1
|
Schulman ES, Nishi H, Pelleg A. Degranulation of human mast cells: modulation by P2 receptors' agonists. Front Immunol 2023; 14:1216580. [PMID: 37868982 PMCID: PMC10585249 DOI: 10.3389/fimmu.2023.1216580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Since the late 1970s, there has been an alarming increase in the incidence of asthma and its morbidity and mortality. Acute obstruction and inflammation of allergic asthmatic airways are frequently caused by inhalation of exogenous substances such as allergens cross-linking IgE receptors expressed on the surface of the human lung mast cells (HLMC). The degree of constriction of human airways produced by identical amounts of inhaled allergens may vary from day to day and even hour to hour. Endogenous factors in the human mast cell (HMC)'s microenvironment during allergen exposure may markedly modulate the degranulation response. An increase in allergic responsiveness may significantly enhance bronchoconstriction and breathlessness. This review focuses on the role that the ubiquitous endogenous purine nucleotide, extracellular adenosine 5'-triphosphate (ATP), which is a component of the damage-associated molecular patterns, plays in mast cells' physiology. ATP activates P2 purinergic cell-surface receptors (P2R) to trigger signaling cascades resulting in heightened inflammatory responses. ATP is the most potent enhancer of IgE-mediated HLMC degranulation described to date. Current knowledge of ATP as it relates to targeted receptor(s) on HMC along with most recent studies exploring HMC post-receptor activation pathways are discussed. In addition, the reviewed studies may explain why brief, minimal exposures to allergens (e.g., dust, cat, mouse, and grass) can unpredictably lead to intense clinical reactions. Furthermore, potential therapeutic approaches targeting ATP-related enhancement of allergic reactions are presented.
Collapse
Affiliation(s)
- Edward S. Schulman
- Division of Pulmonary, Critical Care and Allergy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Haruhisa Nishi
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, United States
| |
Collapse
|
2
|
He X, Wan J, Yang X, Zhang X, Huang D, Li X, Zou Y, Chen C, Yu Z, Xie L, Zhang Y, Liu L, Li S, Zhao Y, Shao H, Yu Y, Zheng J. Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models. J Clin Invest 2021; 131:140242. [PMID: 33301426 DOI: 10.1172/jci140242] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
How particular bone marrow niche factors contribute to the leukemogenic activities of leukemia-initiating cells (LICs) remains largely unknown. Here, we showed that ATP levels were markedly increased in the bone marrow niches of mice with acute myeloid leukemia (AML), and LICs preferentially localized to the endosteal niche with relatively high ATP levels, as indicated by a sensitive ATP indicator. ATP could efficiently induce the influx of ions into LICs in an MLL-AF9-induced murine AML model via the ligand-gated ion channel P2X7. P2x7 deletion led to notably impaired homing and self-renewal capacities of LICs and contributed to an approximately 5-fold decrease in the number of functional LICs but had no effect on normal hematopoiesis. ATP/P2X7 signaling enhanced the calcium flux-mediated phosphorylation of CREB, which further transactivated phosphoglycerate dehydrogenase (Phgdh) expression to maintain serine metabolism and LIC fates. P2X7 knockdown resulted in a markedly extended survival of recipients transplanted with either human AML cell lines or primary leukemia cells. Blockade of ATP/P2X7 signaling could efficiently inhibit leukemogenesis. Here, we provide a perspective for understanding how ATP/P2X7 signaling sustains LIC activities, which may benefit the development of specific strategies for targeting LICs or other types of cancer stem cells.
Collapse
Affiliation(s)
- Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangbo Wan
- Department of Hematology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaona Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiuze Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dan Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangang Li
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hongfang Shao
- Center of Reproductive Medicine, Shanghai Sixth People's Hospital, Shanghai, China
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Nishi H, Niyonsaba F, Pelleg A, Schulman ES. Enhancement of Mast Cell Degranulation Mediated by Purinergic Receptors' Activation and PI3K Type δ. THE JOURNAL OF IMMUNOLOGY 2021; 207:1001-1008. [PMID: 34330752 DOI: 10.4049/jimmunol.2001002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Mast cells express multiple metabotropic purinergic P2Y receptor (P2YR) subtypes. Few studies have evaluated their role in human mast cell (HMC) allergic response as quantified by degranulation induced by cross-linking the high-affinity IgE receptor (FcεRI). We have previously shown that extracellular nucleotides modify the FcεRI activation-dependent degranulation in HMCs derived from human lungs, but the mechanism of this action has not been fully delineated. This study was undertaken to determine the mechanism of activation of P2YRs on the degranulation of HMCs and elucidate the specific postreceptor pathways involved. Sensitized LAD2 cells, a human-derived mast cell line, were subjected to a weak allergic stimulation (WAS) using a low concentration of Ag in the absence and presence of P2YR agonists. Only the metabotropic purinergic P2Y11 receptor (P2Y11R) agonist, adenosine 5'-(3-thio)triphosphate (ATPγS), enhanced WAS-induced degranulation resulting in a net 7-fold increase in release (n = 4; p < 0.01). None of the P2YR agonists tested, including high concentrations of ATPγS (1000 μM), enhanced WAS-induced intracellular Ca2+ mobilization, an essential component of activated FcεRI-induced degranulation. Both a PI3K inhibitor and the relevant gene knockout decreased the ATPγS-induced enhancement. The effect of ATPγS was associated with enhanced phosphorylation of PI3K type δ and protein kinase B, but not the phosphoinositide-dependent kinase-1. The effects of ATPγS were dose dependently inhibited by NF157, a P2Y11R antagonist. To our knowledge, these data indicate for the first time that P2YR is linked to enhancement of allergic degranulation in HMC via the PI3K/protein kinase B pathway.
Collapse
Affiliation(s)
- Haruhisa Nishi
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan;
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA; and
| | | |
Collapse
|
4
|
Filippin KJ, de Souza KFS, de Araujo Júnior RT, Torquato HFV, Dias DA, Parisotto EB, Ferreira AT, Paredes-Gamero EJ. Involvement of P2 receptors in hematopoiesis and hematopoietic disorders, and as pharmacological targets. Purinergic Signal 2020; 16:1-15. [PMID: 31863258 PMCID: PMC7166233 DOI: 10.1007/s11302-019-09684-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several reports have shown the presence of P2 receptors in hematopoietic stem cells (HSCs). These receptors are activated by extracellular nucleotides released from different sources. In the hematopoietic niche, the release of purines and pyrimidines in the milieu by lytic and nonlytic mechanisms has been described. The expression of P2 receptors from HSCs until maturity is still intriguing scientists. Several reports have shown the participation of P2 receptors in events associated with modulation of the immune system, but their participation in other physiological processes is under investigation. The presence of P2 receptors in HSCs and their ability to modulate this population have awakened interest in exploring the involvement of P2 receptors in hematopoiesis and their participation in hematopoietic disorders. Among the P2 receptors, the receptor P2X7 is of particular interest, because of its different roles in hematopoietic cells (e.g., infection, inflammation, cell death and survival, leukemias and lymphomas), making the P2X7 receptor a promising pharmacological target. Additionally, the role of P2Y12 receptor in platelet activation has been well-documented and is the main example of the importance of the pharmacological modulation of P2 receptor activity. In this review, we focus on the role of P2 receptors in the hematopoietic system, addressing these receptors as potential pharmacological targets.
Collapse
Affiliation(s)
- Kelly Juliana Filippin
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | | | - Heron Fernandes Vieira Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
- Universidade Braz Cubas, Av. Francisco Rodrigues Filho 1233, Mogi das Cruzes, SP, 08773-380, Brazil
| | - Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| | - Edgar J Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil.
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| |
Collapse
|
5
|
Dreisig K, Kornum BR. A critical look at the function of the P2Y11 receptor. Purinergic Signal 2016; 12:427-37. [PMID: 27246167 DOI: 10.1007/s11302-016-9514-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/17/2016] [Indexed: 11/30/2022] Open
Abstract
The P2Y11 receptor is a member of the purinergic receptor family. It has been overlooked, somewhat due to the lack of a P2ry11 gene orthologue in the murine genome, which prevents the generation of knockout mice, which have been so helpful for defining the roles of other P2Y receptors. Furthermore, some of the studies reported to date have methodological shortcomings, making it difficult to determine the function of P2Y11 with certainty. In this review, we discuss the lack of a murine "P2Y11-like receptor" and highlight the limitations of the currently available methods used to investigate the P2Y11 receptor. These methods include protein recognition with antibodies that show very little specificity, gene expression studies that completely overlook the existence of a fusion transcript between the adjacent PPAN gene and P2RY11, and agonists/antagonists reported to be specific for the P2Y11 receptor but which have not been tested for activity on numerous other adenosine 5'-triphosphate (ATP)-binding receptors. We suggest a set of criteria for evaluating whether a dataset describes effects mediated by the P2Y11 receptor. Following these criteria, we conclude that the current evidence suggests a role for P2Y11 in immune activation with cell type-specific effects.
Collapse
Affiliation(s)
- Karin Dreisig
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Birgitte Rahbek Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
6
|
Feng W, Wang L, Zheng G. Expression and function of P2 receptors in hematopoietic stem and progenitor cells. Stem Cell Investig 2015; 2:14. [PMID: 27358882 DOI: 10.3978/j.issn.2306-9759.2015.07.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/28/2015] [Indexed: 12/15/2022]
Abstract
Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind to a class of plasma membrane receptors, P2 receptors, to trigger intercellular signaling. P2 receptors can be further divided into P2X and P2Y subfamilies based on structure and function. Different hematopoietic cells express diverse spectrums of P2 receptors at different levels, including hematopoietic stem and progenitor cells (HSPCs). Extracellular adenosine triphosphate (ATP) exerts different effects on HSPCs, regulating cell proliferation, differentiation, migration, and chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptor function and human diseases attracts more and more attention. This review summarizes the expression and function of P2 receptors in HSPCs and the relationship to hematopoietic diseases.
Collapse
Affiliation(s)
- Wenli Feng
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China ; 2 Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lina Wang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China ; 2 Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guoguang Zheng
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China ; 2 Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
7
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
8
|
Haas M, Ben-Moshe I, Fischer B, Reiser G. Sp-2-propylthio-ATP-α-B and Sp-2-propylthio-ATP-α-B,β-γ-dichloromethylene are novel potent and specific agonists of the human P2Y₁₁ receptor. Biochem Pharmacol 2013; 86:645-55. [PMID: 23810430 DOI: 10.1016/j.bcp.2013.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
The human P2Y₁₁ nucleotide receptor mRNA was found in virtually all human tissues, and the receptor serves many physiological roles, such as immune response regulation. The Ala-87-Thr-P2Y₁₁ receptor single nucleotide polymorphism was linked to increased risk for acute myocardial infarction. To facilitate the development of new therapeutic applications involving cells expressing several P2 receptor subtypes, the availability of specific and potent agonists is mandatory. Here, we synthesized a series of novel adenine nucleotide derivatives, based upon the potent P2Y₁₁ receptor agonists AR-C67085. Features of the novel nucleotide derivatives are a propylthio substitution at C2-adenine and a Pα-borano or Pα-thio substitution of non-bridging oxygen atom. The latter substitutions introduce a chiral center at the α-phosphate. Sp-isomers of Pα-borano- and Rp-isomers of Pα-thio-substituted nucleotides are preferred by the P2Y₁₁ receptor. As recently reported by us, diastereoselectivity of the P2Y₁₁ receptor is opposite to that of the P2Y₁ receptor. Therefore, we exploit this characteristic to increase nucleotide selectivity. At the P2Y₁₁ receptor, the Sp-isomers of 2-propylthio-ATP-α-B (2B) and 2-propylthio-ATP-α-B,β-γ-dichloromethylene (4B) were the most potent of the novel nucleotide series, with EC₅₀ values of 0.03 μM for both, being ca. 80-fold more potent than 2-propylthio-ATP and ATP (EC₅₀ = 2.6 μM). We conclude that the borano-substitution at the α-phosphate of 2-propylthio-ATP enhances nucleotide potency at the P2Y₁₁ receptor. The combination with a Pβ-Pγ-dichloromethylene group in 4B results in a nucleotide, which shows higher selectivity for the P2Y₁₁ receptor over the P2Y₁₁ receptor than 2B making it the most promising of the novel P2Y₁₁ receptor agonists.
Collapse
Affiliation(s)
- Michael Haas
- Institute for Neurobiochemistry, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | |
Collapse
|
9
|
Barbosa CMV, Leon CMMP, Nogueira-Pedro A, Wasinsk F, Araújo RC, Miranda A, Ferreira AT, Paredes-Gamero EJ. Differentiation of hematopoietic stem cell and myeloid populations by ATP is modulated by cytokines. Cell Death Dis 2011; 2:e165. [PMID: 21633388 PMCID: PMC3168991 DOI: 10.1038/cddis.2011.49] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular nucleotides are emerging as important regulators of inflammation, cell proliferation and differentiation in a variety of tissues, including the hematopoietic system. In this study, the role of ATP was investigated during murine hematopoiesis. ATP was able to reduce the percentage of hematopoietic stem cells (HSCs), common myeloid progenitors and granulocyte–macrophage progenitors (GMPs), whereas differentiation into megakaryocyte–erythroid progenitors was not affected. In addition, in vivo administration of ATP to mice reduced the number of GMPs, but increased the number of Gr-1+Mac-1+ myeloid cells. ATP also induced an increased proliferation rate and reduced Notch expression in HSCs and impaired HSC-mediated bone marrow reconstitution in sublethally irradiated mice. Moreover, the effects elicited by ATP were inhibited by suramin, a P2 receptor antagonist, and BAPTA, an intracellular Ca2+ chelator. We further investigated whether the presence of cytokines might modulate the observed ATP-induced differentiation. Treatment of cells with cytokines (stem cell factor, interleukin-3 and granulocyte–monocyte colony stimulator factor) before ATP stimulation led to reduced ATP-dependent differentiation in long-term bone marrow cultures, thereby restoring the ability of HSCs to reconstitute hematopoiesis. Thus, our data suggest that ATP induces the differentiation of murine HSCs into the myeloid lineage and that this effect can be modulated by cytokines.
Collapse
Affiliation(s)
- C M V Barbosa
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Botucatu 862, 2° Andar, 04023-062 São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Martel-Gallegos G, Rosales-Saavedra MT, Reyes JP, Casas-Pruneda G, Toro-Castillo C, Pérez-Cornejo P, Arreola J. Human neutrophils do not express purinergic P2X7 receptors. Purinergic Signal 2010; 6:297-306. [PMID: 21103213 DOI: 10.1007/s11302-010-9178-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/28/2010] [Indexed: 02/08/2023] Open
Abstract
It has been reported that in human neutrophils, external ATP activates plasma membrane purinergic P2X(7) receptors (P2X(7)R) to elicit Ca(2+) entry, production of reactive oxygen species (ROS), processing and release of pro-inflammatory cytokines, shedding of adhesion molecules and uptake of large molecules. However, the expression of P2X(7)R at the plasma membrane of neutrophils has also been questioned since these putative responses are not always reproduced. In this work, we used electrophysiological recordings to measure functional responses associated with the activation of membrane receptors, spectrofluorometric measurements of ROS production and ethidium bromide uptake to asses coupling of P2X(7)R activation to downstream effectors, immune-labelling of P2X(7)R using a fluorescein isothiocyanate-conjugated antibody to detect the receptors at the plasma membrane, RT-PCR to determine mRNA expression of P2X(7)R and Western blot to determine protein expression in neutrophils and HL-60 cells. None of these assays reported the presence of P2X(7)R in the plasma membrane of neutrophils and non-differentiated or differentiated HL-60 cells-a model cell for human neutrophils. We concluded that P2X(7)R are not present at plasma membrane of human neutrophils and that the putative physiological responses triggered by external ATP should be reconsidered.
Collapse
|
11
|
Ballerini P, Di Iorio P, Caciagli F, Rathbone MP, Jiang S, Nargi E, Buccella S, Giuliani P, D'Alimonte I, Fischione G, Masciulli A, Romano S, Ciccarelli R. P2Y2 receptor up-regulation induced by guanosine or UTP in rat brain cultured astrocytes. Int J Immunopathol Pharmacol 2006; 19:293-308. [PMID: 16831297 DOI: 10.1177/039463200601900207] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Among P2 metabotropic ATP receptors, P2Y2 subtype seems to be peculiar as its upregulation triggers important biological events in different cells types. In non-stimulated cells including astrocytes, P2Y2 receptors are usually expressed at levels lower than P2Y1 sites, however the promoter region of the P2Y2 receptors has not yet been studied and little is known about the mechanisms underlying the regulation of the expression of this ATP receptor. We showed that not only UTP and ATP are the most potent and naturally occurring agonist for P2Y2 sites, but also guanosine induced an up-regulation of astrocyte P2Y2 receptor mRNA evaluated by Northern blot analysis. We also focused our attention on this nucleoside since in our previous studies it was reported to be released by cultured astrocytes and to exert different neuroprotective effects. UTP and guanosine-evoked P2Y2 receptor up-regulation in rat brain cultured astrocytes was linked to an increased P2Y2-mediated intracellular calcium response, thus suggesting an increased P2Y2 activity. Actinomycin D, a RNA polymerase inhibitor, abrogated both UTP and guanosine-mediated P2Y2 up-regulation, thus indicating that de novo transcription was required. The effect of UTP and guanosine was also evaluated in astrocytes pretreated with different inhibitors of signal transduction pathways including ERK, PKC and PKA reported to be involved in the regulation of other cell surface receptor mRNAs. The results show that ERK1-2/MAPK pathway play a key role in the P2Y2 receptor up-regulation mediated by either UTP or guanosine. Moreover, our data suggest that PKA is also involved in guanosine-induced transcriptional activation of P2Y2 mRNA and that increased intracellular calcium levels and PKC activation may also mediate P2Y2 receptor up-regulation triggered by UTP. The extracellular release of ATP under physiological and pathological conditions has been widely studied. On the contrary, little is known about the release of pyrimidines and in particular of UTP. Here we show that astrocytes are able to release UTP, either at rest or during and following hypoxia/hypoglycemia obtained by submitting the cells to glucose-oxygen deprivation (OGD). Interestingly, also P2Y2 receptor mRNA increased by about two-fold the control values when the cultures were submitted to OGD. It has been recently reported that P2Y2 receptors can play a protective role in astrocytes, thus either guanosine administration or increased extracellular concentrations of guanosine and UTP reached locally following CNS injury may increase P2Y2-mediated biological events aimed at promoting a protective astrocyte response.
Collapse
Affiliation(s)
- P Ballerini
- Dept. of Biomedical Sciences, Section of Pharmacology and Toxicology, Medical School, University G. D'Annunzio of Chieti-Pescara, Via dei Vestini 29, 66013 Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58:281-341. [PMID: 16968944 PMCID: PMC3471216 DOI: 10.1124/pr.58.3.3] [Citation(s) in RCA: 1007] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 787] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Balogh J, Wihlborg AK, Isackson H, Joshi BV, Jacobson KA, Arner A, Erlinge D. Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y11-like receptors. J Mol Cell Cardiol 2005; 39:223-30. [PMID: 15893764 PMCID: PMC3471220 DOI: 10.1016/j.yjmcc.2005.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 03/16/2005] [Accepted: 03/17/2005] [Indexed: 11/18/2022]
Abstract
ATP is released as a cotransmitter together with catecholamines from sympathetic nerves. In the heart ATP has been shown to cause a pronounced positive inotropic effect and may also act in synergy with beta-adrenergic agonists to augment cardiomyocyte contractility. The aim of the present study was to investigate the inotropic effects mediated by purinergic P2 receptors using isolated mouse cardiomyocytes. Stable adenine nucleotide analogs were used and the agonist rank order for adenine nucleotide stimulation of the mouse cardiomyocytes was AR-C67085>ATPgammaS>2-MeSATP>>>2-MeSADP=0, that fits the agonist profile of the P2Y11 receptor. ATPgammaS induced a positive inotropic response in single mouse cardiomyocytes. The response was similar to that for the beta1 receptor agonist isoproterenol. The most potent response was obtained using AR-C67085, a P2Y11 receptor agonist. This agonist also potentiated contractions in isolated trabecular preparations. The adenylyl cyclase blocker (SQ22563) and phospholipase C (PLC) blocker (U73122) demonstrated that both pathways were required for the inotropic response of AR-C67085. A cAMP enzyme immunoassay confirmed that AR-C67085 increased cAMP in the cardiomyocytes. These findings are in agreement with the P2Y11 receptor, coupled both to activation of IP3 and cAMP, being a major receptor for ATP induced inotropy. Analyzing cardiomyocytes from desmin deficient mice, Des-/-, with a congenital cardiomyopathy, we found a lower sensitivity to AR-C67085, suggesting a down-regulation of P2Y11 receptor function in heart failure. The prominent action of the P2Y11 receptor in controling cardiomyocyte contractility and possible alterations in its function during cardiomyopathy may suggest this receptor as a potential therapeutic target. It is possible that agonists for the P2Y11 receptor could be used to improve cardiac output in patients with circulatory shock and that P2Y11 receptor antagonist could be beneficial in patients with congestive heart failure (CHF).
Collapse
Affiliation(s)
- Johanna Balogh
- Department of Physiological Sciences, Lund University, Lund, Sweden
| | | | - Henrik Isackson
- Department of Physiological Sciences, Lund University, Lund, Sweden
| | | | | | - Anders Arner
- Department of Physiological Sciences, Lund University, Lund, Sweden
| | - David Erlinge
- Department of Cardiology, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Cox MA, Gomes B, Palmer K, Du K, Wiekowski M, Wilburn B, Petro M, Chou CC, Desquitado C, Schwarz M, Lunn C, Lundell D, Narula SK, Zavodny PJ, Jenh CH. The pyrimidinergic P2Y6 receptor mediates a novel release of proinflammatory cytokines and chemokines in monocytic cells stimulated with UDP. Biochem Biophys Res Commun 2005; 330:467-73. [PMID: 15796906 DOI: 10.1016/j.bbrc.2005.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The human P2Y6 receptor (hP2Y6) is a member of the G protein-coupled pyrimidinergic P2 receptor family that responds specifically to the extracellular nucleotide uridine diphosphate (UDP). Recently, the hP2Y6 receptor has been reported to mediate monocyte IL-8 production in response to UDP or lipopolysaccharide (LPS), but the role of hP2Y6 in regulating other pro-inflammatory cytokines or mediators is largely unknown. We demonstrate here that UDP specifically induces soluble TNF-alpha and IL-8 production in a promonocytic U937 cell line stably transfected with hP2Y6. However, we did not detect IL-1alpha, IL-1beta, IL-6, IL-10, IL-18, and PGE2 in the conditioned media from the same cell line. These results distinguish UDP/P2Y6 signaling from LPS signaling. Interestingly, UDP induces the production of IL-8, but not TNF-alpha, in human astrocytoma 1321N1 cell lines stably transfected with hP2Y6. Therefore, the immune effect of UDP/P2Y6 signaling on the production of proinflammatory cytokines is selective and dependent on cell types. We further identify that UDP can also induce the production of proinflammatory chemokines MCP-1 and IP-10 in hP2Y6 transfected promonocytic U937 cell lines, but not astrocytoma 1321N1 cell lines stably transfected with hP2Y6. From the Taqman analysis, UDP stimulation significantly upregulates the mRNA levels of IL-8, IP-10, and IL-1beta, but not TNF-alpha. Taken together, these new findings expand the pro-inflammatory biology of UDP mediated by the P2Y6 receptor.
Collapse
Affiliation(s)
- Mary Ann Cox
- Department of Inflammation and Infection, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cheung KK, Ryten M, Burnstock G. Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development. Dev Dyn 2004; 228:254-66. [PMID: 14517997 DOI: 10.1002/dvdy.10378] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Extracellular ATP mediates diverse biological effects by activating two families of receptors, the P2X and P2Y receptors. There is growing evidence to show that activation of G protein-coupled P2Y receptors can produce trophic effects in many cell types. Yet the expression and function of the P2Y receptors in development has rarely been studied and has never been investigated in mammalian development. This study used the reverse transcription-polymerase chain reaction and immunohistochemistry to demonstrate the abundant and dynamic expression of P2Y receptors in rat development. These receptors were expressed in a wide range of embryonic structures, notably somites, skeletal muscle, the central and peripheral nervous system, the heart, lung, and liver. All the P2Y receptors studied were expressed as early as embryonic day 11, when most embryonic organs were far from being functional and still in the process of being formed. P2Y receptor proteins were strongly expressed in temporary, developmental structures that do not have a correlate in the adult animal, including the somites (P2Y1, P2Y2, and P2Y4) and the floor plate of the neural tube (P2Y1). P2Y receptors were also dynamically expressed, with receptor mRNA and protein being both up- and down-regulated at different developmental stages. The down-regulation of the P2Y1, 2, and 4 receptor proteins in skeletal muscle and heart, and the disappearance of the P2Y4 receptor from the brainstem and ventral white matter of the spinal cord postnatally, demonstrated that many P2Y receptors were likely to be involved in functions specific to embryonic life. Thus, these findings strongly suggest that P2Y receptors play an important role in the development of many tissues, and pioneer further studies into the role of purinergic signalling in development.
Collapse
Affiliation(s)
- Kwok-Kuen Cheung
- Autonomic Neuroscience Institute, Royal Free & University College Medical School, London, United Kingdom
| | | | | |
Collapse
|
17
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
18
|
Marteau F, Le Poul E, Communi D, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS. Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 2003; 64:104-12. [PMID: 12815166 DOI: 10.1124/mol.64.1.104] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The P2Y13 receptor has recently been identified as a new P2Y receptor sharing a high sequence homology with the P2Y12 receptor as well as similar functional properties: coupling to Gi and responsiveness to ADP (Communi et al., 2001). In the present study, the pharmacology of the P2Y13 receptor and its differences with that of the P2Y12 receptor have been further characterized in 1321N1 cells (binding of [33P]2-methylthio-ADP (2MeSADP) and of GTPgamma[35S]), 1321N1 cells coexpressing Galpha16 [AG32 cells: inositol trisphosphate (IP3) measurement, binding of GTPgamma[35S]) and Chinese hamster ovary (CHO)-K1 cells (cAMP assay)]. 2MeSADP was more potent than ADP in displacing [33P]2MeSADP bound to 1321N1 cells and increasing GTPgamma[35S] binding to membranes prepared from the same cells. Similarly, 2MeSADP was more potent than ADP in stimulating IP3 accumulation after 10 min in AG32 cells and increasing cAMP in pertussis toxin-treated CHO-K1 cells stimulated by forskolin. On the other hand, ADP and 2MeSADP were equipotent at stimulating IP3 formation in AG32 cells after 30 s and inhibiting forskolininduced cAMP accumulation in CHO-K1 cells. These differences in potency cannot be explained by differences in degradation rate, which in AG32 cells was similar for the two nucleotides. When contaminating diphosphates were enzymatically removed and assay of IP3 was performed after 30 s, ATP and 2MeSATP seemed to be weak partial agonists of the P2Y13 receptor expressed in AG32 cells. The stimulatory effect of ADP on the P2Y13 receptor in AG32 cells was antagonized by reactive blue 2, suramin, pyridoxal-phosphate-6-azophenyl-2',4'disulfonic acid, diadenosine tetraphosphate, and 2-(propylthio)-5'-adenylic acid, monoanhydride with dichloromethylenebis (phosphonic acid) (AR-C67085MX), but not by N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate (MRS-2179) (up to 100 microM). The most potent antagonist was N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-5'-adenylic acid, monoanhydride with dichloromethylenebis (phosphonic acid) (ARC69931MX) (IC50 = 4 nM), which behaved in a noncompetitive way. The active metabolite of clopidogrel was unable to displace bound 2MeSADP at concentrations up to 2 microM.
Collapse
Affiliation(s)
- Frederic Marteau
- Institute for Interdisciplinary Research, School of Medicine, and Department of Medical Chemistry, Erasme Hospital, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sak K, Boeynaems JM, Everaus H. Involvement of P2Y receptors in the differentiation of haematopoietic cells. J Leukoc Biol 2003; 73:442-447. [PMID: 12660218 DOI: 10.1189/jlb.1102561] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The effects of extracellular nucleotides are mediated by multiple P2X ionotropic receptors and G protein-coupled P2Y receptors. These receptors are ubiquitous, but few physiological roles have been firmly identified. In this review article, we present a survey of the functional expression of P2Y receptors in the different haematopoietic lineages by analyzing the selectivity of these cells for the various adenine and uracil nucleotides as well as the second messenger signaling pathways involved. The pharmacological profiles of metabotropic nucleotide receptors are different among myeloid, megakaryoid, erythroid, and lymphoid cells and change during differentiation. A role of P2Y receptors in the differentiation and maturation of blood cells has been proposed: In particular the P2Y(11)receptor seems to be involved in the granulocytic differentiation of promyelocytes and in the maturation of monocyte-derived dendritic cells. It is suggested that the role of P2Y receptors in the maturation of blood cells may be more important than believed so far.
Collapse
Affiliation(s)
- Katrin Sak
- Hematology-Oncology Clinic, University of Tartu, Estonia.
| | | | | |
Collapse
|
20
|
Molecular and Biological Properties of P2Y Receptors. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
21
|
Moore DJ, Chambers JK, Murdock PR, Emson PC. Human Ntera-2/D1 neuronal progenitor cells endogenously express a functional P2Y1 receptor. Neuropharmacology 2002; 43:966-78. [PMID: 12423666 DOI: 10.1016/s0028-3908(02)00177-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here that human Ntera-2/D1 (NT-2) cells, an undifferentiated committed neuronal progenitor cell line, endogenously express a functional P2Y(1) receptor, while other P2Y subtypes, except perhaps P2Y(4), are not functionally expressed. Quantitative RT-PCR analysis showed that NT-2 cells abundantly express mRNA for P2Y(1) and P2Y(11) receptors, while P2Y(2) and P2Y(4) receptors were detected at considerably lower levels. Western blot analysis also demonstrated expression of P2Y(1) receptors and Galpha(q/11) subunits. Various nucleotides induced intracellular Ca(2+) mobilisation in NT-2 cells in a concentration-dependent manner with a rank order potency of 2-MeSADP > 2-MeSATP > ADP > ATP > UTP > ATPgammaS, a profile resembling that of human P2Y(1) receptors. Furthermore, P2Y(1) receptor-specific (A3P5P) and P2Y-selective (PPADS, suramin) antagonists inhibited adenine nucleotide-induced Ca(2+) responses in a concentration-dependent manner, consistent with expression of a P2Y(1) receptor. Moreover, of seven adenine nucleotides tested, only Bz-ATP and ATPgammaS elicited small increases in cAMP formation suggesting that few, if any, functional P2Y(11) receptors were expressed. P2Y(1) receptor-selective adenine nucleotides, including 2-MeSADP and ADP, also induced concentration-dependent phosphorylation and hence, activation of the extracellular-signal regulated protein kinases (ERK1/2). NT-2 cells, therefore, provide a useful neuronal-like cellular model for studying the precise signalling pathways and physiological responses mediated by a native P2Y(1) receptor.
Collapse
Affiliation(s)
- D J Moore
- Neurobiology Programme, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
| | | | | | | |
Collapse
|
22
|
Jacobson KA, Jarvis MF, Williams M. Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 2002; 45:4057-93. [PMID: 12213051 DOI: 10.1021/jm020046y] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases/NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
23
|
Duhant X, Schandené L, Bruyns C, Gonzalez NS, Goldman M, Boeynaems JM, Communi D. Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:15-21. [PMID: 12077223 DOI: 10.4049/jimmunol.169.1.15] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ATP has been reported to inhibit or stimulate lymphoid cell proliferation, depending on the origin of the cells. Agents that increase cAMP, such as PGE(2), inhibit human CD4(+) T cell activation. We demonstrate that several ATP derivatives increase cAMP in both freshly purified and activated human peripheral blood CD4(+) T cells. The rank order of potency of the various nucleotides was: adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) approximately 2'- and 3'-O-(4-benzoylbenzoyl) ATP (BzATP) > ATP > 2-methylthio-ATP >> dATP, 2-propylthio-beta,gamma-dichloromethylene-D-ATP, UDP, UTP. This effect did not involve the activation of A(2)Rs by adenosine or the synthesis of prostaglandins. ATPgammaS had no effect on cytosolic calcium, whereas BzATP induced an influx of extracellular calcium. ATPgammaS and BzATP inhibited secretion of IL-2, IL-5, IL-10, and IFN-gamma; expression of CD25; and proliferation after activation of CD4(+) T cells by immobilized anti-CD3 and soluble anti-CD28 Abs, without increasing cell death. Taken together, our results suggest that extracellular adenine nucleotides inhibit CD4(+) T cell activation via an increase in cAMP mediated by an unidentified P2YR, which might thus constitute a new therapeutic target in immunosuppressive treatments.
Collapse
Affiliation(s)
- Xavier Duhant
- Institute of Interdisciplinary Research, School of Medicine, Department of Immunology, Erasme Hospital, Université Libre de Brussels, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR. Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1521:107-19. [PMID: 11690642 DOI: 10.1016/s0167-4781(01)00291-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diverse biological actions of extracellular nucleotides in tissues and cells are mediated by two distinct classes of P2 receptor, P2X and P2Y. The G protein-coupled P2Y receptors comprise at least six mammalian subtypes (P2Y(1,2,4,6,11,12)), all of which have been cloned from human tissues, as well as other species. The P2Y receptor subtypes differ in their pharmacological selectivity for various adenosine and uridine nucleotides, which overlap in some cases. Data concerning the mRNA expression patterns of five P2Y receptors (P2Y(1,2,4,6,11)) in different human tissues and cells are currently quite limited, while P2Y mRNA distribution in the human brain has not previously been studied. In this study, we have addressed this deficiency in receptor expression data by using a quantitative reverse transcription-polymerase chain reaction approach to measure the precise mRNA expression pattern of each P2Y receptor subtype in a number of human peripheral tissues and brain regions, from multiple individuals, as well as numerous human cell lines and primary cells. All five P2Y receptors exhibited widespread yet subtype-selective mRNA expression profiles throughout the human tissues, brain regions and cells used. Our extensive expression data indicate the many potentially important roles of P2Y receptors throughout the human body, and will help in elucidating the physiological function of each receptor subtype in a wide variety of human systems.
Collapse
Affiliation(s)
- D J Moore
- Neurobiology Programme, The Babraham Institute, Cambridege, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ravi G, Lee K, Ji XD, Kim HS, Soltysiak KA, Marquez VE, Jacobson KA. Synthesis and purine receptor affinity of 6-oxopurine nucleosides and nucleotides containing (N)-methanocarba-pseudoribose rings. Bioorg Med Chem Lett 2001; 11:2295-300. [PMID: 11527718 PMCID: PMC4955390 DOI: 10.1016/s0960-894x(01)00450-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
6-Oxopurine derivatives containing a northern (N) methanocarba modification (i.e., fused cyclopropane and cyclopentane rings in place of the ribose) were synthesized and the adenosine receptor affinity measured. Guanine or hypoxanthine was coupled at the 7-position, or 1,3-dibutylxanthine was coupled at the 9-position. The pseudoribose ring was also substituted at the 5'-position with an N-methyluronamide or with phosphate groups.
Collapse
Affiliation(s)
- Gnana Ravi
- Molecular Recognition Section, LBC, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyeong Lee
- Molecular Recognition Section, LBC, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiao-duo Ji
- Molecular Recognition Section, LBC, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hak Sung Kim
- Molecular Recognition Section, LBC, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly A. Soltysiak
- Molecular Recognition Section, LBC, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victor E. Marquez
- Laboratory of Medicinal Chemistry, National Cancer Institute, Frederick, MD 21702, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, LBC, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. Tel.: +1-301-496-9024; fax: +1-301-480-8422;
| |
Collapse
|
26
|
Communi D, Suarez-Huerta N, Dussossoy D, Savi P, Boeynaems JM. Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. J Biol Chem 2001; 276:16561-6. [PMID: 11278528 DOI: 10.1074/jbc.m009609200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The P2Y(11) receptor is an ATP receptor positively coupled to the cAMP and phosphoinositide pathways. Ssf1 is a Saccharomyces cerevisiae nuclear protein, which plays an important role in mating. The gene encoding the human orthologue of SSF1 is adjacent to the P2Y(11) gene on chromosome 19. During the screening of placenta cDNA libraries, we isolated a chimeric clone resulting from the intergenic splicing between the P2Y(11) and SSF1 genes. The fusion protein was stably expressed in CHO-K1 cells where it generated a cAMP response to ATP qualitatively indistinguishable from that of the P2Y(11) receptor. According to both Western blotting and cAMP response, the expression of the fusion protein in the transfected cells was clearly lower than that of the P2Y(11) receptor. Both P2Y(11) and SSF1 probes detected a 5.6-kb messenger RNA with a similar pattern of intensity in each of 11 human tissues. The ubiquitous presence of chimeric transcripts and their up-regulation during granulocytic differentiation indicate that the transgenic splicing between the P2Y(11) and the SSF1 genes is a common and regulated phenomenon. There are very few examples of intergenic splicing in mammalian cells, and this is the first case involving a G-protein-coupled receptor.
Collapse
Affiliation(s)
- D Communi
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
27
|
Communi D, Janssens R, Robaye B, Zeelis N, Boeynaems JM. Role of P2Y11 receptors in hematopoiesis. Drug Dev Res 2001. [DOI: 10.1002/ddr.1110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Boeynaems JM, Robaye B, Janssens R, Suarez-Huerta N, Communi D. Overview of P2Y receptors as therapeutic targets. Drug Dev Res 2001. [DOI: 10.1002/ddr.1114] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Conigrave AD, van der Weyden L, Holt L, Jiang L, Wilson P, Christopherson RI, Morris MB. Extracellular ATP-dependent suppression of proliferation and induction of differentiation of human HL-60 leukemia cells by distinct mechanisms. Biochem Pharmacol 2000; 60:1585-91. [PMID: 11077040 DOI: 10.1016/s0006-2952(00)00465-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular ATP suppressed the growth of HL-60 leukemia cells and induced their differentiation as revealed by N-formyl-methionyl-leucyl-phenylalanine-induced beta-glucuronidase release. ATP degraded to ADP, AMP, and adenosine, and the effect of ATP on cell growth was mimicked by these metabolites added to the cultures. The stable analog alpha,beta-methylene ATP, however, had only a weak inhibitory effect on cell growth. Adenine nucleotide-induced growth suppression was reversed by uridine, suggesting the involvement of intracellular pyrimidine starvation secondary to adenosine accumulation. Consistent with this, ATP induced intracellular starvation of pyrimidine nucleotides, and this effect was also prevented by pretreatment of cells with uridine. The order of effectiveness of ATP-induced differentiation of HL-60 cells, unlike that for growth suppression, was ATP > ADP > AMP, and adenosine had no effect. Furthermore, uridine had no effect and the stable analog, alpha,beta-methylene ATP also induced HL-60 cell differentiation, suggesting that differentiation was due to ATP per se. We tested the hypothesis that ATP-induced differentiation arises from activation of adenylyl cyclase by the novel P2Y(11) receptor using the cell-permeable inhibitor of protein kinase A, Rp-CPT-cAMPS (8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphorothioate, Rp isomer). Rp-CPT-cAMPS (1-100 microM) prevented ATP-induced differentiation of HL-60 cells as assessed by fMLP-induced beta-glucuronidase release. However, Rp-CPT-cAMPS did not prevent ATP-induced growth suppression. Taken together, the data indicate that extracellular ATP suppresses HL-60 growth and induces their differentiation by distinct mechanisms. Growth suppression arises from adenosine generation and consequent pyrimidine starvation. Differentiation arises, at least in part, from a distinct mechanism involving the activation of cell surface P2 receptors coupled to cAMP generation and activation of protein kinase A.
Collapse
Affiliation(s)
- A D Conigrave
- Department of Biochemistry, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|