1
|
Khan AA, Dewald HD. Nitric oxide and peroxynitrite as new biomarkers for early diagnosis of autism. Brain Res 2025; 1850:149438. [PMID: 39793916 DOI: 10.1016/j.brainres.2024.149438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Autism spectrum disorder, or autism, is a neurodevelopmental disorder of the developing child's brain with a genetic causality. It can be diagnosed at about three years after birth when it begins to present itself via a range of neuropsychiatric symptoms. Nitric oxide is a crucial small molecule of life synthesized within cells of our body systems, including cells of our brain. Peroxynitrite is the product of reaction between superoxide anion and nitric oxide. It normally isomerizes into harmless nitrates or nitrites. However, when excessive superoxide anion is present, the cellular concentration of peroxynitrite can increase to a toxic level. Autism has been suggested to cause oxidative damage to brain cells. Until now, it is impossible to sample tissue from a live brain. Instead, stem cells can be derived (from an autism patient's somatic cells) which can then be differentiated and chemically directed to grow into miniature 3-dimensional tissue masses resembling specific brain regions (e.g., the cortex) called brain organoids. This review discusses utilizing nitric oxide and peroxynitrite as biomarkers and comparing their relative concentrations in stem cells and stem cell derived brain organoids of healthy and autistic individuals to develop a bioanalytical process for early diagnosis of autism.
Collapse
Affiliation(s)
- Abdullah Asif Khan
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Howard D Dewald
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States.
| |
Collapse
|
2
|
Rizo-Roca D, Guimarães DSPSF, Pendergrast LA, Di Leo N, Chibalin AV, Maqdasy S, Rydén M, Näslund E, Zierath JR, Krook A. Decreased mitochondrial creatine kinase 2 impairs skeletal muscle mitochondrial function independently of insulin in type 2 diabetes. Sci Transl Med 2024; 16:eado3022. [PMID: 39383244 DOI: 10.1126/scitranslmed.ado3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Increased plasma creatine concentrations are associated with the risk of type 2 diabetes, but whether this alteration is associated with or causal for impairments in metabolism remains unexplored. Because skeletal muscle is the main disposal site of both creatine and glucose, we investigated the role of intramuscular creatine metabolism in the pathophysiology of insulin resistance in type 2 diabetes. In men with type 2 diabetes, plasma creatine concentrations were increased, and intramuscular phosphocreatine content was reduced. These alterations were coupled to reduced expression of sarcomeric mitochondrial creatine kinase 2 (CKMT2). In C57BL/6 mice fed a high-fat diet, neither supplementation with creatine for 2 weeks nor treatment with the creatine analog β-GPA for 1 week induced changes in glucose tolerance, suggesting that increased circulating creatine was associated with insulin resistance rather than causing it. In C2C12 myotubes, silencing Ckmt2 using small interfering RNA reduced mitochondrial respiration, membrane potential, and glucose oxidation. Electroporation-mediated overexpression of Ckmt2 in skeletal muscle of high-fat diet-fed male mice increased mitochondrial respiration, independent of creatine availability. Given that overexpression of Ckmt2 improved mitochondrial function, we explored whether exercise regulates CKMT2 expression. Analysis of public data revealed that CKMT2 content was up-regulated by exercise training in both humans and mice. We reveal a previously underappreciated role of CKMT2 in mitochondrial homeostasis beyond its function for creatine phosphorylation, independent of insulin action. Collectively, our data provide functional evidence for how CKMT2 mediates mitochondrial dysfunction associated with type 2 diabetes.
Collapse
Affiliation(s)
- David Rizo-Roca
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Logan A Pendergrast
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Nicolas Di Leo
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, SE-182 57 Danderyd, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Foley TD, Huang WC, Petsche EA, Fleming ER, Hornickle JC. Protein vicinal thiols as intrinsic probes of brain redox states in health, aging, and ischemia. Metab Brain Dis 2024; 39:929-940. [PMID: 38848024 PMCID: PMC11233328 DOI: 10.1007/s11011-024-01370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
The nature of brain redox metabolism in health, aging, and disease remains to be fully established. Reversible oxidations, to disulfide bonds, of closely spaced (vicinal) protein thiols underlie the catalytic maintenance of redox homeostasis by redoxin enzymes, including thioredoxin peroxidases (peroxiredoxins), and have been implicated in redox buffering and regulation. We propose that non-peroxidase proteins containing vicinal thiols that are responsive to physiological redox perturbations may serve as intrinsic probes of brain redox metabolism. Using redox phenylarsine oxide (PAO)-affinity chromatography, we report that PAO-binding vicinal thiols on creatine kinase B and alpha-enolase from healthy rat brains were preferentially oxidized compared to other selected proteins, including neuron-specific (gamma) enolase, under conditions designed to trap in vivo protein thiol redox states. Moreover, measures of the extents of oxidations of vicinal thiols on total protein, and on creatine kinase B and alpha-enolase, showed that vicinal thiol-linked redox states were stable over the lifespan of rats and revealed a transient reductive shift in these redox couples following decapitation-induced global ischemia. Finally, formation of disulfide-linked complexes between peroxiredoxin-2 and brain proteins was demonstrated on redox blots, supporting a link between protein vicinal thiol redox states and the peroxidase activities of peroxiredoxins. The implications of these findings with respect to underappreciated aspects of brain redox metabolism in health, aging, and ischemia are discussed.
Collapse
Affiliation(s)
- Timothy D Foley
- Biochemistry Program, Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA.
| | - Wen C Huang
- Biochemistry Program, Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA
| | - Emily A Petsche
- Biochemistry Program, Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA
| | - Emily R Fleming
- Biochemistry Program, Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA
| | - James C Hornickle
- Biochemistry Program, Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA
| |
Collapse
|
4
|
Lim YJ, Tonial NC, Hartjes ED, Haig A, Velenosi TJ, Urquhart BL. Metabolomics for the identification of early biomarkers of nephrotoxicity in a mouse model of cisplatin-induced acute kidney injury. Biomed Pharmacother 2023; 163:114787. [PMID: 37126930 DOI: 10.1016/j.biopha.2023.114787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Cisplatin-induced nephrotoxicity manifests as acute kidney injury (AKI) in approximately one third of patients receiving cisplatin therapy. Current measures of AKI are inadequate in detecting AKI prior to significant renal injury, and better biomarkers are needed for early diagnosis of cisplatin-induced AKI. EXPERIMENTAL APPROACH C57BL/6 and FVB/N mice were treated with a single intraperitoneal injection of cisplatin (15 mg kg-1) or saline. Plasma, urine, and kidney samples were collected prior to cisplatin injection and 24-, 48-, 72-, and 96-hours following cisplatin injection. Untargeted metabolomics was employed using liquid chromatography-mass spectrometry to identify early diagnostic biomarkers for cisplatin nephrotoxicity. PRINCIPAL RESULTS There was clear metabolic discrimination between saline and cisplatin-treated mice at all timepoints (day 1 to day 4). In total, 26 plasma, urine, and kidney metabolites were identified as exhibiting early alterations following cisplatin treatment. Several of the metabolites showing early alterations were associated with mitochondrial function and energetics, including intermediates of the tricarboxylic acid cycle, regulators of mitochondrial function and indicators of fatty acid β-oxidation dysfunction. Furthermore, several metabolites were derived from the gut microbiome. MAJOR CONCLUSIONS Our results highlight the detrimental effects of cisplatin on mitochondrial function and demonstrate potential involvement of the gut microbiome in the pathophysiology of cisplatin-induced AKI. We provide a panel of metabolites to guide future clinical studies of cisplatin-induced AKI and provide insight into potential mechanisms behind cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Yong Jin Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Nicholas C Tonial
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Emily D Hartjes
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Aaron Haig
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Thomas J Velenosi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Division of Nephrology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
5
|
Rivas M, Gupta G, Costanzo L, Ahmed H, Wyman AE, Geraghty P. Senescence: Pathogenic Driver in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:817. [PMID: 35744080 PMCID: PMC9228143 DOI: 10.3390/medicina58060817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is recognized as a disease of accelerated lung aging. Over the past two decades, mounting evidence suggests an accumulation of senescent cells within the lungs of patients with COPD that contributes to dysregulated tissue repair and the secretion of multiple inflammatory proteins, termed the senescence-associated secretory phenotype (SASP). Cellular senescence in COPD is linked to telomere dysfunction, DNA damage, and oxidative stress. This review gives an overview of the mechanistic contributions and pathologic consequences of cellular senescence in COPD and discusses potential therapeutic approaches targeting senescence-associated signaling in COPD.
Collapse
Affiliation(s)
- Melissa Rivas
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Louis Costanzo
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Huma Ahmed
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Anne E. Wyman
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| |
Collapse
|
6
|
Tominaga T, Shimomura S, Tanosaki S, Kobayashi N, Ikeda T, Yamamoto T, Tamura T, Umemura S, Horibuchi-Matsusaki S, Hachiya M, Akashi M. Effects of the chelating agent DTPA on naturally accumulating metals in the body. Toxicol Lett 2021; 350:283-291. [PMID: 34371142 DOI: 10.1016/j.toxlet.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023]
Abstract
Diethylenetriaminepentaacetate (DTPA) is the most widely used chelating agent for Pu and Am. Volunteers were assigned to receive intravenous injections or aerosol inhalations of 1 g of DTPA on days 1-4; volunteers received once daily injections of CaDTPA or ZnDTPA, CaDTPA inhalation as an aerosol, or CaDTPA injection on day 1 and ZnDTPA on days 2-4. CaDTPA injection or inhalation increased the excretion rates of Zn in urine with concomitantly reduced levels of serum Zn. Injection of CaDTPA reduced activities of serum alkaline phosphatase (AP) in parallel with the kinetics of Zn, whereas CaDTPA and ZnDTPA injection reduced activities of lactate dehydrogenase (LDH), and reduced activities of creatinine kinase (CK) were observed upon CaDTPA injection and its inhalation. Intravenous administration of CaDTPA and ZnDTPA enhanced excretion rates of Mn in urine, whereas transient reduction of Mn levels in serum was detected only via CaDTPA injection. Both CaDTPA and ZnDTPA transiently reduced levels of Mg in serum without affecting the excretion rates. On the other hand, both DTPAs increased excretion rates of toxic metals such as Pb and Cd, and CaDTPA also increased the rates of Hg. These results suggest that DTPA, and especially CaDTPA, removes essential metals and that the activities of these metalloenzymes are good indicators for the imbalance of essential metals during the DTPA administration. Our results also show that CaDTPA injection is more potent for removing these metals than ZnDTPA and inhalation of CaDTPA, and DTPA may be useful for the treatment of acute heavy metal poisoning with Pb, Cd, or Hg.
Collapse
Affiliation(s)
- Takako Tominaga
- National Institute of Quantum and Radiological Science and Technology, Chiba, 265-8555, Japan.
| | | | - Sakae Tanosaki
- Fraternity Memorial Hospital, Sumida, Tokyo, 130-8587, Japan.
| | | | - Takashi Ikeda
- Shizuoka Cancer Center, Nagaizumi, Shizuoka, 411-8777, Japan.
| | - Tetsuo Yamamoto
- Japan Ground Self-Defense Force (JGSDF), Setagaya, Tokyo, 154-8532, Japan.
| | - Taiji Tamura
- Kubokawa Hospital, Shimanto, Kochi, 786-0002, Japan.
| | - Satoshi Umemura
- Self Defense Forces Central Hospital, Setagaya, Tokyo, 154-8532, Japan.
| | | | - Misao Hachiya
- Nuclear Safety Technology Center, Bunkyo, Tokyo, 112-8604, Japan.
| | - Makoto Akashi
- Tokyo Healthcare University, Meguro, Tokyo, 152-8558, Japan.
| |
Collapse
|
7
|
Application of Differential Network Enrichment Analysis for Deciphering Metabolic Alterations. Metabolites 2020; 10:metabo10120479. [PMID: 33255384 PMCID: PMC7761243 DOI: 10.3390/metabo10120479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Modern analytical methods allow for the simultaneous detection of hundreds of metabolites, generating increasingly large and complex data sets. The analysis of metabolomics data is a multi-step process that involves data processing and normalization, followed by statistical analysis. One of the biggest challenges in metabolomics is linking alterations in metabolite levels to specific biological processes that are disrupted, contributing to the development of disease or reflecting the disease state. A common approach to accomplishing this goal involves pathway mapping and enrichment analysis, which assesses the relative importance of predefined metabolic pathways or other biological categories. However, traditional knowledge-based enrichment analysis has limitations when it comes to the analysis of metabolomics and lipidomics data. We present a Java-based, user-friendly bioinformatics tool named Filigree that provides a primarily data-driven alternative to the existing knowledge-based enrichment analysis methods. Filigree is based on our previously published differential network enrichment analysis (DNEA) methodology. To demonstrate the utility of the tool, we applied it to previously published studies analyzing the metabolome in the context of metabolic disorders (type 1 and 2 diabetes) and the maternal and infant lipidome during pregnancy.
Collapse
|
8
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
9
|
Xie W, Jiao B, Bai Q, Ilin VA, Sun M, Burton CE, Kolodieznyi D, Calderon MJ, Stolz DB, Opresko PL, St Croix CM, Watkins S, Van Houten B, Bruchez MP, Burton EA. Chemoptogenetic ablation of neuronal mitochondria in vivo with spatiotemporal precision and controllable severity. eLife 2020; 9:e51845. [PMID: 32180546 PMCID: PMC7077989 DOI: 10.7554/elife.51845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of multiple neurological diseases, but elucidation of underlying mechanisms is limited experimentally by the inability to damage specific mitochondria in defined neuronal groups. We developed a precision chemoptogenetic approach to target neuronal mitochondria in the intact nervous system in vivo. MG2I, a chemical fluorogen, produces singlet oxygen when bound to the fluorogen-activating protein dL5** and exposed to far-red light. Transgenic zebrafish expressing dL5** within neuronal mitochondria showed dramatic MG2I- and light-dependent neurobehavioral deficits, caused by neuronal bioenergetic crisis and acute neuronal depolarization. These abnormalities resulted from loss of neuronal respiration, associated with mitochondrial fragmentation, swelling and elimination of cristae. Remaining cellular ultrastructure was preserved initially, but cellular pathology downstream of mitochondrial damage eventually culminated in neuronal death. Our work provides powerful new chemoptogenetic tools for investigating mitochondrial homeostasis and pathophysiology and shows a direct relationship between mitochondrial function, neuronal biogenetics and whole-animal behavior.
Collapse
Affiliation(s)
- Wenting Xie
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Tsinghua University Medical SchoolBeijingChina
| | - Binxuan Jiao
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Tsinghua University Medical SchoolBeijingChina
| | - Qing Bai
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
| | - Vladimir A Ilin
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
| | - Ming Sun
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
| | | | - Dmytro Kolodieznyi
- Departments of Biological Sciences and Chemistry, Carnegie Mellon UniversityPittsburghUnited States
| | - Michael J Calderon
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Donna B Stolz
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Genome Stability Program, UPMC Hillman Cancer CenterPittsburghUnited States
| | - Claudette M St Croix
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Simon Watkins
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Bennett Van Houten
- Genome Stability Program, UPMC Hillman Cancer CenterPittsburghUnited States
- Department of Pharmacology and Chemical Biology, University of PittsburghPittsburghUnited States
| | - Marcel P Bruchez
- Departments of Biological Sciences and Chemistry, Carnegie Mellon UniversityPittsburghUnited States
- Molecular Biosensors and Imaging Center, Carnegie Mellon UniversityPittsburghUnited States
| | - Edward A Burton
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare SystemPittsburghUnited States
| |
Collapse
|
10
|
Neto da Silva K, Garbin Cappellaro L, Ueda CN, Rodrigues L, Pertile Remor A, Martins RDP, Latini A, Glaser V. Glyphosate-based herbicide impairs energy metabolism and increases autophagy in C6 astroglioma cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:153-167. [PMID: 32085696 DOI: 10.1080/15287394.2020.1731897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Several investigators demonstrated that glyphosate formulations produce neurotoxicity associated with oxidative stress, alterations in glutamatergic system, inhibition of acetylcholinesterase activity and mitochondrial dysfunction. However, the underlying molecular mechanisms following exposure to this herbicide on astrocytes are unclear. Thus, the aim of the present study was to determine the activity of enzymes related to energy metabolism, in addition to oxidative stress parameters, mitochondrial mass, nuclear area, and autophagy in astrocytes treated with a glyphosate-based herbicide. Our results showed that 24 h exposure to a glyphosate-based herbicide decreased (1) cell viability, (2) activities of mitochondrial respiratory chain enzymes and creatine kinase (CK), (3) mitochondrial mass, and (4) nuclear area in rat astroglioma cell line (C6 cells). However, non-protein thiol (NPSH) levels were increased but catalase activity was not changed in cells exposed to the herbicide at non-cytotoxic concentrations. Low glyphosate concentrations elevated content of cells positive to autophagy-related proteins. Nuclear factor erythroid 2-related factor (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1) and PTEN-induced kinase 1 (PINK1) labeling were not markedly altered in cells exposed to glyphosate at the same concentrations that an increase in NPSH levels and positive cells to autophagy were found. It is conceivable that mitochondria and CK may be glyphosate-based herbicides targets. Further, autophagy induction and NPSH increase may be mechanisms initiated to avoid oxidative stress and cell death. However, more studies are needed to clarify the role of autophagy in astrocytes exposed to the herbicide and which components of the formulation might be triggering the effects observed here.
Collapse
Affiliation(s)
- Katriane Neto da Silva
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Laura Garbin Cappellaro
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Caroline Naomi Ueda
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Luana Rodrigues
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Aline Pertile Remor
- Programa De Pós-graduação Em Biociências E Saúde, Universidade Do Oeste De Santa Catarina - Campus Joaçaba, Joaçaba, Brazil
| | - Roberta de Paula Martins
- Departamento De Ciências Da Saúde, Universidade Federal De Santa Catarina - Campus De Araranguá, Araranguá, Brazil
| | - Alexandra Latini
- Laboratório De Bioenergética E Estresse Oxidativo, Departamento De Bioquímica, Universidade Federal De Santa Catarina - Campus De Florianópolis, Florianópolis, Brazil
| | - Viviane Glaser
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| |
Collapse
|
11
|
Baldissera MD, de Freitas Souza C, Boaventura TP, Nakayama CL, Baldisserotto B, Luz RK. Involvement of the phosphoryl transfer network in gill bioenergetic imbalance of pacamã (Lophiosilurus alexandri) subjected to hypoxia: notable participation of creatine kinase. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:405-416. [PMID: 31784931 DOI: 10.1007/s10695-019-00728-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia is among the most critical environmental stressors for fish in aquatic environments, and several energetic alterations have been associated with it. The aim of the present study was to evaluate the involvement of the phosphoryl transfer network and its effects on adenosine triphosphate (ATP)-dependent enzymes during hypoxia, as well as the role of oxidative stress in the activity of the phosphoryl transfer network in pacamã (Lophiosilurus alexandri) subjected to severe hypoxia. Branchial creatine kinase (CK; cytosolic and mitochondrial fractions), adenylate kinase (AK), and pyruvate kinase (PK) activities were inhibited after 72 h of exposure to hypoxia compared to their respective normoxia groups, and remained low (except for AK) after 24 and 72 h of re-oxygenation. Activities of the branchial sodium-potassium pump (Na+, K+-ATPase) and proton pump (H+-ATPase) were inhibited in fish exposed to 72 h of hypoxia compared to the normoxia group, remained inhibited after 24 h of re-oxygenation, and were restored to physiological levels after 72 h of re-oxygenation. Levels of branchial reactive oxygen species (ROS) were higher in fish exposed to hypoxia for 72 h compared to the normoxia group, and increased during re-oxygenation. Lipid peroxidation (LOOH) levels were higher in fish subjected to 72 h of hypoxia compared to the normoxia group, and remained higher during re-oxygenation. On the other hand, protein sulfhydryl (PSH) levels were lower in fish exposed to hypoxia for 72 h compared to the normoxia group, and remained low during re-oxygenation. Based on this evidence, inhibition of the activities of enzymes belonging to phosphoryl transfer network contributed to impairing energetic homeostasis linked to ATP production and ATP utilization in gills of pacamã subjected to hypoxia, and remained inhibited during re-oxygenation (except AK activity). Moreover, inhibition of the phosphoryl transfer network impaired activity of ATP-dependent enzymes, which can be mediated by ROS overproduction, lipid peroxidation, and oxidation of SH groups.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine de Freitas Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tulio P Boaventura
- Laboratório de Aquacultura da Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cintia L Nakayama
- Laboratório de Aquacultura da Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ronald K Luz
- Laboratório de Aquacultura da Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
12
|
Ahmad R, Hussain A, Ahsan H. Peroxynitrite: cellular pathology and implications in autoimmunity. J Immunoassay Immunochem 2019; 40:123-138. [PMID: 30843753 DOI: 10.1080/15321819.2019.1583109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In inflamed tissues, the reaction of nitric oxide and superoxide leads to the formation of an extremely reactive peroxynitrite (ONOO-), which is a well known oxidizing and nitrating agent that exhibits high reactivity at physiological pH. The peroxynitrite formed can attack a wide range of biomolecules via direct oxidative reactions or indirect radical-mediated mechanisms thus triggering cellular responses leading to cell signaling, oxidative injury, committing cells to necrosis or apoptosis. Cellular DNA is an important target for ONOO- attack, and can react with deoxyribose, nucleobases or induces single strand breaks. The free radical-mediated damage to proteins results in the modification of amino acid residues, cross-linking of side chains and fragmentation. Free/protein-bound tyrosines are attacked by various reactive nitrogen species (RNS), including peroxynitrite, to form free/protein-bound nitrotyrosine (NT). The formation of NT represents a specific peroxynitrite-mediated protein modification, and the detection of NT in proteins is considered as a biomarker for endogenous peroxynitrite activity. The peroxynitrite-driven oxidation and nitration of biomolecules may lead to autoimmunity and age-related neurodegenerative diseases. Hence, peroxynitrite modified DNA and nitrated proteins can act as neoantigens and lead to the generation of autoantibodies against self-components in autoimmune disorders.
Collapse
Affiliation(s)
- Rizwan Ahmad
- a Department of Academic Affairs, College of Medicine , Imam Abdulrahman bin Faisal University , Dammam , KSA
| | - Ahtesham Hussain
- b Lee's Biotech , Korean Institute of Bioscience and Biotechnology , Daejeon , South Korea
| | - Haseeb Ahsan
- c Department of Biochemistry, Faculty of Dentistry , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
13
|
Baldissera MD, Souza CF, Seben D, Sippert LR, Salbego J, Marchesan E, Zanella R, Baldisserotto B, Golombieski JI. Gill bioenergetics dysfunction and oxidative damage induced by thiamethoxam exposure as relevant toxicological mechanisms in freshwater silver catfish Rhamdia quelen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:420-426. [PMID: 29709859 DOI: 10.1016/j.scitotenv.2018.04.292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Thiamethoxam is a neonicotinoid pesticide utilized on a worldwide scale, it has been reported in freshwater ecosystems, and detected in fishery products. Nevertheless, there is a lack of information about thiamethoxam sublethal effects on the gills of freshwater fish, principally linked to energetic metabolism. In this context, creatine kinase (CK) is an enzyme of the phosphoryl transfer network that provides a temporal and spatial energy buffer to maintain cellular energy homeostasis in tissues with high energy requirements, such as gills. Based on this evidence, the aim of this study was to evaluate whether exposure to thiamethoxam impairs the cytosolic and mitochondrial CK activities in gills of Rhamdia quelen, and the involvement of oxidative stress in the energetic imbalance. Branchial CK (cytosolic and mitochondrial) activity and sodium‑potassium pump (Na+, K+-ATPase) were inhibited, and adenosine triphosphate (ATP) levels decreased after 96 h exposure to 1.125 and 3.75 μg/L thiamethoxam compared to the control group. Moreover, levels of branchial thiobarbituric acid reactive substances (TBARS) and protein carbonylation increased at 3.75 μg/L thiamethoxam after 96 h of exposure compared to the control group, while the non-protein thiol (NPSH) content did not differ between groups. It is important to emphasize that all evaluated parameters did not recover after 48 h in clean water. To summarize, the data presented here clearly demonstrated that thiamethoxan exposure severely impairs cytosolic and mitochondrial CK activities, a key enzyme for gill energy buffering to maintain cellular energy homeostasis, and this effect appears to be mediated by oxidation of lipid and protein molecules, which consequently thereby induces oxidative stress.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Débora Seben
- Department of Environmental Engineering and Technology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Letícia R Sippert
- Department of Environmental Engineering and Technology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Joseania Salbego
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Enio Marchesan
- Department of Plant Science, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renato Zanella
- Department of Chemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jaqueline I Golombieski
- Department of Environmental Engineering and Technology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
de Moura Alvorcem L, da Rosa MS, Glänzel NM, Parmeggiani B, Grings M, Schmitz F, Wyse ATS, Wajner M, Leipnitz G. Disruption of Energy Transfer and Redox Status by Sulfite in Hippocampus, Striatum, and Cerebellum of Developing Rats. Neurotox Res 2017; 32:264-275. [PMID: 28417315 DOI: 10.1007/s12640-017-9732-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/19/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023]
Abstract
Patients with sulfite oxidase (SO) deficiency present severe brain abnormalities, whose pathophysiology is not yet elucidated. We evaluated the effects of sulfite and thiosulfate, metabolites accumulated in SO deficiency, on creatine kinase (CK) activity, mitochondrial respiration and redox status in hippocampus, striatum and cerebellum of developing rats. Our in vitro results showed that sulfite and thiosulfate decreased CK activity, whereas sulfite also increased malondialdehyde (MDA) levels in all brain structures evaluated. Sulfite further diminished mitochondrial respiration and increased DCFH oxidation and hydrogen peroxide production in hippocampus. Sulfite-induced CK activity decrease was prevented by melatonin (MEL), resveratrol (RSV), and dithiothreitol while increase of MDA levels was prevented by MEL and RSV. Regarding the antioxidant system, sulfite increased glutathione concentrations in hippocampus and striatum. In addition, sulfite decreased the activities of glutathione peroxidase in all brain structures, of glutathione S-transferase in hippocampus and cerebellum, and of glutathione reductase in cerebellum. In vivo experiments performed with intrahippocampal administration of sulfite demonstrated that this metabolite increased superoxide dismutase activity without altering other biochemical parameters in rat hippocampus. Our data suggest that impairment of energy metabolism and redox status may be important pathomechanisms involved in brain damage observed in individuals with SO deficiency.
Collapse
Affiliation(s)
- Leonardo de Moura Alvorcem
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Mateus Struecker da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Nícolas Manzke Glänzel
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP 90035-003, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
16
|
da Rosa MS, Seminotti B, Ribeiro CAJ, Parmeggiani B, Grings M, Wajner M, Leipnitz G. 3-Hydroxy-3-methylglutaric and 3-methylglutaric acids impair redox status and energy production and transfer in rat heart: relevance for the pathophysiology of cardiac dysfunction in 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. Free Radic Res 2016; 50:997-1010. [PMID: 27430492 DOI: 10.1080/10715762.2016.1214952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A lyase (HL) deficiency is characterized by tissue accumulation of 3-hydroxy-3-methylglutaric (HMG), and 3-methylglutaric (MGA) acids. Affected patients present cardiomyopathy, whose pathomechanisms are not yet established. We investigated the effects of HMG and MGA on energy and redox homeostasis in rat heart using in vivo and in vitro models. In vivo experiments showed that intraperitoneal administration of HMG and MGA decreased the activities of the respiratory chain complex II and creatine kinase (CK), whereas HMG also decreased the activity of complex II-III. Furthermore, HMG and MGA injection increased reactive species production and carbonyl formation, and decreased glutathione concentrations. Regarding the enzymatic antioxidant defenses, HMG and MGA increased glutathione peroxidase (GPx) and glutathione reductase (GR) activities, while only MGA diminished the activities of superoxide dismutase (SOD) and catalase, as well as the protein content of SOD1. Pre-treatment with melatonin (MEL) prevented MGA-induced decrease of CK activity and SOD1 levels. In vitro results demonstrated that HMG and MGA increased reactive species formation, induced lipid peroxidation and decreased glutathione. We also verified that reactive species overproduction and glutathione decrease provoked by HMG and MGA were abrogated by MEL and lipoic acid (LA), while only MEL prevented HMG- and MGA-induced lipoperoxidation. Allopurinol (ALP) also prevented reactive species overproduction caused by both metabolites. Our data provide solid evidence that bioenergetics dysfunction and oxidative stress are induced by HMG and MGA in heart, which may explain the cardiac dysfunction observed in HL deficiency, and also suggest that antioxidant supplementation could be considered as adjuvant therapy for affected patients.
Collapse
Affiliation(s)
- Mateus Struecker da Rosa
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil
| | - Bianca Seminotti
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil
| | - César Augusto João Ribeiro
- b Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , São Bernardo do Campo , SP , Brazil
| | - Belisa Parmeggiani
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil
| | - Mateus Grings
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil
| | - Moacir Wajner
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil ;,c Departamento de Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil ;,d Serviço de Genética Médica , Hospital de Clínicas de Porto Alegre , Porto Alegre , RS , Brazil
| | - Guilhian Leipnitz
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil ;,c Departamento de Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil
| |
Collapse
|
17
|
Zandberg L, van Dyk HC, van der Westhuizen FH, van Dijk AA. A 3-methylcrotonyl-CoA carboxylase deficient human skin fibroblast transcriptome reveals underlying mitochondrial dysfunction and oxidative stress. Int J Biochem Cell Biol 2016; 78:116-129. [PMID: 27417235 DOI: 10.1016/j.biocel.2016.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2023]
Abstract
Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive inherited metabolic disease of leucine catabolism with a highly variable phenotype. Apart from extensive mutation analyses of the MCCC1 and MCCC2 genes encoding 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), molecular data on MCC deficiency gene expression studies in human tissues is lacking. For IEMs, unbiased '-omics' approaches are starting to reveal the secondary cellular responses to defects in biochemical pathways. Here we present the first whole genome expression profile of immortalized cultured skin fibroblast cells of two clinically affected MCC deficient patients and two healthy individuals generated using Affymetrix(®)HuExST1.0 arrays. There were 16191 significantly differentially expressed transcript IDs of which 3591 were well annotated and present in the predefined knowledge database of Ingenuity Pathway Analysis software used for downstream functional analyses. The most noticeable feature of this MCCA deficient skin fibroblast transcriptome was the typical genetic hallmark of mitochondrial dysfunction, decreased antioxidant response and disruption of energy homeostasis, which was confirmed by mitochondrial functional analyses. The MCC deficient transcriptome seems to predict oxidative stress that could alter the complex secondary cellular response that involve genes of the glycolysis, the TCA cycle, OXPHOS, gluconeogenesis, β-oxidation and the branched-chain fatty acid metabolism. An important emerging insight from this human MCCA transcriptome in combination with previous reports is that chronic exposure to the primary and secondary metabolites of MCC deficiency and the resulting oxidative stress might impact adversely on the quality of life and energy levels, irrespective of whether MCC deficient individuals are clinically affected or asymptomatic.
Collapse
Affiliation(s)
- L Zandberg
- Biochemistry Division, Centre for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - H C van Dyk
- Biochemistry Division, Centre for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - F H van der Westhuizen
- Biochemistry Division, Centre for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - A A van Dijk
- Biochemistry Division, Centre for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
18
|
Interplay between oxidant species and energy metabolism. Redox Biol 2015; 8:28-42. [PMID: 26741399 PMCID: PMC4710798 DOI: 10.1016/j.redox.2015.11.010] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. Energy metabolism is both a source and target of oxidant species. Reactive oxygen species are formed in redox reactions in catabolic pathways. Sensitive targets of oxidant species regulate the flux of metabolic pathways. Metabolic pathways and antioxidant systems are regulated coordinately.
Collapse
|
19
|
Seminotti B, Amaral AU, Ribeiro RT, Rodrigues MDN, Colín-González AL, Leipnitz G, Santamaría A, Wajner M. Oxidative Stress, Disrupted Energy Metabolism, and Altered Signaling Pathways in Glutaryl-CoA Dehydrogenase Knockout Mice: Potential Implications of Quinolinic Acid Toxicity in the Neuropathology of Glutaric Acidemia Type I. Mol Neurobiol 2015; 53:6459-6475. [PMID: 26607633 DOI: 10.1007/s12035-015-9548-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022]
Abstract
We investigated the effects of an acute intrastriatal QUIN administration on cellular redox and bioenergetics homeostasis, as well as on important signaling pathways in the striatum of wild-type (Gcdh +/+ , WT) and knockout mice for glutaryl-CoA dehydrogenase (Gcdh -/- ) fed a high lysine (Lys, 4.7 %) chow. QUIN increased lactate release in both Gcdh +/+ and Gcdh -/- mice and reduced the activities of complex IV and creatine kinase only in the striatum of Gcdh -/- mice. QUIN also induced lipid and protein oxidative damage and increased the generation of reactive nitrogen species, as well as the activities of the antioxidant enzymes glutathione peroxidase, superoxide dismutase 2, and glutathione-S-transferase in WT and Gcdh -/- animals. Furthermore, QUIN induced DCFH oxidation (reactive oxygen species production) and reduced GSH concentrations (antioxidant defenses) in Gcdh -/- . An early increase of Akt and phospho-Erk 1/2 in the cytosol and Nrf2 in the nucleus was also observed, as well as a decrease of cytosolic Keap1caused by QUIN, indicating activation of the Nrf2 pathway mediated by Akt and phospho-Erk 1/2, possibly as a compensatory protective mechanism against the ongoing QUIN-induced toxicity. Finally, QUIN increased NF-κB and diminished IκBα expression, evidencing a pro-inflammatory response. Our data show a disruption of energy and redox homeostasis associated to inflammation induced by QUIN in the striatum of Gcdh -/- mice submitted to a high Lys diet. Therefore, it is presumed that QUIN may possibly contribute to the pathophysiology of striatal degeneration in children with glutaric aciduria type I during inflammatory processes triggered by infections or vaccinations.
Collapse
Affiliation(s)
- Bianca Seminotti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Marília Danyelle Nunes Rodrigues
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Ana Laura Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, SSA, México, DF, México
| | - Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, SSA, México, DF, México
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil. .,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Trujillo M, Alvarez B, Radi R. One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates. Free Radic Res 2015; 50:150-71. [PMID: 26329537 DOI: 10.3109/10715762.2015.1089988] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oxidation of biothiols participates not only in the defense against oxidative damage but also in enzymatic catalytic mechanisms and signal transduction processes. Thiols are versatile reductants that react with oxidizing species by one- and two-electron mechanisms, leading to thiyl radicals and sulfenic acids, respectively. These intermediates, depending on the conditions, participate in further reactions that converge on different stable products. Through this review, we will describe the biologically relevant species that are able to perform these oxidations and we will analyze the mechanisms and kinetics of the one- and two-electron reactions. The processes undergone by typical low-molecular-weight thiols as well as the particularities of specific thiol proteins will be described, including the molecular determinants proposed to account for the extraordinary reactivities of peroxidatic thiols. Finally, the main fates of the thiyl radical and sulfenic acid intermediates will be summarized.
Collapse
Affiliation(s)
- Madia Trujillo
- a Departamento de Bioquímica , Facultad de Medicina, Universidad de la República , Montevideo , Uruguay .,b Center for Free Radical and Biomedical Research , Universidad de la República , Montevideo , Uruguay , and
| | - Beatriz Alvarez
- b Center for Free Radical and Biomedical Research , Universidad de la República , Montevideo , Uruguay , and.,c Laboratorio de Enzimología, Facultad de Ciencias , Universidad de la República , Montevideo , Uruguay
| | - Rafael Radi
- a Departamento de Bioquímica , Facultad de Medicina, Universidad de la República , Montevideo , Uruguay .,b Center for Free Radical and Biomedical Research , Universidad de la República , Montevideo , Uruguay , and
| |
Collapse
|
21
|
The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 2015; 13:68. [PMID: 25889215 PMCID: PMC4382850 DOI: 10.1186/s12916-015-0310-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction and defects in oxidative metabolism are a characteristic feature of many chronic illnesses not currently classified as mitochondrial diseases. Examples of such illnesses include bipolar disorder, multiple sclerosis, Parkinson's disease, schizophrenia, depression, autism, and chronic fatigue syndrome. DISCUSSION While the majority of patients with multiple sclerosis appear to have widespread mitochondrial dysfunction and impaired ATP production, the findings in patients diagnosed with Parkinson's disease, autism, depression, bipolar disorder schizophrenia and chronic fatigue syndrome are less consistent, likely reflecting the fact that these diagnoses do not represent a disease with a unitary pathogenesis and pathophysiology. However, investigations have revealed the presence of chronic oxidative stress to be an almost invariant finding in study cohorts of patients afforded each diagnosis. This state is characterized by elevated reactive oxygen and nitrogen species and/or reduced levels of glutathione, and goes hand in hand with chronic systemic inflammation with elevated levels of pro-inflammatory cytokines. SUMMARY This paper details mechanisms by which elevated levels of reactive oxygen and nitrogen species together with elevated pro-inflammatory cytokines could conspire to pave a major road to the development of mitochondrial dysfunction and impaired oxidative metabolism seen in many patients diagnosed with these disorders.
Collapse
|
22
|
Analysis of creatine kinase activity with evaluation of protein expression under the effect of heat and hydrogen peroxide. UKRAINIAN BIOCHEMICAL JOURNAL 2015. [DOI: 10.15407/ubj87.01.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Pasechnik IN, Skobelev EI, Krylov VV, Sal'nikov PS, Vershinina MG, Blokhina NV, Meshcheryakov AA. [Abdominal sepsis and oxidative stress]. Khirurgiia (Mosk) 2015:18-23. [PMID: 26978759 DOI: 10.17116/hirurgia20151218-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Oxidative stress deserves special attention in the pathogenesis of sepsis. MATERIAL AND METHODS The study included 96 patients with abdominal sepsis caused by advanced suppurative peritonitis and destructive pancreatitis. All patients were divided into 3 groups depending on the severity of sepsis. Level of malondialdehyde (MDA) was determined to evaluate the intensity of lipid peroxidation (LPO). Proteins oxidative modification was assessed according to level of sulfhydryl groups (SH-groups) and carbonyls in proteins. State of anti-oxidant system (AOS) was defined based on activity of catalase, peroxidase, superoxide dismutase and glutathione peroxidase in erythrocytes. RESULTS AND DISCUSSION There was no relationship between severity of multiple organ failure, MDA concentration, SH-groups and anti-oxidant enzymes levels. At the same time positive correlation between severity of multiple organ failure and carbonyls content in proteins was revealed. CONCLUSION In surgical patients sepsis develops on background of oxidative stress. Significant reduction of SH-groups in proteins by the moment of sepsis diagnosis is an unfavorable factor for outcome. The degree of multiple organ failure in patients with abdominal sepsis correlates with oxidative injury of proteinic structures.
Collapse
Affiliation(s)
- I N Pasechnik
- Educational and Research Medical Center of Presidential Administration of the Russian Federation, Moscow
| | - E I Skobelev
- Educational and Research Medical Center of Presidential Administration of the Russian Federation, Moscow
| | - V V Krylov
- Educational and Research Medical Center of Presidential Administration of the Russian Federation, Moscow
| | - P S Sal'nikov
- Educational and Research Medical Center of Presidential Administration of the Russian Federation, Moscow; Central Clinical Hospital and Polyclinic of Presidential Administration of the Russian Federation, Moscow
| | - M G Vershinina
- Central Clinical Hospital and Polyclinic of Presidential Administration of the Russian Federation, Moscow
| | - N V Blokhina
- Educational and Research Medical Center of Presidential Administration of the Russian Federation, Moscow
| | - A A Meshcheryakov
- Educational and Research Medical Center of Presidential Administration of the Russian Federation, Moscow
| |
Collapse
|
24
|
Siebert C, Kolling J, Scherer EBS, Schmitz F, da Cunha MJ, Mackedanz V, de Andrade RB, Wannmacher CMD, Wyse ATS. Effect of physical exercise on changes in activities of creatine kinase, cytochrome c oxidase and ATP levels caused by ovariectomy. Metab Brain Dis 2014; 29:825-35. [PMID: 24810635 DOI: 10.1007/s11011-014-9564-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
The reduction in the secretion of ovarian hormones, principally estrogen, is a consequence of menopause. Estrogens act primarily as female sex hormones, but also exert effects on different physiological systems including the central nervous system. The treatment normally used to reduce the symptoms of menopause is the hormone therapy, which seems to be effective in treating symptoms, but it may be responsible for adverse effects. Based on this, there is an increasing demand for alternative therapies that minimize signs and symptoms of menopause. In the present study we investigated the effect of ovariectomy and/or physical exercise on the activities of energy metabolism enzymes, such as creatine kinase (cytosolic and mitochondrial fractions), pyruvate kinase, succinate dehydrogenase, complex II, cytochrome c oxidase, as well as on ATP levels in the hippocampus of adult rats. Adult female Wistar rats with 90 days of age were subjected to ovariectomy (an animal model widely used to mimic the postmenopausal changes). Thirty days after the procedure, the rats were submitted to the exercise protocol, which was performed three times a week for 30 days. Twelve hours after the last training session, the rats were decapitated for subsequent biochemical analyzes. Results showed that ovariectomy did not affect the activities of pyruvate kinase, succinate dehydrogenase and complex II, but decreased the activities of creatine kinase (cytosolic and mitochondrial fractions) and cytochrome c oxidase. ATP levels were also reduced. Exercise did not produce the expected results since it was only able to partially reverse the activity of creatine kinase cytosolic fraction. The results of this study suggest that estrogen deficiency, which occurs as a result of ovariectomy, affects generation systems and energy homeostasis, reducing ATP levels in hippocampus of adult female rats.
Collapse
Affiliation(s)
- Cassiana Siebert
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rajbanshi SL, Pandanaboina CS. Alcohol stress on cardiac tissue – Ameliorative effects of Thespesia populnea leaf extract. J Cardiol 2014; 63:449-59. [DOI: 10.1016/j.jjcc.2013.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 12/20/2022]
|
26
|
Morris G, Maes M. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr Neuropharmacol 2014; 12:168-85. [PMID: 24669210 PMCID: PMC3964747 DOI: 10.2174/1570159x11666131120224653] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/12/2013] [Accepted: 11/02/2013] [Indexed: 02/07/2023] Open
Abstract
Myalgic Encephalomyelitis (ME) / Chronic Fatigue Syndrome (CFS) has been classified as a disease of the central nervous system by the WHO since 1969. Many patients carrying this diagnosis do demonstrate an almost bewildering array of biological abnormalities particularly the presence of oxidative and nitrosative stress (O&NS) and a chronically activated innate immune system. The proposal made herein is that once generated chronically activated O&NS and immune-inflammatory pathways conspire to generate a multitude of self-sustaining and self-amplifying pathological processes which are associated with the onset of ME/CFS. Sources of continuous activation of O&NS and immune-inflammatory pathways in ME/CFS are chronic, intermittent and opportunistic infections, bacterial translocation, autoimmune responses, mitochondrial dysfunctions, activation of the Toll-Like Receptor Radical Cycle, and decreased antioxidant levels. Consequences of chronically activated O&NS and immune-inflammatory pathways in ME/CFS are brain disorders, including neuroinflammation and brain hypometabolism / hypoperfusion, toxic effects of nitric oxide and peroxynitrite, lipid peroxidation and oxidative damage to DNA, secondary autoimmune responses directed against disrupted lipid membrane components and proteins, mitochondrial dysfunctions with a disruption of energy metabolism (e.g. compromised ATP production) and dysfunctional intracellular signaling pathways. The interplay between all of these factors leads to self-amplifying feed forward loops causing a chronic state of activated O&NS, immune-inflammatory and autoimmune pathways which may sustain the disease.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand ; Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
27
|
Ullrich V, Schildknecht S. Sensing hypoxia by mitochondria: a unifying hypothesis involving S-nitrosation. Antioxid Redox Signal 2014; 20:325-38. [PMID: 22793377 DOI: 10.1089/ars.2012.4788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Sudden hypoxia requires a rapid response in tissues with high energy demand. Mitochondria are rapid sensors for a lack of oxygen, but no consistent mechanism for the sensing process and the subsequent counter-regulation has been described. RECENT ADVANCES In the present hypothesis review, we suggest an oxygen-sensing mechanism by mitochondria that is initiated at low oxygen tension by electrons from the respiratory chain, leading to the reduction of intracellular nitrite to nitric oxide ((•)NO) that would subsequently compete with oxygen for binding to cytochrome c oxidase. This allows superoxide ((•)O2(-)) formation in hypoxic areas, leading to S-nitrosation and the inhibition of mitochondrial Krebs cycle enzymes. With more formation of (•)O2(-), peroxynitrite is generated and known to damage the connection between the mitochondrial matrix and the outer membrane. CRITICAL ISSUES A fundamental question on a regulatory mechanism is its reversibility. Readmission of oxygen and opening of the mitochondrial KATP-channel would allow electrons from glycerol-3-phosphate to selectively reduce the ubiquinone pool to generate (•)O2(-) at both sides of the inner mitochondrial membrane. On the cytosolic side, superoxide is dismutated and will support H2O2/Fe(2+)-dependent transcription processes and on the mitochondrial matrix side, it could lead to the one-electron reduction and reactivation of S-nitrosated proteins. FUTURE DIRECTIONS It remains to be elucidated up to which stage the herein proposed silencing of mitochondria remains reversible and when irreversible changes that ultimately lead to classical reperfusion injury are initiated.
Collapse
Affiliation(s)
- Volker Ullrich
- Department of Biology, University of Konstanz , Konstanz, Germany
| | | |
Collapse
|
28
|
Grings M, Moura AP, Parmeggiani B, Marcowich GF, Amaral AU, de Souza Wyse AT, Wajner M, Leipnitz G. Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: Potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency. Gene 2013; 531:191-8. [DOI: 10.1016/j.gene.2013.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/04/2013] [Indexed: 01/04/2023]
|
29
|
Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study. Arch Biochem Biophys 2013; 539:81-6. [DOI: 10.1016/j.abb.2013.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 08/27/2013] [Indexed: 11/23/2022]
|
30
|
Is there a role for nitric oxide in methamphetamine-induced dopamine terminal degeneration? Neurotox Res 2013; 25:153-60. [PMID: 23918001 DOI: 10.1007/s12640-013-9415-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 12/21/2022]
Abstract
Methamphetamine (METH) abuse results in long-term damage to the dopaminergic system, manifesting as decreases in dopamine (DA) tissue content, DA transporter binding, as well as tyrosine hydroxylase and vesicular monoamine transporter immunostaining. However, the exact cascade of events that ultimately result in this damage has not been clearly elucidated. One factor that has been heavily implicated in METH-induced DA terminal degeneration is the production of nitric oxide (NO). Unfortunately, many of the studies attempting to clarify the role of NO in METH-induced neurotoxicity have been confounded by issues such as the disruption of METH-induced hyperthermia, preventing the formation of strong conclusions. As a result, there is a body of work suggesting that NO is sufficient for METH-induced neurotoxicity, while other studies suggest that NO does not play a role in METH-induced degeneration of DA nerve terminals. This review summarizes the existing studies investigating the role of NO in METH-induced neurotoxicity, and argues that while NO may be necessary for METH-induced neurotoxicity, it is not sufficient. Finally, important areas of future investigation are highlighted and discussed.
Collapse
|
31
|
Zanatta Â, Moura AP, Tonin AM, Knebel LA, Grings M, Lobato VA, Ribeiro CAJ, Dutra-Filho CS, Leipnitz G, Wajner M. Neurochemical evidence that the metabolites accumulating in 3-methylcrotonyl-CoA carboxylase deficiency induce oxidative damage in cerebral cortex of young rats. Cell Mol Neurobiol 2013; 33:137-46. [PMID: 23053545 PMCID: PMC11497930 DOI: 10.1007/s10571-012-9879-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
Abstract
Isolated 3-methylcrotonyl-CoA carboxylase deficiency (3MCCD) is an autosomal recessive disorder of leucine metabolism biochemically characterized by accumulation of 3-methylcrotonylglycine (3MCG), 3-methylcrotonic acid (3MCA) and 3-hydroxyisovaleric acid. A considerable number of affected individuals present neurological symptoms with or without precedent crises of metabolic decompensation and brain abnormalities whose pathogenesis is poorly known. We investigated the in vitro effects of 3MCG and 3MCA on important parameters of oxidative stress in cerebral cortex of young rats. 3MCG and 3MCA significantly increased TBA-RS and carbonyl formation, indicating that these compounds provoke lipid and protein oxidation, respectively. In contrast, nitric oxide production was not affected by 3MCG and 3MCA. Furthermore, 3MCG- and 3MCA-induced elevation of TBA-RS values was fully prevented by melatonin, trolox and reduced glutathione, but not by the nitric oxide inhibitor N(ω)-nitro-L-arginine methyl ester or the combination of catalase plus superoxide dismutase, indicating that reactive oxygen species were involved in the oxidative damage caused by these compounds. We also found that the activity of the antioxidant enzymes glutathione peroxidase, catalase, superoxide dismutase and glutathione reductase were not altered in vitro by 3MCG and 3MCA. It is therefore presumed that alterations of the cellular redox homeostasis caused by the major metabolites accumulating in 3MCCD may potentially be involved in the pathophysiology of the neurological dysfunction and structural brain alterations found in patients affected by this disorder.
Collapse
Affiliation(s)
- Ângela Zanatta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600-Anexo, Porto Alegre, RS, 90035-003 Brazil
| | - Alana Pimentel Moura
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600-Anexo, Porto Alegre, RS, 90035-003 Brazil
| | - Anelise Miotti Tonin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600-Anexo, Porto Alegre, RS, 90035-003 Brazil
| | - Lisiane Aurélio Knebel
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600-Anexo, Porto Alegre, RS, 90035-003 Brazil
| | - Mateus Grings
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600-Anexo, Porto Alegre, RS, 90035-003 Brazil
| | - Vannessa Araújo Lobato
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600-Anexo, Porto Alegre, RS, 90035-003 Brazil
| | - César Augusto João Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600-Anexo, Porto Alegre, RS, 90035-003 Brazil
| | - Carlos Severo Dutra-Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600-Anexo, Porto Alegre, RS, 90035-003 Brazil
| | - Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600-Anexo, Porto Alegre, RS, 90035-003 Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600-Anexo, Porto Alegre, RS, 90035-003 Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Kohr MJ, Roof SR, Zweier JL, Ziolo MT. Modulation of myocardial contraction by peroxynitrite. Front Physiol 2012; 3:468. [PMID: 23248603 PMCID: PMC3520483 DOI: 10.3389/fphys.2012.00468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/26/2012] [Indexed: 12/18/2022] Open
Abstract
Peroxynitrite is a potent oxidant that is quickly emerging as a crucial modulator of myocardial function. This review will focus on the regulation of myocardial contraction by peroxynitrite during health and disease, with a specific emphasis on cardiomyocyte Ca2+ handling, proposed signaling pathways, and protein end-targets.
Collapse
Affiliation(s)
- Mark J Kohr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA ; Division of Cardiovascular Pathology, Department of Pathology, Johns Hopkins University Baltimore, MD, USA
| | | | | | | |
Collapse
|
33
|
Rojas DB, de Andrade RB, Gemelli T, Oliveira LS, Campos AG, Dutra-Filho CS, Wannmacher CMD. Effect of histidine administration to female rats during pregnancy and lactation on enzymes activity of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Metab Brain Dis 2012; 27:595-603. [PMID: 22638695 DOI: 10.1007/s11011-012-9319-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/15/2012] [Indexed: 01/01/2023]
Abstract
Histidinemia is an inborn error of metabolism of amino acids caused by deficiency of histidase activity in liver and skin with consequent accumulation of histidine in plasma and tissues. Histidinemia is an autosomal recessive trait usually considered harmless to patients and their offspring, but some patients and children born from histidinemic mothers have mild neurologic alterations. Considering that histidinemia is one of the most frequently identified metabolic conditions, in the present study we investigated the effect of L-histidine load to female rats during pregnancy and lactation on some parameters of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Pyruvate kinase, cytosolic and mitochondrial creatine kinase activities decreased in cerebral cortex and in hippocampus of rats at 21 days of age and this pattern remained in the cerebral cortex and in hippocampus at 60 days of age. Moreover, adenylate kinase activity was reduced in the cerebral cortex and in hippocampus of the offspring at 21 days of age, whereas the activity was increased in the two tissues at 60 days of age. These results suggest that administration of L-histidine to female rats in the course of pregnancy and lactation could impair energy homeostasis in the cerebral cortex and hippocampus of the offspring. Considering that histidinemia is usually a benign condition and little attention has been given to maternal histidinemia, it seems important to perform more studies in the children born from histidinemic mothers.
Collapse
Affiliation(s)
- Denise Bertin Rojas
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Vasilaki A, Simpson D, McArdle F, McLean L, Beynon RJ, Van Remmen H, Richardson AG, McArdle A, Faulkner JA, Jackson MJ. Formation of 3-nitrotyrosines in carbonic anhydrase III is a sensitive marker of oxidative stress in skeletal muscle. Proteomics Clin Appl 2012; 1:362-72. [PMID: 21136689 DOI: 10.1002/prca.200600702] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidation of skeletal muscle proteins has been reported to occur following contractions, with ageing, and with a variety of disease states, but the nature of the oxidised proteins has not been identified. A proteomics approach was utilised to identify major proteins that contain carbonyls and/or 3-nitrotyrosine (3-NT) groups in the gastrocnemius (GTN) muscles of adult (5-11 months of age) and old (26-28 months of age) wild type (WT) mice and adult mice lacking copper, zinc superoxide dismutase (Sod1(-/-) mice), manganese superoxide dismutase (Sod2(+/-) mice) or glutathione peroxidase 1 (GPx1(-/-) mice). In quiescent GTN muscles of adult and old WT mice, protein carbonylation and/or formation of 3-NT occurred in several proteins involved in glycolysis, as well as creatine kinase and carbonic anhydrase III. Following contractions, the 3-NT intensity was increased in specific protein bands from GTN muscles of both adult and old WT mice. In quiescent GTN muscles from adult Sod1(-/-) , Sod2(+/-) or GPx1(-/-) mice compared with age-matched WT mice only carbonic anhydrase III showed a greater 3-NT content. We conclude that formation of 3-NT occurs readily in response to oxidative stress in carbonic anhydrase III and this may provide a sensitive measure of oxidative damage to muscle proteins.
Collapse
Affiliation(s)
- Aphrodite Vasilaki
- Division of Metabolic and Cellular Medicine, School of Clinical Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bala Sakthi Janani MM, Selvakumar K, Suganya S, Fariya Yasmine AB, Krishnamoorthy G, Arunakaran J. Protective role of lycopene against PCBs-induced nitrosative stress in cerebral cortex of adult male rats. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Amaral AU, Cecatto C, Seminotti B, Zanatta Â, Fernandes CG, Busanello ENB, Braga LM, Ribeiro CAJ, de Souza DOG, Woontner M, Koeller DM, Goodman S, Wajner M. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice. Mol Genet Metab 2012; 107:81-6. [PMID: 22578804 DOI: 10.1016/j.ymgme.2012.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 12/23/2022]
Abstract
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric (GA) and 3-hydroxyglutaric (3HGA) acids in the brain and other tissues. Affected patients usually present with hypotonia and brain damage and acute encephalopathic episodes whose pathophysiology is not yet fully established. In this study we investigated important parameters of cellular bioenergetics in brain, heart and skeletal muscle from 15-day-old glutaryl-CoA dehydrogenase deficient mice (Gcdh(-/-)) submitted to a single intra-peritoneal injection of saline (Sal) or lysine (Lys - 8 μmol/g) as compared to wild type (WT) mice. We evaluated the activities of the respiratory chain complexes II, II-III and IV, α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and synaptic Na(+), K(+)-ATPase. No differences of all evaluated parameters were detected in the Gcdh(-/-) relatively to the WT mice injected at baseline (Sal). Furthermore, mild increases of the activities of some respiratory chain complexes (II-III and IV) were observed in heart and skeletal muscle of Gcdh(-/-) and WT mice after Lys administration. However, the most marked effects provoked by Lys administration were marked decreases of the activities of Na(+), K(+)-ATPase in brain and CK in brain and skeletal muscle of Gcdh(-/-) mice. In contrast, brain α-KGDH activity was not altered in WT and Gcdh(-/-) injected with Sal or Lys. Our results demonstrate that reduction of Na(+), K(+)-ATPase and CK activities may play an important role in the pathogenesis of the neurodegenerative changes in GA I.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vincent L, Oyono-Enguéllé S, Féasson L, Banimbek V, Dohbobga M, Martin C, Thiriet P, Francina A, Dubouchaud H, Sanchez H, Chapot R, Denis C, Geyssant A, Messonnier L. Effects of regular physical activity on skeletal muscle structural, energetic, and microvascular properties in carriers of sickle cell trait. J Appl Physiol (1985) 2012; 113:549-56. [DOI: 10.1152/japplphysiol.01573.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To assess the effects of regular physical activity on muscle functional characteristics of carriers of sickle cell trait (SCT), 39 untrained (U) and trained (T) hemoglobin (Hb)AA (CON) and SCT subjects (U-CON, n = 12; U-SCT, n = 8; T-CON, n = 10; and T-SCT, n = 9) performed a graded exercise and a time to exhaustion (Tex) test, and were subjected to a muscle biopsy. Maximal power, total work performed during Tex, citrate synthase and cytochrome c oxidase (COX) activities, respiratory chain complexes I and IV content, and capillary density (CD), diameter (COD), and surface area (CSA) were upregulated by the same proportion in T-CON and T-SCT compared with their untrained counterparts. These proportionally similar differences imply that the observed discrepancies between U-SCT and U-CON remained in the trained subjects. Specifically, both CD and COX remained and tended to remain lower, and both COD and CSA remained and tended to remain higher in T-SCT than in T-CON. Besides, carriers of SCT displayed specific adaptations with regular physical activity: creatine kinase activity; complexes II, III, and V content; and type I fiber surface area and capillary tortuosity were lower or unchanged in T-SCT than in U-SCT. In summary, our results show that 1) carriers of SCT adapted almost similarly to CON to regular physical activity for most of the studied muscle characteristics, 2) oxidative potential remains altered in physically active carriers of SCT compared with HbAA counterparts, and 3) the specific remodeling of muscle microvascular network persists in the trained state.
Collapse
Affiliation(s)
- Lucile Vincent
- Université de Savoie, Laboratoire de Physiologie de l'Exercice EA4338, Chambéry, France
- Unité de Myologie, Centre Hospitalier Universitaire de Saint Etienne, France
| | - Samuel Oyono-Enguéllé
- Laboratory of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Cameroon
| | - Léonard Féasson
- Unité de Myologie, Centre Hospitalier Universitaire de Saint Etienne, France
- Laboratory of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Cameroon
- Université de Lyon, Université Jean Monnet Saint-Etienne, Laboratoire de Physiologie de l'Exercice EA4338, Saint Etienne, France
| | - Viviane Banimbek
- Laboratory of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Cameroon
| | - Macias Dohbobga
- Institut National de la Jeunesse et des Sports, Yaoundé, Cameroun
| | - Cyril Martin
- Centre de Recherche et d'Innovation sur le Sport EA647, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Patrice Thiriet
- Centre de Recherche et d'Innovation sur le Sport EA647, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Alain Francina
- Unité Pathologie Moléculaire de l'Hémoglobine, Hospices Civils de Lyon, Lyon, France
| | - Hervé Dubouchaud
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1055, Grenoble, France; and
| | - Hervé Sanchez
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Activités Physiques Militaires, La Tronche, France
| | - Rachel Chapot
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Activités Physiques Militaires, La Tronche, France
| | - Christian Denis
- Unité de Myologie, Centre Hospitalier Universitaire de Saint Etienne, France
- Laboratory of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Cameroon
- Université de Lyon, Université Jean Monnet Saint-Etienne, Laboratoire de Physiologie de l'Exercice EA4338, Saint Etienne, France
| | - André Geyssant
- Unité de Myologie, Centre Hospitalier Universitaire de Saint Etienne, France
- Laboratory of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Cameroon
- Université de Lyon, Université Jean Monnet Saint-Etienne, Laboratoire de Physiologie de l'Exercice EA4338, Saint Etienne, France
| | - Laurent Messonnier
- Université de Savoie, Laboratoire de Physiologie de l'Exercice EA4338, Chambéry, France
| |
Collapse
|
38
|
Wang BS, Tang CH, Chiu CK, Huang MH. Inhibitory effects of water extract from longan twigs on mutation and nitric oxide production. Food Chem 2012; 135:440-5. [PMID: 22868111 DOI: 10.1016/j.foodchem.2012.04.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 01/14/2023]
Abstract
This study examines the inhibitory effects of water extract from longan twigs (WLTs) on mutation and nitric oxide (NO) production. The results show that WLT inhibited the mutagenicity of 2-aminoanthracene (2-AA), an indirect mutagen, and 4-nitroquinoline-N-oxide (4-NQO), a direct mutagen toward Salmonella typhimurium TA 98 and TA 100. In addition, WLT in the range 0-0.6 mg/ml showed radical scavenging, reducing activities and chelating activity, as well as decreased lipid oxidative damage. Meanwhile, WLT also inhibited tyrosinase activity and NO generation in lipopolysaccharide (LPS) stimulated macrophages. High performance liquid chromatography analysis suggests that the major phenolic constituents in WLT are epicatechin, ellagic acid and gallic acid. These bioactive components may contribute to the protective effects of WLT. Our data suggests that WLT can be applied to antimutation, anti-inflammation and antityrosinase.
Collapse
Affiliation(s)
- Bor-Sen Wang
- Department of Applied Life Science and Health, Chia-Nan University of Pharmacy and Science, No. 60 Erh-Jen Rd., Sec. 1, Tainan, Taiwan, ROC
| | | | | | | |
Collapse
|
39
|
Mitochondria: redox metabolism and dysfunction. Biochem Res Int 2012; 2012:896751. [PMID: 22593827 PMCID: PMC3347708 DOI: 10.1155/2012/896751] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/05/2012] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the main intracellular location for fuel generation; however, they are not just power plants but involved in a range of other intracellular functions including regulation of redox homeostasis and cell fate. Dysfunction of mitochondria will result in oxidative stress which is one of the underlying causal factors for a variety of diseases including neurodegenerative diseases, diabetes, cardiovascular diseases, and cancer. In this paper, generation of reactive oxygen/nitrogen species (ROS/RNS) in the mitochondria, redox regulatory roles of certain mitochondrial proteins, and the impact on cell fate will be discussed. The current state of our understanding in mitochondrial dysfunction in pathological states and how we could target them for therapeutic purpose will also be briefly reviewed.
Collapse
|
40
|
Moura AP, Ribeiro CAJ, Zanatta Â, Busanello ENB, Tonin AM, Wajner M. 3-Methylcrotonylglycine disrupts mitochondrial energy homeostasis and inhibits synaptic Na(+),K (+)-ATPase activity in brain of young rats. Cell Mol Neurobiol 2012; 32:297-307. [PMID: 21993987 PMCID: PMC11498398 DOI: 10.1007/s10571-011-9761-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
Abstract
Deficiency of 3-methylcrotonyl-CoA carboxylase activity is an inherited metabolic disease biochemically characterized by accumulation and high urinary excretion of 3-methylcrotonylglycine (3MCG), and also of 3-hydroisovalerate in lesser amounts. Affected patients usually have neurologic dysfunction, brain abnormalities and cardiomyopathy, whose pathogenesis is still unknown. The present study investigated the in vitro effects of 3MCG on important parameters of energy metabolism, including CO(2) production from labeled acetate, enzyme activities of the citric acid cycle, as well as of the respiratory chain complexes I-IV (oxidative phosphorylation), creatine kinase (intracellular ATP transfer), and synaptic Na(+),K(+)-ATPase (neurotransmission) in brain cortex of young rats. 3MCG significantly reduced CO(2) production, implying that this compound compromises citric acid cycle activity. Furthermore, 3MCG diminished the activities of complex II-III of the respiratory chain, mitochondrial creatine kinase and synaptic membrane Na(+),K(+)-ATPase. Furthermore, antioxidants were able to attenuate or fully prevent the inhibitory effect of 3MCG on creatine kinase and synaptic membrane Na(+),K(+)-ATPase activities. We also observed that lipid peroxidation was elicited by 3MCG, suggesting the involvement of free radicals on 3MCG-induced effects. Considering the importance of the citric acid cycle and the electron flow through the respiratory chain for brain energy production, creatine kinase for intracellular energy transfer, and Na(+),K(+)-ATPase for the maintenance of the cell membrane potential, the present data indicate that 3MCG potentially impairs mitochondrial brain energy homeostasis and neurotransmission. It is presumed that these pathomechanisms may be involved in the neurological damage found in patients affected by 3-methylcrotonyl-CoA carboxylase deficiency.
Collapse
Affiliation(s)
- Alana Pimentel Moura
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Porto Alegre, RS 90035-003 Brazil
| | - César Augusto João Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Porto Alegre, RS 90035-003 Brazil
| | - Ângela Zanatta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Porto Alegre, RS 90035-003 Brazil
| | - Estela Natacha Brandt Busanello
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Porto Alegre, RS 90035-003 Brazil
| | - Anelise Miotti Tonin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Porto Alegre, RS 90035-003 Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Porto Alegre, RS 90035-003 Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
| |
Collapse
|
41
|
Hara H, Araya J, Takasaka N, Fujii S, Kojima J, Yumino Y, Shimizu K, Ishikawa T, Numata T, Kawaishi M, Saito K, Hirano J, Odaka M, Morikawa T, Hano H, Nakayama K, Kuwano K. Involvement of creatine kinase B in cigarette smoke-induced bronchial epithelial cell senescence. Am J Respir Cell Mol Biol 2011; 46:306-12. [PMID: 21980054 DOI: 10.1165/rcmb.2011-0214oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cigarette smoke induces damage to proteins and organelles by oxidative stress, resulting in accelerated epithelial cell senescence in the lung, which is implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Although the detailed molecular mechanisms are not fully understood, cellular energy status is one of the most crucial determinants for cell senescence. Creatine kinase (CK) is a constitutive enzyme, playing regulatory roles in energy homeostasis of cells. Among two isozymes, brain-type CK (CKB) is the predominant CK in lung tissue. In this study, we investigated the role of CKB in cigarette smoke extract (CSE)-induced cellular senescence in human bronchial epithelial cells (HBECs). Primary HBECs and Beas2B cells were used. Protein carbonylation was evaluated as a marker of oxidative protein damage. Cellular senescence was evaluated by senescence-associated β-galactosidase staining. CKB inhibition was examined by small interfering RNA and cyclocreatine. Secretion of IL-8, a hallmark of senescence-associated secretary phenotype, was measured by ELISA. CKB expression levels were reduced in HBECs from patients with COPD compared with that of HBECs from nonsmokers. CSE induced carbonylation of CKB and subsequently decreased CKB protein levels, which was reversed by a proteasome inhibitor. CKB inhibition alone induced cell senescence, and further enhanced CSE-induced cell senescence and IL-8 secretion. CSE-induced oxidation of CKB is a trigger for proteasomal degradation. Concomitant loss of enzymatic activity regulating energy homeostasis may lead to the acceleration of bronchial epithelial cell senescence, which is implicated in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
de Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CMD. Tyrosine inhibits creatine kinase activity in cerebral cortex of young rats. Metab Brain Dis 2011; 26:221-7. [PMID: 21789565 DOI: 10.1007/s11011-011-9255-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
Abstract
Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II, where tyrosine levels are highly elevated in tissues and physiological fluids of affected patients. Tyrosinemia type II is a disorder of autosomal recessive inheritance characterized by neurological symptoms similar to those observed in patients with creatine deficiency syndromes. Considering that the mechanisms of brain damage in these disorders are poorly known, in the present study our main objective was to investigate the in vivo and in vitro effects of different concentrations and preincubation times of tyrosine on cytosolic and mitochondrial creatine kinase activities of the cerebral cortex from 14-day-old Wistar rats. The cytosolic CK was reduced by 15% at 1 mM and 32% at 2 mM tyrosine. Similarly, the mitochondrial CK was inhibited by 15% at 1 mM and 22% at 2 mM tyrosine. We observed that the inhibition caused by tyrosine was concentration-dependent and was prevented by reduced glutathione. Results also indicated that mitochondrial, but not cytosolic creatine kinase activity was inhibited by tyrosine in a time-dependent way. Finally, a single injection of L-Tyrosine methyl ester administered i.p. decreased cytosolic (31%) and mitochondrial (18%) creatine kinase activities of brain cortex from rats. Considering that creatine kinase is an enzyme dependent of thiol residues for its function and tyrosine induces oxidative stress, the results suggest that the inhibition caused by tyrosine might occur by oxidation of essential sulfhydryl groups of the enzyme. In case this also occurs in patients with tyrosinemia, it is possible that creatine kinase inhibition may contribute to the neurological dysfunction characteristic of tyrosinemia.
Collapse
Affiliation(s)
- Rodrigo Binkowski de Andrade
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, Brasil
| | | | | | | | | | | |
Collapse
|
43
|
Li C, Sun S, Park D, Jeong HO, Chung HY, Liu XX, Zhou HM. Hydrogen peroxide targets the cysteine at the active site and irreversibly inactivates creatine kinase. Int J Biol Macromol 2011; 49:910-6. [PMID: 21854802 DOI: 10.1016/j.ijbiomac.2011.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 12/18/2022]
Abstract
In our study, we showed that at a relatively low concentration, H(2)O(2) can irreversibly inactivate the human brain type of creatine kinase (HBCK) and that HBCK is inactivated in an H(2)O(2) concentration-dependent manner. HBCK is completely inactivated when incubated with 2mM H(2)O(2) for 1h (pH 8.0, 25°C). Inactivation of HBCK is a two-stage process with a fast stage (k(1)=0.050 ± 0.002 min(-1)) and a slow (k(2)=0.022 ± 0.003 min(-1)) stage. HBCK inactivation by H(2)O(2) was affected by pH and therefore we determined the pH profile of HBCK inactivation by H(2)O(2). H(2)O(2)-induced inactivation could not be recovered by reducing agents such as dl-dithiothreitol, N-acetyl-L-cysteine, and l-glutathione reduced. When HBCK was treated with DTNB, an enzyme substrate that reacts specifically with active site cysteines, the enzyme became resistant to H(2)O(2). HBCK binding to Mg(2+)ATP and creatine can also prevent H(2)O(2) inactivation. Intrinsic and 1-anilinonaphthalene-8-sulfonate-binding fluorescence data showed no tertiary structure changes after H(2)O(2) treatment. The thiol group content of H(2)O(2)-treated HBCK was reduced by 13% (approximately 1 thiol group per HBCK dimer, theoretically). For further insight, we performed a simulation of HBCK and H(2)O(2) docking that suggested the CYS283 residue could interact with H(2)O(2). Considering these results and the asymmetrical structure of HBCK, we propose that H(2)O(2) specifically targets the active site cysteine of HBCK to inactivate HBCK, but that substrate-bound HBCK is resistant to H(2)O(2). Our findings suggest the existence of a previously unknown negative form of regulation of HBCK via reactive oxygen species.
Collapse
Affiliation(s)
- Chang Li
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Acute treatment with the organochalcogen 3‐butyl‐1‐phenyl‐2‐(phenyltelluro)oct‐en‐1‐one produces behavioral changes and inhibition of creatine kinase activity in the brain of rats. Int J Dev Neurosci 2011; 29:903-7. [DOI: 10.1016/j.ijdevneu.2011.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 12/24/2022] Open
|
45
|
Wang BS, Chang LW, Kang ZC, Chu HL, Tai HM, Huang MH. Inhibitory effects of molasses on mutation and nitric oxide production. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.11.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Generation of the oxidized form protects human brain type creatine kinase against cystine-induced inactivation. Int J Biol Macromol 2011; 48:239-42. [DOI: 10.1016/j.ijbiomac.2010.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/26/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
|
47
|
Habib S, Ali A. Biochemistry of nitric oxide. Indian J Clin Biochem 2011; 26:3-17. [PMID: 22211007 PMCID: PMC3068772 DOI: 10.1007/s12291-011-0108-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 01/01/2011] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) a free radical having both cytoprotective as well as tumor promoting agent is formed from l-arginine by converting it to l-citrulline via nitric oxide synthase enzymes. The reaction product of nitric oxide with superoxide generates potent oxidizing agent, peroxynitrite which is the main mediator of tissue and cellular injury. Peroxynitrite is reactive towards many biomolecules which includes amino acids, nucleic acid bases; metal containing compounds, etc. NO metabolites may play a key role in mediating many of the genotoxic/carcinogenic effects as DNA damage, protein or lipid modification, etc. The basic reactions of nitric oxide can be divided as direct effect of the radical where it alone plays a role in either damaging or protecting the cell milieu and an indirect effect in which the byproducts of nitric oxide formed by convergence of two independent radical generating pathways play the role in biological reactions which mainly involve oxidative and nitrosative stress. Nitric oxide is also capable of directly interacting with mitochondria through inhibition of respiration or by permeability transition. Reaction of nitric oxide with metal ions include its direct interaction with the metals or with oxo complexes thereby reducing them to lower valent state. Excessive production of nitric oxide can be studied by inhibiting the synthetic pathway of nitric oxide using both selective or specific nitric oxide synthase inhibitor or non-selective nitric oxide synthase inhibitor with respect to isoforms of nitric oxide.
Collapse
Affiliation(s)
- Safia Habib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002 India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
48
|
Vincent L, Féasson L, Oyono-Enguéllé S, Banimbek V, Monchanin G, Dohbobga M, Wouassi D, Martin C, Gozal D, Geyssant A, Thiriet P, Denis C, Messonnier L. Skeletal muscle structural and energetic characteristics in subjects with sickle cell trait, α-thalassemia, or dual hemoglobinopathy. J Appl Physiol (1985) 2010; 109:728-34. [DOI: 10.1152/japplphysiol.00349.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that subjects with sickle cell trait (SCT), α-thalassemia (α-t), and the dual hemoglobinopathy (SCT/α-t) manifest subtle, albeit significant, differences during exercise. To better understand such differences, we assessed skeletal muscle histomorphological and energetic characteristics in 10 control HbAA subjects (C), 5 subjects with α-t (α-t), 6 SCT carriers (SCT) and 9 SCT carriers with α-t (SCT/α-t). Subjects underwent a muscle biopsy and also performed an incremental maximal exercise and a time to exhaustion test. There were no observable differences in daily energy expenditure, maximal power output (Pmax), or time to exhaustion at 110% Pmax ( Tex) among the groups. Blood lactate concentrations measured at the end of the Tex, muscle fiber type distribution, and mean phosphofructokinase (PFK), lactate dehydrogenase (LDH), β-hydroxyacyl-CoA-dehydrogenase (HAD), and citrate synthase (CS) activities were all similar among the four groups. However, SCT was associated with a lower cytochrome- c oxidase (COx) activity in type IIa fibers ( P < 0.05), and similar trends were observed in fiber types I and IIx. Trends toward lower creatine kinase (CK) activity ( P = 0.0702) and higher surface area of type IIx fibers were observed in SCT ( P = 0.0925). In summary, these findings support most of the previous observations in SCT, such as 1) similar maximal power output and associated maximal oxygen consumption (V̇o2max) values and 2) lower exercise performances during prolonged submaximal exercise. Furthermore, performances during short supramaximal exercise were not different in SCT. Finally, the dual hemoglobinopathy condition does not seem to affect muscle characteristics.
Collapse
Affiliation(s)
- Lucile Vincent
- Laboratoire de Physiologie de l'Exercice EA4338, Université de Savoie, Chambéry and
| | - Léonard Féasson
- Laboratoire de Physiologie de l'Exercice EA4338, Université Jean Monnet and
- Unité de Myologie, Centre Hospitalier Universitaire (CHU) de Saint-Etienne, Saint-Etienne, France
| | - Samuel Oyono-Enguéllé
- Laboratory of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Viviane Banimbek
- Laboratory of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Géraldine Monchanin
- Centre de Recherche et d'Innovation sur le Sport (CRIS) EA647, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Macias Dohbobga
- Institut National de la Jeunesse et des Sports, Yaoundé, Cameroon; and
| | - Dieudonné Wouassi
- Institut National de la Jeunesse et des Sports, Yaoundé, Cameroon; and
| | - Cyril Martin
- Centre de Recherche et d'Innovation sur le Sport (CRIS) EA647, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - André Geyssant
- Laboratoire de Physiologie de l'Exercice EA4338, Université Jean Monnet and
| | - Patrice Thiriet
- Centre de Recherche et d'Innovation sur le Sport (CRIS) EA647, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Christian Denis
- Laboratoire de Physiologie de l'Exercice EA4338, Université Jean Monnet and
- Unité de Myologie, Centre Hospitalier Universitaire (CHU) de Saint-Etienne, Saint-Etienne, France
| | - Laurent Messonnier
- Laboratoire de Physiologie de l'Exercice EA4338, Université de Savoie, Chambéry and
| |
Collapse
|
49
|
Busanello ENB, Moura AP, Viegas CM, Zanatta Â, da Costa Ferreira G, Schuck PF, Wajner M. Neurochemical evidence that glycine induces bioenergetical dysfunction. Neurochem Int 2010; 56:948-54. [DOI: 10.1016/j.neuint.2010.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
|
50
|
Trujillo M, Alvarez B, Souza JM, Romero N, Castro L, Thomson L, Radi R. Mechanisms and Biological Consequences of Peroxynitrite-Dependent Protein Oxidation and Nitration. Nitric Oxide 2010. [DOI: 10.1016/b978-0-12-373866-0.00003-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|