1
|
Amadei M, Polticelli F, Musci G, Bonaccorsi di Patti MC. The Ferroxidase-Permease System for Transport of Iron Across Membranes: From Yeast to Humans. Int J Mol Sci 2025; 26:875. [PMID: 39940646 PMCID: PMC11817551 DOI: 10.3390/ijms26030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Transport of iron across the cell membrane is a tightly controlled process carried out by specific proteins in all living cells. In yeast and in mammals, a system formed by an enzyme with ferroxidase activity coupled to a membrane transporter supports iron uptake or iron efflux, respectively. Ferroxidase belongs to the family of blue multicopper oxidases, enzymes able to couple the one-electron oxidation of substrate(s) to full reduction of molecular oxygen to water. On the other hand, the permeases are widely different and are specific to Fe3+ and Fe2+ in yeast and multicellular organisms, respectively. This review will describe the yeast and human ferroxidase-permease systems, highlighting similarities and differences in structure, function and regulation of the respective protein components.
Collapse
Affiliation(s)
- Matteo Amadei
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy;
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | | |
Collapse
|
2
|
Bailão AM, Silva KLPD, Moraes D, Lechner B, Lindner H, Haas H, Soares CMA, Silva-Bailão MG. Iron Starvation Induces Ferricrocin Production and the Reductive Iron Acquisition System in the Chromoblastomycosis Agent Cladophialophora carrionii. J Fungi (Basel) 2023; 9:727. [PMID: 37504717 PMCID: PMC10382037 DOI: 10.3390/jof9070727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Iron is a micronutrient required by almost all living organisms. Despite being essential, the availability of this metal is low in aerobic environments. Additionally, mammalian hosts evolved strategies to restrict iron from invading microorganisms. In this scenario, the survival of pathogenic fungi depends on high-affinity iron uptake mechanisms. Here, we show that the production of siderophores and the reductive iron acquisition system (RIA) are employed by Cladophialophora carrionii under iron restriction. This black fungus is one of the causative agents of chromoblastomycosis, a neglected subcutaneous tropical disease. Siderophore biosynthesis genes are arranged in clusters and, interestingly, two RIA systems are present in the genome. Orthologs of putative siderophore transporters were identified as well. Iron starvation regulates the expression of genes related to both siderophore production and RIA systems, as well as of two transcription factors that regulate iron homeostasis in fungi. A chrome azurol S assay demonstrated the secretion of hydroxamate-type siderophores, which were further identified via RP-HPLC and mass spectrometry as ferricrocin. An analysis of cell extracts also revealed ferricrocin as an intracellular siderophore. The presence of active high-affinity iron acquisition systems may surely contribute to fungal survival during infection.
Collapse
Affiliation(s)
- Alexandre Melo Bailão
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Dayane Moraes
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | - Beatrix Lechner
- Institute of Molecular Biology/Biocenter, Medical University of Innsbruck, 795J+RF Innsbruck, Austria
| | - Herbert Lindner
- Institute of Medical Biochemistry/Biocenter, Medical University of Innsbruck, 795J+RF Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Medical University of Innsbruck, 795J+RF Innsbruck, Austria
| | | | | |
Collapse
|
3
|
Multicopper oxidases with laccase-ferroxidase activity: Classification and study of ferroxidase activity determinants in a member from Heterobasidion annosum s. l.. Comput Struct Biotechnol J 2023; 21:1041-1053. [PMID: 36733701 PMCID: PMC9880977 DOI: 10.1016/j.csbj.2023.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Multi-copper oxidases (MCO) share a common molecular architecture and the use of copper ions as cofactors to reduce O2 to H2O, but show high sequence heterogeneity and functional diversity. Many new emerging MCO genes are wrongly annotated as laccases, the largest group of MCOs, with the widest range of biotechnological applications (particularly those from basidiomycete fungi) due to their ability to oxidise aromatic compounds and lignin. Thus, comprehensive studies for a better classification and structure-function characterisation of MCO families are required. Laccase-ferroxidases (LAC-FOXs) constitute a separate and unexplored group of MCOs with proposed dual features between laccases and ferroxidases. We aim to better define this cluster and the structural determinants underlying putative hybrid activity. We performed a phylogenetic analysis of the LAC-FOXs from basidiomycete fungi, that resulted in two subgroups. This division seemed to correlate with the presence or absence of some of the three acidic residues responsible for ferroxidase activity in Fet3p from Saccharomyces cerevisiae. One of these LAC-FOXs (with only one of these residues) from the fungus Heterobasidion annosum s. l. (HaLF) was synthesised, heterologously expressed and characterised to evaluate its catalytic activity. HaLF oxidised typical laccase substrates (phenols, aryl amines and N-heterocycles), but no Fe (II). The enzyme was subjected to site-directed mutagenesis to determine the key residues that confer ferroxidase activity. The mutated HaLF variant with full restoration of the three acidic residues exhibited efficient ferroxidase activity, while it partially retained the wide-range oxidative activity of the native enzyme associated to laccases sensu stricto.
Collapse
|
4
|
Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Botrytis Cinerea. mBio 2020; 11:mBio.01379-20. [PMID: 32753496 PMCID: PMC7407086 DOI: 10.1128/mbio.01379-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The plant-pathogenic fungus B. cinerea causes enormous economic losses, estimated at anywhere between $10 billion and $100 billion worldwide, under both pre- and postharvest conditions. Here, we present the characterization of a loss-of-function mutant in a component involved in iron acquisition that displays hypervirulence. While in different microbial systems iron uptake mechanisms appear to be critical to achieve full pathogenic potential, we found that the absence of the ferroxidase that is part of the reductive iron assimilation system leads to hypervirulence in this fungus. This is an unusual and rather underrepresented phenotype, which can be modulated by iron levels in the plant and provides an unexpected link between iron acquisition, reactive oxygen species (ROS) production, and pathogenesis in the Botrytis-plant interaction. The plant pathogen Botrytis cinerea is responsible for gray-mold disease, which infects a wide variety of species. The outcome of this host-pathogen interaction, a result of the interplay between plant defense and fungal virulence pathways, can be modulated by various environmental factors. Among these, iron availability and acquisition play a crucial role in diverse biological functions. How B. cinerea obtains iron, an essential micronutrient, during infection is unknown. We set out to determine the role of the reductive iron assimilation (RIA) system during B. cinerea infection. This system comprises the BcFET1 ferroxidase, which belongs to the multicopper oxidase (MCO) family of proteins, and the BcFTR1 membrane-bound iron permease. Gene knockout and complementation studies revealed that, compared to the wild type, the bcfet1 mutant displays delayed conidiation, iron-dependent sclerotium production, and significantly reduced whole-cell iron content. Remarkably, this mutant exhibited a hypervirulence phenotype, whereas the bcftr1 mutant presents normal virulence and unaffected whole-cell iron levels and developmental programs. Interestingly, while in iron-starved plants wild-type B. cinerea produced slightly reduced necrotic lesions, the hypervirulence phenotype of the bcfet1 mutant is no longer observed in iron-deprived plants. This suggests that B. cinerea bcfet1 knockout mutants require plant-derived iron to achieve larger necrotic lesions, whereas in planta analyses of reactive oxygen species (ROS) revealed increased ROS levels only for infections caused by the bcfet1 mutant. These results suggest that increased ROS production, under an iron sufficiency environment, at least partly underlie the observed infection phenotype in this mutant.
Collapse
|
5
|
Boonen F, Vandamme AM, Etoundi E, Pigneur LM, Housen I. Identification and characterization of a novel multicopper oxidase from Acidomyces acidophilus with ferroxidase activity. Biochimie 2014; 102:37-46. [DOI: 10.1016/j.biochi.2014.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/10/2014] [Indexed: 11/28/2022]
|
6
|
Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol 2012; 97:939-55. [DOI: 10.1007/s00253-012-4615-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
7
|
Canessa P, Muñoz-Guzmán F, Vicuña R, Larrondo LF. Characterization of PIR1, a GATA family transcription factor involved in iron responses in the white-rot fungus Phanerochaete chrysosporium. Fungal Genet Biol 2012; 49:626-34. [DOI: 10.1016/j.fgb.2012.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/16/2012] [Accepted: 05/26/2012] [Indexed: 01/19/2023]
|
8
|
Kües U, Rühl M. Multiple multi-copper oxidase gene families in basidiomycetes - what for? Curr Genomics 2011; 12:72-94. [PMID: 21966246 PMCID: PMC3129051 DOI: 10.2174/138920211795564377] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022] Open
Abstract
Genome analyses revealed in various basidiomycetes the existence of multiple genes for blue multi-copper oxidases (MCOs). Whole genomes are now available from saprotrophs, white rot and brown rot species, plant and animal pathogens and ectomycorrhizal species. Total numbers (from 1 to 17) and types of mco genes differ between analyzed species with no easy to recognize connection of gene distribution to fungal life styles. Types of mco genes might be present in one and absent in another fungus. Distinct types of genes have been multiplied at speciation in different organisms. Phylogenetic analysis defined different subfamilies of laccases sensu stricto (specific to Agaricomycetes), classical Fe2+-oxidizing Fet3-like ferroxidases, potential ferroxidases/laccases exhibiting either one or both of these enzymatic functions, enzymes clustering with pigment MCOs and putative ascorbate oxidases. Biochemically best described are laccases sensu stricto due to their proposed roles in degradation of wood, straw and plant litter and due to the large interest in these enzymes in biotechnology. However, biological functions of laccases and other MCOs are generally little addressed. Functions in substrate degradation, symbiontic and pathogenic intercations, development, pigmentation and copper homeostasis have been put forward. Evidences for biological functions are in most instances rather circumstantial by correlations of expression. Multiple factors impede research on biological functions such as difficulties of defining suitable biological systems for molecular research, the broad and overlapping substrate spectrum multi-copper oxidases usually possess, the low existent knowledge on their natural substrates, difficulties imposed by low expression or expression of multiple enzymes, and difficulties in expressing enzymes heterologously.
Collapse
Affiliation(s)
- Ursula Kües
- University of Goettingen, Büsgen-Institute, Division of Molecular Wood Biotechnology and Technical Mycology, Büsgenweg 2, 37077 Goettingen, Germany
| | | |
Collapse
|
9
|
Molecular and structural modeling of the Phanerochaete flavido-alba extracellular laccase reveals its ferroxidase structure. Arch Microbiol 2010; 192:883-92. [DOI: 10.1007/s00203-010-0616-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/31/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
10
|
Larrondo LF, Canessa P, Melo F, Polanco R, Vicuña R. Cloning and characterization of the genes encoding the high-affinity iron-uptake protein complex Fet3/Ftr1 in the basidiomycete Phanerochaete chrysosporium. MICROBIOLOGY-SGM 2007; 153:1772-1780. [PMID: 17526834 DOI: 10.1099/mic.0.2006/003442-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MCO1, a multicopper oxidase from Phanerochaete chrysosporium exhibiting strong ferroxidase activity, has recently been described. This enzyme shows biochemical and structural similarities with the yeast Fet3p, a type I membrane glycoprotein that efficiently oxidizes Fe(II) to Fe(III) for its subsequent transport to the intracellular compartment by the iron permease Ftr1p. The genome database of P. chrysosporium was searched to verify whether it includes a canonical fet3 in addition to mco1, and single copies of fet3 and ftr1 orthologues were found, separated by a divergent promoter. Pc-fet3 encodes a 628 aa protein that exhibits overall identities of about 40 % with other reported Fet3 proteins. In addition to a secretion signal, it has a C-terminal transmembrane domain, characteristic of these cell-surface-attached ferroxidases. Structural modelling of Pc-Fet3 revealed that the active site has all the residues known to be essential for ferroxidase activity. Pc-ftr1 encodes a 393 aa protein that shows about 38 % identity with several Ftr1 proteins from ascomycetes. Northern hybridization studies showed that the mRNA levels of both genes are reduced upon supplementation of the growth medium with iron, supporting the functional coupling of Fet3 and Ftr1 proteins in vivo.
Collapse
MESH Headings
- Binding Sites
- Blotting, Northern
- Ceruloplasmin/genetics
- Cloning, Molecular
- DNA, Fungal
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Gene Expression Regulation, Bacterial
- Iron/metabolism
- Membrane Proteins/genetics
- Membrane Transport Proteins/chemistry
- Membrane Transport Proteins/genetics
- Models, Molecular
- Molecular Sequence Data
- Phanerochaete/genetics
- Phanerochaete/metabolism
- Promoter Regions, Genetic
- Protein Sorting Signals/genetics
- Protein Structure, Tertiary
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | - Paulo Canessa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | - Francisco Melo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | - Rubén Polanco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | - Rafael Vicuña
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| |
Collapse
|
11
|
Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. Environ Microbiol 2007; 9:944-53. [PMID: 17359266 DOI: 10.1111/j.1462-2920.2006.01216.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pedomicrobium sp. ACM 3067 is a budding-hyphal bacterium belonging to the alpha-Proteobacteria which is able to oxidize soluble Mn2+ to insoluble manganese oxide. A cosmid, from a whole-genome library, containing the putative genes responsible for manganese oxidation was identified and a primer-walking approach yielded 4350 bp of novel sequence. Analysis of this sequence showed the presence of a predicted three-gene operon, moxCBA. The moxA gene product showed homology to multicopper oxidases (MCOs) and contained the characteristic four copper-binding motifs (A, B, C and D) common to MCOs. An insertion mutation of moxA showed that this gene was essential for both manganese oxidation and laccase-like activity. The moxB gene product showed homology to a family of outer membrane proteins which are essential for Type I secretion in Gram-negative bacteria. moxBA has not been observed in other manganese-oxidizing bacteria but homologues were identified in the genomes of several bacteria including Sinorhizobium meliloti 1021 and Agrobacterium tumefaciens C58. These results suggest that moxBA and its homologues constitute a family of genes encoding an MCO and a predicted component of the Type I secretion system.
Collapse
Affiliation(s)
- Justin P Ridge
- Centre for Bacterial Diversity and Identification, University of Queensland, St. Lucia, Qld 4072, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 2007; 44:77-87. [PMID: 16971147 DOI: 10.1016/j.fgb.2006.07.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/20/2006] [Indexed: 11/17/2022]
Abstract
The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in lignocellulose degradation. Herein, we summarize the number, organization, and expression of genes encoding peroxidases, copper radical oxidases, FAD-dependent oxidases, and multicopper oxidases. Possibly relevant to extracellular oxidative systems are genes involved in posttranslational processes and a large number of hypothetical proteins.
Collapse
Affiliation(s)
- Phil Kersten
- Forest Products Laboratory, USDA, One Gifford Pinchot Drive, Madison, WI 53705, USA
| | | |
Collapse
|
13
|
Stoj CS, Augustine AJ, Zeigler L, Solomon EI, Kosman DJ. Structural basis of the ferrous iron specificity of the yeast ferroxidase, Fet3p. Biochemistry 2006; 45:12741-9. [PMID: 17042492 DOI: 10.1021/bi061543+] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fet3p is a multicopper oxidase (MCO) that functions together with the iron permease, Ftr1p, to support high-affinity Fe uptake in yeast. Fet3p is a ferroxidase that, like ceruloplasmin and hephaestin, couples the oxidation of 4 equiv of Fe(II) to the reduction of O2 to 2 H2O. The ferrous iron specificity of this subclass of MCO proteins has not been delineated by rigorous structure-function analysis. Here the crystal structure of Fet3p has been used as a template to identify the amino acid residues that confer this substrate specificity and then to quantify the contributions they make to this specific reactivity by thermodynamic and kinetic analyses. In terms of the Marcus theory of outer-sphere electron transfer, we show here that D283, E185, and D409 in Fet3p provide a Fe(II) binding site that actually favors ferric iron; this site thus reduces the reduction potential of the bound Fe(II) in comparison to that of aqueous ferrous iron, providing a thermodynamically more robust driving force for electron transfer. In addition, E185 and D409 constitute parts of the electron-transfer pathway from the bound Fe(II) to the protein's type 1 Cu(II). This electronic matrix coupling relies on H-bonds from the carboxylate OD2 atom of each residue to the NE2 NH group of the two histidine ligands at the type 1 Cu site. These two acidic residues and this H-bond network appear to distinguish a fungal ferroxidase from a fungal laccase since the specificity that Fet3p has for Fe(II) is completely lost in a Fet3pE185A/D409A mutant. Indeed, this double mutant functions kinetically better as a laccase, albeit a relatively inefficient one.
Collapse
Affiliation(s)
- Christopher S Stoj
- Department of Biochemistry, School of Medicine and Biological Sciences, State University of New York, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
14
|
Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 2006; 273:2308-26. [PMID: 16650005 DOI: 10.1111/j.1742-4658.2006.05247.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A phylogenetic analysis of more than 350 multicopper oxidases (MCOs) from fungi, insects, plants, and bacteria provided the basis for a refined classification of this enzyme family into laccases sensu stricto (basidiomycetous and ascomycetous), insect laccases, fungal pigment MCOs, fungal ferroxidases, ascorbate oxidases, plant laccase-like MCOs, and bilirubin oxidases. Within the largest group of enzymes, formed by the 125 basidiomycetous laccases, the gene phylogeny does not strictly follow the species phylogeny. The enzymes seem to group at least partially according to the lifestyle of the corresponding species. Analyses of the completely sequenced fungal genomes showed that the composition of MCOs in the different species can be very variable. Some species seem to encode only ferroxidases, whereas others have proteins which are distributed over up to four different functional clusters in the phylogenetic tree.
Collapse
Affiliation(s)
- Patrik J Hoegger
- Georg-August-University Göttingen, Institute of Forest Botany, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
15
|
Singh A, Severance S, Kaur N, Wiltsie W, Kosman DJ. Assembly, Activation, and Trafficking of the Fet3p·Ftr1p High Affinity Iron Permease Complex in Saccharomyces cerevisiae. J Biol Chem 2006; 281:13355-13364. [PMID: 16522632 DOI: 10.1074/jbc.m512042200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity iron uptake complex in the yeast plasma membrane (PM) consists of the ferroxidase, Fet3p, and the ferric iron permease, Ftr1p. We used a combination of yeast two-hybrid analysis, confocal fluorescence microscopy, and fluorescence resonance energy transfer (FRET) quantification to delineate the motifs in the two proteins required for assembly and maturation into an uptake-competent complex. The cytoplasmic, carboxyl-terminal domain of each protein contains a four-residue motif adjacent to the cytoplasm-PM interface that supports an interaction between the proteins. This interaction has been quantified by two-hybrid analysis and is required for assembly and trafficking of the complex to the PM and for the approximately 13% maximum FRET efficiency determined. In contrast, the Fet3p transmembrane domain (TM) can be exchanged with the TM domain from the vacuolar ferroxidase, Fet5p, with no loss of assembly and trafficking. A carboxyl-terminal interaction between the vacuolar proteins, Fet5p and Fth1p, also was quantified. As a measure of the specificity of interaction, no interaction between heterologous ferroxidase permease pairs was observed. Also, whereas FRET was quantified between fluorescent fusions of the copper permease (monomers), Ctr1p, none was observed between Fet3p and Ctr1p. The results are consistent with a (minimal) heterodimer model of the Fet3p.Ftr1p complex that supports the trafficking of iron from Fet3p to Ftr1p for iron permeation across the yeast PM.
Collapse
Affiliation(s)
- Arvinder Singh
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York 14214
| | - Scott Severance
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York 14214
| | - Navjot Kaur
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York 14214
| | - William Wiltsie
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York 14214
| | - Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York 14214.
| |
Collapse
|
16
|
Kilaru S, Hoegger PJ, Kües U. The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Curr Genet 2006; 50:45-60. [PMID: 16775746 DOI: 10.1007/s00294-006-0074-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Seventeen non-allelic laccase genes and one gene footprint are present in the genome of Coprinopsis cinerea. Two gene subfamilies were defined by intron positions and similarity of deduced gene products, one with 15 members (lcc1-lcc15) and one with 2 members (lcc16, lcc17). The first subfamily divides in the phylogenetic tree of deduced proteins into smaller clusters that probably reflect recent gene duplication events. Different laccase genes diverged from each other both by frequent synonymous and non-synonymous codon changes. Mainly synonymous codon changes accumulate in alleles, with up to 12% total codon differences between given pairs of alleles. Overexpression of the 17 laccase genes under the control of a constitutive promoter identified nine active enzymes from subfamily 1. All of these showed laccase activities with DMP (2,6-dimethoxy phenol) as substrate but only eight of them also with ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. Lcc16 and Lcc17 share certain sequence features with ferroxidases but enzyme assays failed to show such activity. Lcc15 is expected to be non-functional in laccase activity due to an internal deletion of about 150 amino acids. Transcripts were obtained from all genes but splice junctions for three genes were not congruent with translation into a functional protein.
Collapse
Affiliation(s)
- Sreedhar Kilaru
- Molecular Wood Biotechnology, Institute of Forest Botany, Georg-August-University of Göttingen, Germany
| | | | | |
Collapse
|
17
|
Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ. The copper-iron connection in biology: structure of the metallo-oxidase Fet3p. Proc Natl Acad Sci U S A 2005; 102:15459-64. [PMID: 16230618 PMCID: PMC1257390 DOI: 10.1073/pnas.0506227102] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 09/08/2005] [Indexed: 11/18/2022] Open
Abstract
Fet3p is a multicopper-containing glycoprotein localized to the yeast plasma membrane that catalyzes the oxidation of Fe(II) to Fe(III). This ferrous iron oxidation is coupled to the reduction of O(2) to H(2)O and is termed the ferroxidase reaction. Fet3p-produced Fe(III) is transferred to the permease Ftr1p for import into the cytosol. The posttranslational insertion of four copper ions into Fet3p is essential for its activity, thus linking copper and iron homeostasis. The mammalian ferroxidases ceruloplasmin and hephaestin are homologs of Fet3p. Loss of the Fe(II) oxidation catalyzed by these proteins results in a spectrum of pathological states, including death. Here, we present the structure of the Fet3p extracellular ferroxidase domain and compare it with that of human ceruloplasmin and other multicopper oxidases that are devoid of ferroxidase activity. The Fet3p structure delineates features that underlie the unique reactivity of this and homologous multicopper oxidases that support the essential trafficking of iron in diverse eukaryotic organisms. The findings are correlated with biochemical and physiological data to cross-validate the elements of Fet3p that define it as both a ferroxidase and cuprous oxidase.
Collapse
Affiliation(s)
- Alexander B Taylor
- Department of Biochemistry and the X-Ray Crystallography Core Laboratory, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
18
|
Bonaccorsi di Patti MC, Miele R, Eugenia Schininà M, Barra D. The yeast multicopper oxidase Fet3p and the iron permease Ftr1p physically interact. Biochem Biophys Res Commun 2005; 333:432-7. [PMID: 15946650 DOI: 10.1016/j.bbrc.2005.05.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 05/23/2005] [Indexed: 11/20/2022]
Abstract
High affinity iron uptake in yeast is carried out by a multicomponent system formed by the ferroxidase Fet3p and the iron permease Ftr1p. The currently accepted model predicts that Fet3p and Ftr1p are functionally associated, however, a structural interaction between these two proteins has not been proven yet. The methylotrophic yeast Pichia pastoris has been used to perform cross-linking studies aimed to demonstrate the existence of a Fet3p-Ftr1p complex. Cross-linking of membrane suspensions with the membrane-impermeable reagents DTSSP and BS(3) has evidenced the presence of a high molecular weight band with Fet3p oxidase activity. This band has been purified and subjected to N-terminal sequence analysis. Two sequences were found in the cross-linked species, one of which could be assigned to Fet3p and the other to Ftr1p. This is the first experimental demonstration that Fet3p and Ftr1p are physically associated.
Collapse
Affiliation(s)
- M Carmela Bonaccorsi di Patti
- Department of Biochemical Sciences A. Rossi Fanelli, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy. mariacarmela.bonaccorsi@uniroma l.it
| | | | | | | |
Collapse
|
19
|
Phanerochaete chrysosporium Genomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Bonaccorsi di Patti MC, Felice MR, De Domenico I, Lania A, Alaleona F, Musci G. Specific aspartate residues in FET3 control high-affinity iron transport inSaccharomyces cerevisiae. Yeast 2005; 22:677-87. [PMID: 16032772 DOI: 10.1002/yea.1237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Site-directed mutagenesis was performed on a set of six aspartate residues of Fet3, the multicopper ferroxidase involved in high-affinity iron transport in Saccharomyces cerevisiae, in order to comprehend the molecular determinants of the protein function. Asp312, Asp315, Asp319 and Asp320 were predicted by homology modelling to be located in a negatively charged surface-exposed loop of the protein. Other two aspartate residues (Asp278 and Asp279) are placed close to the type 1 copper- and iron-binding sites, possibly linking these sites to the negatively charged region. In vivo results showed that mutation of Asp319 and Asp320 to yield D319N and D320N derivatives strongly impairs the ability of the yeast to grow under iron-limiting conditions. In particular, substitution of Asp320 with asparagine essentially abolished the Fet3-dependent iron transport activity. All other mutants (D278Q, D279N, D312N and D315I) behaved essentially as the wild-type protein. The electron paramagnetic resonance spectrum of the soluble forms of D319N and D320N showed significant changes of the copper sites' geometry in D319N but not in D320N. At variance with the membrane-bound forms, soluble D319N and D320N derivatives were highly susceptible to proteolytic degradation, suggesting that replacement of Asp319 or Asp320 locally modifies the structure of Fet3, making the protein sensitive to proteolysis when it is not protected by the membrane environment. In turn, this might be evidence of a shielding role of the permease Ftr1, which could interact with Fet3 at the level of the aspartate-rich negatively charged region.
Collapse
|
21
|
Larrondo LF, González B, Cullen D, Vicuña R. Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts. MICROBIOLOGY-SGM 2004; 150:2775-2783. [PMID: 15289573 DOI: 10.1099/mic.0.27072-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A cluster of multicopper oxidase genes (mco1, mco2, mco3, mco4) from the lignin-degrading basidiomycete Phanerochaete chrysosporium is described. The four genes share the same transcriptional orientation within a 25 kb region. mco1, mco2 and mco3 are tightly grouped, with intergenic regions of 2.3 and 0.8 kb, respectively, whereas mco4 is located 11 kb upstream of mco1. All are transcriptionally active, as shown by RT-PCR. Comparison of cDNAs and the corresponding genomic sequences identified 14-19 introns within each gene. Based on homology and intron composition, two subfamilies of mco sequences could be identified. The sequences have copper-binding motifs similar to ferroxidase proteins, but different from fungal laccases. Thus, these sequences constitute a novel branch of the multicopper oxidase family. Analysis of several cDNA clones obtained from poly(A) RNA revealed the presence of transcripts of various lengths. Splice variants from mco2, mco3 and mco4 were characterized. They generally exhibited the presence of one to five introns, whereas other transcripts lacked some exons. In all cases, the presence of introns leads to frame shifts that give rise to premature stop codons. In aggregate, these investigations show that P. chrysosporium possesses a novel family of multicopper oxidases which also feature clustering and incomplete processing of some of their transcripts, a phenomenon referred to in this paper as 'altered splicing'.
Collapse
Affiliation(s)
- Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | - Bernardo González
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | - Dan Cullen
- USDA Forest Products Laboratory, Madison, WI 53705, USA
| | - Rafael Vicuña
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| |
Collapse
|
22
|
Quintanar L, Gebhard M, Wang TP, Kosman DJ, Solomon EI. Ferrous Binding to the Multicopper OxidasesSaccharomyces cerevisiaeFet3p and Human Ceruloplasmin: Contributions to Ferroxidase Activity. J Am Chem Soc 2004; 126:6579-89. [PMID: 15161286 DOI: 10.1021/ja049220t] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multicopper oxidases are a family of enzymes that couple the reduction of O(2) to H(2)O with the oxidation of a range of substrates. Saccharomyces cerevisiae Fet3p and human ceruloplasmin (hCp) are members of this family that exhibit ferroxidase activity. Their high specificity for Fe(II) has been attributed to the existence of a binding site for iron. In this study, mutations at the E185 and Y354 residues, which are putative ligands for iron in Fet3p, have been generated and characterized. The effects of these mutations on the electronic structure of the T1 Cu site have been assessed, and the reactivities of this site toward 1,4-hydroquinone (a weak binding substrate) and Fe(II) have been evaluated and interpreted in terms of the semiclassical Marcus theory for electron transfer. The electronic and geometric structure of the Fe(II) substrate bound to Fet3p and hCp has been studied for the first time, using variable-temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopy. The iron binding sites in Fet3p and hCp appear to be very similar in nature, and their contributions to the ferroxidase activity of these proteins have been analyzed. It is found that these iron binding sites play a major role in tuning the reduction potential of iron to provide a large driving force for the ferroxidase reaction, while still supporting the delivery of the Fe(III) product to the acceptor protein. Finally, the analysis of possible electron-transfer (ET) pathways from the protein-bound Fe(II) to the T1 Cu site indicates that the E185 residue not only plays a role in iron binding, but also provides the dominant ET pathway to the T1 Cu site.
Collapse
Affiliation(s)
- Liliana Quintanar
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | | | |
Collapse
|
23
|
Larrondo LF, Salas L, Melo F, Vicuña R, Cullen D. A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl Environ Microbiol 2004; 69:6257-63. [PMID: 14532088 PMCID: PMC201228 DOI: 10.1128/aem.69.10.6257-6263.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium involves various extracellular oxidative enzymes, including lignin peroxidase, manganese peroxidase, and a peroxide-generating enzyme, glyoxal oxidase. Recent studies have suggested that laccases also may be produced by this fungus, but these conclusions have been controversial. We identified four sequences related to laccases and ferroxidases (Fet3) in a search of the publicly available P. chrysosporium database. One gene, designated mco1, has a typical eukaryotic secretion signal and is transcribed in defined media and in colonized wood. Structural analysis and multiple alignments identified residues common to laccase and Fet3 sequences. A recombinant MCO1 (rMCO1) protein expressed in Aspergillus nidulans had a molecular mass of 78 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the copper I-type center was confirmed by the UV-visible spectrum. rMCO1 oxidized various compounds, including 2,2'-azino(bis-3-ethylbenzthiazoline-6-sulfonate) (ABTS) and aromatic amines, although phenolic compounds were poor substrates. The best substrate was Fe2+, with a Km close to 2 micro M. Collectively, these results suggest that the P. chrysosporium genome does not encode a typical laccase but rather encodes a unique extracellular multicopper oxidase with strong ferroxidase activity.
Collapse
Affiliation(s)
- Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
24
|
Stoj C, Kosman DJ. Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett 2003; 554:422-6. [PMID: 14623105 DOI: 10.1016/s0014-5793(03)01218-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Fet3 protein in Saccharomyces cerevisiae and mammalian ceruloplasmin are multicopper oxidases (MCO) that are required for iron homeostasis via their catalysis of the ferroxidase reaction, 4Fe(2+)+O(2)+4H(+)-->4Fe(3+)+2H(2)O. The enzymes may play an essential role in copper homeostasis since they exhibit a strikingly similar kinetic activity towards Cu(1+) as substrate. In contrast, laccase, an MCO that exhibits weak activity towards Fe(2+), exhibits a similarly weak activity towards Cu(1+). Kinetic analyses of the Fet3p reaction demonstrate that the ferroxidase and cuprous oxidase activities are due to the same electron transfer site on the enzyme. These two ferroxidases are fully competent kinetically to play a major role in maintaining the cuprous-cupric redox balance in aerobic organisms.
Collapse
Affiliation(s)
- Christopher Stoj
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, 140 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA
| | | |
Collapse
|
25
|
Wang TP, Quintanar L, Severance S, Solomon EI, Kosman DJ. Targeted suppression of the ferroxidase and iron trafficking activities of the multicopper oxidase Fet3p from Saccharomyces cerevisiae. J Biol Inorg Chem 2003; 8:611-20. [PMID: 12684851 DOI: 10.1007/s00775-003-0456-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 03/10/2003] [Indexed: 11/25/2022]
Abstract
The Fet3 protein in Saccharomyces cerevisiae is a multicopper oxidase tethered to the outer surface of the yeast plasma membrane. Fet3p catalyzes the oxidation of Fe(2+) to Fe(3+); this ferroxidation reaction is an obligatory first step in high-affinity iron uptake through the permease Ftr1p. Here, kinetic analyses of several Fet3p mutants identify residues that contribute to the specificity that Fet3p has for Fe(2+), one of which is essential also to the coupling of the ferroxidase and uptake processes. The spectral and kinetic properties of the D278A, E185D and A, Y354F and A, and E185A/Y354A mutants of a soluble form of Fet3p showed that all of the mutants exhibited the normal absorbance at 330 nm and 608 nm due to the type 3 and type 1 copper sites in Fet3p, respectively. The EPR spectra of the mutants were also equivalent to wild-type, showing that the type 1 and type 2 Cu(II) sites in the proteins were not perturbed. The only marked kinetic defects measured in vitro were increases in K(M) for Fe(2+) exhibited by the D278A, E185A, Y354A, and E185A/Y354A mutants. These results suggest that these three residues contribute to the ferroxidase specificity site in Fet3p. In vivo analysis of these mutant proteins in their membrane-bound form showed that only E185 mutants exhibited kinetic defects in (59)Fe uptake. For the Fet3p(E185D) mutant, K(M) for iron was 300-fold greater than the wild-type K(M), while Fet3p(E185A) was completely inactive in support of iron uptake. In situ fluorescence demonstrated that all of the mutant Fet3 proteins, in complex with an Ftr1p:YFP fusion protein, were trafficked normally to the plasma membrane. These results suggest that E185 contributes to Fe(2+ )binding to Fet3p and to the subsequent trafficking of the Fe(3+) produced to Ftr1p.
Collapse
Affiliation(s)
- Tzu-Pin Wang
- Department of Biochemistry, The University at Buffalo, 140 Farber Hall, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
26
|
Kosman DJ. FET3P, ceruloplasmin, and the role of copper in iron metabolism. ADVANCES IN PROTEIN CHEMISTRY 2003; 60:221-69. [PMID: 12418179 DOI: 10.1016/s0065-3233(02)60055-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214, USA
| |
Collapse
|
27
|
Angelaccio S, Bonaccorsi di Patti MC. Site-directed mutagenesis by the megaprimer PCR method: variations on a theme for simultaneous introduction of multiple mutations. Anal Biochem 2002; 306:346-9. [PMID: 12123677 DOI: 10.1006/abio.2002.5689] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sebastiana Angelaccio
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università degli Studi di Roma La Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | | |
Collapse
|
28
|
Syed BA, Beaumont NJ, Patel A, Naylor CE, Bayele HK, Joannou CL, Rowe PSN, Evans RW, Srai SKS. Analysis of the human hephaestin gene and protein: comparative modelling of the N-terminus ecto-domain based upon ceruloplasmin. Protein Eng Des Sel 2002; 15:205-14. [PMID: 11932491 DOI: 10.1093/protein/15.3.205] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hephaestin was implicated in mammalian iron homeostasis following its identification as the defective gene in murine sex-linked anaemia. It is a member of the family of copper oxidases that includes mammalian ceruloplasmin, factors V and VIII, yeast fet3 and fet5 and bacterial ascorbate oxidase. Hephaestin is different from ceruloplasmin, a soluble ferroxidase, in having a membrane-spanning region towards the C-terminus. Here we report the gene structure, spanning approximately 100 kb, of the human homologue of mouse hephaestin. The sequence was assembled from the cDNA clones and the chromosome X genomic sequence data available at the Sanger Centre. It has an open reading frame that encodes a protein of 1158 residues, 85% identical with the murine homologue. A model of the N-terminal ecto-domain has been built based on the known three-dimensional structure of human ceruloplasmin. The overall tertiary structure for the hephaestin and the putative residues involved in binding copper and iron appear to be highly conserved between these proteins, which suggests they share the same fold and a conserved function.
Collapse
Affiliation(s)
- Basharut A Syed
- Department of Biochemistry and Molecular Biology, Royal Free and University College Medical School, London NW3 2PF, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bonaccorsi di Patti MC, Paronetto MP, Dolci V, Felice MR, Lania A, Musci G. Mutational analysis of the iron binding site of Saccharomyces cerevisiae ferroxidase Fet3. An in vivo study. FEBS Lett 2001; 508:475-8. [PMID: 11728475 DOI: 10.1016/s0014-5793(01)03131-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of residues predicted to be involved in the binding of iron by the yeast ferroxidase Fet3 has been studied by site-directed mutagenesis. The effect of Fet3 mutations E185A, E185Q, Y354F, D409V and H489D has been investigated in vivo by kinetic analyses of high affinity iron uptake. Our results indicate that Glu-185 is critical for the binding of iron, since substitution of this residue with Ala or Gln strongly affects both growth and the kinetic parameters of high affinity iron uptake, greatly increasing K(m). Mutations Y354F and D409V result in less severe alteration of high affinity iron uptake, while mutant H489D is unable to grow under conditions of iron limitation.
Collapse
|
30
|
Paronetto MP, Miele R, Maugliani A, Borro M, Bonaccorsi di Patti MC. Cloning of Pichia pastoris Fet3: insights into the high affinity iron uptake system. Arch Biochem Biophys 2001; 392:162-7. [PMID: 11469807 DOI: 10.1006/abbi.2001.2425] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-affinity iron uptake by yeast cells appears to require the presence of a complex formed on the plasma membrane by the multicopper oxidase Fet3 and the permease Ftr1 which work together to allow iron to enter safely inside the cell. The Pichia pastoris ferroxidase Fet3 has been cloned and it has been found to display high sequence similarity to other yeast multicopper oxidases, including all the predicted ligands for the catalytic copper atoms and for the iron substrate. P. pastoris appears to possess a high-affinity iron uptake system similar to that of S. cerevisiae, as far as regulation of expression is concerned. However, the P. pastoris high-affinity iron uptake system presents a K(m) value for iron almost ten times higher than that of S. cerevisiae, possibly to control iron fluxes over a wider range of concentrations of this metal, in order to avoid toxic iron overloading.
Collapse
Affiliation(s)
- M P Paronetto
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università degli Studi di Roma La Sapienza, P. le A. Moro 5, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
31
|
Machonkin TE, Quintanar L, Palmer AE, Hassett R, Severance S, Kosman DJ, Solomon EI. Spectroscopy and reactivity of the type 1 copper site in Fet3p from Saccharomyces cerevisiae: correlation of structure with reactivity in the multicopper oxidases. J Am Chem Soc 2001; 123:5507-17. [PMID: 11389633 DOI: 10.1021/ja003975s] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fet3p is a multicopper oxidase recently isolated from the yeast, Saccharomyces cerevisiae. Fet3p is functionally homologous to ceruloplasmin (Cp) in that both are ferroxidases. However, by sequence homology Fet3p is more similar to fungal laccase, and both contain a type 1 Cu site that lacks the axial methionine ligand present in the functional type 1 sites of Cp. To determine the contribution of the electronic structure of the type 1 Cu site of Fet3p to the ferroxidase mechanism, we have examined the absorption, circular dichroism, magnetic circular dichroism, electron paramagnetic resonance, and resonance Raman spectra of wild-type Fet3p and type 1 and type 2 Cu-depleted mutants. The spectroscopic features of the type 1 Cu site of Fet3p are nearly identical to those of fungal laccase, indicating a very similar three-coordinate geometry. We have also examined the reactivity of the type 1 Cu site by means of redox titrations and stopped-flow kinetics. From poised potential redox titrations, the E degrees of the type 1 Cu site is 427 mV, which is low for a three-coordinate type 1 Cu site. The kinetics of reduction of the type 1 Cu sites of four different multicopper oxidases with two different substrates were compared. The type 1 site of a plant laccase (Rhus vernicifera) is reduced moderately slowly by both Fe(II) and a bulky organic substrate, 1,4-hydroquinone (with 6 equiv of substrate, k(obs) = 0.029 and 0.013 s(-)(1), respectively). On the other hand, the type 1 site of a fungal laccase (Coprinus cinereus) is reduced very rapidly by both substrates (k(obs) > 23 s(-)(1)). In contrast, both Fet3p and Cp are rapidly reduced by Fe(II) (k(obs) > 23 s(-)(1)), but only very slowly by 1,4-hydroquinone (10- and 100-fold more slowly than plant laccase, respectively). Semiclassical theory is used to analyze the origin of these differences in reactivity in terms of type 1 Cu site accessibility to specific substrates.
Collapse
Affiliation(s)
- T E Machonkin
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
|