1
|
Cárdenas-Guerra RE, Montes-Flores O, Nava-Pintor EE, Reséndiz-Cardiel G, Flores-Pucheta CI, Rodríguez-Gavaldón YI, Arroyo R, Bottazzi ME, Hotez PJ, Ortega-López J. Chagasin from Trypanosoma cruzi as a molecular scaffold to express epitopes of TSA-1 as soluble recombinant chimeras. Protein Expr Purif 2024; 218:106458. [PMID: 38423156 DOI: 10.1016/j.pep.2024.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a global public health problem. New therapeutic drugs and biologics are needed. The TSA-1 recombinant protein of T. cruzi is one such promising antigen for developing a therapeutic vaccine. However, it is overexpressed in E. coli as inclusion bodies, requiring an additional refolding step. As an alternative, in this study, we propose the endogenous cysteine protease inhibitor chagasin as a molecular scaffold to generate chimeric proteins. These proteins will contain combinations of two of the five conserved epitopes (E1 to E5) of TSA-1 in the L4 and L6 chagasin loops. Twenty chimeras (Q1-Q20) were designed, and their solubility was predicted using bioinformatics tools. Nine chimeras with different degrees of solubility were selected and expressed in E. coli BL21 (DE3). Western blot assays with anti-6x-His and anti-chagasin antibodies confirmed the expression of soluble recombinant chimeras. Both theoretically and experimentally, the Q12 (E5-E3) chimera was the most soluble, and the Q20 (E4-E5) the most insoluble protein. Q4 (E5-E1) and Q8 (E5-E2) chimeras were classified as proteins with medium solubility that exhibited the highest yield in the soluble fraction. Notably, Q4 has a yield of 239 mg/L, well above the yield of recombinant chagasin (16.5 mg/L) expressed in a soluble form. The expression of the Q4 chimera was scaled up to a 7 L fermenter obtaining a yield of 490 mg/L. These data show that chagasin can serve as a molecular scaffold for the expression of TSA-1 epitopes in the form of soluble chimeras.
Collapse
Affiliation(s)
- Rosa Elena Cárdenas-Guerra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Edgar Ezequiel Nava-Pintor
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Gerardo Reséndiz-Cardiel
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Claudia Ivonne Flores-Pucheta
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Yasmín Irene Rodríguez-Gavaldón
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico.
| |
Collapse
|
2
|
Roy M, Rawat A, Kaushik S, Jyoti A, Srivastava VK. Endogenous cysteine protease inhibitors in upmost pathogenic parasitic protozoa. Microbiol Res 2022; 261:127061. [DOI: 10.1016/j.micres.2022.127061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
3
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
4
|
Flores-Solis D, Mendoza A, Rentería-González I, Casados-Vazquez LE, Trasviña-Arenas CH, Jiménez-Sandoval P, Benítez-Cardoza CG, Del Río-Portilla F, Brieba LG. Solution structure of the inhibitor of cysteine proteases 1 from Entamoeba histolytica reveals a possible auto regulatory mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140512. [PMID: 32731033 DOI: 10.1016/j.bbapap.2020.140512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
The genome of Entamoeba histolytica encodes approximately 50 Cysteine Proteases (CPs) whose activity is regulated by two Inhibitors of Cysteine Proteases (ICPs), EhICP1 and EhICP2. The main difference between both EhICPs is the acquisition of a 17 N-terminal targeting signal in EhICP2 and three exposed cysteine residues in EhICP1. The three exposed cysteines in EhICP1 potentiate the formation of cross-linking species that drive heterogeneity. Here we solved the NMR structure of EhICP1 using a mutant protein without accessible cysteines. Our structural data shows that EhICP1 adopts an immunoglobulin fold composed of seven β-strands, and three solvent exposed loops that resemble the structures of EhICP2 and chagasin. EhICP1 and EhICP2 are able to inhibit the archetypical cysteine protease papain by intercalating their BC loops into the protease active site independently of the character of the residue (serine or threonine) responsible to interact with the active site of papain. EhICP1 and EhICP2 present signals of functional divergence as they clustered in different clades. Two of the three exposed cysteines in EhICP1 are located at the DE loop that intercalates into the CP substrate-binding cleft. We propose that the solvent exposed cysteines of EhICP1 play a role in regulating its inhibitory activity and that in oxidative conditions, the cysteines of EhICP1 react to form intra and intermolecular disulfide bonds that render an inactive inhibitor. EhICP2 is not subject to redox regulation, as this inhibitor does not contain a single cysteine residue. This proposed redox regulation may be related to the differential cellular localization between EhICP1 and EhICP2.
Collapse
Affiliation(s)
- David Flores-Solis
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Angeles Mendoza
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Itzel Rentería-González
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Luz E Casados-Vazquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Pedro Jiménez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, D.F, Mexico
| | - Federico Del Río-Portilla
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Coyoacán, Ciudad de Mexico 04510, Mexico.
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
5
|
Oliveira P, Lima FM, Cruz MC, Ferreira RC, Sanchez-Flores A, Cordero EM, Cortez DR, Ferreira ÉR, Briones MRDS, Mortara RA, da Silveira JF, Bahia D. Trypanosoma cruzi: Genome characterization of phosphatidylinositol kinase gene family (PIK and PIK-related) and identification of a novel PIK gene. INFECTION GENETICS AND EVOLUTION 2014; 25:157-65. [PMID: 24727645 DOI: 10.1016/j.meegid.2014.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 02/01/2023]
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi which affects 10 million people worldwide. Very few kinases have been characterized in this parasite, including the phosphatidylinositol kinases (PIKs) that are at the heart of one of the major pathways of intracellular signal transduction. Recently, we have classified the PIK family in T. cruzi using five different models based on the presence of PIK conserved domains. In this study, we have mapped PIK genes to the chromosomes of two different T. cruzi lineages (G and CL Brener) and determined the cellular localization of two PIK members. The kinases have crucial roles in metabolism and are assumed to be conserved throughout evolution. For this reason, they should display a conserved localization within the same eukaryotic species. In spite of this, there is an extensive polymorphism regarding PIK localization at both genomic and cellular levels, among different T. cruzi isolates and between T. cruzi and Trypanosomabrucei, respectively. We showed in this study that the cellular localization of two PIK-related proteins (TOR1 and 2) in the T. cruzi lineage is distinct from that previously observed in T. brucei. In addition, we identified a new PIK gene with peculiar feature, that is, it codes for a FYVE domain at N-terminal position. FYVE-PIK genes are phylogenetically distant from the groups containing exclusively the FYVE or PIK domain. The FYVE-PIK architecture is only present in trypanosomatids and in virus such as Acanthamoeba mimivirus, suggesting a horizontal acquisition. Our Bayesian phylogenetic inference supports this hypothesis. The exact functions of this FYVE-PIK gene are unknown, but the presence of FYVE domain suggests a role in membranous compartments, such as endosome. Taken together, the data presented here strengthen the possibility that trypanosomatids are characterized by extensive genomic plasticity that may be considered in designing drugs and vaccines for prevention of Chagas disease.
Collapse
Affiliation(s)
- Priscila Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fabio Mitsuo Lima
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mario Costa Cruz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Renata Carmona Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Esteban Maurício Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Danielle Rodrigues Cortez
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Éden Ramalho Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Ribeiro da Silva Briones
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais CEP 31270-910, Brazil.
| |
Collapse
|
6
|
Wijayawardena BK, Minchella DJ, DeWoody JA. Hosts, parasites, and horizontal gene transfer. Trends Parasitol 2013; 29:329-38. [DOI: 10.1016/j.pt.2013.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022]
|
7
|
Pretsch K, Kemen A, Kemen E, Geiger M, Mendgen K, Voegele R. The rust transferred proteins-a new family of effector proteins exhibiting protease inhibitor function. MOLECULAR PLANT PATHOLOGY 2013; 14:96-107. [PMID: 22998218 PMCID: PMC6638633 DOI: 10.1111/j.1364-3703.2012.00832.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Only few fungal effectors have been described to be delivered into the host cell during obligate biotrophic interactions. RTP1p, from the rust fungi Uromyces fabae and U. striatus, was the first fungal protein for which localization within the host cytoplasm could be demonstrated directly. We investigated the occurrence of RTP1 homologues in rust fungi and examined the structural and biochemical characteristics of the corresponding gene products. The analysis of 28 homologues showed that members of the RTP family are most likely to occur ubiquitously in rust fungi and to be specific to the order Pucciniales. Sequence analyses indicated that the structure of the RTPp effectors is bipartite, consisting of a variable N-terminus and a conserved and structured C-terminus. The characterization of Uf-RTP1p mutants showed that four conserved cysteine residues sustain structural stability. Furthermore, the C-terminal domain exhibits similarities to that of cysteine protease inhibitors, and it was shown that Uf-RTP1p and Us-RTP1p are able to inhibit proteolytic activity in Pichia pastoris culture supernatants. We conclude that the RTP1p homologues constitute a rust fungi-specific family of modular effector proteins comprising an unstructured N-terminal domain and a structured C-terminal domain, which exhibit protease inhibitory activity possibly associated with effector function during biotrophic interactions.
Collapse
Affiliation(s)
- Klara Pretsch
- Phytopathologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Putative role of cellulosomal protease inhibitors in Clostridium cellulovorans based on gene expression and measurement of activities. J Bacteriol 2011; 193:5527-30. [PMID: 21784939 DOI: 10.1128/jb.05022-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study is the first to demonstrate the activity of putative cellulosomal protease/peptidase inhibitors (named cyspins) of Clostridium cellulovorans, using the Saccharomyces cerevisiae display system. Cyspins exhibited inhibitory activities against several representative plant proteases. This suggests that these inhibitors protect their microbe and cellulosome from external attack by plant proteases.
Collapse
|
9
|
Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: functional convergence of a common protein fold. Gene 2010; 471:45-52. [PMID: 20951777 DOI: 10.1016/j.gene.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 11/22/2022]
Abstract
Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereas EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight β-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.
Collapse
|
10
|
Rennenberg A, Lehmann C, Heitmann A, Witt T, Hansen G, Nagarajan K, Deschermeier C, Turk V, Hilgenfeld R, Heussler VT. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog 2010; 6:e1000825. [PMID: 20361051 PMCID: PMC2845656 DOI: 10.1371/journal.ppat.1000825] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 02/18/2010] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death.
Collapse
Affiliation(s)
- Annika Rennenberg
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Christine Lehmann
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Tina Witt
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Krishna Nagarajan
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Christina Deschermeier
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Vito Turk
- Josef Stefan Institute, Department of Biochemistry, Molecular and Structural Biology, Ljubljana, Slovenia
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Volker T. Heussler
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Redzynia I, Ljunggren A, Bujacz A, Abrahamson M, Jaskolski M, Bujacz G. Crystal structure of the parasite inhibitor chagasin in complex with papain allows identification of structural requirements for broad reactivity and specificity determinants for target proteases. FEBS J 2009; 276:793-806. [PMID: 19143838 DOI: 10.1111/j.1742-4658.2008.06824.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A complex of chagasin, a protein inhibitor from Trypanosoma cruzi, and papain, a classic family C1 cysteine protease, has been crystallized. Kinetic studies revealed that inactivation of papain by chagasin is very fast (k(on) = 1.5 x 10(6) M(-1) x s(-1)), and results in the formation of a very tight, reversible complex (K(i) = 36 pM), with similar or better rate and equilibrium constants than those for cathepsins L and B. The high-resolution crystal structure shows an inhibitory wedge comprising three loops, which forms a number of contacts responsible for the high-affinity binding. Comparison with the structure of papain in complex with human cystatin B reveals that, despite entirely different folding, the two inhibitors utilize very similar atomic interactions, leading to essentially identical affinities for the enzyme. Comparisons of the chagasin-papain complex with high-resolution structures of chagasin in complexes with cathepsin L, cathepsin B and falcipain allowed the creation of a consensus map of the structural features that are important for efficient inhibition of papain-like enzymes. The comparisons also revealed a number of unique interactions that can be used to design enzyme-specific inhibitors. As papain exhibits high structural similarity to the catalytic domain of the T. cruzi enzyme cruzipain, the present chagasin-papain complex provides a reliable model of chagasin-cruzipain interactions. Such information, coupled with our identification of specificity-conferring interactions, should be important for the development of drugs for treatment of the devastating Chagas disease caused by this parasite.
Collapse
Affiliation(s)
- Izabela Redzynia
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Dos Santos Monteiro AC, de Oliveira Neto OB, Del Sarto RP, de Magalhães MTQ, Lima JN, Lacerda AF, Oliveira RS, Scharfstein J, da Silva MCM, Valencia JWA, Jiménez AV, Grossi-de-Sa MF. A recombinant form of chagasin from Trypanosoma cruzi: inhibitory activity on insect cysteine proteinases. PEST MANAGEMENT SCIENCE 2008; 64:755-760. [PMID: 18318460 DOI: 10.1002/ps.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND The activity of the major digestive cysteine proteinase detected in the intestinal tract of larvae of the bean weevil, Acanthoscelides obtectus (Say), was efficiently inhibited by the well-characterized cysteine proteinase synthetic inhibitor E-64 and also by a recombinant form of chagasin (r-chagasin), a tight-binding cysteine proteinase inhibitor protein from Trypanosoma cruzi. RESULTS Incorporation of r-chagasin into an artificial diet system at 0.1 g kg(-1) retarded growth rate, decreased larval survival and led to complete mortality of A. obtectus at the end of the trial. The observed differences in growth rates occurred particularly in the first and second development stages. Artificial seeds containing high levels of r-chagasin (0.5-30 g kg(-1)) completely inhibited larval penetration. CONCLUSION Together, the results reported in this paper support the hypothesis that the inhibitory activity of r-chagasin towards the major insect gut cysteine proteinase in vitro and in vivo is an accurate prediction of its insecticidal effects. The selectivity of this inhibitor against insect digestive proteinases supports the key role in parasite virulence by affecting the endogenous proteinase activity in its natural host.
Collapse
|
13
|
Scharfstein J, Lima APCA. Roles of naturally occurring protease inhibitors in the modulation of host cell signaling and cellular invasion by Trypanosoma cruzi. Subcell Biochem 2008; 47:140-154. [PMID: 18512348 DOI: 10.1007/978-0-387-78267-6_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Trypanosoma cruzi trypomastigotes rely on the structural diversity of the cruzipain family of cysteine proteases to infect and multiply in nonprofessional phagocytic cells. Herein, we will review studies demonstrating that the interplay of cruzipain with peptidase inhibitors modulate infection outcome in a variety of experimental settings. Studies with a panel of T. cruzi strains showed that parasite ability to invade human smooth muscle cells is influenced by the balance between cruzipain and chagasin, a tight binding endogenous inhibitor of papain-like cysteine proteases. Analysis of T. cruzi interaction with endothelial cells and cardiomyocytes indicated that parasite-induced activation of bradykinin receptors drive host cell invasion by [Ca2+]I-dependent pathways. Clues about the mechanisms underlying kinin generation in vivo by trypomastigotes came from analysis of the dynamics of edematogenic inflammation. Owing to plasma extravasation, the blood-borne kininogens accumulate in peripheral sites of infection. Upon diffusion in peripheral tissues, kininogens (i.e., type III cystatins) bind to heparan sulphate chains, thus constraining interactions of the cystatin-like inhibitory domains with cruzipain. The cell bound kininogens are then turned into facile substrates for cruzipain, which liberates kinins in peripheral tissues. Subjected to tight-regulation by kinin-degrading metallopeptidases, such as angiotensin converting enzyme, the short-lived kinin peptides play a dual role in the host-parasite balance. Rather than unilaterally stimulating pathogen infectivity via bradykinin receptors, the released kinins potently induce dendritic cell maturation, thus stimulating type 1 immune responses. In conclusion, the studies reviewed herein illustrate how regulation of parasite proteases may affect host-parasite equilibrium in the course of IT cruzi infection.
Collapse
Affiliation(s)
- Julio Scharfstein
- Lnstituto de Biofisica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.
| | | |
Collapse
|
14
|
Wang SX, Pandey KC, Scharfstein J, Whisstock J, Huang RK, Jacobelli J, Fletterick RJ, Rosenthal PJ, Abrahamson M, Brinen LS, Rossi A, Sali A, McKerrow JH. The structure of chagasin in complex with a cysteine protease clarifies the binding mode and evolution of an inhibitor family. Structure 2007; 15:535-43. [PMID: 17502099 DOI: 10.1016/j.str.2007.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/01/2007] [Accepted: 03/20/2007] [Indexed: 11/19/2022]
Abstract
Protein inhibitors of proteolytic enzymes regulate proteolysis and prevent the pathological effects of excess endogenous or exogenous proteases. Cysteine proteases are a large family of enzymes found throughout the plant and animal kingdoms. Disturbance of the equilibrium between cysteine proteases and natural inhibitors is a key event in the pathogenesis of cancer, rheumatoid arthritis, osteoporosis, and emphysema. A family (I42) of cysteine protease inhibitors (http://merops.sanger.ac.uk) was discovered in protozoan parasites and recently found widely distributed in prokaryotes and eukaryotes. We report the 2.2 A crystal structure of the signature member of the I42 family, chagasin, in complex with a cysteine protease. Chagasin has a unique variant of the immunoglobulin fold with homology to human CD8alpha. Interactions of chagasin with a target protease are reminiscent of the cystatin family inhibitors. Protein inhibitors of cysteine proteases may have evolved more than once on nonhomologous scaffolds.
Collapse
Affiliation(s)
- Stephanie X Wang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ljunggren A, Redzynia I, Alvarez-Fernandez M, Abrahamson M, Mort JS, Krupa JC, Jaskolski M, Bujacz G. Crystal structure of the parasite protease inhibitor chagasin in complex with a host target cysteine protease. J Mol Biol 2007; 371:137-53. [PMID: 17561110 DOI: 10.1016/j.jmb.2007.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/30/2007] [Accepted: 05/03/2007] [Indexed: 11/16/2022]
Abstract
Chagasin is a protein produced by Trypanosoma cruzi, the parasite that causes Chagas' disease. This small protein belongs to a recently defined family of cysteine protease inhibitors. Although resembling well-known inhibitors like the cystatins in size (110 amino acid residues) and function (they all inhibit papain-like (C1 family) proteases), it has a unique amino acid sequence and structure. We have crystallized and solved the structure of chagasin in complex with the host cysteine protease, cathepsin L, at 1.75 A resolution. An inhibitory wedge composed of three loops (L2, L4, and L6) forms a number of contacts responsible for high-affinity binding (K(i), 39 pM) to the enzyme. All three loops interact with the catalytic groove, with the central loop L2 inserted directly into the catalytic center. Loops L4 and L6 embrace the enzyme molecule from both sides and exhibit distinctly different patterns of protein-protein recognition. Comparison with a 1.7 A structure of uncomplexed chagasin, also determined in this study, demonstrates that a conformational change of the first binding loop (L4) allows extended binding to the non-primed substrate pockets of the enzyme active site cleft, thereby providing a substantial part of the inhibitory surface. The mode of chagasin binding is generally similar, albeit distinctly different in detail, when compared to those displayed by cystatins and the cysteine protease inhibitory p41 fragment of the invariant chain. The chagasin-cathepsin L complex structure provides details of how the parasite protein inhibits a host enzyme of possible importance in host defense. The high level of structural and functional similarity between cathepsin L and the T. cruzi enzyme cruzipain gives clues to how the cysteine protease activity of the parasite can be targeted. This information will aid in the development of synthetic inhibitors for use as potential drugs for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Anna Ljunggren
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, University Hospital, SE-221 85 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sato D, Nakada-Tsukui K, Okada M, Nozaki T. Two cysteine protease inhibitors, EhICP1 and 2, localized in distinct compartments, negatively regulate secretion inEntamoeba histolytica. FEBS Lett 2006; 580:5306-12. [PMID: 16979632 DOI: 10.1016/j.febslet.2006.08.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 08/27/2006] [Accepted: 08/28/2006] [Indexed: 11/19/2022]
Abstract
The enteric protozoan parasite Entamoeba histolytica uniquely possesses two isotypes of ICPs, a novel class of inhibitors for cysteine proteases. These two EhICPs showed a remarkable difference in the ability to inhibit cysteine protease (CP) 5, a well-established virulence determinant, whereas they equally inhibited CP1 and CP2. Immunofluorescence imaging and cellular fractionation showed that EhICP1 and EhICP2 are localized to distinct compartments. While EhICP1 is localized to the soluble cytosolic fraction, EhICP2 is targeted from lysosomes to phagosomes upon erythrocyte engulfment. Overexpression of either EhICP1 or EhICP2 caused reduction of intracellular CP activity, but not the amount of CP, and decrease in the secretion of all major CPs, suggesting that both EhICPs are involved in the trafficking and/or interference with the major CP activity. These data indicate that the two EhICPs, present in distinct subcellular compartments, negatively regulate CP secretion, and, thus, the virulence of this parasite.
Collapse
Affiliation(s)
- Dan Sato
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | |
Collapse
|
17
|
Santos CC, Scharfstein J, Lima APCDA. Role of chagasin-like inhibitors as endogenous regulators of cysteine proteases in parasitic protozoa. Parasitol Res 2006; 99:323-4. [PMID: 16636845 DOI: 10.1007/s00436-006-0195-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Camila C Santos
- Instituto de Biofisica Carlos Chagas Filho, Bloco D, sala 10-A, Universidade Federal do Rio de Janeiro, C.C.S., Cidade Universitaria, Ilha do Fundao, Rio de Janeiro, RJ, CEP 21949-900, Brazil
| | | | | |
Collapse
|
18
|
Salmon D, do Aido-Machado R, Diehl A, Leidert M, Schmetzer O, de A Lima APC, Scharfstein J, Oschkinat H, Pires JR. Solution Structure and Backbone Dynamics of the Trypanosoma cruzi Cysteine Protease Inhibitor Chagasin. J Mol Biol 2006; 357:1511-21. [PMID: 16490204 DOI: 10.1016/j.jmb.2006.01.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/23/2022]
Abstract
A Trypanosoma cruzi cysteine protease inhibitor, termed chagasin, is the first characterized member of a new family of tight-binding cysteine protease inhibitors identified in several lower eukaryotes and prokaryotes but not present in mammals. In the protozoan parasite T.cruzi, chagasin plays a role in parasite differentiation and in mammalian host cell invasion, due to its ability to modulate the endogenous activity of cruzipain, a lysosomal-like cysteine protease. In the present work, we determined the solution structure of chagasin and studied its backbone dynamics by NMR techniques. Structured as a single immunoglobulin-like domain in solution, chagasin exerts its inhibitory activity on cruzipain through conserved residues placed in three loops in the same side of the structure. One of these three loops, L4, predicted to be of variable length among chagasin homologues, is flexible in solution as determined by measurements of (15)N relaxation. The biological implications of structural homology between chagasin and other members of the immunoglobulin super-family are discussed.
Collapse
Affiliation(s)
- Didier Salmon
- Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, Av. Brigadeiro Trompowiski s/n, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Smith BO, Picken NC, Westrop GD, Bromek K, Mottram JC, Coombs GH. The structure of Leishmania mexicana ICP provides evidence for convergent evolution of cysteine peptidase inhibitors. J Biol Chem 2006; 281:5821-8. [PMID: 16407198 PMCID: PMC1473161 DOI: 10.1074/jbc.m510868200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clan CA, family C1 cysteine peptidases (CPs) are important virulence factors and drug targets in parasites that cause neglected diseases. Natural CP inhibitors of the I42 family, known as ICP, occur in some protozoa and bacterial pathogens but are absent from metazoa. They are active against both parasite and mammalian CPs, despite having no sequence similarity with other classes of CP inhibitor. Recent data suggest that Leishmania mexicana ICP plays an important role in host-parasite interactions. We have now solved the structure of ICP from L. mexicana by NMR and shown that it adopts a type of immunoglobulin-like fold not previously reported in lower eukaryotes or bacteria. The structure places three loops containing highly conserved residues at one end of the molecule, one loop being highly mobile. Interaction studies with CPs confirm the importance of these loops for the interaction between ICP and CPs and suggest the mechanism of inhibition. Structure-guided mutagenesis of ICP has revealed that residues in the mobile loop are critical for CP inhibition. Data-driven docking models support the importance of the loops in the ICP-CP interaction. This study provides structural evidence for the convergent evolution from an immunoglobulin fold of CP inhibitors with a cystatin-like mechanism.
Collapse
Affiliation(s)
- Brian O Smith
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Inal JM. Complement C2 receptor inhibitor trispanning: from man to schistosome. ACTA ACUST UNITED AC 2005; 27:320-31. [PMID: 16235057 DOI: 10.1007/s00281-005-0009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 05/20/2005] [Indexed: 01/03/2023]
Abstract
Horizontal gene transfer (HGT), in relation to genetic transfer between hosts and parasites, is a little described mechanism. Since the complement inhibitor CRIT was first discovered in the human Schistosoma parasite (the causative agent of Bilharzia) and in Trypanosoma cruzi (a parasite causing Chagas' disease), it has been found to be distributed amongst various species, ranging from the early teleost cod to rats and humans. In terms of evolutionary distance, as measured in a phylogenetic analysis of these CRIT genes at nucleotide level, the parasitic species are as removed from their human host as is the rat sequence, suggesting HGT. The hypotheses that CRIT in humans and schistosomes is orthologous and that the presence of CRIT in schistosomes occurs as a result of host-to-parasite HGT are presented in the light of empirical data and the growing body of data on mobile genetic elements in human and schistosome genomes. In summary, these data indicate phylogenetic proximity between Schistosoma and human CRIT, identity of function, high nucleotide/amino acid identity and secondary protein structure, as well as identical genomic organization.
Collapse
Affiliation(s)
- Jameel M Inal
- Immunonephrology, Department of Research, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Riekenberg S, Witjes B, Sarić M, Bruchhaus I, Scholze H. Identification of EhICP1, a chagasin-like cysteine protease inhibitor ofEntamoeba histolytica. FEBS Lett 2005; 579:1573-8. [PMID: 15757643 DOI: 10.1016/j.febslet.2005.01.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 01/13/2005] [Accepted: 01/27/2005] [Indexed: 11/21/2022]
Abstract
Based on the Entamoeba histolytica genome project (www.sanger.ac.uk/Project/E_histolytical/) we have identified a cysteine protease inhibitor, EhICP1 (amoebiasin 1), with significant homology to chagasin. Recombinant EhICP1 inhibited the protease activity of papain and that of a trophozoite lysate with Ki's in the picomolar range. By immunocytology, we localized the endogenous approximately 13 kDa EhICP1 in a finely dotted subcellular distribution discrete from the vesicles containing the amoebic cysteine protease, EhCP1 (amoebapain). In an overlay assay, we observed binding of recombinant EhICP1 to EhCP1. As a heptapeptide (GNPTTGF) corresponding to the second conserved chagasin motif inhibited the protease activity of both papain (K) 1.5 microM) and trophozoite extract (Ki in sub-mM range), it may be a candidate for the rational development of anti-amoebiasis drugs.
Collapse
Affiliation(s)
- S Riekenberg
- Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany
| | | | | | | | | |
Collapse
|
22
|
El-Halawany MS, Ohkouchi S, Shibata H, Hitomi K, Maki M. Identification of cysteine protease inhibitors that belong to cystatin family 1 in the cellular slime mold Dictyostelium discoideum. Biol Chem 2005; 385:547-50. [PMID: 15255188 DOI: 10.1515/bc.2004.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Family 1 cystatins are cytosolic inhibitors of cysteine proteases, and they are conserved in higher eukaryotes. We characterized two newly identified family 1 cystatins of the cellular slime mold Dictyostelium discoideum, cystatin A1 and A2. Their recombinant proteins showed specific inhibitory activity against papain and cathepsin B, respectively. Using specific polyclonal antibodies, we found that cystatin A1 is stably expressed throughout the life cycle of Dictyostelium, whereas cystatin A2 expression is up-regulated during the course of development.
Collapse
Affiliation(s)
- Medhat S El-Halawany
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
23
|
Nepomuceno-Silva JL, de Melo LDB, Mendonçã SM, Paixão JC, Lopes UG. RJLs: a new family of Ras-related GTP-binding proteins. Gene 2004; 327:221-32. [PMID: 14980719 DOI: 10.1016/j.gene.2003.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 10/30/2003] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
The Ras superfamily of GTP binding proteins encompasses several gene families that regulate a plethora of events in the eukaryotic cell. Here we describe a novel branch of this superfamily which we have named RJLs. These are present in many unicellular organisms and also in deuterostomes but apparently missing in some intermediary phyla, suggesting an intriguing possibility of lateral gene transference between lower and higher eukaryotes. RJLs lack classical membrane targeting signals and the conserved glutamine residue that coordinates GTP hydrolysis in other proteins from the Ras superfamily. Interestingly, chordate orthologues are chimeras fused to "J" domains in their C-terminal, suggesting that these proteins recruit Hsc70 to specific sites in the cell. Expression analysis of RJLs from chordates suggests predominant expression in nervous tissues, possibly reflecting a role for RJLs in the development or maintenance of the sophisticated chordate nervous system.
Collapse
Affiliation(s)
- José L Nepomuceno-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidades Federal do Rio de Janeiro, Rio de Janeiro, RJ 21949-900, Brazil
| | | | | | | | | |
Collapse
|
24
|
Sanderson SJ, Westrop GD, Scharfstein J, Mottram JC, Coombs GH. Functional conservation of a natural cysteine peptidase inhibitor in protozoan and bacterial pathogens. FEBS Lett 2003; 542:12-6. [PMID: 12729889 DOI: 10.1016/s0014-5793(03)00327-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cysteine peptidase inhibitor genes (ICP) of the chagasin family have been identified in protozoan (Leishmania mexicana and Trypanosoma brucei) and bacterial (Pseudomonas aeruginosa) pathogens. The encoded proteins have low sequence identities with each other and no significant identity with cystatins or other known cysteine peptidase inhibitors. Recombinant forms of each ICP inhibit protozoan and mammalian clan CA, family C1 cysteine peptidases but do not inhibit the clan CD cysteine peptidase caspase 3, the serine peptidase trypsin or the aspartic peptidases pepsin and thrombin. The functional homology between ICPs implies a common evolutionary origin for these bacterial and protozoal proteins.
Collapse
Affiliation(s)
- S J Sanderson
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
25
|
Mazitsos CF, Rigden DJ, Tsoungas PG, Clonis YD. Galactosyl-mimodye ligands for Pseudomonas fluorescens beta-galactose dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5391-405. [PMID: 12423337 DOI: 10.1046/j.1432-1033.2002.03211.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein molecular modelling and ligand docking were employed for the design of anthraquinone galactosyl-biomimetic dye ligands (galactosyl-mimodyes) for the target enzyme galactose dehydrogenase (GaDH). Using appropriate modelling methodology, a GaDH model was build based on a glucose-fructose oxidoreductase (GFO) protein template. Subsequent computational analysis predicted chimaeric mimodye-ligands comprising a NAD-pseudomimetic moiety (anthraquinone diaminobenzosulfonic acid) and a galactosyl-mimetic moiety (2-amino-2-deoxygalactose or shikimic acid) bearing an aliphatic 'linker' molecule. In addition, the designed mimodye ligands had an appropriate in length and chemical nature 'spacer' molecule via which they can be attached onto a chromatographic support without steric clashes upon interaction with GaDH. Following their synthesis, purification and analysis, the ligands were immobilized to agarose. The respective affinity adsorbents, compared to other conventional adsorbents, were shown to be superior affinity chromatography materials for the target enzyme, Pseudomonas fluorescensbeta-galactose dehydrogenase. In addition, these mimodye affinity adsorbents displayed good selectivity, binding low amounts of enzymes other than GaDH. Further immobilized dye-ligands, comprising different linker and/or spacer molecules, or not having a biomimetic moiety, had inferior chromatographic behavior. Therefore, these new mimodyes suggested by computational analysis, are candidates for application in affinity labeling and structural studies as well as for purification of galactose dehydrogenase.
Collapse
Affiliation(s)
- C F Mazitsos
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, Greece
| | | | | | | |
Collapse
|
26
|
Rigden DJ, Mosolov VV, Galperin MY. Sequence conservation in the chagasin family suggests a common trend in cysteine proteinase binding by unrelated protein inhibitors. Protein Sci 2002; 11:1971-7. [PMID: 12142451 PMCID: PMC2373688 DOI: 10.1110/ps.0207202] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Revised: 05/13/2002] [Accepted: 05/21/2002] [Indexed: 10/27/2022]
Abstract
The recently described inhibitor of cysteine proteinases from Trypanosoma cruzi, chagasin, was found to have close homologs in several eukaryotes, bacteria and archaea, the first protein inhibitors of cysteine proteases in prokaryotes. These previously uncharacterized 110-130 residue-long proteins share a well-conserved sequence motif that corresponds to two adjacent beta-strands and the short loop connecting them. Chagasin-like proteins also have other conserved, mostly aromatic, residues, and share the same predicted secondary structure. These proteins adopt an all-beta fold with eight predicted beta-strands of the immunoglobulin type. The phylogenetic distribution of the chagasins generally correlates with the presence of papain-like cysteine proteases. Previous studies have uncovered similar trends in cysteine proteinase binding by two unrelated inhibitors, stefin and p41, that belong to the cystatin and thyroglobulin families, respectively. A hypothetical model of chagasin-cruzipain interaction suggests that chagasin may dock to the cruzipain active site in a similar manner with the conserved NPTTG motif of chagasin forming a loop that is similar to the wedge structures formed at the active sites of papain and cathepsin L by stefin and p41.
Collapse
Affiliation(s)
- Daniel J Rigden
- National Centre of Genetic Resources and Biotechnology, Cenargen/Embrapa, S.A.I.N. Parque Rural, Final W5 Norte, 70770-900 Brasília, Brazil.
| | | | | |
Collapse
|