1
|
Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, Ramalho JC, Lam TT, Negrão S, Abreu IA, Oliveira MM. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. PLANT, CELL & ENVIRONMENT 2017; 40:1197-1213. [PMID: 28102545 DOI: 10.1111/pce.12916] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 05/20/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose-phosphate synthase OsSPS4 and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.
Collapse
Affiliation(s)
- M Cecília Almadanim
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Bruno M Alexandre
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Margarida T G Rosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - António E Leitão
- Plant Stress and Biodiversity, Linking Landscape, Environment, Agriculture and Food (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, 2784-505, Oeiras, Portugal
| | - José C Ramalho
- Plant Stress and Biodiversity, Linking Landscape, Environment, Agriculture and Food (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, 2784-505, Oeiras, Portugal
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520-8024, USA
- MS and Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, 06520-8024, USA
| | - Sónia Negrão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| |
Collapse
|
2
|
The calcium-dependent protein kinase RcCDPK2 phosphorylates sucrose synthase at Ser11 in developing castor oil seeds. Biochem J 2016; 473:3667-3682. [PMID: 27512054 DOI: 10.1042/bcj20160531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
Abstract
Imported sucrose is cleaved by sucrose synthase (SUS) as a critical initial reaction in the biosynthesis of storage end-products by developing seeds. Although SUS is phosphorylated at a conserved seryl residue by an apparent CDPK (Ca2+-dependent protein kinase) in diverse plant tissues, the functions and mechanistic details of this process remain obscure. Thus, the native CDPK that phosphorylates RcSUS1 (Ricinus communis SUS1) at Ser11 in developing COS (castor oil seeds) was highly purified and identified as RcCDPK2 by MS/MS. Purified RcSUS1-K (-kinase) and heterologously expressed RcCDPK2 catalyzed Ca2+-dependent Ser11 phosphorylation of RcSUS1 and its corresponding dephosphopeptide, while exhibiting a high affinity for free Ca2+ ions [K0.5(Ca2+) < 0.4 µM]. RcSUS1-K activity, RcCDPK2 expression, and RcSUS1 Ser11 phosphorylation peaked during early COS development and then declined in parallel. The elimination of sucrose import via fruit excision triggered RcSUS1 dephosphorylation but did not alter RcSUS1-K activity, suggesting a link between sucrose signaling and posttranslational RcCDPK2 control. Both RcCDPK2-mCherry and RcSUS1-EYFP co-localized throughout the cytosol when transiently co-expressed in tobacco suspension cells, although RcCDPK2-mCherry was also partially localized to the nucleus. Subcellular fractionation revealed that ∼20% of RcSUS1-K activity associates with microsomal membranes in developing COS, as does RcSUS1. In contrast with RcCDPK1, which catalyzes inhibitory phosphorylation of COS bacterial-type phosphoenolpyruvate carboxylase at Ser451, RcCDPK2 exhibited broad substrate specificity, a wide pH-activity profile centered at pH 8.5, and insensitivity to metabolite effectors or thiol redox status. Our combined results indicate a possible link between cytosolic Ca2+-signaling and the control of photosynthate partitioning during COS development.
Collapse
|
3
|
Hettenhausen C, Sun G, He Y, Zhuang H, Sun T, Qi J, Wu J. Genome-wide identification of calcium-dependent protein kinases in soybean and analyses of their transcriptional responses to insect herbivory and drought stress. Sci Rep 2016; 6:18973. [PMID: 26733237 PMCID: PMC4702179 DOI: 10.1038/srep18973] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/02/2015] [Indexed: 01/14/2023] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are plant-specific calcium sensors that play important roles in various aspects of plant physiology. Here, we investigated phylogenic relationships, chromosomal locations, gene structures, and tissue-specific, herbivory- and drought-induced expression profiles of soybean (Glycine max) GmCDPKs. Fifty GmCDPK genes were identified, which phylogenetically grouped into 4 distinct clusters and distributed across 13 sub-clusters. Individual classes of GmCDPKs harbor highly conserved mRNA splicing sites, and their exon numbers and lengths were consistent with the phylogenetic relationships, suggesting that at least 13 ancestral CDPK genes had emerged before the split of monocots and eudicots. Gene expression analysis indicated that several GmCDPKs were tissue-specific expressed. GmCDPKs' transcript levels changed after wounding, exhibited specific expression patterns after simulated Spodoptera exigua feeding or soybean aphid (Aphis glycines) herbivory, and were largely independent of the phytohormones jasmonic acid and salicylic acid. The most pronounced transcriptional responses were detected after drought and abscisic acid treatments with more than half of all GmCDPKs being upregulated, suggesting their important roles during abiotic stress responses in soybean. Our data provide an important foundation for further functional dissection of GmCDPKs, especially in the context of soybean-insect interactions and drought stress adaptation.
Collapse
Affiliation(s)
- Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yanbiao He
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Huifu Zhuang
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ting Sun
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
4
|
Schmölzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B. Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnol Adv 2015; 34:88-111. [PMID: 26657050 DOI: 10.1016/j.biotechadv.2015.11.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 01/24/2023]
Abstract
Sucrose synthase (SuSy, EC 2.4.1.13) is a glycosyltransferase (GT) long known from plants and more recently discovered in bacteria. The enzyme catalyzes the reversible transfer of a glucosyl moiety between fructose and a nucleoside diphosphate (NDP) (sucrose+NDP↔NDP-glucose+fructose). The equilibrium for sucrose conversion is pH dependent, and pH values between 5.5 and 7.5 promote NDP-glucose formation. The conversion of a bulk chemical to high-priced NDP-glucose in a one-step reaction provides the key aspect for industrial interest. NDP-sugars are important as such and as key intermediates for glycosylation reactions by highly selective Leloir GTs. SuSy has gained renewed interest as industrially attractive biocatalyst, due to substantial scientific progresses achieved in the last few years. These include biochemical characterization of bacterial SuSys, overproduction of recombinant SuSys, structural information useful for design of tailor-made catalysts, and development of one-pot SuSy-GT cascade reactions for production of several relevant glycosides. These advances could pave the way for the application of Leloir GTs to be used in cost-effective processes. This review provides a framework for application requirements, focusing on catalytic properties, heterologous enzyme production and reaction engineering. The potential of SuSy biocatalysis will be presented based on various biotechnological applications: NDP-sugar synthesis; sucrose analog synthesis; glycoside synthesis by SuSy-GT cascade reactions.
Collapse
Affiliation(s)
- Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
| | - Margo Diricks
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
| |
Collapse
|
5
|
Molecular Characterization ofHbCDPK1, an Ethephon-Induced Calcium-Dependent Protein Kinase Gene ofHevea brasiliensis. Biosci Biotechnol Biochem 2014; 74:2183-8. [DOI: 10.1271/bbb.100293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a Ca2+-dependent protein kinase suggests a link between Ca2+ signalling and anaplerotic pathway control in developing castor oil seeds. Biochem J 2014; 458:109-18. [PMID: 24266766 DOI: 10.1042/bj20131191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to characterize the native protein kinase [BTPC (bacterial-type phosphoenolpyruvate carboxylase)-K (BTPC Ser451 kinase)] that in vivo phosphorylates Ser451 of the BTPC subunits of an unusual Class-2 PEP (phosphoenolpyruvate) carboxylase hetero-octameric complex of developing COS (castor oil seeds). COS BTPC-K was highly purified by PEG fractionation and hydrophobic size-exclusion anion-exchange and affinity chromatographies. BTPC-K phosphorylated BTPC strictly at Ser451 (Km=1.0 μM; pH optimum=7.3), a conserved target residue occurring within an intrinsically disordered region, as well as the protein histone III-S (Km=1.7 μM), but not a COS plant-type PEP carboxylase or sucrose synthase or α-casein. Its activity was Ca2+- (K0.5=2.7 μM) and ATP- (Km=6.6 μM) dependent, and markedly inhibited by trifluoperazine, 3-phosphoglycerate and PEP, but insensitive to calmodulin or 14-3-3 proteins. BTPC-K exhibited a native molecular mass of ~63 kDa and was soluble rather than membrane-bound. Inactivation and reactivation occurred upon BTPC-K's incubation with GSSG and then DTT respectively. Ser451 phosphorylation by BTPC-K inhibited BTPC activity by ~50% when assayed under suboptimal conditions (pH 7.3, 1 mM PEP and 10 mM L-malate). Our collective results indicate a possible link between cytosolic Ca2+ signalling and anaplerotic flux control in developing COS.
Collapse
|
7
|
Swatek KN, Wilson RS, Ahsan N, Tritz RL, Thelen JJ. Multisite phosphorylation of 14-3-3 proteins by calcium-dependent protein kinases. Biochem J 2014; 459:15-25. [PMID: 24438037 PMCID: PMC4127189 DOI: 10.1042/bj20130035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plant 14-3-3 proteins are phosphorylated at multiple sites in vivo; however, the protein kinase(s) responsible are unknown. Of the 34 CPK (calcium-dependent protein kinase) paralogues in Arabidopsis thaliana, three (CPK1, CPK24 and CPK28) contain a canonical 14-3-3-binding motif. These three, in addition to CPK3, CPK6 and CPK8, were tested for activity against recombinant 14-3-3 proteins χ and ε. Using an MS-based quantitative assay we demonstrate phosphorylation of 14-3-3 χ and ε at a total of seven sites, one of which is an in vivo site discovered in Arabidopsis. CPK autophosphorylation was also comprehensively monitored by MS and revealed a total of 45 sites among the six CPKs analysed, most of which were located within the N-terminal variable and catalytic domains. Among these CPK autophosphorylation sites was Tyr463 within the calcium-binding EF-hand domain of CPK28. Of all CPKs assayed, CPK28, which contained an autophosphorylation site (Ser43) within a canonical 14-3-3-binding motif, showed the highest activity against 14-3-3 proteins. Phosphomimetic mutagenesis of Ser72 to aspartate on 14-3-3χ, which is adjacent to the 14-3-3-binding cleft and conserved among all 14-3-3 isoforms, prevented 14-3-3-mediated inhibition of phosphorylated nitrate reductase.
Collapse
Affiliation(s)
- Kirby N. Swatek
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, U.S.A
| | - Rashaun S. Wilson
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, U.S.A
| | - Nagib Ahsan
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, U.S.A
| | - Rebecca L. Tritz
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, U.S.A
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, U.S.A
| |
Collapse
|
8
|
Dixit AK, Jayabaskaran C. Phospholipid mediated activation of calcium dependent protein kinase 1 (CaCDPK1) from chickpea: a new paradigm of regulation. PLoS One 2012; 7:e51591. [PMID: 23284721 PMCID: PMC3527483 DOI: 10.1371/journal.pone.0051591] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/05/2012] [Indexed: 11/18/2022] Open
Abstract
Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1) from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in Vmax of the enzyme activity by these phospholipids significantly decreased the Km indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K½ = 114 nM) compared to PA (K½ = 335 nM). We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.
Collapse
Affiliation(s)
- Ajay Kumar Dixit
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Chelliah Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
9
|
Nanjo Y, Skultety L, Uváčková L, Klubicová K, Hajduch M, Komatsu S. Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. J Proteome Res 2012; 11:372-85. [PMID: 22136409 DOI: 10.1021/pr200701y] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flooding injury is a major problem in soybean cultivation. A proteomics approach was used to clarify the occurrence of changes in protein expression level and phosphorylation in soybeans under flooding stress. Two-day-old seedlings were flooded for 1 day, proteins were extracted from root tips of the seedlings and digested with trypsin, and their expression levels and phosphorylation states were compared to those of untreated controls using mass spectrometry-based proteomics techniques. Phosphoproteins were enriched using a phosphoprotein purification column prior to digestion and mass spectrometry. The expression of proteins involved in energy production increased as a result of flooding, while expression of proteins involved in protein folding and cell structure maintenance decreased. Flooding induced changes of phosphorylation status of proteins involved in energy generation, protein synthesis and cell structure maintenance. The response to flooding stress may be regulated by both modulation of protein expression and phosphorylation state. Energy-demanding and production-related metabolic pathways may be particularly subject to regulation by changes in protein phosphorylation during flooding.
Collapse
Affiliation(s)
- Yohei Nanjo
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Ca2+ ions play a vital role as second messengers in plant cells during various developmental processes and in response to environmental stimuli. Plants have evolved a diversity of unique proteins that bind Ca2+ using the evolutionarily conserved EF-hand motif. The currently held hypothesis is that these proteins function as Ca2+ sensors by undergoing conformational changes in response to Ca2+-binding that facilitate their regulation of target proteins and thereby co-ordinate various signalling pathways. The three main classes of these EF-hand Ca2+sensors in plants are CaMs [calmodulins; including CMLs (CaM-like proteins)], CDPKs (calcium-dependent protein kinases) and CBLs (calcineurin B-like proteins). In the plant species examined to date, each of these classes is represented by a large family of proteins, most of which have not been characterized biochemically and whose physiological roles remain unclear. In the present review, we discuss recent advances in research on CaMs and CMLs, CDPKs and CBLs, and we attempt to integrate the current knowledge on the different sensor classes into common physiological themes.
Collapse
|
11
|
Li AL, Zhu YF, Tan XM, Wang X, Wei B, Guo HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY, Jia JZ, Mao L. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2008; 66:429-43. [PMID: 18185910 DOI: 10.1007/s11103-007-9281-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/21/2007] [Indexed: 05/05/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are crucial sensors of calcium concentration changes in plant cells under diverse endogenous and environmental stimuli. We identified 20 CDPK genes from bread wheat and performed a comprehensive study on their structural, functional and evolutionary characteristics. Full-length cDNA sequences of 14 CDPKs were obtained using various approaches. Wheat CDPKs were found to be similar to their counterparts in rice in genomic structure, GC content, subcellular localization, and subgroup classification. Divergence time estimation of wheat CDPK gene pairs and wheat-rice orthologs suggested that most duplicated genes already existed in the common ancestor of wheat and rice. The number of CDPKs in diploid wheat genome was estimated to be at least 26, a number close to that in rice, Arabidopsis, and poplar. However, polymorphism among EST sequences uncovered transcripts of all three homoeologous alleles for 13 out of 20 CDPKs. Thus, the hexaploid wheat should have 2-3 fold more CDPK genes expressing in their cells than the diploid species. Wheat CDPK genes were found to respond to various biotic and abiotic stimuli, including cold, hydrogen peroxide (H(2)O(2)), salt, drought, powdery mildew (Blumeria graminis tritici, Bgt), as well as phytohormones abscisic acid (ABA) and gibberellic acid (GA). Each CDPK gene often responded to multiple treatments, suggesting that wheat CDPKs are converging points for multiple signal transduction pathways. The current work represents the first comprehensive study of CDPK genes in bread wheat and provides a foundation for further functional study of this important gene family in Triticeae.
Collapse
Affiliation(s)
- Ai-Li Li
- National Key Facility of Crop Gene Resources and Genetic Improvement (NFCRI), Key Laboratory of Crop Germplasm & Biotechnology, Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wienkoop S, Larrainzar E, Glinski M, González EM, Arrese-Igor C, Weckwerth W. Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3307-15. [PMID: 18772307 PMCID: PMC2529246 DOI: 10.1093/jxb/ern182] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 05/20/2023]
Abstract
Mass spectrometry (MS) has become increasingly important for tissue specific protein quantification at the isoform level, as well as for the analysis of protein post-translational regulation mechanisms and turnover rates. Thanks to the development of high accuracy mass spectrometers, peptide sequencing without prior knowledge of the amino acid sequence--de novo sequencing--can be performed. In this work, absolute quantification of a set of key enzymes involved in carbon and nitrogen metabolism in Medicago truncatula 'Jemalong A17' root nodules is presented. Among them, sucrose synthase (SuSy; EC 2.4.1.13), one of the central enzymes in sucrose cleavage in root nodules, has been further characterized and the relative phosphorylation state of the three most abundant isoforms has been quantified. De novo sequencing provided sequence information of a so far unidentified peptide, most probably belonging to SuSy2, the second most abundant isoform in M. truncatula root nodules. TiO(2)-phosphopeptide enrichment led to the identification of not only a phosphorylation site at Ser11 in SuSy1, but also of several novel phosphorylation sites present in other root nodule proteins such as alkaline invertase (AI; EC 3.2.1.26) and an RNA-binding protein.
Collapse
Affiliation(s)
- Stefanie Wienkoop
- Institute of Biochemistry and Biology, University of Potsdam, c/o MPI-MP, D-14476 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Wan B, Lin Y, Mou T. Expression of rice Ca(2+)-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 2007; 581:1179-89. [PMID: 17336300 DOI: 10.1016/j.febslet.2007.02.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 10/25/2006] [Accepted: 02/15/2007] [Indexed: 11/29/2022]
Abstract
Ca(2+)-dependent protein kinases (CDPKs) play an essential role in plant Ca(2+)-mediated signal transduction. Twenty-nine CDPK genes have been identified in the rice genome through a complete search of genome and full-length cDNA databases. Eight of them were reported previously to be inducible by different stress stimuli. Sequence comparison revealed that all 29 CDPK genes (OsCPK1-29) contain multiple stress-responsive cis-elements in the promoter region (1kb) upstream of genes. Analysis of the information extracted from the Rice Expression Database indicates that 11 of the CDPK genes are regulated by chilling temperature, dehydration, salt, rice blast infection and chitin treatment. RT-PCR and RNA gel blot hybridization were performed in this study to detect the expression 19 of the CDPK genes. Twelve CDPK genes exhibited cultivar- and tissue-specific expression; four CDPK genes (OsCPK6, OsCPK13, OsCPK17 and OsCPK25) were induced by chilling temperature, dehydration and salt stresses in the rice seedlings. While OsCPK13 (OsCDPK7) was already known to be inducible by chilling temperature and high salt, this is the first report that the other three genes are stress-regulated. OsCPK6 and OsCPK25 are up-regulated by dehydration and heat shock, respectively, while OsCPK17 is down-regulated by chilling temperature, dehydration and high salt stresses. Based on this evidence, rice CDPK genes may be important components in the signal transduction pathways for stress responses. Findings from this research are important for further dissecting mechanisms of stress response and functions of CDPK genes in rice.
Collapse
Affiliation(s)
- Bingliang Wan
- National Key Laboratory of Crop, Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | |
Collapse
|
14
|
Albertson PL, Grof CPL. Application of high performance anion exchange-pulsed amperometric detection to measure the activity of key sucrose metabolising enzymes in sugarcane. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 845:151-6. [PMID: 16931185 DOI: 10.1016/j.jchromb.2006.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 06/27/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
A novel method using an HPAE-PAD system, which is routinely applied to detect carbohydrates at low levels (ng per sample injection), has been applied to the measurement of key sucrose metabolising enzyme activities in partially purified extracts of sugarcane tissues. Extraction and assay procedures tailored for the HPAE-PAD system enabled the accurate measurement of enzyme activities in more mature internodes than had previously been possible using enzyme coupled assay methodology. A major advantage of the HPAE-PAD method is the capability to monitor a broad range of sugars in each assay and provides an overarching perspective of the mix of competing enzymes that may be operating simultaneously in crude extracts. The technique has been successfully applied to measuring the activity of key sucrose metabolising enzymes in sugarcane stem tissue that is generally low in protein and high in endogenous sugars, primarily sucrose.
Collapse
Affiliation(s)
- Peter L Albertson
- CSIRO, Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd., St Lucia, 4067 Brisbane, Qld, Australia.
| | | |
Collapse
|
15
|
Anguenot R, Nguyen-Quoc B, Yelle S, Michaud D. Protein phosphorylation and membrane association of sucrose synthase in developing tomato fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:294-300. [PMID: 16806956 DOI: 10.1016/j.plaphy.2006.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Indexed: 05/10/2023]
Abstract
Calcium-dependent protein kinase (CDPK) activities were detected both in the soluble and the membrane fraction of various tomato (Lycopersicon esculentum Mill.) organs, using a synthetic peptide mimicking the serine 11 phosphorylation site of a tomato sucrose synthase (SS, EC 2.4.1.13) isoform as substrate. The levels of membrane and soluble Ser-CDPK activities were differentially regulated during fruit development. The membrane Ser-CDPK activity was maximal in young fruit but decreased as the fruit developed, suggesting a specific role during fruit growth. Using an in gel assay with purified tomato SS as substrate, we showed that partially purified soluble and membrane Ser-CDPK preparations both contained a SS-kinase polypeptide of 55 kDa. The membrane and soluble Ser-CDPK activities were largely inactivated in the absence of calcium or when MgCl(2) was replaced by MnCl(2). Both soluble and membrane Ser-CDPK activities were very sensitive to staurosporine. Using Fe(III)-immobilized metal chromatography to determine the apparent phosphorylation status of the enzyme in vivo, we showed that soluble SS was largely dephosphorylated in fruits fed EGTA or staurosporine, compared to fruits fed water or sucrose. Moreover, the level of SS increased by about two-fold in the membrane fraction of fruits fed the Ser-CDPK inhibitors, compared to the control. The level of SS protein in the membrane and soluble fractions of tomato fruit was developmentally regulated, the membrane form being specifically detected in actively growing fruits. Together, our results suggest that a mechanism involving protein phosphorylation/dephosphorylation and/or calcium would in part control the association of SS isoforms with membranes in developing tomato fruit.
Collapse
Affiliation(s)
- Raphaël Anguenot
- Centre de Recherche en Horticulture, Département de Phytologie, FSAA, Université Laval, Sainte-Foy, Quebec, Canada G1K 7P4.
| | | | | | | |
Collapse
|
16
|
Chiu WB, Lin CH, Chang CJ, Hsieh MH, Wang AY. Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. THE NEW PHYTOLOGIST 2006; 170:53-63. [PMID: 16539603 DOI: 10.1111/j.1469-8137.2005.01638.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bamboo is distinguished by its rapid growth. To investigate sucrose metabolism in this plant, we cloned the cDNAs encoding sucrose synthase (SuS) from Bambusa oldhamii and investigated their expression in growing shoots and leaves. Four cDNA clones, BoSus1, BoSus2, BoSus3 and BoSus4, were isolated by screening a cDNA library from etiolated bamboo shoots. Recombinant BoSuS proteins were produced in Escherichia coli and purified by immobilized metal affinity chromatography and ultrafiltration. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine the abundance of the transcript of each gene. BoSus1 and BoSus3 may be duplicate or homeologous genes, the sequences of which show high identity. Similarly, BoSus2 shows high identity with BoSus4. Kinetic analysis showed that the two BoSuS isoforms of each type had similar michaelis constant (Km) values for sucrose, but different values for UDP. The four genes were expressed in various bamboo organs but were differentially regulated. The increase in the abundance of their mRNA paralleled the growth rate of the bamboo. The results suggest that, in bamboo, SuS is encoded by at least four genes, each with a specific role in providing substrates for the polysaccharide biosynthesis and/or energy production necessary to support the rapid growth of this species.
Collapse
Affiliation(s)
- Wen-Bin Chiu
- Institute of Microbiology and Biochemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:487-512. [PMID: 15272870 DOI: 10.1111/j.1365-313x.2004.02150.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Research on legume nodule metabolism has contributed greatly to our knowledge of primary carbon and nitrogen metabolism in plants in general, and in symbiotic nitrogen fixation in particular. However, most previous studies focused on one or a few genes/enzymes involved in selected metabolic pathways in many different legume species. We utilized the tools of transcriptomics and metabolomics to obtain an unprecedented overview of the metabolic differentiation that results from nodule development in the model legume, Lotus japonicus. Using an array of more than 5000 nodule cDNA clones, representing 2500 different genes, we identified approximately 860 genes that were more highly expressed in nodules than in roots. One-third of these are involved in metabolism and transport, and over 100 encode proteins that are likely to be involved in signalling, or regulation of gene expression at the transcriptional or post-transcriptional level. Several metabolic pathways appeared to be co-ordinately upregulated in nodules, including glycolysis, CO(2) fixation, amino acid biosynthesis, and purine, haem, and redox metabolism. Insight into the physiological conditions that prevail within nodules was obtained from specific sets of induced genes. In addition to the expected signs of hypoxia, numerous indications were obtained that nodule cells also experience P-limitation and osmotic stress. Several potential regulators of these stress responses were identified. Metabolite profiling by gas chromatography coupled to mass spectrometry revealed a distinct metabolic phenotype for nodules that reflected the global changes in metabolism inferred from transcriptome analysis.
Collapse
Affiliation(s)
- Gillian Colebatch
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kumar KGS, Jayabaskaran C. Variations in the level of enzyme activity and immunolocalization of calcium-dependent protein kinases in the phloem of different cucumber organs. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:889-901. [PMID: 15384400 DOI: 10.1016/j.jplph.2003.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) constitute a unique family of enzymes in plants that are characterized by a C-terminal calmodulin (CaM)-like domain. Through protein kinase assays, we have examined the levels of cucumber calcium-dependent kinase (CsCDPK) activity in various organs of cucumber seedlings and plants. The activity of CsCDPK was highest in cucumber plant leaves followed by seedling roots and hypocotyls; however, cucumber plant flowers, seedling cotyledons, and hooks had levels that were barely detectable. The CsCDPKs were immunolocalized using polyclonal antibodies that are highly specific against a part of the kinase domain of a calcium-dependent protein kinase (CsCDPKS) in the phloem sieve elements (SEs) in various organs of cucumber. In addition, this study indicates the presence of CsCDPKs in organelle-like bodies associated with the plasma membrane of sieve elements in mature stems and roots as well as in the storage bodies of immature seeds. These findings are discussed in terms of the likely roles played by CDPKs in the signal transduction pathways for Ca2+-regulated phloem transport of assimilates from leaves to various organs during growth and development of cucumber seedlings and plants.
Collapse
Affiliation(s)
- K G Suresh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
19
|
Reddy VS, Reddy ASN. Proteomics of calcium-signaling components in plants. PHYTOCHEMISTRY 2004; 65:1745-76. [PMID: 15276435 DOI: 10.1016/j.phytochem.2004.04.033] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/30/2004] [Indexed: 05/21/2023]
Abstract
Calcium functions as a versatile messenger in mediating responses to hormones, biotic/abiotic stress signals and a variety of developmental cues in plants. The Ca(2+)-signaling circuit consists of three major "nodes"--generation of a Ca(2+)-signature in response to a signal, recognition of the signature by Ca2+ sensors and transduction of the signature message to targets that participate in producing signal-specific responses. Molecular genetic and protein-protein interaction approaches together with bioinformatic analysis of the Arabidopsis genome have resulted in identification of a large number of proteins at each "node"--approximately 80 at Ca2+ signature, approximately 400 sensors and approximately 200 targets--that form a myriad of Ca2+ signaling networks in a "mix and match" fashion. In parallel, biochemical, cell biological, genetic and transgenic approaches have unraveled functions and regulatory mechanisms of a few of these components. The emerging paradigm from these studies is that plants have many unique Ca2+ signaling proteins. The presence of a large number of proteins, including several families, at each "node" and potential interaction of several targets by a sensor or vice versa are likely to generate highly complex networks that regulate Ca(2+)-mediated processes. Therefore, there is a great demand for high-throughput technologies for identification of signaling networks in the "Ca(2+)-signaling-grid" and their roles in cellular processes. Here we discuss the current status of Ca2+ signaling components, their known functions and potential of emerging high-throughput genomic and proteomic technologies in unraveling complex Ca2+ circuitry.
Collapse
Affiliation(s)
- Vaka S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523, USA
| | | |
Collapse
|
20
|
Konishi T, Ohmiya Y, Hayashi T. Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various beta-glucan synthases in the stem. PLANT PHYSIOLOGY 2004; 134:1146-52. [PMID: 14988476 PMCID: PMC389938 DOI: 10.1104/pp.103.033167] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 10/06/2003] [Accepted: 12/20/2003] [Indexed: 05/19/2023]
Abstract
Sucrose (Suc) synthase (SuSy) is believed to function in channeling UDP-Glc from Suc to various beta-glucan synthases. We produced transgenic poplars (Populus alba) overexpressing a mutant form (S11E) of mung bean (Vigna radiata) SuSy, which appeared in part in the microsomal membranes of the stems. Expression of SuSy in these membranes enhanced the incorporation of radioactive Suc into cellulose, together with the metabolic recycling of fructose (Fru), when dual-labeled Suc was fed directly into the phloem of the leaf. This overexpression also enhanced the direct incorporation of the glucosyl moiety of Suc into the glucan backbone of xyloglucan and increased recycling of Fru, although the Fru recycling system for cellulose synthesis at the plasma membrane might differ from that for xyloglucan synthesis in the Golgi network. These findings suggest that some of the Suc loaded into the phloem of a poplar leaf is used directly by SuSys associated with xyloglucan and cellulose synthases in the stem. This may be a key function of SuSy because the high-energy bond between the Glc and Fru moieties of Suc is conserved and used for polysaccharide syntheses in this sink tissue.
Collapse
Affiliation(s)
- Teruko Konishi
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
21
|
Harper JF, Breton G, Harmon A. Decoding Ca(2+) signals through plant protein kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2004; 55:263-88. [PMID: 15377221 DOI: 10.1146/annurev.arplant.55.031903.141627] [Citation(s) in RCA: 305] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants harbor four families of kinases that have been implicated in Ca(2+) signaling (CDPKs, CRKs, CCaMKs, and SnRK3s). Although each family appears to respond to Ca(2+) via different mechanisms, they all utilize Ca(2+) sensors that bind Ca(2+) through multiple EF-hands. The CDPK (Ca(2+)-dependent protein kinase) family is represented by the most genes, with 12 subfamilies comprised of 34 isoforms in Arabidopsis and 27 in rice. Some of the calcium-regulated kinases also show potential for regulation by lipid signals and kinase cascades. Thus, Ca(2+)-regulated kinases provide potential nodes of cross-talk for multiple signaling pathways that integrate Ca(2+) signals into all aspects of plant growth and development.
Collapse
Affiliation(s)
- Jeffrey F Harper
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
22
|
Römer U, Schrader H, Günther N, Nettelstroth N, Frommer WB, Elling L. Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. J Biotechnol 2004; 107:135-49. [PMID: 14711497 DOI: 10.1016/j.jbiotec.2003.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The gene sus1 from Solanum tuberosum L. encoding for sucrose synthase 1 was cloned into the plasmid pDR195 under the control of the PMA1 promotor. After transformation of Saccharomyces cerevisiae strain 22574d sus1 was constitutively expressed giving a specific activity of 0.3Umg(-1) protein in the crude extract. A one-step purification by Q-Sepharose resulted in an 14-fold purified enzyme preparation in 74% yield. SuSy1 was subsequently purified by immobilized metal ion affinity chromatography and characterized for its utilization in synthesizing different nucleotide sugars and sucrose analogues. The kinetic constants for the cleavage and synthesis reaction were determined: K(m) (UDP) 4microM; K(iS) (UDP) 0.11mM; K(m) (sucrose) 91.6mM; K(m) (UDP-Glc) 0.5mM; K(iS) (UDP-Glc) 2.3mM; K(m) (D-fructose) 2.1mM; K(iS) (D-fructose) 35.9mM. Different nucleoside diphosphates as well as different donor substrate were accepted as follows: UDP>dTDP>ADP>CDP>GDP in the cleavage reaction and UDP-Glc>dTDP-Glc>ADP-Glc>CDP-Glc in the synthesis reaction. SuSy1 shows also a broad acceptance of D- and L-ketoses and D- and L-aldoses. The acceptance of aldoses was deduced from the binding of the inhibitor 5-deoxy-D-fructose (K(i) 0.3mM), an analogue of the natural substrate D-fructopyranoside. The broad substrate spectrum renders SuSy1 from potato a versatile biocatalyst for carbohydrate engineering.
Collapse
Affiliation(s)
- Ulrike Römer
- Department of Biotechnology/Biomaterial Sciences, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Komina O, Zhou Y, Sarath G, Chollet R. In vivo and in vitro phosphorylation of membrane and soluble forms of soybean nodule sucrose synthase. PLANT PHYSIOLOGY 2002; 129:1664-73. [PMID: 12177479 PMCID: PMC166754 DOI: 10.1104/pp.002360] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2001] [Revised: 03/18/2002] [Accepted: 05/11/2002] [Indexed: 05/19/2023]
Abstract
Sucrose synthase (SS) is a known phosphoserine (SerP)-containing enzyme in a variety of plant "sink" organs, including legume root nodules, where it is phosphorylated primarily at Ser-11. Using immunofluorescence confocal microscopy, we documented that part of the total SS (nodulin-100) pool in mature soybean (Glycine max) nodules is apparently associated with the plasma membrane in situ, and we report that this association is very "tight," as evidenced by a variety of chemical and enzymatic pretreatments of the isolated microsomal fraction. To investigate the in situ and in planta phosphorylation state of the membrane (m) and soluble (s) forms of nodule SS, three complementary approaches were used. First, excised nodules were radiolabeled in situ with [(32)P]Pi for subsequent analysis of phosphorylated m- and s-SS; second, immunopurified s- and m-SS were used as substrate in "on-bead" assays of phosphorylation by nodule Ca(2+)-dependent protein kinase; and third, SS-Ser-11(P) phosphopeptide-specific antibodies were developed and used. The collective results provide convincing evidence that microsomal nodulin-100 is phosphorylated in mature nodules, and that it is hypophosphorylated relative to s-SS (on an equivalent SS protein basis) in attached, unstressed nodules. Moreover, the immunological data and related phosphopeptide mapping analyses indicate that a homologous N-terminal seryl-phosphorylation domain and site reside in microsomal nodulin-100. We also observed that mild, short-term inorganic nitrogen and salt stresses have a significant negative impact on the content and N-terminal phosphorylation state of nodule m- and s-SS, with the former being the more sensitive of the two SS forms.
Collapse
Affiliation(s)
- Olga Komina
- Center for Biotechnology, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | |
Collapse
|
24
|
Cheng SH, Willmann MR, Chen HC, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. PLANT PHYSIOLOGY 2002; 129:469-85. [PMID: 12068094 PMCID: PMC1540234 DOI: 10.1104/pp.005645] [Citation(s) in RCA: 531] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In plants, numerous Ca(2+)-stimulated protein kinase activities occur through calcium-dependent protein kinases (CDPKs). These novel calcium sensors are likely to be crucial mediators of responses to diverse endogenous and environmental cues. However, the precise biological function(s) of most CDPKs remains elusive. The Arabidopsis genome is predicted to encode 34 different CDPKs. In this Update, we analyze the Arabidopsis CDPK gene family and review the expression, regulation, and possible functions of plant CDPKs. By combining emerging cellular and genomic technologies with genetic and biochemical approaches, the characterization of Arabidopsis CDPKs provides a valuable opportunity to understand the plant calcium-signaling network.
Collapse
Affiliation(s)
- Shu-Hua Cheng
- Department of Genetics, Harvard Medical School, MA 02114, USA
| | | | | | | |
Collapse
|
25
|
Delmer DP, Haigler CH. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metab Eng 2002; 4:22-8. [PMID: PMC11800571 DOI: 10.1006/mben.2001.0206] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellulose is an important component of the cell walls of higher plants and the world's most abundant organic compound. As a major sink for carbon on earth, it is of interest to examine possible means by which the quality or quantity of cellulose deposited in various plant parts might be manipulated by metabolic engineering techniques. This review outlines basic knowledge about the genes and proteins that are involved in cellulose biosynthesis and presents a model that summarizes our current thinking on the overall cellulose biosynthesis pathway. Strategies that might be used for altering the flux of carbon into this pathway are discussed.
Collapse
Affiliation(s)
- Deborah P Delmer
- Section of Plant Biology, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | | |
Collapse
|
26
|
Tanase K, Shiratake K, Mori H, Yamaki S. Changes in the phosphorylation state of sucrose synthase during development of Japanese pear fruit. PHYSIOLOGIA PLANTARUM 2002; 114:21-26. [PMID: 11982930 DOI: 10.1046/j.0031-9317.2001.10137.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Changes in the protein level and phosphorylation state of sucrose synthase (SS) were studied throughout the development of Japanese pear fruit. The level of SS protein was high at the young stage, dropped with fruit enlargement and increased again with fruit maturation. Antibody against phospho-Ser reacted with SS from young fruit, but did not react with SS that had been dephosphorylated by alkaline phosphatase (AP). The activities of SS isozymes were separated by ion-exchange chromatography. It was found that the fluctuation in SS activity was caused by two SS isozymes (SSI and SSII); (SSI reacted with antibody against phospho-Ser, while SSII did not. Phosphorylation of SS affected its kinetic parameters, that is, the affinity of phosphorylated SS for UDP was higher than that of dephosphorylated SS, while it was the contrary for UDP-glucose. The reaction of dephosphorylated SS was inclined toward sucrose synthesis more than that of phosphorylated SS. Phosphorylated SS protein was most abundant in young fruit, but decreased with fruit development, while non-phosphorylated SS protein increased in mature fruit. These results suggest that SS isoforms may be affected by post-translational modifications such as phosphorylation, and that the regulation of phosphorylation may potentially control the properties and functions of SS throughout the development of Japanese pear fruit.
Collapse
Affiliation(s)
- Koji Tanase
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
27
|
Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP. Carbon partitioning to cellulose synthesis. PLANT MOLECULAR BIOLOGY 2001. [PMID: 11554477 DOI: 10.1007/978-94-010-0668-2_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This article discusses the importance and implications of regulating carbon partitioning to cellulose synthesis, the characteristics of cells that serve as major sinks for cellulose deposition, and enzymes that participate in the conversion of supplied carbon to cellulose. Cotton fibers, which deposit almost pure cellulose into their secondary cell walls, are referred to as a primary model system. For sucrose synthase, we discuss its proposed role in channeling UDP-Glc to cellulose synthase during secondary wall deposition, its gene family, its manipulation in transgenic plants, and mechanisms that may regulate its association with sites of polysaccharide synthesis. For cellulose synthase, we discuss the organization of the gene family and how protein diversity could relate to control of carbon partitioning to cellulose synthesis. Other enzymes emphasized include UDP-Glc pyrophosphorylase and sucrose phosphate synthase. New data are included on phosphorylation of cotton fiber sucrose synthase, possible regulation by Ca2+ of sucrose synthase localization, electron microscopic immunolocalization of sucrose synthase in cotton fibers, and phylogenetic relationships between cellulose synthase proteins, including three new ones identified in differentiating tracheary elements of Zinnia elegans. We develop a model for metabolism related to cellulose synthesis that implicates the changing intracellular localization of sucrose synthase as a molecular switch between survival metabolism and growth and/or differentiation processes involving cellulose synthesis.
Collapse
Affiliation(s)
- C H Haigler
- Department of Biological Sciences, Texas Tech University, Lubbock 79409-3131, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Winter H, Huber SC. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol 2001; 35:253-89. [PMID: 11005202 DOI: 10.1080/10409230008984165] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.
Collapse
Affiliation(s)
- H Winter
- Fachbereich Biologie/Pflanzenphysiologie, Universität Osnabrück, Germany
| | | |
Collapse
|
29
|
Morello L, Frattini M, Gianì S, Christou P, Breviario D. Overexpression of the calcium-dependent protein kinase OsCDPK2 in transgenic rice is repressed by light in leaves and disrupts seed development. Transgenic Res 2000; 9:453-62. [PMID: 11206974 DOI: 10.1023/a:1026555021606] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Independent transgenic rice lines overexpressing the rice CDPK isoform OsCDPK2 were generated by particle bombardment. High levels of OsCDPK2 were detected in leaves removed from etiolated plants, as well as in stems and flowers. However, there was no overexpression in green leaves that had been exposed to light, confirming that OsCDPK2 protein stability was subject to light regulation. The morphological phenotype of transgenic plants producing high levels of recombinant OsCDPK2 was normal until the onset of seed development. Flowers developed normally, producing well-shaped ovaries and stigmas, and mature anthers filled with pollen grains. However, seed formation in these plants was strongly inhibited, with only 3-7% of the flowers producing seeds. Seed development was arrested at an early stage. We discuss these data with respect to the possible requirement for specific CDPK isoforms during rice seed development.
Collapse
Affiliation(s)
- L Morello
- Department of Botany, University of Milan, Milano, Italy
| | | | | | | | | |
Collapse
|
30
|
Taybi T, Patil S, Chollet R, Cushman JC. A minimal serine/threonine protein kinase circadianly regulates phosphoenolpyruvate carboxylase activity in crassulacean acid metabolism-induced leaves of the common ice plant. PLANT PHYSIOLOGY 2000; 123:1471-82. [PMID: 10938363 PMCID: PMC59103 DOI: 10.1104/pp.123.4.1471] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Accepted: 04/22/2000] [Indexed: 05/17/2023]
Abstract
Plant phosphoenolpyruvate carboxylase (PEPc) activity and allosteric properties are regulated by PEPc kinase (PPcK) through reversible phosphorylation of a specific serine (Ser) residue near the N terminus. We report the molecular cloning of PPcK from the facultative Crassulacean acid metabolism (CAM) common ice plant (Mesembryanthemum crystallinum), using a protein-kinase-targeted differential display reverse transcriptase-polymerase chain reaction approach. M. crystallinum PPcK encodes a minimal, Ca(2+)-independent Ser/threonine protein kinase that is most closely related to calcium-dependent protein kinases, yet lacks both the calmodulin-like and auto-inhibitory domains typical of plant calcium-dependent protein kinase. In the common ice plant PPcK belongs to a small gene family containing two members. McPPcK transcript accumulation is controlled by a circadian oscillator in a light-dependent manner. McPPcK encodes a 31.8-kD polypeptide (279 amino acids), making it among the smallest protein kinases characterized to date. Initial biochemical analysis of the purified, recombinant McPPcK gene product documented that this protein kinase specifically phosphorylates PEPc from CAM and C(4) species at a single, N-terminal Ser (threonine) residue but fails to phosphorylate mutated forms of C(4) PEPc in which this specific site has been changed to tyrosine or aspartate. McPPcK activity was specific for PEPc, Ca(2+)-insensitive, and displayed an alkaline pH optimum. Furthermore, recombinant McPPcK was shown to reverse the sensitivity of PEPc activity to L-malate inhibition in CAM-leaf extracts prepared during the day, but not at night, documenting that PPcK contributes to the circadian regulation of photosynthetic carbon flux in CAM plants.
Collapse
Affiliation(s)
- T Taybi
- Department of Biochemistry and Molecular Biology, 147 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | | | |
Collapse
|
31
|
Weljie AM, Clarke TE, Juffer AH, Harmon AC, Vogel HJ. Comparative modeling studies of the calmodulin-like domain of calcium-dependent protein kinase from soybean. Proteins 2000; 39:343-57. [PMID: 10813816 DOI: 10.1002/(sici)1097-0134(20000601)39:4<343::aid-prot70>3.0.co;2-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Calmodulin-like domain protein kinases (CDPKs) represent a new class of calcium-dependent protein-phosphorylating enzymes that are not activated by calmodulin or phospholipid compounds. They have been found exclusively in plant and protozoal tissues. CDPKs are typified by four distinct domains: an N-terminal leader sequence, a protein kinase (PK) domain, a calmodulin-like domain (CLD), and a junction domain (JD) between the PK domain and CLD. Structural characterization of the CLD of CDPKalpha from soybean was undertaken based on the amino acid sequence homology of CLD to the structurally well-characterized calmodulin (CaM) family of structures. Tertiary models of apo-CLD, Ca(2+)-CLD complex, and intermolecularly bound Ca(2+)-CLD-JD complexes were obtained via automated and non-automated homology building methods. The resulting structures were compared and validated based on energy differences, phi-psi angle distribution, solvent accessibility, and hydrophobic potential. Circular dichroism, one-dimensional, and two-dimensional nuclear magnetic resonance spectroscopy studies of the CLD and peptides encompassing the JD provide experimental support to the models. The results suggest that there is a possible interaction between the CLD and JD domain similar to that of the CaM/calmodulin-dependent protein kinase II system. At low Ca(2+) levels, the JD may act as an autoinhibitory domain for kinase activity, and during calcium activation an intramolecular CLD-JD complex may form, relieving inhibition of the PK domain. Interactions between the JD and the C terminus of the CLD appear to be particularly important. The outcome of this study supports an intramolecular binding model for calcium activation of CDPK, although not exclusively.
Collapse
Affiliation(s)
- A M Weljie
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | | | | | | |
Collapse
|
32
|
Zhang XQ, Lund AA, Sarath G, Cerny RL, Roberts DM, Chollet R. Soybean nodule sucrose synthase (nodulin-100): further analysis of its phosphorylation using recombinant and authentic root-nodule enzymes. Arch Biochem Biophys 1999; 371:70-82. [PMID: 10525291 DOI: 10.1006/abbi.1999.1415] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sucrose synthase (SS) is a known phosphoserine-containing enzyme in legume root nodules and various other plant "sink" tissues. In order to begin to investigate the possible physiological significance of this posttranslational modification, we have cloned a full-length soybean nodule SS (nodulin-100) cDNA and overexpressed it in Escherichia coli. Authentic nodule SS and recombinant wild-type and mutant forms of the enzyme were purified and characterized. We document that a conserved serine near the N-terminus (Ser(11)) is the primary phosphorylation site for a nodule Ca(2+)-dependent protein kinase (CDPK) in vitro. Related tryptic digestion and mass spectral analyses indicated that this target residue was also phosphorylated in planta in authentic nodulin-100. In addition, a secondary phosphorylation site(s) in recombinant nodule SS was implicated given that all active mutant enzyme forms (S11A, S11D, S11C, and N-terminal truncation between Ala(2) and Arg(13)) were phosphorylated, albeit weakly, by the CDPK. This secondary site(s) likely resides between Glu(14) and Met(193) as evidenced by CNBr cleavage and phosphopeptide mapping. Phosphorylation of the recombinant and authentic nodule Ser(11) enzymes in vitro by the nodule CDPK had no major effect on the sucrose-cleavage activity and/or kinetic properties. However, phosphorylation decreased the apparent surface hydrophobicity of the recombinant wild-type enzyme, suggesting that this covalent modification could potentially play some role in the documented partitioning of nodulin-100 between the nodule symbiosome/plasma membranes and cytosol in planta.
Collapse
Affiliation(s)
- X Q Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664, USA
| | | | | | | | | | | |
Collapse
|
33
|
Zeng Y, Wu Y, Avigne WT, Koch KE. Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. PLANT PHYSIOLOGY 1999; 121:599-608. [PMID: 10517852 PMCID: PMC59423 DOI: 10.1104/pp.121.2.599] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/1999] [Accepted: 07/01/1999] [Indexed: 05/18/2023]
Abstract
We show here that invertase gene expression and the invertase-sucrose (Suc) synthase ratio decrease abruptly in response to low oxygen in maize root tips. In addition to aiding in the conservation of carbon and possibly ATP, this response has the potential to directly affect sugar signaling relative to carbon flux. Experiments were motivated by the potential for a reduced invertase/Suc synthase balance to alter the impact of respiratory and/or membrane carbon flux on sugar signaling. Maize (Zea mays L.) seedlings with 5-cm primary roots were exposed to anoxic (0% [v/v] O2), hypoxic (3% [v/v] O2), and aerobic conditions. Rapid repression of the Ivr1 and Ivr2 maize invertases by low oxygen was evident in root tips within 3 h at both the transcript and activity levels. The speed and extent of this response increased with the degree of oxygen deprivation and differed with genotypes. This decrease in expression also contrasted markedly to that of other genes for respiratory Suc metabolism, such as Suc synthases, which typically increased or remained constant. Although previous work showed that the contrasting effects of sugars on Suc synthase genes were reflected in their regulation by hypoxia and anoxia, the same was not observed for the differentially sugar-responsive invertases. Theoretically advantageous reductions in the invertase/Suc synthase balance thus resulted. However, where this response was extreme (an Oh43 inbred), total sucrolytic capacity dropped below an apparent minimum and root tip viability was reduced. Paradoxically, only Oh43 seedlings showed survival levels >80% (versus <50%) after extreme, long-term stress, suggesting a possible advantage for multiple means of reducing sink activity. Overall, our results demonstrate a rapid change in the regulation and balance of invertases and Suc synthases that could have an immediate impact on limiting the extent of Suc cleavage and reducing the extent of concomitant, hexose-based sugar signaling under low oxygen.
Collapse
Affiliation(s)
- Y Zeng
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, 1143 Fifield Hall, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
34
|
Gordon, Minchin, James, Komina. Sucrose synthase in legume nodules is essential for nitrogen fixation. PLANT PHYSIOLOGY 1999; 120:867-78. [PMID: 10398723 PMCID: PMC59326 DOI: 10.1104/pp.120.3.867] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/1998] [Accepted: 04/06/1999] [Indexed: 05/18/2023]
Abstract
The role of sucrose synthase (SS) in the fixation of N was examined in the rug4 mutant of pea (Pisum sativum L.) plants in which SS activity was severely reduced. When dependent on nodules for their N supply, the mutant plants were not viable and appeared to be incapable of effective N fixation, although nodule formation was essentially normal. In fact, N and C resources invested in nodules were much greater in mutant plants than in the wild-type (WT) plants. Low SS activity in nodules (present at only 10% of WT levels) resulted in lower amounts of total soluble protein and leghemoglobin and lower activities of several enzymes compared with WT nodules. Alkaline invertase activity was not increased to compensate for reduced SS activity. Leghemoglobin was present at less than 20% of WT values, so O2 flux may have been compromised. The two components of nitrogenase were present at normal levels in mutant nodules. However, only a trace of nitrogenase activity was detected in intact plants and none was found in isolated bacteroids. The results are discussed in relation to the role of SS in the provision of C substrates for N fixation and in the development of functional nodules.
Collapse
Affiliation(s)
- Gordon
- Department of Environmental Biology, Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceridigion SY23 3EB, United Kingdom
| | | | | | | |
Collapse
|
35
|
Abstract
The first plant protein kinase sequences were reported as recently as 1989, but by mid-1998 there were more than 500, including 175 in Arabidopsis thaliana alone. Despite this impressive pace of discovery, progress in understanding the detailed functions of protein kinases in plants has been slower. Protein serine/threonine kinases from A. thaliana can be divided into around a dozen major groups based on their sequence relationships. For each of these groups, studies on animal and fungal homologs are briefly reviewed, and direct studies of their physiological functions in plants are then discussed in more detail. The network of protein-serine/threonine kinases in plant cells appears to act as a "central processor unit" (cpu), accepting input information from receptors that sense environmental conditions, phytohormones, and other external factors, and converting it into appropriate outputs such as changes in metabolism, gene expression, and cell growth and division.
Collapse
Affiliation(s)
- D. G. Hardie
- Biochemistry Department, Dundee University, Dundee, Scotland, DD1 5EH, United Kingdom; e-mail:
| |
Collapse
|
36
|
Abstract
The past few decades have witnessed exciting progress in studies on the biosynthesis of cellulose. In the bacterium Acetobacter xylinum, discovery of the activator of the cellulose synthase, cyclic diguanylic acid, opened the way for obtaining high rates of in vitro synthesis of cellulose. This, in turn, led to purification of the cellulose synthase and for the cloning of genes that encode the catalytic subunit and other proteins that bind the activator and regulate its synthesis and degradation, or that control secretion and crystallization of the microfibrils. In higher plants, a family of genes has been discovered that show interesting similarities and differences from the gene in bacteria that encodes the catalytic subunit of the synthase. Genetic evidence now supports the concept that members of this family encode the catalytic subunit in these organisms, with various members showing tissue-specific expression. Although the cellulose synthase has not yet been purified to homogeneity from plants, recent progress in this area suggests that this will soon be accomplished.
Collapse
Affiliation(s)
- Deborah P. Delmer
- Section of Plant Biology, University of California Davis, Davis, California 95616; e-mail:
| |
Collapse
|
37
|
Anguenot R, Yelle S, Nguyen-Quoc B. Purification of tomato sucrose synthase phosphorylated isoforms by Fe(III)-immobilized metal affinity chromatography. Arch Biochem Biophys 1999; 365:163-9. [PMID: 10222051 DOI: 10.1006/abbi.1999.1146] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major phosphorylation site of maize sucrose synthase (SuSy) is well conserved among plant species but absent in the deduced peptide sequence of the tomato SuSy cDNA (TOMSSF). In this study, we report the in vitro phosphorylation of 25-day-old tomato fruits SuSy on seryl residue(s) by an endogenous Ca2+-dependent protein kinase activity. Two distinct 32P-labeled peptides detected in the tryptic peptide map of in vitro 32P-radiolabeled tomato fruit SuSy were purified. Amino acid sequencing and phosphoamino acid analysis of the major 32P-labeled peptide revealed the presence of a SuSy isozyme in young tomato fruit having the N-terminus phosphorylation site present in other plant species. By using Fe(III)-immobilized metal affinity chromatography [Fe(III)-IMAC] as a final purification step of tomato fruit SuSy, two 32P-labeled tomato SuSy isoforms were separated from a nonradiolabeled SuSy fraction by using a pH gradient. The major 32P-SuSy isoform was phosphorylated exclusively at the seryl residue related to the phosphorylation site of maize SuSy. The multiphosphorylated state of the second radiolabeled SuSy fraction was indicated by a higher retention during Fe(III)-IMAC and by tryptic peptide mapping analysis. Kinetic analyses of SuSy isoforms purified by Fe(III)-IMAC have revealed that phosphorylation of the major phosphorylation site of tomato fruit SuSy was not sufficient by itself to modulate tomato SuSy activity, whereas the affinity for UDP increased about threefold for the multiphosphorylated SuSy isoform.
Collapse
Affiliation(s)
- R Anguenot
- Centre de Recherche en Horticulture, Département de phytologie, Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada
| | | | | |
Collapse
|
38
|
Nakai T, Tonouchi N, Konishi T, Kojima Y, Tsuchida T, Yoshinaga F, Sakai F, Hayashi T. Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. Proc Natl Acad Sci U S A 1999; 96:14-8. [PMID: 9874763 PMCID: PMC15084 DOI: 10.1073/pnas.96.1.14] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Higher plants efficiently conserve energy ATP in cellulose biosynthesis by expression of sucrose synthase, in which the high free energy between glucose and fructose in sucrose can be conserved and used for the synthesis of UDP-glucose. A mixture of sucrose synthase and bacterial cellulose synthase proceeded to form UDP-glucose from sucrose plus UDP and to synthesize 1,4-beta-glucan from the sugar nucleotide. The mutant sucrose synthase, which mimics phosphorylated sucrose synthase, enhanced the reaction efficiency (Vmax/Km) on 1,4-beta-glucan synthesis, in which the incorporation of glucose from sucrose was increased at low concentrations of UDP. Because UDP formed after glucosyl transfer can be directly recycled with sucrose synthase, UDP-glucose formed appears to show high turnover with cellulose synthase in the coupled reaction. The expression of sucrose synthase in Acetobacter xylinum not only changed sucrose metabolism but also enhanced cellulose production, in which UDP-glucose was efficiently formed from sucrose. Although the level of UDP-glucose in the transformant with mutant sucrose synthase cDNA was only 1.6-fold higher than that in plasmid-free cells, the level of UDP was markedly decreased in the transformant. The results show that sucrose synthase serves to channel carbon directly from sucrose to cellulose and recycles UDP, which prevents UDP build-up in cellulose biosynthesis.
Collapse
Affiliation(s)
- T Nakai
- Wood Research Institute, Kyoto University, Gokasho, Uji, Kyoto, 611, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Zeng Y, Wu Y, Avigne WT, Koch KE. Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. PLANT PHYSIOLOGY 1998; 116:1573-83. [PMID: 9536076 PMCID: PMC35066 DOI: 10.1104/pp.116.4.1573] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/1997] [Accepted: 01/14/1998] [Indexed: 05/20/2023]
Abstract
The goal of this research was to resolve the hypoxic and anoxic responses of maize (Zea mays) sucrose (Suc) synthases known to differ in their sugar regulation. The two maize Suc synthase genes, Sus1 and Sh1, both respond to sugar and O2, and recent work suggests commonalities between these signaling systems. Maize seedlings (NK508 hybrid, W22 inbred, and an isogenic sh1-null mutant) were exposed to anoxic, hypoxic, and aerobic conditions (0, 3, and 21% O2, respectively), when primary roots had reached approximately 5 cm. One-centimeter tips were excised for analysis during the 48-h treatments. At the mRNA level, Sus1 was rapidly up-regulated by hypoxia (approximately 5-fold in 6 h), whereas anoxia had less effect. In contrast, Sh1 mRNA abundance increased strongly under anoxia (approximately 5-fold in 24 h) and was much less affected by hypoxia. At the enzyme level, total Suc synthase activity rose rapidly under hypoxia but showed little significant change during anoxia. The contributions of SUS1 and SH1 activities to these responses were dissected over time by comparing the sh1-null mutant with the isogenic wild type (Sus+, Sh1+). Sh1-dependent activity contributed most markedly to a rapid protein-level response consistently observed in the first 3 h, and, subsequently, to a long-term change mediated at the level of mRNA accumulation at 48 h. A complementary midterm rise in SUS1 activity varied in duration with genetic background. These data highlight the involvement of distinctly different genes and probable signal mechanisms under hypoxia and anoxia, and together with earlier work, show parallel induction of "feast and famine" Suc synthase genes by hypoxia and anoxia, respectively. In addition, complementary modes of transcriptional and posttranscriptional regulation are implicated by these data, and provide a mechanism for sequential contributions from the Sus1 and Sh1 genes during progressive onset of naturally occurring low-O2 events.
Collapse
Affiliation(s)
- Y Zeng
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Fifield Hall, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
41
|
Winter H, Huber JL, Huber SC. Membrane association of sucrose synthase: changes during the graviresponse and possible control by protein phosphorylation. FEBS Lett 1997; 420:151-5. [PMID: 9459300 DOI: 10.1016/s0014-5793(97)01506-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sucrose synthase (SuSy) plays an important role in sucrose degradation and occurs both as a soluble and as a membrane-associated enzyme in higher plants. We show that membrane association can vary in vivo in response to gravistimulation, apparently involving SuSy dephosphorylation, and is a reversible process in vitro. Phosphorylation of SuSy has little effect on its activity but decreases its surface hydrophobicity as reported with the fluorescent probe bis-ANS. We postulate that phosphorylation of SuSy (and perhaps other membrane proteins) is involved in the release of the membrane-bound enzyme in part as a result of decreased surface hydrophobicity.
Collapse
Affiliation(s)
- H Winter
- U.S. Department of Agriculture, Agricultural Research Service, Raleigh, NC, USA
| | | | | |
Collapse
|