1
|
Gulvady AC, Forsythe IJ, Turner CE. Hic-5 regulates Src-induced invadopodia rosette formation and organization. Mol Biol Cell 2019; 30:1298-1313. [PMID: 30893012 PMCID: PMC6724605 DOI: 10.1091/mbc.e18-10-0629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts transformed by the proto-oncogene Src form individual invadopodia that can spontaneously self-organize into large matrix-degrading superstructures called rosettes. However, the mechanisms by which the invadopodia can spatiotemporally reorganize their architecture is not well understood. Here, we show that Hic-5, a close relative of the scaffold protein paxillin, is essential for the formation and organization of rosettes in active Src-transfected NIH3T3 fibroblasts and cancer-associated fibroblasts. Live cell imaging, combined with domain-mapping analysis of Hic-5, identified critical motifs as well as phosphorylation sites that are required for the formation and dynamics of rosettes. Using pharmacological inhibition and mutant expression, we show that FAK kinase activity, along with its proximity to and potential interaction with the LD2,3 motifs of Hic-5, is necessary for rosette formation. Invadopodia dynamics and their coalescence into rosettes were also dependent on Rac1, formin, and myosin II activity. Superresolution microscopy revealed the presence of formin FHOD1 and INF2-mediated unbranched radial F-actin fibers emanating from invadopodia and rosettes, which may facilitate rosette formation. Collectively, our data highlight a novel role for Hic-5 in orchestrating the organization of invadopodia into higher-order rosettes, which may promote the localized matrix degradation necessary for tumor cell invasion.
Collapse
Affiliation(s)
- Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Ian J Forsythe
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
2
|
Tsukahara R, Umazume K, McDonald K, Kaplan HJ, Tamiya S. Focal adhesion kinase family is involved in matrix contraction by transdifferentiated Müller cells. Exp Eye Res 2017; 164:90-94. [PMID: 28818394 DOI: 10.1016/j.exer.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 01/01/2023]
Abstract
Transdifferentiated Müller cells that adopt a fibroblastic/myofibroblastic phenotype have been identified in epiretinal membranes (ERMs) in several ocular disorders, and have been implicated to play a role in the formation and/or the contraction of ERMs. We have previously demonstrated that dasatinib, a dual inhibitor of Src-family kinases and Abl kinase, can prevent matrix contraction by transdifferentiated Müller cells. In this study, we examined molecules involved in matrix contraction downstream of primary dasatinib targets. Tyrosine phosphorylation of focal adhesion kinase (FAK) family members FAK and PYK2 was significantly reduced by dasatinib, and select inhibitors for these kinases PF431396, which inhibits both FAK and PYK2, and PF573228, which only inhibits FAK and not PYK2, significantly reduced matrix contraction by transdifferentiated Müller cells. Dasatinib and PF431396 significantly reduced phosphorylation of Hic-5, a protein implicated to play a role in focal adhesions and cell signaling. Our data shows that FAK family members are involved in matrix contraction by transdifferentiated Müller cells, and also implicates that Hic-5 is situated downstream of the FAK family within the signaling pathway.
Collapse
Affiliation(s)
- Rintaro Tsukahara
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA; Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki-gun, Ibaraki 300-0332, Japan
| | - Kazuhiko Umazume
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-Shijuku, Shinjuku, Tokyo 160-0023, Japan
| | - Kevin McDonald
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Shigeo Tamiya
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA.
| |
Collapse
|
3
|
Lee BH, Stallcup MR. Glucocorticoid receptor binding to chromatin is selectively controlled by the coregulator Hic-5 and chromatin remodeling enzymes. J Biol Chem 2017; 292:9320-9334. [PMID: 28381557 DOI: 10.1074/jbc.m117.782607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/31/2017] [Indexed: 11/06/2022] Open
Abstract
The steroid hormone-activated glucocorticoid receptor (GR) regulates cellular stress pathways by binding to genomic regulatory elements of target genes and recruiting coregulator proteins to remodel chromatin and regulate transcription complex assembly. The coregulator hydrogen peroxide-inducible clone 5 (Hic-5) is required for glucocorticoid (GC) regulation of some genes but not others and blocks the regulation of a third gene set by inhibiting GR binding. How Hic-5 exerts these gene-specific effects and specifically how it blocks GR binding to some genes but not others is unclear. Here we show that site-specific blocking of GR binding is due to gene-specific requirements for ATP-dependent chromatin remodeling enzymes. By depletion of 11 different chromatin remodelers, we found that ATPases chromodomain helicase DNA-binding protein 9 (CHD9) and Brahma homologue (BRM, a product of the SMARCA2 gene) are required for GC-regulated expression of the blocked genes but not for other GC-regulated genes. Furthermore, CHD9 and BRM were required for GR occupancy and chromatin remodeling at GR-binding regions associated with blocked genes but not at GR-binding regions associated with other GC-regulated genes. Hic-5 selectively inhibits GR interaction with CHD9 and BRM, thereby blocking chromatin remodeling and robust GR binding at GR-binding sites associated with blocked genes. Thus, Hic-5 regulates GR binding site selection by a novel mechanism, exploiting gene-specific requirements for chromatin remodeling enzymes to selectively influence DNA occupancy and gene regulation by a transcription factor.
Collapse
Affiliation(s)
- Brian H Lee
- From the Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9176
| | - Michael R Stallcup
- From the Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089-9176
| |
Collapse
|
4
|
Tourdot BE, Brenner MK, Keough KC, Holyst T, Newman PJ, Newman DK. Immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated inhibitory signaling is regulated by sequential phosphorylation mediated by distinct nonreceptor tyrosine kinases: a case study involving PECAM-1. Biochemistry 2013; 52:2597-608. [PMID: 23418871 DOI: 10.1021/bi301461t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing nonreceptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton's tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals.
Collapse
Affiliation(s)
- Benjamin E Tourdot
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
5
|
Schweigel H, Geiger J, Beck F, Buhs S, Gerull H, Walter U, Sickmann A, Nollau P. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling. Proteomics 2013; 13:1016-27. [PMID: 23322602 DOI: 10.1002/pmic.201200353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/12/2012] [Accepted: 11/06/2012] [Indexed: 01/05/2023]
Abstract
Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets.
Collapse
Affiliation(s)
- Hardy Schweigel
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Pignatelli J, Tumbarello DA, Schmidt RP, Turner CE. Hic-5 promotes invadopodia formation and invasion during TGF-β-induced epithelial-mesenchymal transition. ACTA ACUST UNITED AC 2012; 197:421-37. [PMID: 22529104 PMCID: PMC3341156 DOI: 10.1083/jcb.201108143] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The focal adhesion protein Hic-5 acts through RhoC to promote TGF-β–stimulated invadopodia formation, cell migration, and invasion. Transforming growth factor β (TGF-β)–stimulated epithelial–mesenchymal transition (EMT) is an important developmental process that has also been implicated in increased cell invasion and metastatic potential of cancer cells. Expression of the focal adhesion protein Hic-5 has been shown to be up-regulated in epithelial cells in response to TGF-β. Herein, we demonstrate that TGF-β–induced Hic-5 up-regulation or ectopic expression of Hic-5 in normal MCF10A cells promoted increased extracellular matrix degradation and invasion through the formation of invadopodia. Hic-5 was tyrosine phosphorylated in an Src-dependent manner after TGF-β stimulation, and inhibition of Src activity or overexpression of a Y38/60F nonphosphorylatable mutant of Hic-5 inhibited matrix degradation and invasion. RhoC, but not RhoA, was also required for TGF-β– and Hic-5–induced matrix degradation. Hic-5 also induced matrix degradation, cell migration, and invasion in the absence of TGF-β via Rac1 regulation of p38 MAPK. These data identify Hic-5 as a critical mediator of TGF-β–stimulated invadopodia formation, cell migration, and invasion.
Collapse
Affiliation(s)
- Jeanine Pignatelli
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
7
|
Sun CK, Ng KT, Lim ZX, Cheng Q, Lo CM, Poon RT, Man K, Wong N, Fan ST. Proline-rich tyrosine kinase 2 (Pyk2) promotes cell motility of hepatocellular carcinoma through induction of epithelial to mesenchymal transition. PLoS One 2011; 6:e18878. [PMID: 21533080 PMCID: PMC3080371 DOI: 10.1371/journal.pone.0018878] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/11/2011] [Indexed: 12/20/2022] Open
Abstract
AIMS Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase of the focal adhesion kinase (FAK) family, is up-regulated in more than 60% of the tumors of hepatocellular carcinoma (HCC) patients. Forced overexpression of Pyk2 can promote the proliferation and invasion of HCC cells. In this study, we aimed to explore the underlying molecular mechanism of Pyk2-mediated cell migration of HCC cells. METHODOLOGY/PRINCIPAL FINDINGS We demonstrated that Pyk2 transformed the epithelial HCC cell line Hep3B into a mesenchymal phenotype via the induction of epithelial to mesenchymal transition (EMT), signified by the up-regulation of membrane ruffle formation, activation of Rac/Rho GTPases, down-regulation of epithelial genes E-cadherin and cytokeratin as well as promotion of cell motility in presence of lysophosphatidic acid (LPA). Suppression of Pyk2 by overexpression of dominant negative PRNK domain in the metastatic HCC cell line MHCC97L transformed its fibroblastoid phenotype to an epithelial phenotype with up-regulation of epithelial genes, down-regulation of mesenchymal genes N-cadherin and STAT5b, and reduction of LPA-induced membrane ruffle formation and cell motility. Moreover, overexpression of Pyk2 in Hep3B cells promoted the phosphorylation and localization of mesenchymal gene Hic-5 onto cell membrane while suppression of Pyk2 in MHCC97L cells attenuated its phosphorylation and localization. CONCLUSION These data provided new evidence of the underlying mechanism of Pyk2 in controlling cell motility of HCC cells through regulation of genes associated with EMT.
Collapse
Affiliation(s)
- Chris K. Sun
- Department of Surgery, LKS Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kevin T. Ng
- Department of Surgery, LKS Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zophia X. Lim
- Department of Surgery, LKS Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qiao Cheng
- Department of Surgery, LKS Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, LKS Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ronnie T. Poon
- Department of Surgery, LKS Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwan Man
- Department of Surgery, LKS Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
- * E-mail:
| | - Nathalie Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sheung Tat Fan
- Department of Surgery, LKS Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
8
|
Protein-tyrosine kinase CAKbeta/PYK2 is activated by binding Ca2+/calmodulin to FERM F2 alpha2 helix and thus forming its dimer. Biochem J 2008; 410:513-23. [PMID: 18031286 DOI: 10.1042/bj20070665] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CAKbeta (cell adhesion kinase beta)/PYK2 (proline-rich tyrosine kinase 2) is the second protein-tyrosine kinase of the FAK (focal adhesion kinase) subfamily. It is different from FAK in that it is activated following an increase in cytoplasmic free Ca2+. In the present study we have investigated how Ca2+ activates CAKbeta/PYK2. Calmodulin-agarose bound CAKbeta/PYK2, but not FAK, in the presence of CaCl2. An alpha-helix (F2-alpha2) present in the FERM (band four-point-one, ezrin, radixin, moesin homology) F2 subdomain of CAKbeta/PYK2 was the binding site of Ca2+/calmodulin; a mutant of this region, L176A/Q177A (LQ/AA) CAKbeta/PYK2, bound to Ca2+/calmodulin much less than the wild-type. CAKbeta/PYK2 is known to be prominently tyrosine phosphorylated when overexpressed from cDNA. The enhanced tyrosine phosphorylation was inhibited by W7, an inhibitor of calmodulin, and by a cell-permeable Ca2+ chelator and was almost defective in the LQ/AA-mutant CAKbeta/PYK2. CAKbeta/PYK2 formed a homodimer on binding of Ca2+/calmodulin, which might then induce a conformational change of the kinase, resulting in transphosphorylation within the dimer. The dimer was formed at a free-Ca2+ concentration of 8-12 muM and was stable at 500 nM Ca2+, but dissociated to a monomer in a Ca2+-free buffer. The dimer formation of CAKbeta/PYK2 FERM domain was partially defective in the LQ/AA-mutant FERM domain and was blocked by W7 and by a synthetic peptide with amino acids 168-188 of CAKbeta/PYK2, but not by a peptide with its LQ/AA-mutant sequence. It is known that the F2-alpha2 helix is found immediately adjacent to a hydrophobic pocket in the FERM F2 lobe, which locks, in the autoinhibited FAK, the C-lobe of the kinase domain. Our results indicate that Ca2+/calmodulin binding to the FERM F2-alpha2 helix of CAKbeta/PYK2 releases its kinase domain from autoinhibition by forming a dimer.
Collapse
|
9
|
Srinivasan R, Forman S, Quinlan RA, Ohanian J, Ohanian V. Regulation of contractility by Hsp27 and Hic-5 in rat mesenteric small arteries. Am J Physiol Heart Circ Physiol 2007; 294:H961-9. [PMID: 18083901 DOI: 10.1152/ajpheart.00939.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of small artery contractility by vasoconstrictors is important for vascular function, and actin cytoskeleton remodeling is required for contraction. p38 MAPK and tyrosine kinases are implicated in actin polymerization and contraction through heat shock protein 27 (Hsp27) and the cytoskeletal protein paxillin, respectively. We evaluated the roles of downstream targets of p38 MAPK and tyrosine kinases in cytoskeletal reorganization and contraction and whether the two signaling pathways regulate contraction independent of each other. We identified the expression of the paxillin homologue hydrogen peroxide-inducible clone-5 (Hic-5) and showed its activation by norepinephrine (NE) in a Src-dependent manner. Furthermore, we demonstrated a NE-induced interaction of proline-rich tyrosine kinase-2 (PYK2) but not Src or p125 focal adhesion kinase with Hic-5. This interaction was Src dependent, suggesting that Hic-5 was a substrate for PYK2 downstream from Src. The activation of Hic-5 induced its relocalization to the cytosol. The parallel activation of Hsp27 by NE was p38 MAPK dependent and led to its dissociation from actin filaments and translocation from membrane to cytosol and increased actin polymerization. Both Hsp27 and Hic-5 activation resulted in their association within the same time frame as NE-induced contraction, and the inhibition of either p38 MAPK or Src inhibited the interaction between Hsp27 and Hic-5 and the contractile response. Furthermore, combined p38 MAPK and Src inhibition had no greater effect on contraction than individual inhibition, suggesting that the two pathways act through a common mechanism. These data show that NE-induced activation and the association of Hsp27 and Hic-5 are required for the reorganization of the actin cytoskeleton and force development in small arteries.
Collapse
Affiliation(s)
- R Srinivasan
- Cardiovascular Research Group, University of Manchester, UK
| | | | | | | | | |
Collapse
|
10
|
Abstract
The role of the paxillin superfamily of adaptor proteins in B cell antigen receptor (BCR) signaling has not been studied previously. We show here that leupaxin (LPXN), a member of this family, was tyrosine-phosphorylated and recruited to the plasma membrane of human BJAB lymphoma cells upon BCR stimulation and that it interacted with Lyn (a critical Src family tyrosine kinase in BCR signaling) in a BCR-induced manner. LPXN contains four leucine-rich sequences termed LD motifs, and serial truncation and specific domain deletion of LPXN indicated that its LD3 domain is involved in the binding of Lyn. Of a total of 11 tyrosine sites in LPXN, we mutated Tyr(22), Tyr(72), Tyr(198), and Tyr(257) to phenylalanine and demonstrated that LPXN was phosphorylated by Lyn only at Tyr(72) and that this tyrosine site is proximal to the LD3 domain. The overexpression of LPXN in mouse A20 B lymphoma cells led to the suppression of BCR-induced activation of JNK, p38 MAPK, and, to a lesser extent, Akt, but not ERK and NFkappaB, suggesting that LPXN can selectively repress BCR signaling. We further show that LPXN suppressed the secretion of interleukin-2 by BCR-activated A20 B cells and that this inhibition was abrogated in the Y72F LPXN mutant, indicating that the phosphorylation of Tyr(72) is critical for the biological function of LPXN. Thus, LPXN plays an inhibitory role in BCR signaling and B cell function.
Collapse
Affiliation(s)
- Valerie Chew
- Laboratory of Immune Regulation, Biomedical Sciences Institutes, Agency for Science, Technology and Research and Singapore Immunology Network, Singapore 138673, Singapore
| | - Kong-Peng Lam
- Laboratory of Immune Regulation, Biomedical Sciences Institutes, Agency for Science, Technology and Research and Singapore Immunology Network, Singapore 138673, Singapore.
| |
Collapse
|
11
|
Tumbarello DA, Turner CE. Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA/ROCK-dependent pathway. J Cell Physiol 2007; 211:736-47. [PMID: 17299801 DOI: 10.1002/jcp.20991] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epithelial-mesenchymal transformation (EMT) in response to TGFbeta1 is a coordinated process of tissue morphogenesis that occurs during embryonic development as well as during certain pathologic events including kidney tubulointerstitial fibrosis. It is characterized by the disassembly of cell-cell junctions and dramatic alterations in the actin cytoskeleton that facilitates cell-matrix adhesion and stimulates migration. The focal adhesion adapter protein, Hic-5, has previously been reported to be upregulated during TGFbeta1-induced EMT in mouse mammary epithelial cells and the current study recapitulates this result in both mouse kidney proximal tubule epithelial, MCT, cells and human mammary epithelial, MCF10A, cells. To evaluate a causative role for Hic-5 in EMT, Hic-5 RNA interference (siRNA) was used to prevent Hic-5 expression in response to TGFbeta1 stimulation and was shown to suppress cell migration and actin stress fiber formation. It also resulted in the retention of a robust epithelial cell morphology characterized by elevated E-cadherin protein expression and well-organized adherens junctions. In addition, Hic-5 siRNA treatment led to the suppression of TGFbeta1 induction of RhoA activation. In contrast, forced expression of Hic-5 led to the formation of ROCK-dependent actin stress fibers. Furthermore, the induction of Hic-5 expression in response to TGFbeta1 was shown to be a RhoA/ROCK I-dependent process. Together, these data implicate Hic-5 as a key regulator of EMT and suggest that RhoA stimulated Hic-5 expression in response to TGFbeta1 may be functioning in a feed forward mechanism whereby Hic-5 maintains the mesenchymal phenotype through sustained RhoA activation and signaling.
Collapse
Affiliation(s)
- David A Tumbarello
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
12
|
Rathore V, Okada M, Newman P, Newman D. Paxillin family members function as Csk-binding proteins that regulate Lyn activity in human and murine platelets. Biochem J 2007; 403:275-81. [PMID: 17233630 PMCID: PMC1874248 DOI: 10.1042/bj20061618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SFKs (Src family kinases) contribute importantly to platelet function in haemostasis. SFK activity is controlled by Csk (C-terminal Src kinase), which phosphorylates a C-terminal tyrosine residue on SFKs, resulting in inhibition of SFK activity. Csk is recruited to sites of SFK activity by tyrosine-phosphorylated Csk-binding proteins. Paxillin, a multidomain adaptor protein, has been shown to act as a Csk-binding protein and to inhibit Src activity during growth factor signalling. Human platelets express Hic-5, a member of the paxillin family; however, its ability to act as a Csk-binding protein has not been characterized. We sought to identify and characterize the ability of paxillin family members to act as Csk-binding proteins during platelet activation. We found that murine and human platelets differ in the complement of paxillin family members expressed. Human platelets express Hic-5, whereas murine platelets express paxillin and leupaxin in addition to Hic-5. In aggregating human platelets, Hic-5 was tyrosine phosphorylated and recruited Csk via its SH2 domains. In aggregating murine platelets, however, Csk bound preferentially to paxillin, even though both paxillin and Hic-5 were abundantly present and became tyrosine phosphorylated. The SFK Lyn, but not Src or Fyn, was associated with paxillin family members in resting and aggregated human and murine platelets. Lyn, however, was phosphorylated on its C-terminal inhibitory tyrosine residue only following platelet aggregation, which was coincident with recruitment of Csk to paxillin and/or Hic-5 in a manner dependent on prior alpha(IIb)beta3 engagement. These observations support the notion that Hic-5 and paxillin function as negative feedback regulators of SFKs in aggregated platelets and that, when both are present, paxillin is preferentially used.
Collapse
Affiliation(s)
- Vipul B. Rathore
- *Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, U.S.A
| | - Masato Okada
- †Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Peter J. Newman
- *Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, U.S.A
- ‡Department of Pharmacology, Cardiovascular Center of the Medical College of Wisconsin, Milwaukee, WI, U.S.A
- §Department of Cell Biology, Cardiovascular Center of the Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Debra K. Newman
- *Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, U.S.A
- ¶Department of Microbiology and Molecular Genetics, Cardiovascular Center of the Medical College of Wisconsin, Milwaukee, WI, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
13
|
Maudsley S, Davidson L, Pawson AJ, Freestone SH, López de Maturana R, Thomson AA, Millar RP. Gonadotropin-releasing hormone functionally antagonizes testosterone activation of the human androgen receptor in prostate cells through focal adhesion complexes involving Hic-5. Neuroendocrinology 2007; 84:285-300. [PMID: 17202804 DOI: 10.1159/000098402] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 10/05/2006] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) analogs constitute the most widely employed medical treatment for prostatic cancer. The predominant mechanism of action is presumed to be via the inhibition of gonadotropins and resultant decrease in androgen. However, GnRH analogs have also been shown to directly inhibit prostate cancer cells both in vitro and in vivo through antiproliferative cell cycle arrest and stimulation of apoptosis. Since the GnRH receptor has been shown to affect sex steroid hormone receptor function, we considered that part of GnRH analog actions on prostate cells may be mediated through modulation of the human androgen receptor. Using a model HEK293 cell line expressing the GnRH receptor, we demonstrated a novel signalling pathway of the GnRH receptor that induces nuclear translocation of the androgen receptor that renders it transcriptionally inactive. This mechanism involves the calcium-dependent tyrosine kinase Pyk2, the non-receptor tyrosine kinase c-Src and the focal adhesion protein/steroid receptor co-factor, Hic-5. In this setting there is a GnRH-induced association and nuclear translocation of the androgen receptor with Hic-5. GnRH-induced Pyk2 activation opposed the association of Hic-5 with androgen receptor as overexpression of a dominant negative Pyk2 enhanced the GnRH-induced nuclear translocation of a green fluorescent protein-tagged human androgen receptor. GnRH-induced c-Src activation resulted in the phosphorylation of expressed Hic-5 and promoted its association with the human androgen receptor. In contrast to testosterone, GnRH-induced nuclear translocation did not transcriptionally activate the androgen receptor. We then demonstrated that GnRH can also stimulate androgen receptor mobilization in human prostate PC3, BPH-1 and LNCaP cells, and in cultured rat ventral prostate cells through the same mechanism. To determine if GnRH could antagonize androgen effects in normal tissue, we examined the effect of GnRH on rat ventral prostate organ cultures and demonstrated that GnRH can functionally antagonize the actions of testosterone on prostate cell proliferation and tissue growth. This antagonism of testosterone action by GnRH may underlie in part the capacity of GnRH receptor activation to inhibit prostate tumor growth.
Collapse
Affiliation(s)
- Stuart Maudsley
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, and Ardana Bioscience, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Heitzer MD, DeFranco DB. Hic-5, an adaptor-like nuclear receptor coactivator. NUCLEAR RECEPTOR SIGNALING 2006; 4:e019. [PMID: 16862225 PMCID: PMC1513073 DOI: 10.1621/nrs.04019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 05/09/2006] [Indexed: 11/24/2022]
Abstract
In recent years, numerous nuclear receptor-interacting proteins have been identified that influence nuclear transcription through their direct modification of chromatin. Along with coactivators that possess histone acetyltransferase (HAT) or methyltransferase activity, other coactivators that lack recognizable chromatin-modifying activity have been discovered whose mechanism of action is largely unknown. The presence of multiple protein-protein interaction motifs within mechanistically undefined coactivators suggests that they function as adaptor molecules, either recruiting or stabilizing promoter-specific protein complexes. This perspective will focus on a family of nuclear receptor coactivators (i.e., group III LIM domain proteins related to paxillin) that appear to provide a scaffold to stabilize receptor interactions with chromatin-modifying coregulators.
Collapse
Affiliation(s)
- Marjet D Heitzer
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
15
|
Cadd VA, Hogg PJ, Harris AL, Feller SM. Molecular profiling of signalling proteins for effects induced by the anti-cancer compound GSAO with 400 antibodies. BMC Cancer 2006; 6:155. [PMID: 16764713 PMCID: PMC1550423 DOI: 10.1186/1471-2407-6-155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 06/09/2006] [Indexed: 11/28/2022] Open
Abstract
Background GSAO (4-[N-[S-glutathionylacetyl]amino] phenylarsenoxide) is a hydrophilic derivative of the protein tyrosine phosphatase inhibitor phenylarsine oxide (PAO). It inhibits angiogenesis and tumour growth in mouse models and may be evaluated in a phase I clinical trial in the near future. Initial experiments have implicated GSAO in perturbing mitochondrial function. Other molecular effects of GSAO in human cells, for example on the phosphorylation of proteins, are still largely unknown. Methods Peripheral white blood cells (PWBC) from healthy volunteers were isolated and used to profile effects of GSAO vs. a control compound, GSCA. Changes in site-specific phosphorylations, other protein modifications and expression levels of many signalling proteins were analysed using more than 400 different antibodies in Western blots. Results PWBC were initially cultured in low serum conditions, with the aim to reduce basal protein phosphorylation and to increase detection sensitivity. Under these conditions pleiotropic intracellular signalling protein changes were induced by GSAO. Subsequently, PWBC were cultured in 100% donor serum to reflect more closely in vivo conditions. This eliminated detectable GSAO effects on most, but not all signalling proteins analysed. Activation of the MAP kinase Erk2 was still observed and the paxillin homologue Hic-5 still displayed a major shift in protein mobility upon GSAO-treatment. A GSAO induced change in Hic-5 mobility was also found in endothelial cells, which are thought to be the primary target of GSAO in vivo. Conclusion Serum conditions greatly influence the molecular activity profile of GSAO in vitro. Low serum culture, which is typically used in experiments analysing protein phosphorylation, is not suitable to study GSAO activity in cells. The signalling proteins affected by GSAO under high serum conditions are candidate surrogate markers for GSAO bioactivity in vivo and can be analysed in future clinical trials. GSAO effects on Hic-5 in endothelial cells may point to a new intracellular GSAO target.
Collapse
Affiliation(s)
- Verity A Cadd
- Cancer Research UK Cell Signalling Group, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Philip J Hogg
- Centre for Vascular Research, University of New South Wales, Sydney 2052 and Children's Cancer Institute Australia for Medical Research, Randwick 2031, Australia
| | - Adrian L Harris
- Cancer Research UK Growth Factor Group, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Stephan M Feller
- Cancer Research UK Cell Signalling Group, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| |
Collapse
|
16
|
Wu RF, Xu YC, Ma Z, Nwariaku FE, Sarosi GA, Terada LS. Subcellular targeting of oxidants during endothelial cell migration. ACTA ACUST UNITED AC 2006; 171:893-904. [PMID: 16330715 PMCID: PMC2171295 DOI: 10.1083/jcb.200507004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous oxidants participate in endothelial cell migration, suggesting that the enzymatic source of oxidants, like other proteins controlling cell migration, requires precise subcellular localization for spatial confinement of signaling effects. We found that the nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase adaptor p47phox and its binding partner TRAF4 were sequestered within nascent, focal complexlike structures in the lamellae of motile endothelial cells. TRAF4 directly associated with the focal contact scaffold Hic-5, and the knockdown of either protein, disruption of the complex, or oxidant scavenging blocked cell migration. An active mutant of TRAF4 activated the NADPH oxidase downstream of the Rho GTPases and p21-activated kinase 1 (PAK1) and oxidatively modified the focal contact phosphatase PTP-PEST. The oxidase also functioned upstream of Rac1 activation, suggesting its participation in a positive feedback loop. Active TRAF4 initiated robust membrane ruffling through Rac1, PAK1, and the oxidase, whereas the knockdown of PTP-PEST increased ruffling independent of oxidase activation. Our data suggest that TRAF4 specifies a molecular address within focal complexes that is targeted for oxidative modification during cell migration.
Collapse
Affiliation(s)
- Ru Feng Wu
- University of Texas Southwestern, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
17
|
Woolfolk EA, Eguchi S, Ohtsu H, Nakashima H, Ueno H, Gerthoffer WT, Motley ED. Angiotensin II-induced activation of p21-activated kinase 1 requires Ca2+ and protein kinase Cδ in vascular smooth muscle cells. Am J Physiol Cell Physiol 2005; 289:C1286-94. [PMID: 16033904 DOI: 10.1152/ajpcell.00448.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ANG II promotes remodeling of vascular smooth muscle cells (VSMCs) in cardiovascular diseases. It has been shown to activate p21-activated kinase (PAK)1, a critical component of signaling pathways implicated in growth and migration. However, the detailed signaling mechanism by which ANG II induces PAK1 activation in VSMCs remains unclear. Therefore, we have examined the mechanism required for activation of PAK1 by ANG II in VSMCs. ANG II, through activation of the ANG II type 1 receptor, rapidly promotes phosphorylation of PAK1 in VSMCs via a pathway independent of transactivation of the epidermal growth factor receptor. Using selective agonists and inhibitors, we demonstrated that mobilization of intracellular Ca2+ and PKCδ activation are required for ANG II-induced PAK1 phosphorylation. Rottlerin, a PKCδ inhibitor, significantly blocked ANG II-induced PAK1 phosphorylation. Further support for this notion was provided through infection of VSMCs with adenovirus encoding a dominant-negative (dn)PKCδ, which also markedly reduced phosphorylation of PAK1 by ANG II. In this pathway, Ca2+ acts upstream of PKCδ because a Ca2+ ionophore rapidly induced PKCδ phosphorylation at Tyr311 and Ca2+-dependent PAK1 phosphorylation was blocked by rottlerin. In addition, dnPYK-2, dnRac, and antioxidants inhibited ANG II-induced PAK1 phosphorylation, suggesting that PYK-2, Rac, and reactive oxygen species are involved in the upstream signaling. Finally, dnPAK1 markedly inhibited ANG II-induced protein synthesis in VSMCs. These data provide a novel signaling pathway by which ANG II may contribute to vascular remodeling.
Collapse
Affiliation(s)
- Elethia A Woolfolk
- Meharry Medical College, Department of Physiology, 1005 DB Todd Blvd., Nashville, TN 37208, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Hetey SE, Lalonde DP, Turner CE. Tyrosine-phosphorylated Hic-5 inhibits epidermal growth factor-induced lamellipodia formation. Exp Cell Res 2005; 311:147-56. [PMID: 16183059 DOI: 10.1016/j.yexcr.2005.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/24/2005] [Accepted: 08/25/2005] [Indexed: 11/29/2022]
Abstract
The focal adhesion protein Hic-5, a homologue to paxillin, has been shown to be tyrosine-phosphorylated in fibroblasts in response to stimuli such as osmotic stress, serum, LPA and endothelin. However, the function of this modification to Hic-5 is unclear. Herein, we show that Hic-5 is tyrosine-phosphorylated on residues 38 and 60 following epidermal growth factor (EGF) treatment of COS-7 cells, coincident with an increase in peripheral actin reorganization. To explore the role of Hic-5 phosphorylation in this process, we introduced wild-type (WT) and mutant Hic-5 constructs into COS-7 cells and determined that EGF-induced lamellipodia formation was suppressed by WT Hic-5. This effect required localization to focal adhesions as well as phosphorylation of Hic-5 as overexpression of both a non-targeting and a non-phosphorylatable Hic-5 failed to inhibit peripheral actin reorganization. Interestingly, overexpression of non-phosphorylatable Y31/118F or WT paxillin did not affect lamellipodia formation, indicating that this effect is specific to Hic-5. The EGF-induced lamellipodia were Rac-dependent and overexpressed WT Hic-5, but not non-phosphorylatable Hic-5 inhibited Rac activation. Our data suggest that Hic-5 tyrosine phosphorylation functions to regulate signaling associated with lamellipodia formation, a process fundamental to cell motility.
Collapse
Affiliation(s)
- Sara E Hetey
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
19
|
Wang H, Song K, Sponseller TL, Danielpour D. Novel Function of Androgen Receptor-associated Protein 55/Hic-5 as a Negative Regulator of Smad3 Signaling. J Biol Chem 2005; 280:5154-62. [PMID: 15561701 DOI: 10.1074/jbc.m411575200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen receptor-associated protein 55 (ARA55/Hic-5) belongs to the LIM protein superfamily and is featured by three or four N-terminal LD motifs and four C-terminal zinc finger-like LIM domains. Both LD motifs and LIM domains can serve as protein-protein interaction interfaces. Recently, we found that enforced expression of ARA55 inhibits transforming growth factor-beta-mediated up-regulation of Smad binding element-luciferase reporter activity in NRP-154 and NRP-152 rat prostate and LNCaP human prostate cell lines. Moreover, ARA55 also inhibits the induction of Smad-binding element 4-luciferase and 3TP-luciferase (a plasminogen activator inhibitor-1 (PAI-1) promoter construct) reporters by constitutively active (CA)-Smad3 in these cell lines. Co-immunoprecipitation studies suggest an interaction between ARA55 and either CA-Smad3 or wild-type Smad3 in HEK293 cells that occurs through the MH2 domain of Smad3 and the C terminus of ARA55 with wild-type Smad3 having stronger affinity than CA-Smad3 to ARA55. Glutathione S-transferase pull-down assays demonstrate that this interaction can occur in a cell-free system. These results are consistent with the luciferase data showing that the C terminus of ARA55 is critical for suppression of Smad3 activity. Furthermore, using a mammalian two-hybrid system, we confirmed that ARA55 interacts with the MH2 domain of Smad3 and suppresses CA-Smad3-induced transcriptional responses. In conclusion, these results support that ARA55 selectively intercepts transforming growth factor-beta signaling through an interaction of the LIM domain of ARA55 with the MH2 domain of Smad3.
Collapse
Affiliation(s)
- Hui Wang
- Ireland Cancer Center Research Laboratories and Department of Pharmacology, Case Western Reserve University/University Hospitals, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
20
|
Abstract
The normal development and maintenance of the prostate is dependent on androgen acting through the androgen receptor (AR). AR remains important in the development and progression of prostate cancer. AR expression is maintained throughout prostate cancer progression, and the majority of androgen-independent or hormone refractory prostate cancers express AR. Mutation of AR, especially mutations that result in a relaxation of AR ligand specificity, may contribute to the progression of prostate cancer and the failure of endocrine therapy by allowing AR transcriptional activation in response to antiandrogens or other endogenous hormones. Similarly, alterations in the relative expression of AR coregulators have been found to occur with prostate cancer progression and may contribute to differences in AR ligand specificity or transcriptional activity. Prostate cancer progression is also associated with increased growth factor production and an altered response to growth factors by prostate cancer cells. The kinase signal transduction cascades initiated by mitogenic growth factors modulate the transcriptional activity of AR and the interaction between AR and AR coactivators. The inhibition of AR activity through mechanisms in addition to androgen ablation, such as modulation of signal transduction pathways, may delay prostate cancer progression.
Collapse
Affiliation(s)
- Cynthia A Heinlein
- George Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
21
|
Brdicková N, Brdicka T, Angelisová P, Horváth O, Spicka J, Hilgert I, Paces J, Simeoni L, Kliche S, Merten C, Schraven B, Horejsí V. LIME: a new membrane Raft-associated adaptor protein involved in CD4 and CD8 coreceptor signaling. ACTA ACUST UNITED AC 2003; 198:1453-62. [PMID: 14610046 PMCID: PMC2194115 DOI: 10.1084/jem.20031484] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lymphocyte membrane rafts contain molecules critical for immunoreceptor signaling. Here, we report identification of a new raft-associated adaptor protein LIME (Lck-interacting molecule) expressed predominantly in T lymphocytes. LIME becomes tyrosine phosphorylated after cross-linking of the CD4 or CD8 coreceptors. Phospho-LIME associates with the Src family kinase Lck and its negative regulator, Csk. Ectopic expression of LIME in Jurkat T cells results in an increase of Csk in lipid rafts, increased phosphorylation of Lck and higher Ca2+ response to CD3 stimulation. Thus, LIME appears to be involved in regulation of T cell activation by coreceptors.
Collapse
Affiliation(s)
- Nadezda Brdicková
- Institute of Molecular Genetics, AS CR, Vídenská 1083, 142 20 Praha 4, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Frank GD, Mifune M, Inagami T, Ohba M, Sasaki T, Higashiyama S, Dempsey PJ, Eguchi S. Distinct mechanisms of receptor and nonreceptor tyrosine kinase activation by reactive oxygen species in vascular smooth muscle cells: role of metalloprotease and protein kinase C-delta. Mol Cell Biol 2003; 23:1581-9. [PMID: 12588978 PMCID: PMC151697 DOI: 10.1128/mcb.23.5.1581-1589.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor tyrosine kinase activation by H2O2 involving a metalloprotease-dependent generation of heparin-binding EGF-like growth factor (HB-EGF) and protein kinase C (PKC)-delta activation, respectively. H2O2-induced EGF receptor tyrosine phosphorylation was inhibited by a metalloprotease inhibitor, whereas the inhibitor had no effect on H2O2-induced JAK2 tyrosine phosphorylation. HB-EGF neutralizing antibody inhibited H2O2-induced EGF receptor phosphorylation. In COS-7 cells expressing an HB-EGF construct tagged with alkaline phosphatase, H2O2 stimulates HB-EGF production through metalloprotease activation. By contrast, dominant negative PKC-delta transfection inhibited H2O2-induced JAK2 phosphorylation but not EGF receptor phosphorylation. Dominant negative PYK2 inhibited H2O2-induced JAK2 activation but not EGF receptor activation, whereas dominant negative PKC-delta inhibited PYK2 activation by H2O2. These data demonstrate the presence of distinct tyrosine kinase activation pathways (PKC-delta/PYK2/JAK2 and metalloprotease/HB-EGF/EGF receptor) utilized by H2O2 in VSMCs, thus providing unique therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Gerald D Frank
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ferraris JD, Persaud P, Williams CK, Chen Y, Burg MB. cAMP-independent role of PKA in tonicity-induced transactivation of tonicity-responsive enhancer/ osmotic response element-binding protein. Proc Natl Acad Sci U S A 2002; 99:16800-5. [PMID: 12482947 PMCID: PMC139224 DOI: 10.1073/pnas.222659799] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2002] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Hypertonicity-induced increase in activity of the transcription factor tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP) protects renal cells by increasing transcription of genes, including those involved in increased accumulation of organic osmolytes. We previously showed that hypertonicity increases transactivating activity of TonEBP/OREBP. Assay with a binary GAL4 transactivation system showed that the 984 C-terminal amino acids of TonEBP/OREBP (amino acids 548-1531) contain a tonicity-dependent transactivation domain (TAD). Also, amino acids 548-1531 undergo tonicity-dependent phosphorylation, and some inhibitors of protein kinases reduce the tonicity-dependent transactivation. In the present studies we examined the role of protein kinase A (PKA). RESULTS (i) An inhibitor of PKA (H89) reduces tonicity-dependent increases in transactivation, ORE/TonE reporter activity, and induction of aldose reductase and betaine transporter mRNAs. (ii) Overexpression of the catalytic subunit of PKA (PKAc) increases transactivation activity of amino acids 548-1531 and activity of an ORE/TonE reporter. The increases are much greater under isotonic than under hypertonic conditions. (iii) A dominant-negative PKAc reduces activity of an ORE/TonE reporter. (iv) PKAc activity increases with tonicity but cAMP does not. (v) TonEBP/OREBP and PKAc coimmunoprecipitate. (vi) amino acids 872-1271, including N- and C-terminal polyglutamine stretches, demonstrate tonicity-dependent transactivation, albeit less than amino acids 548-1531, and a similar role for PKA. CONCLUSIONS (i) PKA plays an important role in TonEBP/OREBP activation of tonicity-dependent gene expression; (ii) PKA activation of TonEBP/OREBP appears to be cAMP-independent; and (iii) amino acids 872-1271 are sufficient for tonicity-dependent transactivation of TonEBP/OREBP.
Collapse
Affiliation(s)
- Joan D Ferraris
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
24
|
Ko BCB, Lam AKM, Kapus A, Fan L, Chung SK, Chung SSM. Fyn and p38 signaling are both required for maximal hypertonic activation of the osmotic response element-binding protein/tonicity-responsive enhancer-binding protein (OREBP/TonEBP). J Biol Chem 2002; 277:46085-92. [PMID: 12359721 DOI: 10.1074/jbc.m208138200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
When cells are challenged by hyperosmotic stress, one of the crucial adaptive responses is the expression of osmoprotective genes that are responsible for raising the intracellular level of compatible osmolytes such as sorbitol, betaine, and myo-inositol. This is achieved by the activation of the transcription factor called OREBP (also known as TonEBP or NFAT5) that specifically binds to the osmotic response element (ORE) or tonicity-responsive enhancer that enhances the transcription of these genes. Here we show that p38, a subgroup of the mitogen-activated kinases activated by hypertonic stress, and Fyn, a shrinkage-activated tyrosine kinase, are both involved in the hypertonic activation of OREBP/TonEBP. Inhibition of p38 by SB203580 or by the dominant negative p38 mutant partially blocked the hypertonic induction of ORE reporter (reporter gene regulated by ORE). Similarly, hypertonic activation of ORE reporter was partially blocked by pharmacological inhibition of Fyn or by a dominant negative Fyn and was attenuated in Fyn-deficient cells. Importantly, inhibiting p38 in Fyn-deficient cells almost completely abolished the hypertonic induction of ORE reporter activity, indicating that p38 and Fyn are the major signaling pathways for the hypertonic activation of OREBP/TonEBP. Further we show that the transactivation domain of OREBP/TonEBP is the target of p38- and Fyn-mediated hypertonic activation. These results indicate a dual control in regulating the expression of the osmoprotective genes in mammalian cells.
Collapse
Affiliation(s)
- Ben C B Ko
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
25
|
The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter. J Neurosci 2002. [PMID: 12177201 DOI: 10.1523/jneurosci.22-16-07045.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Na+/Cl--dependent dopamine transporter (DAT) is critical in terminating dopaminergic transmission by removing the transmitter away from the synapse. Several lines of evidence suggest that transporter-interacting proteins may play a role in DAT function and regulation. In this report, using the yeast two-hybrid system, we have identified a novel interaction between DAT and the multiple Lin-11, Isl-1, and Mec-3 (LIM) domain-containing adaptor protein Hic-5. This association involves the N-terminal portion of the intracellular tail of DAT and the LIM region of Hic-5. In human embryonic kidney 293 cells, Hic-5 colocalizes with DAT at polarized sites and reduces DAT uptake activity through a mechanism involving a decrease in the cell-surface levels of the transporter. A fragment of Hic-5 containing the LIM domains is sufficient to bind DAT but lacks the ability to inhibit transporter activity. In addition, the LIM fragment prevents the effect of the full-length Hic-5 on DAT localization and function. In the brain, Hic-5 protein is expressed in the cerebral cortex, hippocampus, hypothalamus, cerebellum, and striatum, suggesting a role for this protein in the nervous system. The association of the endogenous Hic-5 and DAT proteins was confirmed biochemically by coimmunoprecipitation from brain striatal extracts. Moreover, immunostaining of rat midbrain neurons in culture revealed a presynaptic colocalization of Hic-5 and DAT. Because Hic-5 has been shown to interact with several signaling molecules, including the nonreceptor protein tyrosine kinases focal adhesion kinase and Fyn, this raises the possibility that this adaptor protein may link DAT to intracellular signaling pathways.
Collapse
|
26
|
Tang H, Hao Q, Fitzgerald T, Sasaki T, Landon EJ, Inagami T. Pyk2/CAKbeta tyrosine kinase activity-mediated angiogenesis of pulmonary vascular endothelial cells. J Biol Chem 2002; 277:5441-7. [PMID: 11739395 DOI: 10.1074/jbc.m110673200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endothelial cell spreading, migration, and morphogenesis are essential for angiogenesis, the formation of new blood vessels. In the present study, we explored roles of tyrosine kinase Pyk2 in angiogenesis of pulmonary endothelial cells. We found that tyrosine kinase Pyk2 was particularly enriched in pulmonary vascular endothelial cells and lung, a major organ site for tumor metastasis. By using adenovirus-mediated expression of various Pyk2 mutants, we demonstrated that Pyk2 tyrosine kinase activity was essential for the pulmonary vascular endothelial cell spreading, migration, morphogenesis, as well as pulmonary vein and artery angiogenesis ex vivo. We further showed that Pyk2 kinase activity was required for the expression of focal adhesion kinase, p130Crk-associated substrate, and its homologue human enhancer of filamentation 1, thus regulating formation of focal adhesions and cytoskeletal reorganization. These results indicate that Pyk2 plays a crucial role in the pulmonary endothelial cell motility such as spreading and migration necessary for angiogenesis.
Collapse
Affiliation(s)
- Hua Tang
- Department of Biochemistry, the University of Texas Health Center at Tyler, Tyler, Texas 75708, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Paxillin is a focal adhesion-associated, phosphotyrosine-containing protein that may play a role in several signaling pathways. Paxillin contains a number of motifs that mediate protein-protein interactions, including LD motifs, LIM domains, an SH3 domain-binding site and SH2 domain-binding sites. These motifs serve as docking sites for cytoskeletal proteins, tyrosine kinases, serine/threonine kinases, GTPase activating proteins and other adaptor proteins that recruit additional enzymes into complex with paxillin. Thus paxillin itself serves as a docking protein to recruit signaling molecules to a specific cellular compartment, the focal adhesions, and/or to recruit specific combinations of signaling molecules into a complex to coordinate downstream signaling. The biological function of paxillin coordinated signaling is likely to regulate cell spreading and motility.
Collapse
Affiliation(s)
- M D Schaller
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, NC 27599, USA.
| |
Collapse
|
28
|
Frank GD, Eguchi S, Motley ED, Sasaki T, Inagami T. Unique regulation of c-Jun N-terminal kinase by PYK2/CAK-beta in angiotensin II-stimulated vascular smooth muscle cells. Biochem Biophys Res Commun 2001; 286:692-6. [PMID: 11520052 DOI: 10.1006/bbrc.2001.5463] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of tyrosine kinases is believed to play a central role in angiotensin II (AngII) signaling. Here, we have investigated whether a tyrosine kinase, PYK2, is functionally involved in AngII-induced c-Jun N-terminal kinase (JNK) activation in vascular smooth muscle cells (VSMCs). Adenovirus expressing PYK2 kinase-inactive mutant K457A or a tyrosine phosphorylation site mutant Y402F was transfected in VSMCs. AngII-induced JNK phosphorylation was markedly enhanced by K457A, whereas it was suppressed by Y402F. Protein synthesis induced by AngII was also enhanced by K457A and inhibited by Y402F. In this regard, K457A suppressed PYK2 kinase activation by AngII, whereas it enhanced AngII-induced PYK2 Tyr(402) phosphorylation. By contrast, Y402F inhibited PYK2 Tyr(402) phosphorylation, whereas it markedly enhanced AngII-induced PYK2 kinase activation. Thus, we conclude that PYK2 kinase activity negatively regulates JNK activation and protein synthesis, whereas Tyr(402) phosphorylation positively regulates these events in AngII-stimulated VSMCs, suggesting a unique role of PYK2 in mediating vascular remodeling.
Collapse
Affiliation(s)
- G D Frank
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
29
|
Nishiya N, Tachibana K, Shibanuma M, Mashimo JI, Nose K. Hic-5-reduced cell spreading on fibronectin: competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase. Mol Cell Biol 2001; 21:5332-45. [PMID: 11463817 PMCID: PMC87257 DOI: 10.1128/mcb.21.16.5332-5345.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hic-5 is a paxillin homologue that is localized to focal adhesion complexes. Hic-5 and paxillin share structural homology and interacting factors such as focal adhesion kinase (FAK), Pyk2/CAKbeta/RAFTK, and PTP-PEST. Here, we showed that Hic-5 inhibits integrin-mediated cell spreading on fibronectin in a competitive manner with paxillin in NIH 3T3 cells. The overexpression of Hic-5 sequestered FAK from paxillin, reduced tyrosine phosphorylation of paxillin and FAK, and prevented paxillin-Crk complex formation. In addition, Hic-5-mediated inhibition of spreading was not observed in mouse embryo fibroblasts (MEFs) derived from FAK(-/-) mice. The activity of c-Src following fibronectin stimulation was decreased by about 30% in Hic-5-expressing cells, and the effect of Hic-5 was restored by the overexpression of FAK and the constitutively active forms of Rho-family GTPases, Rac1 V12 and Cdc42 V12, but not RhoA V14. These observations suggested that Hic-5 inhibits cell spreading through competition with paxillin for FAK and subsequent prevention of downstream signal transduction. Moreover, expression of antisense Hic-5 increased spreading in primary MEFs. These results suggested that the counterbalance of paxillin and Hic-5 expression may be a novel mechanism regulating integrin-mediated signal transduction.
Collapse
Affiliation(s)
- N Nishiya
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Hatanodai, Tokyo, Japan
| | | | | | | | | |
Collapse
|
30
|
Osada M, Ohmori T, Yatomi Y, Satoh K, Hosogaya S, Ozaki Y. Involvement of Hic-5 in platelet activation: integrin alphaIIbbeta3-dependent tyrosine phosphorylation and association with proline-rich tyrosine kinase 2. Biochem J 2001; 355:691-7. [PMID: 11311131 PMCID: PMC1221784 DOI: 10.1042/bj3550691] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hic-5 and paxillin, members of the LIM protein family, have been shown to be localized in focal adhesion and to have a role in integrin-mediated signalling. In the present study we examined the involvement of Hic-5 in human platelet activation: platelets express Hic-5 but not paxillin, whereas human umbilical-vein vascular endothelial cells and MEG-01 cells express mainly paxillin. When platelets were stimulated with thrombin, collagen or the stable thromboxane A(2) analogue U46619, Hic-5 was markedly tyrosine-phosphorylated, in a manner dependent on integrin alphaIIbbeta3-mediated aggregation. In addition, direct activation of protein kinase C with PMA resulted in tyrosine phosphorylation of Hic-5 only when platelets were fully aggregated with the exogenous addition of fibrinogen. Furthermore, PMA-induced Hic-5 tyrosine phosphorylation was also observed when platelets adhered to immobilized fibrinogen. In studies on immunoprecipitation and immunodepletion, Hic-5 seemed to associate with proline-rich tyrosine kinase 2 (Pyk2) but only marginally with focal adhesion kinase. When platelets were stimulated with thrombin, both Hic-5 and Pyk2 translocated to the cytoskeleton from the cytosol and membrane fractions in a manner dependent on alphaIIbbeta3-mediated aggregation. Finally, on stimulation with PMA, Hic-5, as well as Pyk2, translocated to the cell periphery, where a meshwork of actin filaments assembled after adhesion to immobilized fibrinogen. Our results suggest that Hic-5 might be important in platelet aggregation and adhesion, in a manner dependent on alphaIIbbeta3-mediated outside-in signalling, through association with Pyk2.
Collapse
Affiliation(s)
- M Osada
- Department of Laboratory Medicine, Yamanashi Medical University, Nakakoma, Yamanashi 409-3898, Japan
| | | | | | | | | | | |
Collapse
|