion of the superoxide dismutase mimetic tempol increases NO bioavailability which therefore should augment BP and renal functional responses to L-NAME. METHODS Rats were anesthetized, prepared for clearance experiments and BP and renal functional responses were evaluated in response to i.v. L-NAME administration (20 microg.100 g(-1).min(-1)) without or with tempol pretreatment (i.v., 300 microg.100 g(-1).min(-1)). In renal cortical tissue, nitrotyrosine protein expression was assessed by immunoblotting as marker of O2- production and urinary 8-epi-PGF(2alpha) excretion as marker of intrarenal oxidative stress was assessed by enzyme immunoassay. RESULTS BP, glomerular filtration rate (GFR), renal plasma flow (RPF) and sodium excretion were similar in TGR and HanSD. L-NAME infusion induced greater increases in BP in TGR than in HanSD (+42 +/- 4 vs. +25 +/- 3 mmHg, p < 0.05). In the absence of a significant change in GFR, L-NAME caused similar decreases in RPF (-32 +/- 6 and -25 +/- 4%, p < 0.05) in TGR and HanSD. Despite significantly higher renocortical expression of nitrotyrosine and urinary 8-epi-PGF2alpha excretion in TGR than in HanSD, pretreatment with tempol did not augment the rise in BP and the decrease in RPF induced by L-NAME. CONCLUSIONS The greater BP response to L-NAME in TGR suggests that prehypertensive TGR exhibit an enhanced NO activity in the systemic vasculature as compared with HanSD. Despite increased intrarenal oxidative stress in TGR, the dependency of the intrarenal vascular tone on NO appears to be similar in TGR and HanSD. The lack of a compensatory increase in renal NO activity may partially account for the enhanced renal vascular response to ANG II present in TGR.
Collapse
Affiliation(s)
- Ivana Vanecková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bidmon HJ, Starbatty J, Görg B, Zilles K, Behrends S. Cerebral expression of the α2-subunit of soluble guanylyl cyclase is linked to cerebral maturation and sensory pathway refinement during postnatal development. Neurochem Int 2004; 45:821-32. [PMID: 15312976 DOI: 10.1016/j.neuint.2004.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soluble guanylyl cylase (sGC) has been identified for being a receptor for the gaseous transmitters nitric oxide and carbon monoxide. Currently four subunits alpha1, alpha2, beta1, and beta2 have been characterized. Heterodimers of alpha and beta-subunits as well as homodimers of the beta2-subunit are known to constitute functional sGC which use GTP to form cGMP a potent signal molecule in a multitude of second messenger cascades. Since NO-cGMP signaling plays a pivotal role in neuronal development we analyzed the maturational expression pattern of the newly characterized alpha2-subunit of sGC within the brain of Wistar rats by means of RNase protection assay and immunohistochemistry. alpha2-subunit mRNA as well as immunoreactive alpha2-protein increased during postnatal cerebral development. Topographical analysis revealed a selective high expression of the alpha2-subunit in the choroid plexus and within developing sensory systems involving the olfactory and somatosensory system of the forebrain as well as parts of the auditory and visual system within the hindbrain. In cultured cortical neurons the alpha2-subunit was localized to the cell membrane, especially along neuronal processes. During the first 11 days of postnatal development several cerebral regions showed a distinct expression of the alpha2-subunit which was not paralleled by the alpha1/beta1-subunits especially within the developing thalamo-cortical circuitries of the somatosensory system. However, at later developmental stages all three subunits became more homogenously distributed among most cerebral regions, indicating that functional alpha1/beta1 and alpha2/beta1 heterodimers of sGC could be formed. Our findings indicate that the alpha2-subunit is an essential developmentally regulated constituent of cerebral sensory systems during maturation. In addition the alpha2-subunit may serve other functions than forming a functional heterodimer of sGC during the early phases of sensory pathway refinement.
Collapse
Affiliation(s)
- Hans-J Bidmon
- C.& O. Vogt Institute of Brain Research, Heinrich-Heine-University, University Street 1, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
10
|
Vanecková I, Cahová M, Kramer HJ, Husková Z, Skaroupková P, Komers R, Bader M, Ganten D, Cervenka L. Acute Effects of Cyclooxygenase-2 Inhibition on Renal Function in Heterozygous Ren-2-Transgenic Rats on Normal or Low Sodium Intake. Kidney Blood Press Res 2004; 27:203-10. [PMID: 15273422 DOI: 10.1159/000079865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Since there are no data available so far on the role of renal cyclooxygenase-2 (COX-2) in hypertensive Ren-2-transgenic rats (TGR), in the present study we evaluated renal cortical COX-2 protein expression and prostaglandin E2 (PGE2) concentrations as well as renal functional responses to acute COX-2 inhibition in male heterozygous TGR and in normotensive Hannover Sprague-Dawley (HanSD) rats fed either a normal-sodium (NS) or a low-sodium (LS) diet. METHODS In rats fed either the NS or the LS diet for 12 days and prepared for clearance experiments with left ureteral catheterization, the renal functional responses of the left kidney were evaluated after intrarenal COX-2 inhibition with DuP-697 or NS-398. In renal cortical tissue, COX-2 protein expression was assessed by immunoblotting, and the concentration of PGE2 as a marker of COX-2 activity was determined by enzyme immunoassay. Mean arterial pressure in the right femoral artery was monitored by means of a pressure transducer. RESULTS In heterozygous TGR, to our surprise, the LS diet normalized the mean arterial pressure. Despite significantly higher renocortical expression of COX-2 and PGE2 concentrations as well as urinary PGE2 excretion in TGR as compared with HanSD rats kept on the NS diet, selective intrarenal COX-2 inhibition did not influence renal function either in TGR or in HanSD rats. The LS diet increased renocortical COX-2 expression and PGE2 concentrations as well as urinary PGE2 excretion significantly stronger in TGR than in HanSD rats. Regardless of these increases, the intrarenal COX-2 inhibition caused comparable decreases in glomerular filtration rate, in absolute and fractional sodium excretion, as well as in urinary PGE2 excretion in TGR and HanSD rats kept on the LS diet. CONCLUSIONS The present data show that a LS diet normalizes the mean arterial pressure in heterozygous male TGR. This first study on the role of renal COX-2 in TGR also demonstrates that COX-2-derived vasodilatory prostanoids do not act as renal compensatory vasodilator and natriuretic substances in this model of hypertension.
Collapse
Affiliation(s)
- Ivana Vanecková
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lemos VS, Côrtes SF, Silva DMR, Campagnole-Santos MJ, Santos RAS. Angiotensin-(1-7) is involved in the endothelium-dependent modulation of phenylephrine-induced contraction in the aorta of mRen-2 transgenic rats. Br J Pharmacol 2002; 135:1743-8. [PMID: 11934815 PMCID: PMC1573295 DOI: 10.1038/sj.bjp.0704630] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The contribution of the local vascular production of angiotensin-(1-7) [Ang-(1-7)] to the control of alpha-adrenergic-induced contractions in the aorta of Sprague-Dawley (SD) and TGR(mRen-2)27 [mRen-2] rats was studied. 2. In mRen-2 rats, contractile responses to phenylephrine were diminished as compared to control SD rats in endothelium containing but not in endothelium-denuded vessels. L-NAME increased contractile responses to phenylephrine in mRen-2 rats and, after nitric oxide synthase blockade, responses to phenylephrine became comparable in both strains. 3. Inhibition of angiotensin-converting enzyme (ACE) by captopril potentiated contractile responses in mRen-2 rats and diminished contractile responses in SD rats, both effects being dependent on the presence of a functional endothelium. The effect of captopril in mRen-2 rats was abolished in vessels pre-incubated with Ang-(1-7). 4. Blockade of Ang-(1-7) and bradykinin (BK) receptors by A-779 and HOE 140 respectively, increased phenylephrine-induced contraction in mRen-2, but not in SD rats. This effect was seen only in endothelium-containing vessels. 5. Angiotensin II AT(1) and AT(2) receptor blockade by CV 11974 and PD 123319 did not affect the contractile responses to phenylephrine in aortas of transgenic animals but diminished the response in SD rats. This effect was only seen in the presence of a functional endothelium. 6. It is concluded that the decreased contractile responses to phenylephrine in aortas of mRen-2 rats was dependent on an intact endothelium, the local release and action of Ang-(1-7) and bradykinin.
Collapse
MESH Headings
- Analysis of Variance
- Angiotensin I/pharmacology
- Angiotensin I/physiology
- Angiotensin Receptor Antagonists
- Animals
- Animals, Genetically Modified
- Antihypertensive Agents/pharmacology
- Aorta/drug effects
- Aorta/physiology
- Bradykinin Receptor Antagonists
- Captopril/pharmacology
- Drug Interactions
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Male
- Mice
- Peptide Fragments/pharmacology
- Peptide Fragments/physiology
- Phenylephrine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Adrenergic, alpha/physiology
- Receptors, Angiotensin/physiology
- Receptors, Bradykinin/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Virgínia S Lemos
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | |
Collapse
|
12
|
Witte K, Jacke K, Stahrenberg R, Arlt G, Reitenbach I, Schilling L, Lemmer B. Dysfunction of soluble guanylyl cyclase in aorta and kidney of Goto-Kakizaki rats: influence of age and diabetic state. Nitric Oxide 2002; 6:85-95. [PMID: 11829539 DOI: 10.1006/niox.2001.0363] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes mellitus is frequently associated with arterial hypertension. The mechanisms involved in this association are not known in detail, but endothelial dysfunction and a blunted vascular response to endogenous vasodilators are thought to play a role. In the present study we investigated the in vitro activity of vascular and renal soluble guanylyl cyclase in type 2 diabetic Goto-Kakizaki rats aged 5, 15, and 30 weeks, in comparison with age-matched Wistar controls. Blood pressure was monitored by radiotelemetry, and serum glucose and insulin concentrations were measured by standard assays. Goto-Kakizaki rats of all age groups had serum glucose concentrations significantly higher than those of corresponding Wistar controls. Serum insulin was unchanged until 15 weeks of age and was elevated in the 30-week-old diabetic rats. Blood pressure in Goto-Kakizaki rats was significantly higher than that in Wistar controls, and heart rate was significantly lower. Mesenteric arteries of diabetic rats showed a blunted relaxation in response to acetylcholine and sodium nitroprusside. In aortic tissue from Wistar rats an age-dependent increase was found in nitric oxide-stimulated cGMP formation, which was absent in the diabetic animals. Moreover, the maximum activity of soluble guanylyl cyclase was significantly lower in Goto-Kakizaki rats in all age groups studied. In renal tissue no differences were found between diabetic and control rats, except at 30 weeks of age when Goto-Kakizaki rats showed a significant reduction in basal and stimulated guanylyl cyclase activity. In conclusion, the present study shows a persistent reduction in vascular nitric oxide-sensitive guanylyl cyclase in Goto-Kakizaki rats, which occurred shortly after weaning and may contribute to the elevation in blood pressure in this strain of genetically diabetic rats.
Collapse
Affiliation(s)
- Klaus Witte
- Institute of Pharmacology & Toxicology, Ruprecht-Karls-University Heidelberg, D-68169 Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Jacke K, Witte K, Lemmer B. Mechanisms involved in the blunted nitric oxide-cGMP pathway in hypertensive TGR(mREN2)27 rats. Eur J Pharmacol 2001; 415:27-30. [PMID: 11245848 DOI: 10.1016/s0014-2999(01)00806-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In hypertensive TGR(mREN2)27 rats (TGR), the subsensitivity of vascular guanylyl cyclase to nitric oxide could depend on oxidized heme, reduced heme content, or decreased expression of the enzyme. In this study, enzyme activity was stimulated by protoporphyrin-IX, which acts independently of heme, and expression was assessed by Western blot analysis. In TGR aorta, maximum stimulation of soluble guanylyl cyclase by protoporphyrin-IX was 40% lower than in Sprague-Dawley controls, and expression of the beta1-subunit of the enzyme was reduced by 50% (P<0.05, t-test). In conclusion, decreased expression of soluble guanylyl cyclase leads to a blunted response of the nitric oxide-cGMP (guanosine 3',5'-cyclic monophosphate) pathway in TGR aorta.
Collapse
Affiliation(s)
- K Jacke
- Faculty of Clinical Medicine, Institute of Pharmacology and Toxicology, Ruprecht-Karls-University Heidelberg, Maybachstrasse 14-16, D-68169 Mannheim, Germany
| | | | | |
Collapse
|