1
|
Taguchi A, Uraki S, Akiyama M, Nagao Y, Watanabe K, Mizukami Y, Ohta Y. Unexplained Hypokalemia in a Patient With Obesity Harboring an Armadillo Repeat-Containing 5 (ARMC5) Gene Variant: A Case Report. Cureus 2025; 17:e79326. [PMID: 40130155 PMCID: PMC11930645 DOI: 10.7759/cureus.79326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Hypokalemia of unknown cause can often be challenging to diagnose. Although armadillo repeat-containing 5 (ARMC5) gene mutations are primarily associated with primary bilateral macronodular adrenal hyperplasia and Cushing's syndrome, their potential role in other endocrine disorders remains largely unexplored. A 50-year-old man presented with limb weakness and persistent hypokalemia. Comprehensive screening tests, including imaging and endocrinological evaluations, ruled out primary aldosteronism, Cushing's syndrome, and other common causes of hypokalemia. Genetic analysis revealed a heterozygous ARMC5 variant. As the patient also presented with obesity, and given that previous mouse and in vitro studies suggest possible interactions between ARMC5 and mineralocorticoid pathways, we hypothesize that the mechanism of hypokalemia may involve adipose tissue function. This case describes an association between an ARMC5 variant, unexplained hypokalemia, and obesity. Although a direct causal relationship cannot be established from a single case, the systematic exclusion of common causes and known ARMC5 functions in mineralocorticoid pathways suggest potential mechanistic links. This observation warrants further investigation, particularly through comprehensive screening of electrolyte disorders in patients with ARMC5 variants, analysis of mineralocorticoid activity in adipose tissue samples from these patients, and molecular studies examining ARMC5's direct role in the regulation of mineralocorticoids in adipose tissue.
Collapse
Affiliation(s)
- Akihiko Taguchi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube, JPN
| | - Shinsuke Uraki
- Department of Diabetes, Endocrinology and Metabolism, Horiguchi Memorial Hospital, Wakayama, JPN
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, JPN
| | - Masaru Akiyama
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube, JPN
| | - Yuko Nagao
- Health Science Center, Yamaguchi University, Ube, JPN
| | - Kenji Watanabe
- Institute of Gene Research, Science Research Center, Yamaguchi University, Ube, JPN
| | - Yoichi Mizukami
- Institute of Gene Research, Science Research Center, Yamaguchi University, Ube, JPN
| | - Yasuharu Ohta
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube, JPN
| |
Collapse
|
2
|
Inozemtseva LS, Yatsenko KA, Glazova NY, Kamensky AA, Myasoedov NF, Levitskaya NG, Grivennikov IA, Dolotov OV. Antidepressant-like and antistress effects of the ACTH(4-10) synthetic analogs Semax and Melanotan II on male rats in a model of chronic unpredictable stress. Eur J Pharmacol 2024; 984:177068. [PMID: 39442746 DOI: 10.1016/j.ejphar.2024.177068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Current antidepressant therapy shows substantial limitations, and there is an urgent need for the development of new treatment strategies for depression. Stressful events and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis play an important role in the pathogenesis of depression. HPA axis activity is self-regulated by negative feedback at several levels including adrenocorticotropic hormone (ACTH)-mediated feedback. Here, we investigated whether noncorticotropic synthetic analogs of the ACTH(4-10) fragment, ACTH(4-7)-Pro-Gly-Pro (Semax) and Ac-Nle4-cyclo[Asp5-His6-D-Phe7-Arg8-Trp9-Lys10]ACTH(4-10)-NH2 (Melanotan II (MTII), a potent agonist of melanocortin receptors), have potential antidepressant activity in a chronic unpredictable stress (CUS) rat model of depression. Stressed and control male adult Sprague-Dawley rats received daily intraperitoneal injections of saline or a low dose (60 nmol/kg of body weight (BW)) of Semax or MTII. Rats were monitored for BW and hedonic status, as measured in the sucrose preference test. We found that chronic treatment with Semax and MTII reversed or substantially attenuated CUS-induced anhedonia, BW gain suppression, adrenal hypertrophy and a decrease in the hippocampal levels of BDNF. In the forced swim test, no effects of the CUS procedure or peptides on the duration of rat immobility were detected. Our findings show that in the CUS paradigm, systemically administered ACTH(4-10) analogs Semax and MTII exert antidepressant-like effects on anhedonia and hippocampal BDNF levels, and attenuate markers of chronic stress load, at least in male rats. The results support the argument that ACTH(4-10) analogs and other noncorticotropic melanocortins may have promising therapeutic potential for the treatment and prevention of depression and other stress-related pathologies.
Collapse
Affiliation(s)
| | | | - Natalya Yu Glazova
- National Research Center "Kurchatov Institute", Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey A Kamensky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Natalia G Levitskaya
- National Research Center "Kurchatov Institute", Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Oleg V Dolotov
- National Research Center "Kurchatov Institute", Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
3
|
Kim EM, Quinn JG, Reid RE, O'Hare E. Evidence for a feeding related association between melanocortin in the NTS and Neuropeptide-Y in the PVN. Appetite 2023; 188:106618. [PMID: 37257508 DOI: 10.1016/j.appet.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Melanocortin and neuropeptide-Y (NPY) are both involved in feeding and energy regulation, and they have opposite effects in the paraventricular nucleus of the hypothalamus (PVN). The present study examined an interaction between melanocortin in the nucleus of the solitary tract (NTS) and NPY in the PVN. Male Sprague-Dawley rats were implanted with cannulae in the injection sites of interest. In Experiment 1, subjects received either the melanocortin 3/4-receptor (MC3/4) antagonist SHU9119 (0, 10, 50 and 100 pmol/0.5 μl) or the MC3/4 agonist MTII (0, 10, 50, 100 and 200 pmol/0.5 μl) into the NTS. Food intake was measured at 1, 2, 4, 6 and 24-h post-injection. Administration of SHU9119 into the NTS significantly and dose-dependently increased food intake at 1, 2, 4, 6 and 6-24-h, and administration of MTII into the NTS significantly and dose-dependently decreased 24-h free feeding. In Experiment 2, subjects received the MC3/4 agonist MTII (0, 10, 50, 100 and 200 pmol/0.5 μl) into the NTS just prior to NPY (0 and 1μg/0.5 μl) in the PVN. PVN injection of NPY stimulated feeding, and administration of MTII (50, 100 and 200 pmol) into the NTS significantly and dose-dependently decreased NPY-induced feeding at 2, 4, 6 and 6-24-h. These data suggest that there could be a neuronal association between melanocortin in the NTS and NPY in the PVN, and that the melanocortin system in the NTS has an antagonistic effect on NPY-induced feeding in the PVN.
Collapse
Affiliation(s)
- E-M Kim
- School of Psychology, Ulster University, Cromore Road, Coleraine, Northern Ireland, UK.
| | - J G Quinn
- School of Medicine, Queen's University Belfast, Northern Ireland, UK
| | - R E Reid
- School of Psychology, Dublin Business School, Ireland
| | - E O'Hare
- School of Psychology, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
4
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
5
|
Bacon EK, Donnelly CG, Bellone RR, Finno CJ, Velie BD. Melanocortin‐1 receptor influence in equine opioid sensitivity. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elouise K. Bacon
- Equine Genetics and Genomics Group School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Callum G. Donnelly
- Department of Population Health and Reproduction School of Veterinary Medicine University of California Davis California USA
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction School of Veterinary Medicine University of California Davis California USA
- Veterinary Genetics Laboratory School of Veterinary Medicine University of California Davis California USA
| | - Carrie J. Finno
- Department of Population Health and Reproduction School of Veterinary Medicine University of California Davis California USA
| | - Brandon D. Velie
- Equine Genetics and Genomics Group School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| |
Collapse
|
6
|
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. ADDICTION NEUROSCIENCE 2022; 2:100011. [PMID: 37220637 PMCID: PMC10201992 DOI: 10.1016/j.addicn.2022.100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesolimbic dopamine system is the primary neural circuit mediating motivation, reinforcement, and reward-related behavior. The activity of this system and multiple behaviors controlled by it are affected by changes in feeding and body weight, such as fasting, food restriction, or the development of obesity. Multiple different peptides and hormones that have been implicated in the control of feeding and body weight interact with the mesolimbic dopamine system to regulate many different dopamine-dependent, reward-related behaviors. In this review, we summarize the effects of a selected set of feeding-related peptides and hormones acting within the ventral tegmental area and nucleus accumbens to alter feeding, as well as food, drug, and social reward.
Collapse
Affiliation(s)
- Anna I. Dunigan
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron G. Roseberry
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
7
|
Goit RK, Taylor AW, Yin Lo AC. The central melanocortin system as a treatment target for obesity and diabetes: A brief overview. Eur J Pharmacol 2022; 924:174956. [DOI: 10.1016/j.ejphar.2022.174956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
8
|
The "Adipo-Cerebral" Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients 2021; 13:nu13103434. [PMID: 34684432 PMCID: PMC8539184 DOI: 10.3390/nu13103434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overweight and obesity in children and adolescents are overwhelming problems in western countries. Adipocytes, far from being only fat deposits, are capable of endocrine functions, and the endocrine activity of adipose tissue, resumable in adipokines production, seems to be a key modulator of central nervous system function, suggesting the existence of an “adipo-cerebral axis.” This connection exerts a key role in children growth and puberty development, and it is exemplified by the leptin–kisspeptin interaction. The aim of this review was to describe recent advances in the knowledge of adipose tissue endocrine functions and their relations with nutrition and growth. The peculiarities of major adipokines are briefly summarized in the first paragraph; leptin and its interaction with kisspeptin are focused on in the second paragraph; the third paragraph deals with the regulation of the GH-IGF axis, with a special focus on the model represented by growth hormone deficiency (GHD); finally, old and new nutritional aspects are described in the last paragraph.
Collapse
|
9
|
Antistress Action of Melanocortin Derivatives Associated with Correction of Gene Expression Patterns in the Hippocampus of Male Rats Following Acute Stress. Int J Mol Sci 2021; 22:ijms221810054. [PMID: 34576218 PMCID: PMC8469576 DOI: 10.3390/ijms221810054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/19/2023] Open
Abstract
Natural melanocortins (MCs) have been used in the successful development of drugs with neuroprotective properties. Here, we studied the behavioral effects and molecular genetic mechanisms of two synthetic MC derivatives-ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP under normal and acute restraint stress (ARS) conditions. Administration of Semax or ACTH(6-9)PGP (100 μg/kg) to rats 30 min before ARS attenuated ARS-induced behavioral alterations. Using high-throughput RNA sequencing (RNA-Seq), we identified 1359 differentially expressed genes (DEGs) in the hippocampus of vehicle-treated rats subjected to ARS, using a cutoff of >1.5 fold change and adjusted p-value (Padj) < 0.05, in samples collected 4.5 h after the ARS. Semax administration produced > 1500 DEGs, whereas ACTH(6-9)PGP administration led to <400 DEGs at 4.5 h after ARS. Nevertheless, ~250 overlapping DEGs were identified, and expression of these DEGs was changed unidirectionally by both peptides under ARS conditions. Modulation of the expression of genes associated with biogenesis, translation of RNA, DNA replication, and immune and nervous system function was produced by both peptides. Furthermore, both peptides upregulated the expression levels of many genes that displayed decreased expression after ARS, and vice versa, the MC peptides downregulated the expression levels of genes that were upregulated by ARS. Consequently, the antistress action of MC peptides may be associated with a correction of gene expression patterns that are disrupted during ARS.
Collapse
|
10
|
Copperi F, Kim JD, Diano S. Role of the Melanocortin System in the Central Regulation of Cardiovascular Functions. Front Physiol 2021; 12:725709. [PMID: 34512392 PMCID: PMC8424695 DOI: 10.3389/fphys.2021.725709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence indicates that the melanocortin system is not only a central player in energy homeostasis, food intake and glucose level regulation, but also in the modulation of cardiovascular functions, such as blood pressure and heart rate. The melanocortins, and in particular α- and γ-MSH, have been shown to exert their cardiovascular activity both at the central nervous system level and in the periphery (e.g., in the adrenal gland), binding their receptors MC3R and MC4R and influencing the activity of the sympathetic nervous system. In addition, some studies have shown that the activation of MC3R and MC4R by their endogenous ligands is able to improve the outcome of cardiovascular diseases, such as myocardial and cerebral ischemia. In this brief review, we will discuss the current knowledge of how the melanocortin system influences essential cardiovascular functions, such as blood pressure and heart rate, and its protective role in ischemic events, with a particular focus on the central regulation of such mechanisms.
Collapse
Affiliation(s)
- Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
11
|
Malik U, Chan LY, Cai M, Hruby VJ, Kaas Q, Daly NL, Craik DJ. Development of novel frog‐skin peptide scaffolds with selectivity towards melanocortin receptor subtypes. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Uru Malik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Minying Cai
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Norelle L. Daly
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
- Australian Institute of Tropical Health and Medicine James Cook University Cairns Queensland Australia
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
12
|
Abstract
Experimental and clinical acute pain research in relation to biological sex and genetics started in the 1980s. Research methods became more powerful and sensitive with the advancement in affordable gene sequencing methods and high-throughput genetic assays. Decades of research has identified several potential pharmaceutical targets, providing insights into future research direction, and understanding of acute pain and opioid analgesic effects in the clinical setting. However, there is insufficient evidence to make generalized recommendations for using genetic tests for clinical practice of acute pain management.
Collapse
Affiliation(s)
- Albert Hyukjae Kwon
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Room H3580, Stanford, CA 94305, USA
| | - Pamela Flood
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Room H3580, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Kertmen H, Celikoglu E, Ozturk OC, Gürer B, Bozkurt H, Kanat MA, Arikok AT, Erguder BI, Sargon MF, Sekerci Z. Comparative effects of methylprednisolone and tetracosactide (ACTH 1-24) on ischemia/reperfusion injury of the rabbit spinal cord. Arch Med Sci 2018; 14:1459-1470. [PMID: 30393502 PMCID: PMC6209702 DOI: 10.5114/aoms.2017.65650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/17/2016] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Tetracosactide is an engineered peptide that applies the same biological impacts as the endogenous adrenocorticotropic hormone. Previous studies indicated that tetracosactide has anti-inflammatory, antioxidant and neurotrophic activity. In this study, we hypothesized that tetracosactide may have protective effects in spinal cord ischemia-reperfusion injury. MATERIAL AND METHODS Rabbits were randomized into the accompanying four groups of eight animals each: group 1 (control), group 2 (ischemia), group 3 (methylprednisolone) and group 4 (tetracosactide). In the control group, just a laparotomy was performed. In the various groups, the spinal cord ischemia model was made by the impediment of the aorta only caudal to the renal vein. Neurological assessment was conducted with the Tarlov scoring system. Levels of myeloperoxidase, malondialdehyde and catalase were analyzed, similar to the activities of xanthine oxidase and caspase-3. Histopathological and ultrastructural assessments were additionally performed. RESULTS After ischemia-reperfusion injury, increments were found in the tissue myeloperoxidase levels (p < 0.001), malondialdehyde levels (p < 0.001), xanthine oxidase action (p < 0.001) and caspase-3 movement (p < 0.001). Conversely, both serum and tissue catalase levels were diminished (p < 0.001 for both). After the administration of tetracosactide, declines were seen in the tissue myeloperoxidase levels (p < 0.001), malondialdehyde levels (p = 0.003), xanthine oxidase action (p < 0.001) and caspase-3 movement (p < 0.001). Conversely, both the serum and tissue catalase levels were expanded (p < 0.001). Besides, tetracosactide treatment indicated enhanced results related to the histopathological scores (p < 0.001), the ultra-structural score (p = 0.008) and the Tarlov scores (p < 0.001). CONCLUSIONS The findings showed for the first time that tetracosactide shows significant neuroprotective activity against ischemia-reperfusion injury of the spinal cord.
Collapse
Affiliation(s)
- Hayri Kertmen
- Neurosurgery Clinic, Diskapi Yildirim Beyazit Education and Research Hospital, Ministry of Health, Ankara, Turkey
| | - Erhan Celikoglu
- Neurosurgery Clinic, Fatih Sultan Mehmet Education and Research Hospital, Ministry of Health, Istanbul, Turkey
| | - Ozden Caglar Ozturk
- Neurosurgery Clinic, Mardin Nusaybin State Hospital, Ministry of Health, Mardin, Turkey
| | - Bora Gürer
- Neurosurgery Clinic, Fatih Sultan Mehmet Education and Research Hospital, Ministry of Health, Istanbul, Turkey
| | - Huseyin Bozkurt
- Department of Neurosurgery, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Mehmet Ali Kanat
- Refik Saydam National Public Health Agency, Ministry of Health, Ankara, Turkey
| | - Ata Turker Arikok
- Department of Pathology, Diskapi Yildirim Beyazit Education and Research Hospital, Ministry of Health, Ankara, Turkey
| | - Berrin Imge Erguder
- Department of Biochemistry, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Zeki Sekerci
- Neurosurgery Clinic, Diskapi Yildirim Beyazit Education and Research Hospital, Ministry of Health, Ankara, Turkey
| |
Collapse
|
14
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
15
|
Perez TE, Mealey KL, Burke NS, Grubb TL, Court MH, Greene SA. Relationship between the melanocortin-1 receptor (MC1R) variant R306ter and physiological responses to mechanical or thermal stimuli in Labrador Retriever dogs. Vet Anaesth Analg 2017; 44:370-374. [PMID: 28214221 DOI: 10.1016/j.vaa.2016.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/09/2016] [Accepted: 05/15/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Variants in the MC1R gene have been associated with red hair color and sensitivity to pain in humans. The study objective was to determine if a relationship exists between MC1R genotype and physiological thermal or mechanical nociceptive thresholds in Labrador Retriever dogs. STUDY DESIGN Prospective experimental study. ANIMALS Thirty-four Labrador Retriever dogs were included in the study following public requests for volunteers. Owner consent was obtained and owners verified that their dog was apparently not experiencing pain and had not been treated for pain during the previous 14 days. The study was approved by the Institutional Animal Care and Use Committee. METHODS Nociceptive thresholds were determined from a mean of three thermal and five mechanical replications using commercially available algometers. Each dog was genotyped for the previously described MC1R variant (R306ter). Data were analyzed using one-way anova with post hoc comparisons using Tukey's test (p < 0.05). RESULTS Thirteen dogs were homozygous wild-type (WT/WT), nine were heterozygous (WT/R306ter), and eight were homozygous variant (R306ter/R306ter) genotype. Four dogs could not be genotyped. A significant difference (p = 0.04) in mechanical nociceptive thresholds was identified between dogs with the WT/WT genotype (12.1±2.1 N) and those with the WT/R306ter genotype (9.2±2.4 N). CONCLUSION A difference in mechanical, but not thermal, nociceptive threshold was observed between wild-type and heterozygous MC1R variants. Differences in nociceptive thresholds between homozygous R306ter variants and other genotypes for MC1R were not observed. CLINICAL RELEVANCE Compared with the wild-type MC1R genotype, nociceptive sensitivity to mechanical force in dogs with a single variant R306ter allele may be greater. However, in contrast to the reported association between homozygous MC1R variants (associated with red hair color) and nociception in humans, we found no evidence of a similar relationship in dogs with the homozygous variant genotype.
Collapse
Affiliation(s)
- Tania E Perez
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Katrina L Mealey
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Neal S Burke
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Tamara L Grubb
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Michael H Court
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Stephen A Greene
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
16
|
Van der Poorten O, Knuhtsen A, Sejer Pedersen D, Ballet S, Tourwé D. Side Chain Cyclized Aromatic Amino Acids: Great Tools as Local Constraints in Peptide and Peptidomimetic Design. J Med Chem 2016; 59:10865-10890. [PMID: 27690430 DOI: 10.1021/acs.jmedchem.6b01029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected to the peptide backbone to provide control of χ1- and χ2-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors.
Collapse
Affiliation(s)
- Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Astrid Knuhtsen
- Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
17
|
Gradwohl SC, Aranake A, Abdallah AB, McNair P, Lin N, Fritz BA, Villafranca A, Glick D, Jacobsohn E, Mashour GA, Avidan MS. Intraoperative awareness risk, anesthetic sensitivity, and anesthetic management for patients with natural red hair: a matched cohort study. Can J Anaesth 2015; 62:345-55. [PMID: 25681040 DOI: 10.1007/s12630-014-0305-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/16/2014] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The red-hair phenotype, which is often produced by mutations in the melanocortin-1 receptor gene, has been associated with an increase in sedative, anesthetic, and analgesic requirements in both animal and human studies. Nevertheless, the clinical implications of this phenomenon in red-haired patients undergoing surgery are currently unknown. METHODS In a secondary analysis of a prospective trial of intraoperative awareness, red-haired patients were identified and matched with five control patients, and the relative risk for intraoperative awareness was determined. Overall anesthetic management between groups was compared using Hotelling's T(2) statistic. Inhaled anesthetic requirements were compared between cohorts by evaluating the relationship between end-tidal anesthetic concentration and the bispectral index with a linear mixed-effects model. Time to recovery was compared using Kaplan-Meier analysis, and differences in postoperative pain and nausea/vomiting were evaluated with Chi square tests. RESULTS A cohort of 319 red-haired patients was matched with 1,595 control patients for a sample size of 1,914. There were no significant differences in the relative risk of intraoperative awareness (relative risk = 1.67; 95% confidence interval 0.34 to 8.22), anesthetic management, recovery times, or postoperative pain between red-haired patients and control patients. The relationship between pharmacokinetically stable volatile anesthetic concentrations and bispectral index values differed significantly between red-haired patients and controls (P < 0.001), but without clinical implications. CONCLUSION There were no demonstrable differences between red-haired patients and controls in response to anesthetic and analgesic agents or in recovery parameters. These findings suggest that perioperative anesthetic and analgesic management should not be altered based on self-reported red-hair phenotype.
Collapse
Affiliation(s)
- Stephen C Gradwohl
- Department of Anesthesiology, Washington University in Saint Louis, School of Medicine, Campus Box 8054, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sessler DI. Red hair and anesthetic requirement. Can J Anaesth 2015; 62:333-7. [PMID: 25634807 DOI: 10.1007/s12630-015-0325-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/01/2022] Open
Affiliation(s)
- Daniel I Sessler
- Michael Cudahy Professor and Chair, Department of Outcomes Research, Cleveland Clinic, 9500 Euclid Ave - P77, Cleveland, OH, 44195, USA,
| |
Collapse
|
19
|
Minder EI, Schneider-Yin X. Afamelanotide (CUV1647) in dermal phototoxicity of erythropoietic protoporphyria. Expert Rev Clin Pharmacol 2014; 8:43-53. [DOI: 10.1586/17512433.2014.956089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Olney JJ, Navarro M, Thiele TE. Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders. Front Neurosci 2014; 8:128. [PMID: 24917782 PMCID: PMC4042890 DOI: 10.3389/fnins.2014.00128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/08/2014] [Indexed: 12/30/2022] Open
Abstract
The melanocortin (MC) peptides are produced centrally by propiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus and act through five seven-transmembrane G-protein coupled melanocortin receptor (MCR) subtypes. The MC3R and MC4R subtypes, the most abundant central MCRs, are widely expressed in brain regions known to modulate neurobiological responses to ethanol, including regions of the hypothalamus and extended amygdala. Agouti-related protein (AgRP), also produced in the arcuate nucleus, is secreted in terminals expressing MCRs and functions as an endogenous MCR antagonist. This review highlights recent genetic and pharmacological findings that have implicated roles for the MC and AgRP systems in modulating ethanol consumption. Ethanol consumption is associated with significant alterations in the expression levels of various MC peptides/protein, which suggests that ethanol-induced perturbations of MC/AgRP signaling may modulate excessive ethanol intake. Consistently, MCR agonists decrease, and AgRP increases, ethanol consumption in mice. MCR agonists fail to blunt ethanol intake in mutant mice lacking the MC4R, suggesting that the protective effects of MCR agonists are modulated by the MC4R. Interestingly, recent evidence reveals that MCR agonists are more effective at blunting binge-like ethanol intake in mutant mice lacking the MC3R, suggesting that the MC3R has opposing effects on the MC4R. Finally, mutant mice lacking AgRP exhibit blunted voluntary and binge-like ethanol drinking, consistent with pharmacological studies. Collectively, these preclinical observations provide compelling evidence that compounds that target the MC system may provide therapeutic value for treating alcohol abuse disorders and that the utilization of currently available MC-targeting compounds- such as those being used to treat eating disorders- may be used as effective treatments to this end.
Collapse
Affiliation(s)
- Jeffrey J Olney
- Department of Psychology, University of North Carolina Chapel Hill, NC, USA
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina Chapel Hill, NC, USA
| | - Todd E Thiele
- Department of Psychology, University of North Carolina Chapel Hill, NC, USA ; Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|
21
|
Dieudonné M, Ramesh KV. Modeling the interactions between MC2R and ACTH models from human. J Biomol Struct Dyn 2014; 33:770-88. [PMID: 24708442 DOI: 10.1080/07391102.2014.910475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Melanocortin system is composed of four peptide hormones namely α-, β-, -γ, and adrenocorticotropic hormone (ACTH), derived from post-translational cleavage of a polypeptide precursor 'proopiomelanocortin (POMC).' Among these hormones, ACTH, a 38 amino acid residue peptide fragment is an important hormone as it is involved in steroid secretion. In addition to this, to cite a few, this hormone is also known to induce variety of other effects, such as alterations in motor/sexual behavior, improvement in memory, and anti-inflammatory effects. To date, five melanocortin receptors (MC1R-MC5R) have been characterized with tissue-specific expression patterns and different binding affinities for each of the melanocortin hormones to regulate various biological functions. In the present work, three-dimensional (3D) models of MC2R and ACTH from human have been predicted, followed by docking and molecular dynamics simulation. While the 3D model of MC2R receptor has been predicted through threading approach, structure of ACTH was built based on ab initio technique. The MC2R model was later successfully docked onto the ACTH structure. Molecular dynamics (MD) simulation for 20 ns was used to compute the binding free energy of MC2R with ACTH model under implicit solvent conditions.
Collapse
Affiliation(s)
- Mutangana Dieudonné
- a Department of Biotechnology , Centre for Post Graduate Studies, Jain University , 18/3, 9th Main, Jayanagar 3rd Block, Bangalore 560 011 , India
| | | |
Collapse
|
22
|
Caruso V, Lagerström MC, Olszewski PK, Fredriksson R, Schiöth HB. Synaptic changes induced by melanocortin signalling. Nat Rev Neurosci 2014; 15:98-110. [PMID: 24588018 DOI: 10.1038/nrn3657] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The melanocortin system has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its involvement in memory, nociception, mood disorders and addiction. In this Review, we focus on the role of the melanocortin 4 receptor and provide an integrative view of the molecular mechanisms that lead to melanocortin-induced changes in synaptic plasticity within these diverse physiological systems. We also highlight the importance of melanocortin peptides and receptors in chronic pain syndromes, memory impairments, depression and drug abuse, and the possibility of targeting them for therapeutic purposes.
Collapse
|
23
|
Rosenkranz AA, Slastnikova TA, Durymanov MO, Sobolev AS. Malignant melanoma and melanocortin 1 receptor. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:1228-37. [PMID: 24460937 PMCID: PMC4064721 DOI: 10.1134/s0006297913110035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The conventional chemotherapeutic treatment of malignant melanoma still remains poorly efficient in most cases. Thus the use of specific features of these tumors for development of new therapeutic modalities is highly needed. Melanocortin 1 receptor (MC1R) overexpression on the cell surface of the vast majority of human melanomas, making MC1R a valuable marker of these tumors, is one of these features. Naturally, MC1R plays a key role in skin protection against damaging ultraviolet radiation by regulating eumelanin production. MC1R activation is involved in regulation of melanocyte cell division. This article reviews the peculiarities of regulation and expression of MC1R, melanocytes, and melanoma cells, along with the possible connection of MC1R with signaling pathways regulating proliferation of tumor cells. MC1R is a cell surface endocytic receptor, thus considered perspective for diagnostics and targeted drug delivery. A number of new therapeutic approaches that utilize MC1R, including endoradiotherapy with Auger electron and α- and β-particle emitters, photodynamic therapy, and gene therapy are now being developed.
Collapse
Affiliation(s)
- A. A. Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
- Targeted Delivery of Pharmaceuticals “Translek” LLC, ul. Vavilova 34/5, 199334 Moscow, Russia;
| | - T. A. Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
| | - M. O. Durymanov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
| | - A. S. Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
- Targeted Delivery of Pharmaceuticals “Translek” LLC, ul. Vavilova 34/5, 199334 Moscow, Russia;
| |
Collapse
|
24
|
Bazhan N, Yakovleva T, Kazantseva A, Makarova E. Exaggerated anorexigenic response to restraint stress in Ay mice is associated with elevated CRFR2 mRNA expression in the hypothalamus. Physiol Behav 2013; 120:19-25. [DOI: 10.1016/j.physbeh.2013.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 03/29/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022]
|
25
|
Serova LI, Laukova M, Alaluf LG, Sabban EL. Intranasal infusion of melanocortin receptor four (MC4R) antagonist to rats ameliorates development of depression and anxiety related symptoms induced by single prolonged stress. Behav Brain Res 2013; 250:139-47. [PMID: 23680165 DOI: 10.1016/j.bbr.2013.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 01/13/2023]
Abstract
Brain melanocortinergic systems and specifically melanocortin receptor four (MC4R) are implicated in modulation of anxiety- and depressive-like behavior induced by mild or moderate stress. Here we examine whether blockage of central MC4Rs with HS014 before severe traumatic stress may protect against development of anxiety and depression co-morbid with post-traumatic stress disorder (PTSD). Male rats were treated intranasally (IN) with vehicle or varied doses of HS014, 30min prior to single prolonged stress (SPS) animal model of PTSD. IN administration of 100μg HS014 pre-SPS improved despair behavior in forced swim (FS) immediately after immobilization stress part of SPS protocol. During all 4 intervals of 20min FS these rats spent less time immobile than rats given vehicle or 3.5ng HS014. This dose of HS014 also had a long-term beneficial effect manifested as reduction of immobility time in forced swim test performed after SPS. However, both HS014 doses were effective in ameliorating development of anxiety-like behavior after traumatic stress. Thus, rats given IN HS014 prior to SPS exhibited less open arms (OA) visits in elevated plus maze (EPM), spent longer time in OA and less in closed arms, had lower anxiety index, higher risk assessment and more head dips over borders in OA. They also spent longer time in the center of the open field and defecated less. Reduced grooming behavior in EPM was observed with 100μg HS014. This is the first study revealing pronounced resilience effects of HS014 on development of behavioral symptoms co-morbid with PTSD.
Collapse
Affiliation(s)
- Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
26
|
Novoselova TV, Jackson D, Campbell DC, Clark AJL, Chan LF. Melanocortin receptor accessory proteins in adrenal gland physiology and beyond. J Endocrinol 2013; 217:R1-11. [PMID: 23418361 DOI: 10.1530/joe-12-0501] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The melanocortin receptor (MCR) family consists of five G-protein-coupled receptors (MC1R-MC5R) with diverse physiological roles. MC1R controls pigmentation, MC2R is a critical component of the hypothalamic-pituitary-adrenal axis, MC3R and MC4R have a vital role in energy homeostasis and MC5R is involved in exocrine function. The melanocortin receptor accessory protein (MRAP) and its paralogue MRAP2 are small single-pass transmembrane proteins that have been shown to regulate MCR expression and function. In the adrenal gland, MRAP is an essential accessory factor for the functional expression of the MC2R/ACTH receptor. The importance of MRAP in adrenal gland physiology is demonstrated by the clinical condition familial glucocorticoid deficiency, where inactivating MRAP mutations account for ∼20% of cases. MRAP is highly expressed in both the zona fasciculata and the undifferentiated zone. Expression in the undifferentiated zone suggests that MRAP could also be important in adrenal cell differentiation and/or maintenance. In contrast, the role of adrenal MRAP2, which is highly expressed in the foetal gland, is unclear. The expression of MRAPs outside the adrenal gland is suggestive of a wider physiological purpose, beyond MC2R-mediated adrenal steroidogenesis. In vitro, MRAPs have been shown to reduce surface expression and signalling of all the other MCRs (MC1,3,4,5R). MRAP2 is predominantly expressed in the hypothalamus, a site that also expresses a high level of MC3R and MC4R. This raises the intriguing possibility of a CNS role for the MRAPs.
Collapse
Affiliation(s)
- T V Novoselova
- Centre for Endocrinology, Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK
| | | | | | | | | |
Collapse
|
27
|
Muceniece R, Dambrova M. Melanocortins in brain inflammation: the role of melanocortin receptor subtypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 681:61-70. [PMID: 21222260 DOI: 10.1007/978-1-4419-6354-3_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The melanocortins (MC) are released from neurons and paracrine cells in the CNS where they are involved in important physiological functions, including regulation of body temperature and immune responses. MC bind to melanocortin receptors, a class of cell surface G-protein-coupled receptors. Of the five subtypes of MC receptors that have been cloned in mammals, the MC1, MC3, MC4 and MC5 receptors are expressed in brain tissues. Expression of MC receptors in both brain cells and cells of the immune system suggests direct involvement of MC in regulation of inflammatory processes in the brain. The binding of MC to MC receptors induces activation of adenylate cyclase, increase in intracellular cAMP level and, consequently, inhibition of the nuclear transcription factor kappaB (NF-κB) signalling. Inflammatory processes contribute to development of severe CNS diseases, both in acute and chronic conditions. Thus far, the anti-inflammatory effects of MC in the CNS have been mainly studied using peptides that are relatively unselective for individual MC receptor subtypes. Consequently, these studies do not allow identification of specific MC receptor(s) involved in the regulation of inflammatory processes. However, recently synthesized ligands selective for individual MC receptors indicated that both MC4 and MC3 agonists are promising anti-inflammatory agents in treatment of brain inflammation.
Collapse
Affiliation(s)
- Ruta Muceniece
- Faculty of Medicine, University of Latvia, Sarlotes St. 1a, Riga, LV-1001, Latvia.
| | | |
Collapse
|
28
|
Somvanshi RK, Kumar U. Pathophysiology of GPCR Homo- and Heterodimerization: Special Emphasis on Somatostatin Receptors. Pharmaceuticals (Basel) 2012; 5:417-46. [PMID: 24281555 PMCID: PMC3763651 DOI: 10.3390/ph5050417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are cell surface proteins responsible for translating >80% of extracellular reception to intracellular signals. The extracellular information in the form of neurotransmitters, peptides, ions, odorants etc is converted to intracellular signals via a wide variety of effector molecules activating distinct downstream signaling pathways. All GPCRs share common structural features including an extracellular N-terminal, seven-transmembrane domains (TMs) linked by extracellular/intracellular loops and the C-terminal tail. Recent studies have shown that most GPCRs function as dimers (homo- and/or heterodimers) or even higher order of oligomers. Protein-protein interaction among GPCRs and other receptor proteins play a critical role in the modulation of receptor pharmacology and functions. Although ~50% of the current drugs available in the market target GPCRs, still many GPCRs remain unexplored as potential therapeutic targets, opening immense possibility to discover the role of GPCRs in pathophysiological conditions. This review explores the existing information and future possibilities of GPCRs as tools in clinical pharmacology and is specifically focused for the role of somatostatin receptors (SSTRs) in pathophysiology of diseases and as the potential candidate for drug discovery.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
29
|
Conde-Frieboes K, Thøgersen H, Lau JF, Sensfuss U, Hansen TK, Christensen L, Spetzler J, Olsen HB, Nilsson C, Raun K, Dahl K, Hansen BS, Wulff BS. Identification and in vivo and in vitro characterization of long acting and melanocortin 4 receptor (MC4-R) selective α-melanocyte-stimulating hormone (α-MSH) analogues. J Med Chem 2012; 55:1969-77. [PMID: 22335602 DOI: 10.1021/jm201489a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report in vitro and in vivo data of new α-melanocyte-stimulating hormone (α-MSH) analogues which are N-terminal modified with a long chain fatty acid derivative. While keeping the pharmacophoric motif (d-Phe-Arg-Trp) fixed, we tried to improve selectivity and physicochemical parameters like solubility and stability of these analogues by replacing amino acids further away from the motif. Receptor specific changes in binding affinity to the melanocortin receptors were observed between the acetyl derivatives and the fatty acid analogues. Furthermore, amino acids at the N-terminal of α-MSH (Ser-Tyr-Ser) not considered to be part of the pharmacophore were found to have an influence on the MC4/MC1 receptor selectivity. While the acetyl analogues have an in vivo effect for around 7 h, the long chain fatty acid analogues have an effect up to 48 h in an acute feeding study in male Sprague-Dawley rats after a single subcutaneous administration.
Collapse
|
30
|
Slastnikova TA, Rosenkranz AA, Gulak PV, Schiffelers RM, Lupanova TN, Khramtsov YV, Zalutsky MR, Sobolev AS. Modular nanotransporters: a multipurpose in vivo working platform for targeted drug delivery. Int J Nanomedicine 2012; 7:467-82. [PMID: 22346349 PMCID: PMC3277434 DOI: 10.2147/ijn.s28249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Modular nanotransporters (MNT) are recombinant multifunctional polypeptides created to exploit a cascade of cellular processes, initiated with membrane receptor recognition to deliver selective short-range and highly cytotoxic therapeutics to the cell nucleus. This research was designed for in vivo concept testing for this drug delivery platform using two modular nanotransporters, one targeted to the α-melanocyte-stimulating hormone (αMSH) receptor overexpressed on melanoma cells and the other to the epidermal growth factor (EGF) receptor overexpressed on several cancers, including glioblastoma, and head-and-neck and breast carcinoma cells. Methods In vivo targeting of the modular nanotransporter was determined by immuno-fluorescence confocal laser scanning microscopy and by accumulation of 125I-labeled modular nanotransporters. The in vivo therapeutic effects of the modular nanotransporters were assessed by photodynamic therapy studies, given that the cytotoxicity of photosensitizers is critically dependent on their delivery to the cell nucleus. Results Immunohistochemical analyses of tumor and neighboring normal tissues of mice injected with multifunctional nanotransporters demonstrated preferential uptake in tumor tissue, particularly in cell nuclei. With 125I-labeled MNT{αMSH}, optimal tumor:muscle and tumor:skin ratios of 8:1 and 9.8:1, respectively, were observed 3 hours after injection in B16-F1 melanoma-bearing mice. Treatment with bacteriochlorin p-MNT{αMSH} yielded 89%–98% tumor growth inhibition and a two-fold increase in survival for mice with B16-F1 and Cloudman S91 melanomas. Likewise, treatment of A431 human epidermoid carcinoma-bearing mice with chlorin e6- MNT{EGF} resulted in 94% tumor growth inhibition compared with free chlorin e6, with 75% of animals surviving at 3 months compared with 0% and 20% for untreated and free chlorin e6-treated groups, respectively. Conclusion The multifunctional nanotransporter approach provides a new in vivo functional platform for drug development that could, in principle, be applicable to any combination of cell surface receptor and agent (photosensitizers, oligonucleotides, radionuclides) requiring nuclear delivery to achieve maximum effectiveness.
Collapse
Affiliation(s)
- Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Andersson KE. Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol Rev 2011; 63:811-59. [PMID: 21880989 DOI: 10.1124/pr.111.004515] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Erection is basically a spinal reflex that can be initiated by recruitment of penile afferents, both autonomic and somatic, and supraspinal influences from visual, olfactory, and imaginary stimuli. Several central transmitters are involved in the erectile control. Dopamine, acetylcholine, nitric oxide (NO), and peptides, such as oxytocin and adrenocorticotropin/α-melanocyte-stimulating hormone, have a facilitatory role, whereas serotonin may be either facilitatory or inhibitory, and enkephalins are inhibitory. The balance between contractant and relaxant factors controls the degree of contraction of the smooth muscle of the corpora cavernosa (CC) and determines the functional state of the penis. Noradrenaline contracts both CC and penile vessels via stimulation of α₁-adrenoceptors. Neurogenic NO is considered the most important factor for relaxation of penile vessels and CC. The role of other mediators, released from nerves or endothelium, has not been definitely established. Erectile dysfunction (ED), defined as the "inability to achieve or maintain an erection adequate for sexual satisfaction," may have multiple causes and can be classified as psychogenic, vasculogenic or organic, neurologic, and endocrinologic. Many patients with ED respond well to the pharmacological treatments that are currently available, but there are still groups of patients in whom the response is unsatisfactory. The drugs used are able to substitute, partially or completely, the malfunctioning endogenous mechanisms that control penile erection. Most drugs have a direct action on penile tissue facilitating penile smooth muscle relaxation, including oral phosphodiesterase inhibitors and intracavernosal injections of prostaglandin E₁. Irrespective of the underlying cause, these drugs are effective in the majority of cases. Drugs with a central site of action have so far not been very successful. There is a need for therapeutic alternatives. This requires identification of new therapeutic targets and design of new approaches. Research in the field is expanding, and several promising new targets for future drugs have been identified.
Collapse
Affiliation(s)
- K-E Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| |
Collapse
|
32
|
Grieco P, Brancaccio D, Novellino E, Hruby VJ, Carotenuto A. Conformational study on cyclic melanocortin ligands and new insight into their binding mode at the MC4 receptor. Eur J Med Chem 2011; 46:3721-33. [PMID: 21652123 DOI: 10.1016/j.ejmech.2011.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/12/2011] [Accepted: 05/14/2011] [Indexed: 11/30/2022]
Abstract
The melanocortin receptors are involved in many physiological functions, including pigmentation, sexual function, feeding behavior, and energy homeostasis, making them potential targets to treat obesity, sexual dysfunction, etc. Understanding the basis of the ligand-receptor interactions is crucial for the design of potent and selective ligands for these receptors. The conformational preferences of the cyclic melanocortin ligands MTII (Ac-Nle(4)-c[Asp(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)) and SHU9119 (Ac-Nle(4)-c[Asp(5)-His(6)-DNal(2')(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)), which show agonist and antagonist activity at the h-MC4R, respectively, were comprehensively investigated by solution NMR spectroscopy in different environments. In particular, water and water/DMSO (8:2) solutions were used as isotropic solutions and an aqueous solution of DPC (dodecylphosphocholine) micelles was used as a membrane mimetic environment. NMR-derived conformations of these two ligands were docked within h-MC4R models. NMR and docking studies revealed intriguing differences which can help explain the different activities of these two ligands.
Collapse
Affiliation(s)
- Paolo Grieco
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, I-80131 Naples, Italy
| | | | | | | | | |
Collapse
|
33
|
Klenke S, Siffert W. SNPs in genes encoding G proteins in pharmacogenetics. Pharmacogenomics 2011; 12:633-54. [DOI: 10.2217/pgs.10.203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heterotrimeric guanine-binding proteins (G proteins) transmit signals from the cell surface to intracellular signal cascades and are involved in various physiological and pathophysiological processes. Polymorphisms in the genes GNB3 (encoding the Gβ3 subunit), GNAS (encoding the Gαs subunit) and GNAQ (encoding the Gαq subunit) have been the primary focus of investigation. Polymorphisms in these genes could be associated with different complex phenotypes underlining that alterations in G-protein signaling can cause multiple disorders. G proteins present a point of convergence or ‘bottleneck’ between various receptors and effectors, thus making them a sensible tool for pharmacogenetic studies. The pharmacogenetic studies performed to date mostly demonstrate an association between G-protein polymorphisms and response to therapy or occurrence of adverse drug effects. Therefore, polymorphisms in genes encoding G-protein subunits may help to individualize drug treatment in various diseases with regard to both efficacy and safety.
Collapse
Affiliation(s)
| | - Winfried Siffert
- Institut für Pharmakogenetik, Universität Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
34
|
Lyadskiy IK, Getya AA, Pochernyaev KF. Association of the Asp298Asn polymorphism in the mc4r gene with back fat thickness in pigs of the large white breed. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Remmers F, Delemarre-van de Waal HA. Developmental programming of energy balance and its hypothalamic regulation. Endocr Rev 2011; 32:272-311. [PMID: 21051592 DOI: 10.1210/er.2009-0028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental programming is an important physiological process that allows different phenotypes to originate from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the limits of its genetic background) that is best suited to its expected environment. In humans, together with the relative irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current evidence for developmental programming of energy balance. For a proper understanding of the subject, knowledge about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes through which energy balance is regulated and their ontogeny. With this background, we then turn to the available evidence for programming of energy balance by the early nutritional environment, in both man and rodent models. A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment. However, the direction of the effects of programming appears to vary considerably, both between and within different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standardization between studies seems essential to reach veritable conclusions about the role of developmental programming in adult energy balance and obesity.
Collapse
Affiliation(s)
- Floor Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | |
Collapse
|
36
|
Chan LF, Metherell LA, Clark AJL. Effects of melanocortins on adrenal gland physiology. Eur J Pharmacol 2011; 660:171-80. [PMID: 21211533 DOI: 10.1016/j.ejphar.2010.11.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/10/2010] [Accepted: 11/25/2010] [Indexed: 01/15/2023]
Abstract
The melanocortin-2-receptor (MC(2) receptor), also known as the ACTH receptor, is a critical component of the hypothalamic-pituitary-adrenal axis. The importance of MC(2) receptor in adrenal physiology is exemplified by the condition familial glucocorticoid deficiency, a potentially fatal disease characterised by isolated cortisol deficiency. MC(2)receptor mutations cause ~25% of cases. The discovery of a MC(2) receptor accessory protein MRAP, mutations of which account for ~15%-20% of familial glucocorticoid deficiency, has provided insight into MC(2) receptor trafficking and signalling. MRAP is essential for the functional expression of MC(2) receptor. MRAP2, a novel homolog of MRAP, can also facilitate MC(2) receptor cell surface expression and function. Like MRAP, MRAP2 is a small transmembrane domain glycoprotein capable of homodimerising. In addition, MRAP/MRAP2 can heterodimerise. The presence of MRAP2 adrenal expression suggests a possible role for MRAP2 in adrenal physiology, which has yet to be elucidated. Importantly, new data shows that the MRAPs can interact with all the other melanocortin receptors (MC(1,3,4,5) receptor). In contrast to MC(2) receptor, this interaction results in reduced melanocortin receptor surface expression and signalling. MRAP2 is predominantly expressed in brain. Hypothalamic expression has been demonstrated for both MRAP and MRAP2. The ability of MRAPs to modulate different members of the melanocortin receptor family in a bidirectional manner is intriguing. Furthermore, central nervous system expression of MRAPs points to a role beyond MC(2) receptor mediated adrenal steroidogenesis.
Collapse
Affiliation(s)
- Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
37
|
Gratzke C, Angulo J, Chitaley K, Dai YT, Kim NN, Paick JS, Simonsen U, Uckert S, Wespes E, Andersson KE, Lue TF, Stief CG. Anatomy, physiology, and pathophysiology of erectile dysfunction. J Sex Med 2010; 7:445-75. [PMID: 20092448 DOI: 10.1111/j.1743-6109.2009.01624.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Significant scientific advances during the past 3 decades have deepened our understanding of the physiology and pathophysiology of penile erection. A critical evaluation of the current state of knowledge is essential to provide perspective for future research and development of new therapies. AIM To develop an evidence-based, state-of-the-art consensus report on the anatomy, physiology, and pathophysiology of erectile dysfunction (ED). METHODS Consensus process over a period of 16 months, representing the opinions of 12 experts from seven countries. MAIN OUTCOME MEASURE Expert opinion was based on the grading of scientific and evidence-based medical literature, internal committee discussion, public presentation, and debate. RESULTS ED occurs from multifaceted, complex mechanisms that can involve disruptions in neural, vascular, and hormonal signaling. Research on central neural regulation of penile erection is progressing rapidly with the identification of key neurotransmitters and the association of neural structures with both spinal and supraspinal pathways that regulate sexual function. In parallel to advances in cardiovascular physiology, the most extensive efforts in the physiology of penile erection have focused on elucidating mechanisms that regulate the functions of the endothelium and vascular smooth muscle of the corpus cavernosum. Major health concerns such as atherosclerosis, hyperlipidemia, hypertension, diabetes, and metabolic syndrome (MetS) have become well integrated into the investigation of ED. CONCLUSIONS Despite the efficacy of current therapies, they remain insufficient to address growing patient populations, such as those with diabetes and MetS. In addition, increasing awareness of the adverse side effects of commonly prescribed medications on sexual function provides a rationale for developing new treatment strategies that minimize the likelihood of causing sexual dysfunction. Many basic questions with regard to erectile function remain unanswered and further laboratory and clinical studies are necessary.
Collapse
Affiliation(s)
- Christian Gratzke
- Department of Urology, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shariat-Madar B, Kolte D, Verlangieri A, Shariat-Madar Z. Prolylcarboxypeptidase (PRCP) as a new target for obesity treatment. Diabetes Metab Syndr Obes 2010; 3:67-78. [PMID: 20694162 PMCID: PMC2916657 DOI: 10.2147/dmsott.s7290] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recently, we serendipitously discovered that mice with the deficiency of the enzyme prolylcarboxypeptidase (PRCP) have elevated alpha-melanocyte-stimulating hormone (alpha-MSH) levels which lead to decreased food intake and weight loss. This suggests that PRCP is an endogenous inactivator of alpha-MSH and an appetite stimulant. Since a modest weight loss can have the most profound influence on reducing cardiovascular risk factors, the inhibitors of PRCP would be emerging as a possible alternative for pharmacotherapy in high-risk patients with obesity and obesity-related disorders. The discovery of a new biological activity of PRCP in the PRCP-deficient mice and studies of alpha-MSH function indicate the importance and complexity of the hypothalamic pro-opiomelanocortin (POMC) system in altering food intake. Identifying a role for PRCP in regulating alpha-MSH in the brain may be a critical step in enhancing our understanding of how the brain controls food intake and body weight. In light of recent findings, the potential role of PRCP in regulating fuel homeostasis is critically evaluated. Further studies of the role of PRCP in obesity are much needed.
Collapse
Affiliation(s)
- B Shariat-Madar
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor MI, USA
| | - D Kolte
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS, USA
| | - A Verlangieri
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS, USA
| | - Z Shariat-Madar
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS, USA
- Correspondence: Zia Shariat-Madar, University of Mississippi, 219 B, Faser Hall, University, MS 38677–1848, USA, Tel +662 915 5150, Fax +662 915 5148, Email
| |
Collapse
|
39
|
What is the connection between red hair and Tourette syndrome? Med Hypotheses 2009; 73:849-53. [DOI: 10.1016/j.mehy.2009.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 02/23/2009] [Accepted: 03/27/2009] [Indexed: 11/17/2022]
|
40
|
Hoch M, Hirzel E, Lindinger P, Eberle AN, Linscheid P, Martin I, Peters T, Peterli R. Weak functional coupling of the melanocortin-1 receptor expressed in human adipocytes. J Recept Signal Transduct Res 2009; 28:485-504. [PMID: 18946769 DOI: 10.1080/10799890802442622] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The melanocortin (MC) receptor type-1 (MC1-R) is the only one of the five MC receptor subtypes expressed in human adipose tissue explants, human mesenchymal stem cells (MSCs), and MSC-derived adipocytes. Following our recent expression studies (Obesity 2007, 15, 40-49), we now investigated the functional role of MC1-R in these tissues and cells to deduce the coupling state of MC1-R to intracellular output signals in human fat cells and tissue. Expression of MC1-R by undifferentiated and differentiated MSCs was quantified by real-time TaqMan PCR. Intracellular output signals (cAMP, lipolysis, secretion of IL-6, IL-10, and TNF-alpha), as well as effects on the metabolic rate and proliferation of human MSCs were analyzed by standard assays, exposing undifferentiated and differentiated MSCs and, in part, human adipose tissue explants to the potent MC1-R agonist, [Nle(4), D-Phe(7)]-alpha-MSH (NDP-MSH). This agonist induced a weak cAMP signal in MSC-derived adipocytes. However, it did not affect lipolysis in these cells or in adipose tissue explants, nor did it modulate cytokine release and mRNA expression of IL-6, IL-8, and TNF-alpha upon LPS stimulation. In undifferentiated MSCs, NDP-MSH did not alter the metabolic rate, but it showed a significant antiproliferative effect. Therefore, it appears that MC1-R-effector coupling in (differentiated) human adipocytes is too weak to induce a regulatory effect on lipolysis or inflammation; by contrast, MC1-R stimulation in undifferentiated MSCs induces an inhibitory signal on cell proliferation.
Collapse
Affiliation(s)
- Matthias Hoch
- Department of Biomedicine, University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
γ1- and γ2-melanocyte stimulating hormones induce central anxiogenic effects and potentiate ethanol withdrawal responses in the elevated plus-maze test in mice. Pharmacol Biochem Behav 2009; 92:267-71. [DOI: 10.1016/j.pbb.2008.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 11/19/2008] [Accepted: 12/08/2008] [Indexed: 11/17/2022]
|
42
|
Structure-activity relationship studies on a series of piperazinebenzylalcohols and their ketone and amine analogs as melanocortin-4 receptor ligands. Bioorg Med Chem Lett 2008; 18:4817-22. [PMID: 18682322 DOI: 10.1016/j.bmcl.2008.07.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/18/2008] [Accepted: 07/22/2008] [Indexed: 11/23/2022]
Abstract
A series of piperazinebenzylalcohols were prepared and studied to compare with their ketone and amine analogs as MC4R antagonists. Several benzylalcohols such as 14a and 14g displayed low nanomolar binding affinities (K(i)<10 nM), and high selectivities over other melanocortin receptor subtypes.
Collapse
|
43
|
Bednarek MA, MacNeil T, Tang R, Fong TM, Cabello MA, Maroto M, Teran A. Cyclic analogs of alpha-melanocyte-stimulating hormone (alphaMSH) with high agonist potency and selectivity at human melanocortin receptor 1b. Peptides 2008; 29:1010-7. [PMID: 18378043 DOI: 10.1016/j.peptides.2008.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/05/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Alpha-melanotropin (alphaMSH), Ac-Ser1-Tyr2-Ser3-Met4-Glu5-His6-Phe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-NH2,(1) has been long recognized as an important physiological regulator of skin and hair pigmentation in mammals. Binding of this peptide to the melanocortin receptor 1 (MC1R) leads to activation of tyrosinase, the key enzyme of the melanin biosynthesis pathway. In this study, interactions of the human MC1bR (an isoform of the receptor 1a) with the synthetic cyclic analogs of alphaMSH were studied. These ligands were analogs of MTII, Ac-Nle4-cyclo-(Asp5-His6-D-Phe7-Arg8-Trp9-Lys10)-NH2, a potent pan-agonist at the human melanocortin receptors (hMC1,3-5R). In the structure of MTII, the His6-D-Phe7-Arg8-Trp9 segment has been recognized as "essential" for molecular recognition at the human melanocortin receptors (hMC1,3-5R). Herein, the role of the Trp9 in the ligand interactions with the hMC1b,3-5R has been reevaluated. Analogs with various amino acids in place of Trp9 were synthesized and tested in vitro in receptor affinity binding and cAMP functional assays at human melanocortin receptors 1b, 3, 4 and 5 (hMC1b,3-5R). Several of the new peptides were high potency agonists (partial) at hMC1bR (EC50 from 0.5 to 20 nM) and largely inactive at hMC3-5R. The bulky aromatic side chain in position 9, such as that in Trp, was found not to be essential to agonism (partial) of the studied peptides at hMC1bR.
Collapse
MESH Headings
- Binding, Competitive
- Cyclic AMP/analysis
- Cyclic AMP/biosynthesis
- Humans
- Inhibitory Concentration 50
- Molecular Structure
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/isolation & purification
- Peptides, Cyclic/metabolism
- Peptides, Cyclic/pharmacology
- Receptor, Melanocortin, Type 1/agonists
- Receptor, Melanocortin, Type 1/chemistry
- Receptor, Melanocortin, Type 1/classification
- Sensitivity and Specificity
- Structure-Activity Relationship
- alpha-MSH/analogs & derivatives
- alpha-MSH/chemical synthesis
- alpha-MSH/chemistry
- alpha-MSH/isolation & purification
- alpha-MSH/metabolism
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Maria A Bednarek
- Department of Medicinal Chemistry, Merck Research Laboratories, R50G-140, P.O. Box 2000, Rahway, NJ, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Nozawa D, Chaki S, Nakazato A. Recent advances in the development of melanocortin-4 receptor ligands. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.4.403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Serova LI, Gueorguiev V, Cheng SY, Sabban EL. Adrenocorticotropic hormone elevates gene expression for catecholamine biosynthesis in rat superior cervical ganglia and locus coeruleus by an adrenal independent mechanism. Neuroscience 2008; 153:1380-9. [PMID: 18440707 DOI: 10.1016/j.neuroscience.2008.02.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 01/22/2023]
Abstract
Classically, upon hypothalamic stimulation, adrenocorticotropic hormone (ACTH) is released from the pituitary and acts on melanocortin 2 receptors (MC2R) in the adrenal cortex, stimulating glucocorticoid synthesis and release. Our earlier studies suggested that ACTH might have a direct effect on sympathetic ganglia. To analyze further the involvement of ACTH in regulation of gene expression of norepinephrine (NE) biosynthetic enzymes, we examined the effect of bilateral adrenalectomy (ADX) of Sprague-Dawley male rats. Fourteen days post-ADX, as expected, plasma ACTH was elevated, and levels of tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH) and MC2R mRNAs in superior cervical ganglia (SCG), and TH mRNA in locus coeruleus (LC) were increased compared with sham-operated animals. To determine effect of pulsatile elevation of ACTH, corticosterone pellets were implanted to ADX rats. Similar to immobilization (IMO) stress ACTH injections to these animals caused a rise in ACTH in plasma and triggered elevation of TH and DBH mRNAs in SCG and in LC with single and repeated daily injections, and MC2R mRNA in SCG with single injections. To study the effect of ACTH in isolated cells, primary cultures of rat SCG were transfected with TH and DBH promoter constructs and treated with ACTH. In agreement with the in vivo data, ACTH elevated their promoter activities similar to levels triggered by cyclic AMP analog. ACTH in the human SK-N-SH neuroblastoma cells increased TH and DBH promoter activity and endogenous DBH mRNA levels. The results show that ACTH can have a direct effect on transcription and gene expression of NE biosynthetic enzymes even without contribution of adrenal hormones.
Collapse
Affiliation(s)
- L I Serova
- Department of Biochemistry and Molecular Biology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
46
|
Smith ML, Prall B, Nandar W, Cline MA. Beta-melanocyte-stimulating hormone potently reduces appetite via the hypothalamus in chicks. J Neuroendocrinol 2008; 20:220-6. [PMID: 18088360 DOI: 10.1111/j.1365-2826.2007.01639.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The melanocortin system together with other appetite-related systems plays a significant role in appetite regulation. The appetite-related effects of one such melanocortin, beta-melanocyte-stimulating hormone (MSH), are well documented in rodents; however, its effects in the avian class are not thoroughly understood. Thus, we designed a study to determine the effects of i.c.v. beta-MSH injection on food and water intake, plasma corticosterone concentration, ingestive and non-ingestive behaviours, and hypothalamic neuronal activation using Cobb-500 chicks. Chicks responded to beta-MSH-treatment with a reduction in food and water intake; however when water intake was measured independently of food intake, it was not affected. beta-MSH-treated chicks also had increased plasma corticosterone concentrations and increased c-Fos reactivity in the periventricular, paraventricular and infundibular nuclei, and the ventromedial hypothalamus; however, the lateral hypothalamus was not affected. The effect on food intake is primary because behaviours that may be competitive with food intake were not increased in beta-MSH-treated chicks. Based on these results, we conclude that beta-MSH causes anorexigenic effects that are likely primarily mediated via stimulation of satiety-related hypothalamic nuclei in broiler-type chicks.
Collapse
Affiliation(s)
- M L Smith
- Department of Cellular, Molecular, and Systemic Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | | | | | | |
Collapse
|
47
|
Caruso C, Durand D, Schiöth HB, Rey R, Seilicovich A, Lasaga M. Activation of melanocortin 4 receptors reduces the inflammatory response and prevents apoptosis induced by lipopolysaccharide and interferon-gamma in astrocytes. Endocrinology 2007; 148:4918-26. [PMID: 17595227 DOI: 10.1210/en.2007-0366] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alpha-MSH exerts an immunomodulatory action in the brain and may play a neuroprotective role acting through melanocortin 4 receptors (MC4Rs). In the present study, we show that MC4Rs are constitutively expressed in astrocytes as determined by immunocytochemistry, RT-PCR, and Western blot analysis. alpha-MSH (5 microm) reduced the nitric oxide production and the expression of inducible nitric oxide synthase (iNOS) induced by bacterial lipopolysaccharide (LPS, 1 microg/ml) plus interferon-gamma (IFN-gamma, 50 ng/ml) in cultured astrocytes after 24 h. alpha-MSH also attenuated the stimulatory effect of LPS/IFN-gamma on prostaglandin E(2) release and cyclooxygenase-2 (COX-2) expression. Treatment with HS024, a selective MC4R antagonist, blocked the antiinflammatory effects of alpha-MSH, suggesting a MC4R-mediated mechanism in the action of this melanocortin. In astrocytes, LPS/IFN-gamma treatment reduced cell viability, increased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells and activated caspase-3. alpha-MSH prevented these apoptotic events, and this cytoprotective effect was abolished by HS024. LPS/IFN-gamma decreased Bcl-2, whereas it increased Bax protein expression in astrocytes, thus increasing the Bax/Bcl-2 ratio. Alpha-MSH produced a shift in Bax/Bcl-2 ratio toward astrocyte survival because it increased Bcl-2 expression and also prevented the effect of LPS/IFN-gamma on Bax and Bcl-2 expression. In summary, these findings suggest that alpha-MSH, through MC4R activation, attenuates LPS/IFN-gamma-induced inflammation by decreasing iNOS and COX-2 expression and prevents LPS/IFN-gamma-induced apoptosis of astrocytes by modulating the expression of proteins of the Bcl-2 family.
Collapse
Affiliation(s)
- Carla Caruso
- Centro de Investigaciones en Reproducción, School of Medicine, University of Buenos Aires, Buenos Aires 1121ABG, Argentina
| | | | | | | | | | | |
Collapse
|
48
|
Nozawa D, Okubo T, Chaki S, Okuyama S, Nakazato A. Identification of arginine analogues as antagonists and agonists for the melanocortin-4 receptor. Chem Pharm Bull (Tokyo) 2007; 55:1232-9. [PMID: 17666851 DOI: 10.1248/cpb.55.1232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, conducted to explore potent and small molecular melanocortin-4 (MC4) receptor ligands, we found that tripeptide 3a, containing a D-Phe-Arg-2-Nal (Nal; naphthylalanine) sequence, exhibited a moderate affinity for the MC4 receptor. Structural optimization led to the identification of a compound with a high affinity for the MC4 receptor, namely, tripeptide 3e, which showed a 70-fold higher affinity for the MC4 receptor than the lead compound 3a. Moreover, in an effort to further reduce the peptidic characters of tripeptide 3e, we found that dipeptide 3g exhibited a relatively high affinity for the MC4 receptor. Furthermore, in these analogues, the substituted position (1' vs. 2') of the naphthyl ring of Nal residue at position 7 was found to be important for the differentiation of agonist and antagonist activity. The synthesis and structure-activity relationships of the arginine analogues as MC4 receptor ligands were described in this paper.
Collapse
Affiliation(s)
- Dai Nozawa
- Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan.
| | | | | | | | | |
Collapse
|
49
|
Poitout L, Brault V, Sackur C, Bernetière S, Camara J, Plas P, Roubert P. Identification of a novel series of benzimidazoles as potent and selective antagonists of the human melanocortin-4 receptor. Bioorg Med Chem Lett 2007; 17:4464-70. [PMID: 17574418 DOI: 10.1016/j.bmcl.2007.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/31/2007] [Accepted: 06/02/2007] [Indexed: 10/23/2022]
Abstract
A novel series of benzimidazoles was identified and optimized, leading to the discovery of potent and selective antagonists of the human melanocortin-4 receptor. In addition, compound 5i was shown to cross the blood-brain barrier after intravenous dosing in rats.
Collapse
Affiliation(s)
- Lydie Poitout
- Department of Medicinal Chemistry, Ipsen Research Laboratories, Institut Henri Beaufour, 5 Avenue du Canada, 91966 Les Ulis Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kontijevskis A, Petrovska R, Mutule I, Uhlen S, Komorowski J, Prusis P, Wikberg JES. Proteochemometric analysis of small cyclic peptides' interaction with wild-type and chimeric melanocortin receptors. Proteins 2007; 69:83-96. [PMID: 17557335 DOI: 10.1002/prot.21461] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The melanocortin (MC) system confines unique G-protein coupled receptor pathways, which include the MC(1-5) receptors and their endogenous agonists and antagonists, the MCs and the agouti and agouti-related proteins. The MC4 receptor is an important target for development of drugs for treatment of obesity and cachexia. While natural MC peptides are selective for the MC1 receptor, some cyclic pentapeptides, such as the HS-129 peptide, show high selectivity for the MC4 receptor. Here we gained insight into the mechanisms for its recognition by MC receptors. To this end we correlated the interaction data of four HS peptide analogues with four wild-type and 14 multiple chimeric MC receptors to the binary and physicochemical descriptions of the studied entities by use of partial least squares regression, which resulted in highly valid proteochemometric models. Analysis of the models revealed that the recognition sites of the HS peptides are different from the earlier proteochemometrically mapped linear MSH peptides' recognitions sites, although they overlap partially. The analysis also revealed important amino acids that explain the selectivity of the HS-129 peptide for the MC4 receptor.
Collapse
|