1
|
Dotsenko A, Rozhkova A, Zorov I, Korotkova O, Sinitsyn A. Enhancement of activity and thermostability of Aspergillus niger ATCC 10864 phytase A through rational design. Biochem Biophys Res Commun 2022; 634:55-61. [DOI: 10.1016/j.bbrc.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/02/2022]
|
2
|
Upton DJ, McQueen-Mason SJ, Wood AJ. In silico evolution of Aspergillus niger organic acid production suggests strategies for switching acid output. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:27. [PMID: 32123544 PMCID: PMC7038614 DOI: 10.1186/s13068-020-01678-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/06/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The fungus Aspergillus niger is an important industrial organism for citric acid fermentation; one of the most efficient biotechnological processes. Previously we introduced a dynamic model that captures this process in the industrially relevant batch fermentation setting, providing a more accurate predictive platform to guide targeted engineering. In this article we exploit this dynamic modelling framework, coupled with a robust genetic algorithm for the in silico evolution of A. niger organic acid production, to provide solutions to complex evolutionary goals involving a multiplicity of targets and beyond the reach of simple Boolean gene deletions. We base this work on the latest metabolic models of the parent citric acid producing strain ATCC1015 dedicated to organic acid production with the required exhaustive genomic coverage needed to perform exploratory in silico evolution. RESULTS With the use of our informed evolutionary framework, we demonstrate targeted changes that induce a complete switch of acid output from citric to numerous different commercially valuable target organic acids including succinic acid. We highlight the key changes in flux patterns that occur in each case, suggesting potentially valuable targets for engineering. We also show that optimum acid productivity is achieved through a balance of organic acid and biomass production, requiring finely tuned flux constraints that give a growth rate optimal for productivity. CONCLUSIONS This study shows how a genome-scale metabolic model can be integrated with dynamic modelling and metaheuristic algorithms to provide solutions to complex metabolic engineering goals of industrial importance. This framework for in silico guided engineering, based on the dynamic batch growth relevant to industrial processes, offers considerable potential for future endeavours focused on the engineering of organisms to produce valuable products.
Collapse
Affiliation(s)
- Daniel J. Upton
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | | | - A. Jamie Wood
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD UK
| |
Collapse
|
3
|
Han N, Miao H, Yu T, Xu B, Yang Y, Wu Q, Zhang R, Huang Z. Enhancing thermal tolerance of Aspergillus niger PhyA phytase directed by structural comparison and computational simulation. BMC Biotechnol 2018; 18:36. [PMID: 29859065 PMCID: PMC5984770 DOI: 10.1186/s12896-018-0445-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Phytase supplied in feeds for monogastric animals is important for improving nutrient uptake and reducing phosphorous pollution. High-thermostability phytases are particularly desirable due to their ability to withstand transient high temperatures during feed pelleting procedures. A comparison of crystal structures of the widely used industrial Aspergillus niger PhyA phytase (AnP) with its close homolog, the thermostable Aspergillus fumigatus phytase (AfP), suggests 18 residues in three segments associated with thermostability. In this work, we aim to improve the thermostability of AnP through site-directed mutagenesis. We identified favorable mutations based on structural comparison of homologous phytases and molecular dynamics simulations. Results A recombinant phytase (AnP-M1) was created by substituting 18 residues in AnP with their AfP analogs. AnP-M1 exhibited greater thermostability than AnP at 70 °C. Molecular dynamics simulations suggested newly formed hydrogen bonding interactions with nine substituted residues give rise to the improved themostability. Thus, another recombinant phytase (AnP-M2) with just these nine point substitutions was created. AnP-M2 demonstrated superior thermostability among all AnPs at ≥70 °C: AnP-M2 maintained 56% of the maximal activity after incubation at 80 °C for 1 h; AnP-M2 retained 30-percentage points greater residual activity than that of AnP and AnP-M1 after 1 h incubation at 90 °C. Conclusions The resulting AnP-M2 is an attractive candidate in industrial applications, and the nine substitutions in AnP-M2 are advantageous for phytase thermostability. This work demonstrates that a strategy combining structural comparison of homologous enzymes and computational simulation to focus on important interactions is an effective method for obtaining a thermostable enzyme. Electronic supplementary material The online version of this article (10.1186/s12896-018-0445-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nanyu Han
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Huabiao Miao
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Tingting Yu
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Bo Xu
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Yunjuan Yang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Qian Wu
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Rui Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China.
| |
Collapse
|
4
|
Tian YS, Xu J, Zhao W, Xing XJ, Fu XY, Peng RH, Yao QH. Identification of a phosphinothricin-resistant mutant of rice glutamine synthetase using DNA shuffling. Sci Rep 2015; 5:15495. [PMID: 26492850 PMCID: PMC4616025 DOI: 10.1038/srep15495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/18/2015] [Indexed: 11/13/2022] Open
Abstract
To date, only bar/pat gene derived from Streptomyces has been used to generate the commercial PPT-resistant crops currently available in the market. The limited source of bar/pat gene is probably what has caused the decrease in PPT-tolerance, which has become the main concern of those involved in field management programs. Although glutamine synthetase (GS) is the target enzyme of PPT, little study has been reported about engineering PPT-resistant plants with GS gene. Then, the plant-optimized GS gene from Oryza sativa (OsGS1S) was chemically synthesized in the present study by PTDS to identify a GS gene for developing PPT-tolerant plants. However, OsGS1S cannot be directly used for developing PPT-tolerant plants because of its poor PPT-resistance. Thus, we performed DNA shuffling on OsGS1S, and one highly PPT-resistant mutant with mutations in four amino acids (A63E, V193A, T293A and R295K) was isolated after three rounds of DNA shuffling and screening. Among the four amino acids substitutions, only R295K was identified as essential in altering PPT resistance. The R295K mutation has also never been previously reported as an important residue for PPT resistance. Furthermore, the mutant gene has been transformed into Saccharomyces cerevisiae and Arabidopsis to confirm its potential in developing PPT-resistant crops.
Collapse
Affiliation(s)
- Yong-Sheng Tian
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Ruifeng Agricultural Science and Technology Co., Ltd, Shanghai, 201106, China
- College of horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Xu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wei Zhao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Xiao-Juan Xing
- College of horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiao-Yan Fu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Quan-Hong Yao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| |
Collapse
|
5
|
Characteristics and Applicability of Phytase of the Yeast Pichia anomala in Synthesizing Haloperoxidase. Appl Biochem Biotechnol 2015; 176:1351-69. [PMID: 25957272 DOI: 10.1007/s12010-015-1650-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
The phytase of the yeast Pichia anomala is a histidine acid phosphatase based on signature sequences and catalytic amino acids identified by site-directed mutagenesis. Among modulators, N-bromosuccinimide and butanedione inhibit phytase, while Ca(2+) and Ni(2+) stimulate slightly. Vanadate exhibits competitive inhibition of phytase, making it bifunctional to act as haloperoxidase. Molecular docking supports vanadate to share its binding site with phytate. The T 1/2, activation energy (E a ), temperature quotient (Q 10), activation energy of thermal inactivation (Ed), and enthalpy (ΔH d (0) ) of the enzyme are 4.0 min (80 °C), 27.72 kJ mol(-1), 2.1, 410.62 kJ mol(-1), and ∼407.8 kJ mol(-1) (65-80 °C), respectively. The free energy of the process (ΔG d (o) ) increases from 49.56 to 71.58 kJ mol(-1) with rise in temperature, while entropy of inactivation (ΔS d (0) ) remains constant at ∼1.36 kJ mol(-1) K(-1). The supplementation of whole wheat dough with rPPHY resulted in 72.5 % reduction in phytic acid content of bread. These characteristics confirm that the phytase has adequate thermostability for its applicability as a food and feed additive.
Collapse
|
6
|
Tian YS, Xu J, Peng RH, Xiong AS, Xu H, Zhao W, Fu XY, Han HJ, Yao QH. Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase from Malus domestica for improved glyphosate resistance. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:829-38. [PMID: 23759057 DOI: 10.1111/pbi.12074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 05/09/2023]
Abstract
A new 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Malus domestica (MdEPSPS) was cloned and characterized by rapid amplification of cDNA ends to identify an EPSPS gene appropriate for the development of transgenic glyphosate-tolerant plants. However, wild-type MdEPSPS is not suitable for the development of transgenic glyphosate-tolerant plants because of its poor glyphosate resistance. Thus, we performed DNA shuffling on MdEPSPS, and one highly glyphosate-resistant mutant with mutations in eight amino acids (N63D, N86S, T101A, A187T, D230G, H317R, Y399R and C413A.) was identified after five rounds of DNA shuffling and screening. Among the eight amino acid substitutions on this mutant, only two residue changes (T101A and A187T) were identified by site-directed mutagenesis as essential and additive in altering glyphosate resistance, which was further confirmed by kinetic analyses. The single-site A187T mutation has also never been previously reported as an important residue for glyphosate resistance. Furthermore, transgenic rice was used to confirm the potential of MdEPSPS mutant in developing glyphosate-resistant crops.
Collapse
Affiliation(s)
- Yong-Sheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Site-Directed Mutagenesis Improves the Thermostability and Catalytic Efficiency of Aspergillus niger N25 Phytase Mutated by I44E and T252R. Appl Biochem Biotechnol 2013; 171:900-15. [DOI: 10.1007/s12010-013-0380-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
8
|
Abstract
Phytases are phosphohydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate, the major form of phosphorus in plant-based feeds. Consequently, this enzyme is supplemented in these species’ diets to decrease their phosphorus excretion, and it has emerged as one of the most effective and lucrative feed additives. This chapter provides a comprehensive review of the evolving course of phytase science and technology. It gives realistic estimates of the versatile roles of phytase in animal feeding, environmental protection, rock phosphorus preservation, human nutrition and health, and industrial applications. It elaborates on new biotechnology and existing issues related to developing novel microbial phytases as well as phytase-transgenic plants and animals. And it targets critical and integrated analyses on the global impact, novel application, and future demand of phytase in promoting animal agriculture, human health, and societal sustainability.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | | | | | | | - Michael J. Azain
- Department of Animal Science, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
9
|
Park I, Lee J, Cho J. Degradation of Phytate Pentamagnesium Salt by Bacillus sp. T4 Phytase as a Potential Eco-friendly Feed Additive. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:1466-72. [PMID: 25049504 PMCID: PMC4093014 DOI: 10.5713/ajas.2012.12276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/16/2012] [Accepted: 07/09/2012] [Indexed: 11/27/2022]
Abstract
A bacterial isolate derived from soil samples near a cattle farm was found to display extracellular phytase activity. Based on 16S rRNA sequence analysis, the strain was named Bacillus sp. T4. The optimum temperature for the phytase activity toward magnesium phytate (Mg-InsP6) was 40°C without 5 mM Ca2+ and 50°C with 5 mM Ca2+. T4 phytase had a characteristic bi-hump two pH optima of 6.0 to 6.5 and 7.4 for Mg-InsP6. The enzyme showed higher specificity for Mg-InsP6 than sodium phytate (Na-InsP6). Its activity was fairly inhibited by EDTA, Cu2+, Mn2+, Co2+, Ba2+ and Zn2+. T4 phytase may have great potential for use as an eco-friendly feed additive to enhance the nutritive quality of phytate and reduce phosphorus pollution.
Collapse
|
10
|
Prediction of substrate-binding site and elucidation of catalytic residue of a phytase from Bacillus sp. Enzyme Microb Technol 2012; 51:35-9. [DOI: 10.1016/j.enzmictec.2012.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/18/2022]
|
11
|
Tian YS, Xu J, Xiong AS, Zhao W, Fu XY, Peng RH, Yao QH. Improvement of glyphosate resistance through concurrent mutations in three amino acids of the Ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase. Appl Environ Microbiol 2011; 77:8409-14. [PMID: 21948846 PMCID: PMC3233053 DOI: 10.1128/aem.05271-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/19/2011] [Indexed: 11/20/2022] Open
Abstract
A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops.
Collapse
Affiliation(s)
| | | | - Ai-Sheng Xiong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Wei Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Xiao-Yan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Quan-Hong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Improving Phytase Enzyme Activity in a Recombinant phyA Mutant Phytase from Aspergillus niger N25 by Error-Prone PCR. Appl Biochem Biotechnol 2011; 166:549-62. [DOI: 10.1007/s12010-011-9447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 10/26/2011] [Indexed: 01/17/2023]
|
13
|
Fu D, Li Z, Huang H, Yuan T, Shi P, Luo H, Meng K, Yang P, Yao B. Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site. Appl Microbiol Biotechnol 2011; 90:1295-302. [PMID: 21380516 DOI: 10.1007/s00253-011-3171-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 01/31/2011] [Accepted: 02/09/2011] [Indexed: 11/24/2022]
Abstract
The maximum activity of Yersinia enterocolitica phytase (YeAPPA) occurs at pH 5.0 and 45 °C, and notably, its specific activity (3.28 ± 0.24 U mg(-1)) is 800-fold less than that of its Yersinia kristeensenii homolog (YkAPPA; 88% amino acid sequence identity). Sequence alignment and molecular modeling show that the arginine at position 79 (Arg79) in YeAPPA corresponding to Gly in YkAPPA as well as other histidine acid phosphatase (HAP) phytases is the only non-conserved residue near the catalytic site. To characterize the effects of the corresponding residue on the specific activities of HAP phytases, Escherichia coli EcAPPA, a well-characterized phytase with a known crystal structure, was selected for mutagenesis-its Gly73 was replaced with Arg, Asp, Glu, Ser, Thr, Leu, or Tyr. The results show that the specific activities of all of the corresponding EcAPPA mutants (17-2,400 U mg(-1)) were less than that of the wild-type phytase (3,524 U mg(-1)), and the activity levels were approximately proportional to the molecular volumes of the substituted residues' side chains. Site-directed replacement of Arg79 in YeAPPA (corresponding to Gly73 of EcAPPA) with Ser, Leu, and Gly largely increased the specific activity, which further verified the key role of the residue at position 79 for determining phytase activity. Thus, a new determinant that influences the catalytic efficiency of HAP phytases has been identified.
Collapse
Affiliation(s)
- Dawei Fu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tian YS, Peng RH, Xu J, Zhao W, Gao F, Fu XY, Xiong AS, Yao QH. Semi-rational site-directed mutagenesis of phyI1s from Aspergillus niger 113 at two residue to improve its phytase activity. Mol Biol Rep 2010; 38:977-82. [DOI: 10.1007/s11033-010-0192-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
|
15
|
Mutations in two amino acids in phyI1s from Aspergillus niger 113 improve its phytase activity. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0251-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Bei J, Chen Z, Fu J, Jiang Z, Wang J, Wang X. Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. J Biotechnol 2009; 139:186-93. [DOI: 10.1016/j.jbiotec.2008.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 08/14/2008] [Accepted: 08/19/2008] [Indexed: 11/30/2022]
|
17
|
Zhang W, Mullaney EJ, Lei XG. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl Environ Microbiol 2007; 73:3069-76. [PMID: 17351092 PMCID: PMC1892878 DOI: 10.1128/aem.02970-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatus phytase (Afp), suggest associations of thermostability with several key residues (E35, S42, R168, and R248) that form a hydrogen bond network in the E35-to-S42 region and ionic interactions between R168 and D161 and between R248 and D244. In this study, loss-of-function mutations (E35A, R168A, and R248A) were introduced singularly or in combination into seven mutants of Afp. All seven mutants displayed decreases in thermostability, with the highest loss (25% [P<0.05]) in the triple mutant (E35A R168A R248A). Subsequently, a set of corresponding substitutions were introduced into nine mutants of PhyA to strengthen the hydrogen bonding and ionic interactions. While four mutants showed improved thermostability, the best response came from the quadruple mutant (A58E P65S Q191R T271R), which retained 20% greater (P<0.05) activity after being heated at 80 degrees C for 10 min and had a 7 degrees C higher melting temperature than that of wild-type PhyA. This study demonstrates the functional importance of the hydrogen bond network and ionic interaction in supporting the high thermostability of Afp and the feasibility of adopting these structural units to improve the thermostability of a homologous PhyA phytase.
Collapse
Affiliation(s)
- Wanming Zhang
- Department of Animal Science, 252 Morrison Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
18
|
Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.03.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Vohra A, Satyanarayana T. Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 2003; 23:29-60. [PMID: 12693443 DOI: 10.1080/713609297] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The review deals with phytase-producing microorganisms along with optimum conditions for its production. Various methods used for purifying phytases and their characteristics are discussed. Heterologous gene expression, cost-effective large-scale phytase production, and various biotechnological applications of the enzyme in animal feed and food industries are also discussed.
Collapse
Affiliation(s)
- Ashima Vohra
- Department of Microbiology, University of Delhi, South Campus, Delhi 110 021, India
| | | |
Collapse
|
20
|
Mullaney EJ, Daly CB, Kim T, Porres JM, Lei XG, Sethumadhavan K, Ullah AHJ. Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem Biophys Res Commun 2002; 297:1016-20. [PMID: 12359257 DOI: 10.1016/s0006-291x(02)02325-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increased phytase activity for Aspergillus niger NRRL 3135 phytaseA (phyA) at intermediate pH levels (3.0-5.0) was achieved by site-directed mutagenesis of its gene at amino acid residue 300. A single mutation, K300E, resulted in an increase of the hydrolysis of phytic acid of 56% and 19% at pH 4.0 and 5.0, respectively, at 37 degrees C. This amino acid residue has previously been identified as part of the substrate specificity site for phyA and a comparison of the amino acid sequences of other cloned fungal phytases indicated a correlation between a charged residue at this position and high specific activity for phytic acid hydrolysis. The substitution at this residue by either another basic (R), uncharged (T), or acidic amino acid (D) did not yield a recombinant enzyme with the same favorable properties. Therefore, we conclude that this residue is not only important for the catalytic function of phyA, but also essential for imparting a favorable pH environment for catalysis.
Collapse
Affiliation(s)
- Edward J Mullaney
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, New Orleans, LA 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tomschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D, Lassen SF, Burger D, Kronenberger A, van Loon APGM, Pasamontes L, Wyss M. Engineering of phytase for improved activity at low pH. Appl Environ Microbiol 2002; 68:1907-13. [PMID: 11916711 PMCID: PMC123903 DOI: 10.1128/aem.68.4.1907-1913.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For industrial applications in animal feed, a phytase of interest must be optimally active in the pH range prevalent in the digestive tract. Therefore, the present investigation describes approaches to rationally engineer the pH activity profiles of Aspergillus fumigatus and consensus phytases. Decreasing the negative surface charge of the A. fumigatus Q27L phytase mutant by glycinamidylation of the surface carboxy groups (of Asp and Glu residues) lowered the pH optimum by ca. 0.5 unit but also resulted in 70 to 75% inactivation of the enzyme. Alternatively, detailed inspection of amino acid sequence alignments and of experimentally determined or homology modeled three-dimensional structures led to the identification of active-site amino acids that were considered to correlate with the activity maxima at low pH of A. niger NRRL 3135 phytase, A. niger pH 2.5 acid phosphatase, and Peniophora lycii phytase. Site-directed mutagenesis confirmed that, in A. fumigatus wild-type phytase, replacement of Gly-277 and Tyr-282 with the corresponding residues of A. niger phytase (Lys and His, respectively) gives rise to a second pH optimum at 2.8 to 3.4. In addition, the K68A single mutation (in both A. fumigatus and consensus phytase backbones), as well as the S140Y D141G double mutation (in A. fumigatus phytase backbones), decreased the pH optima with phytic acid as substrate by 0.5 to 1.0 unit, with either no change or even a slight increase in maximum specific activity. These findings significantly extend our tools for rationally designing an optimal phytase for a given purpose.
Collapse
Affiliation(s)
- Andrea Tomschy
- Biotechnology Department, Roche Vitamins, Ltd., 4070 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lehmann M, Lopez-Ulibarri R, Loch C, Viarouge C, Wyss M, van Loon AP. Exchanging the active site between phytases for altering the functional properties of the enzyme. Protein Sci 2000; 9:1866-72. [PMID: 11106158 PMCID: PMC2144468 DOI: 10.1110/ps.9.10.1866] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
By using a novel consensus approach, we have previously managed to generate a fully synthetic phytase, consensus phytase-1, that was 15-26 degrees C more thermostable than the parent fungal phytases used in its design (Lehmann et al., 2000). We now sought to use the backbone of consensus phytase-1 and to modify its catalytic properties. This was done by replacing a considerable part of the active site (i.e., all the divergent residues) with the corresponding residues of Aspergillus niger NRRL 3135 phytase, which displays pronounced differences in specific activity, substrate specificity, and pH-activity profile. For the new protein termed consensus phytase-7, a major - although not complete - shift in catalytic properties was observed, demonstrating that rational transfer of favorable catalytic properties from one phytase to another is possible by using this approach. Although the exchange of the active site was associated with a 7.6 degrees C decrease in unfolding temperature (Tm) as measured by differential scanning calorimetry, consensus phytase-7 still was >7 degrees C more thermostable than all wild-type ascomycete phytases known to date. Thus, combination of the consensus approach with the selection of a "preferred" active site allows the design of a thermostabilized variant of an enzyme family of interest that (most closely) matches the most favorable catalytic properties found among its family members.
Collapse
Affiliation(s)
- M Lehmann
- F. Hoffmann-La Roche Ltd., Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|