1
|
Paolini L, Guida F, Calvaruso A, Andreozzi L, Pierantoni L, Lanari M, Fabi M. Endothelial Dysfunction: Molecular Mechanisms and Therapeutic Strategies in Kawasaki Disease. Int J Mol Sci 2024; 25:13322. [PMID: 39769085 PMCID: PMC11676170 DOI: 10.3390/ijms252413322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The endothelium plays a key role in regulating vascular homeostasis by responding to a large spectrum of chemical and physical stimuli. Vasculitis is a group of inflammatory conditions affecting the vascular bed, and it is known that they are strongly linked to endothelial dysfunction (ED). Kawasaki disease (KD) is one childhood systemic vasculitis, and it represents the leading cause of acquired cardiac disease in children due to coronary damage and subsequent cardiovascular (CV) morbidity and mortality. We aimed to focus on the actual knowledge of ED in the pathogenesis of KD and its practical implications on therapeutical strategies to limit cardiovascular complications. Understanding ED in KD provides insight into the underlying mechanisms and identifies potential therapeutic targets to mitigate vascular damage, ultimately improving cardiovascular outcomes in both the acute and chronic stages of the disease. However, research gaps remain, particularly in translating findings from animal models into clinical applications for cardiovascular lesions and related morbidity in KD patients.
Collapse
Affiliation(s)
- Lucia Paolini
- Specialty School of Paediatrics, Alma Mater Studiorum, University of Bologna, 40139 Bologna, Italy; (L.P.); (A.C.)
| | - Fiorentina Guida
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy; (F.G.); (L.A.); (L.P.); (M.L.)
| | - Antonino Calvaruso
- Specialty School of Paediatrics, Alma Mater Studiorum, University of Bologna, 40139 Bologna, Italy; (L.P.); (A.C.)
| | - Laura Andreozzi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy; (F.G.); (L.A.); (L.P.); (M.L.)
| | - Luca Pierantoni
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy; (F.G.); (L.A.); (L.P.); (M.L.)
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy; (F.G.); (L.A.); (L.P.); (M.L.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40139 Bologna, Italy
| | - Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy; (F.G.); (L.A.); (L.P.); (M.L.)
| |
Collapse
|
2
|
He H, Zhang W, Jiang L, Tong X, Zheng Y, Xia Z. Endothelial Cell Dysfunction Due to Molecules Secreted by Macrophages in Sepsis. Biomolecules 2024; 14:980. [PMID: 39199368 PMCID: PMC11352357 DOI: 10.3390/biom14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is recognized as a syndrome of systemic inflammatory reaction induced by dysregulation of the body's immunity against infection. The multiple organ dysfunction associated with sepsis is a serious threat to the patient's life. Endothelial cell dysfunction has been extensively studied in sepsis. However, the role of macrophages in sepsis is not well understood and the intrinsic link between the two cells has not been elucidated. Macrophages are first-line cells of the immune response, whereas endothelial cells are a class of cells that are highly altered in function and morphology. In sepsis, various cytokines secreted by macrophages and endothelial cell dysfunction are inextricably linked. Therefore, investigating how macrophages affect endothelial cells could offer a theoretical foundation for the treatment of sepsis. This review links molecules (TNF-α, CCL2, ROS, VEGF, MMP-9, and NO) secreted by macrophages under inflammatory conditions to endothelial cell dysfunction (adhesion, permeability, and coagulability), refining the pathophysiologic mechanisms of sepsis. At the same time, multiple approaches (a variety of miRNA and medicines) regulating macrophage polarization are also summarized, providing new insights into reversing endothelial cell dysfunction and improving the outcome of sepsis treatment.
Collapse
Affiliation(s)
- Heng He
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
3
|
Lazzarato L, Bianchi L, Andolfo A, Granata A, Lombardi M, Sinelli M, Rolando B, Carini M, Corsini A, Fruttero R, Arnaboldi L. Proteomics Studies Suggest That Nitric Oxide Donor Furoxans Inhibit In Vitro Vascular Smooth Muscle Cell Proliferation by Nitric Oxide-Independent Mechanisms. Molecules 2023; 28:5724. [PMID: 37570694 PMCID: PMC10420201 DOI: 10.3390/molecules28155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.
Collapse
Affiliation(s)
- Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy;
| | - Agnese Granata
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Lombardi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Sinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Barbara Rolando
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Marina Carini
- Department of Pharmaceutical Sciences “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| |
Collapse
|
4
|
Pagkopoulou E, Soulaidopoulos S, Triantafyllidou E, Loutradis C, Malliari A, Kitas GD, Garyfallos A, Dimitroulas T. Asymmetric dimethylarginine correlates with worsening peripheral microangiopathy in systemic sclerosis. Microvasc Res 2023; 145:104448. [PMID: 36374797 DOI: 10.1016/j.mvr.2022.104448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disease characterized primarily by micro-angiopathy and endothelial dysfunction which stimulate a fibrotic process. Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide (NO) inhibitor and represents a novel biomarker for vascular dysfunction. Nailfold video capillaroscopy (NVC) represents a non-invasive and reliable technique for the evaluation of microvasculopathy in SSc. OBJECTIVES The aim of this study was to examine the possible association between ADMA and microvascular involvement in patients with SSc. METHODS This was a cross-sectional study including consecutive SSc patients attending the Scleroderma Outpatient Clinic. ADMA was measured in serum samples using a commercial enzyme immunoassay. Participants underwent NVC with qualitative and semi-quantitative assessment and all NVC parameters were measured in the distal row of each finger. The findings were classified in one of the three qualitative NVC patterns: early, active, and late. RESULTS Eighty-one (92,6 % women) SSc individuals with mean age 55.44 ± 13.4 years were included in this analysis. Within-groups comparisons revealed a trend between higher ADMA levels and progressive micro-vasculopathy (1,29 [2,1] vs 1,57 [1,95] vs 2,41 [3,87]; for early, active and late patterns respectively, p = 0.039). Furthermore, ADMA concentration was significantly associated with the number of capillaries/mm (r = -0.235; p = 0.035). CONCLUSIONS Serum ADMA levels were significantly associated with advancing stages of microcirculatory abnormalities suggesting that ADMA may have a role in promoting microvascular endothelial dysfunction in SSc individuals.
Collapse
Affiliation(s)
- Eleni Pagkopoulou
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios Soulaidopoulos
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eva Triantafyllidou
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Loutradis
- Evangelismos Private Hospital and Hemodialysis Unit, 59132 Veroia, Greece; Second Department of Surgery, Division of Vascular Surgery, G. Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - George D Kitas
- Department of Rheumatology, Dudley Group of Hospitals, NS Foundation Trust, Dudley, United Kingdom
| | - Alexandros Garyfallos
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Dimitroulas
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
5
|
Ersland E, Ebrahim N, Mwizerwa O, Oba T, Oku K, Nishino M, Hikimoto D, Miyoshi H, Tomotoshi K, Rahmanian O, Ekwueme E, Neville C, Sundback C. Human Vascular Wall Microfluidic Model for Preclinical Evaluation of Drug-Induced Vascular Injury. Tissue Eng Part C Methods 2022; 28:83-92. [PMID: 35114818 PMCID: PMC9022170 DOI: 10.1089/ten.tec.2021.0227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Drug-induced vascular injury (DIVI) in preclinical animal models often leads to candidate compound termination during drug development. DIVI has not been documented in human clinical trials with drugs that cause DIVI in preclinical animals. A robust human preclinical assay for DIVI is needed as an early vascular injury screen. A human vascular wall microfluidic tissue chip was developed with a human umbilical vein endothelial cell (HUVEC)-umbilical artery smooth muscle cell (vascular smooth muscle cell, VSMC) bilayer matured under physiological shear stress. Optimized temporal flow profiles produced HUVEC-VSMC bilayers with quiescent endothelial cell (EC) monolayers, EC tight junctions, and contractile VSMC morphology. Dose-response testing (3-30 μM concentration) was conducted with minoxidil and tadalafil vasodilators. Both drugs have demonstrated preclinical DIVI but lack clinical evidence. The permeability of severely damaged engineered bilayers (30 μM tadalafil) was 4.1 times that of the untreated controls. Immunohistochemical protein assays revealed contrasting perspectives on tadalafil and minoxidil-induced damage. Tadalafil impacted the endothelial monolayer with minor injury to the contractile VSMCs, whereas minoxidil demonstrated minor EC barrier injury but damaged VSMCs and activated ECs in a dose-response manner. This proof-of-concept human vascular wall bilayer model of DIVI is a critical step toward developing a preclinical human screening assay for drug development. Impact statement More than 90% of drug candidates fail during clinical trials due to human efficacy and toxicity concerns. Preclinical studies rely heavily on animal models, although animal toxicity and drug metabolism responses often differ from humans. During the drug development process, perfused in vitro human tissue chips could model the clinical drug response and potential toxicity of candidate compounds. Our long-term objective is to develop a human vascular wall tissue chip to screen for drug-induced vascular injury. Its application could ultimately reduce drug development delays and costs, and improve patient safety.
Collapse
Affiliation(s)
- Erik Ersland
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Neven Ebrahim
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Anatomy and Embryology, Mansoura University, Mansoura, Egypt
| | - Olive Mwizerwa
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takahiro Oba
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Keisuke Oku
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Masafumi Nishino
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Daichi Hikimoto
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Hayato Miyoshi
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Kimihiko Tomotoshi
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Omid Rahmanian
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Emmanuel Ekwueme
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Craig Neville
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Cathryn Sundback
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Address correspondence to: Cathryn Sundback, ScD, Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 01451, USA
| |
Collapse
|
6
|
Chen S, Jia F, Zhao L, Qiu F, Jiang S, Ji J, Fu G. Electrospun fiber membrane with asymmetric NO release for the differential regulation of cell growth. Biodes Manuf 2021; 4:469-478. [DOI: 10.1007/s42242-021-00131-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
|
7
|
Shen G, Hu S, Zhao Z, Zhang L, Ma Q. C-Type Natriuretic Peptide Ameliorates Vascular Injury and Improves Neurological Outcomes in Neonatal Hypoxic-Ischemic Brain Injury in Mice. Int J Mol Sci 2021; 22:ijms22168966. [PMID: 34445671 PMCID: PMC8396645 DOI: 10.3390/ijms22168966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
C-type natriuretic peptide (CNP) is an important vascular regulator that is present in the brain. Our previous study demonstrated the innate neuroprotectant role of CNP in the neonatal brain after hypoxic-ischemic (HI) insults. In this study, we further explored the role of CNP in cerebrovascular pathology using both in vivo and in vitro models. In a neonatal mouse HI brain injury model, we found that intracerebroventricular administration of recombinant CNP dose-dependently reduces brain infarct size. CNP significantly decreases brain edema and immunoglobulin G (IgG) extravasation into the brain tissue, suggesting a vasculoprotective effect of CNP. Moreover, in primary brain microvascular endothelial cells (BMECs), CNP dose-dependently protects BMEC survival and monolayer integrity against oxygen-glucose deprivation (OGD). The vasculoprotective effect of CNP is mediated by its innate receptors NPR2 and NPR3, in that inhibition of either NPR2 or NPR3 counteracts the protective effect of CNP on IgG leakage after HI insult and BMEC survival under OGD. Of importance, CNP significantly ameliorates brain atrophy and improves neurological deficits after HI insults. Altogether, the present study indicates that recombinant CNP exerts vascular protection in neonatal HI brain injury via its innate receptors, suggesting a potential therapeutic target for the treatment of neonatal HI brain injury.
Collapse
Affiliation(s)
- Guofang Shen
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (G.S.); (S.H.); (L.Z.)
| | - Shirley Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (G.S.); (S.H.); (L.Z.)
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (G.S.); (S.H.); (L.Z.)
| | - Qingyi Ma
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (G.S.); (S.H.); (L.Z.)
- Correspondence: ; Tel.: +1-909-558-4325; Fax: +1-909-558-4029
| |
Collapse
|
8
|
Bhatia V, Elnagary L, Dakshinamurti S. Tracing the path of inhaled nitric oxide: Biological consequences of protein nitrosylation. Pediatr Pulmonol 2021; 56:525-538. [PMID: 33289321 DOI: 10.1002/ppul.25201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a comprehensive regulator of vascular and airway tone. Endogenous NO produced by nitric oxide synthases regulates multiple signaling cascades, including activation of soluble guanylate cyclase to generate cGMP, relaxing smooth muscle cells. Inhaled NO is an established therapy for pulmonary hypertension in neonates, and has been recently proposed for the treatment of hypoxic respiratory failure and acute respiratory distress syndrome due to COVID-19. In this review, we summarize the effects of endogenous and exogenous NO on protein S-nitrosylation, which is the selective and reversible covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine. This posttranslational modification targets specific cysteines based on the acid/base sequence of surrounding residues, with significant impacts on protein interactions and function. S-nitrosothiol (SNO) formation is tightly compartmentalized and enzymatically controlled, but also propagated by nonenzymatic transnitrosylation of downstream protein targets. Redox-based nitrosylation and denitrosylation pathways dynamically regulate the equilibrium of SNO-proteins. We review the physiological roles of SNO proteins, including nitrosohemoglobin and autoregulation of blood flow through hypoxic vasodilation, and pathological effects of nitrosylation including inhibition of critical vasodilator enzymes; and discuss the intersection of NO source and dose with redox environment, in determining the effects of protein nitrosylation.
Collapse
Affiliation(s)
- Vikram Bhatia
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Lara Elnagary
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.,Section of Neonatology, Departments of Pediatrics and Physiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
9
|
Large magnitude of force leads to NO-mediated cell shrinkage in single osteocytes implying an initial apoptotic response. J Biomech 2021; 117:110245. [PMID: 33493709 DOI: 10.1016/j.jbiomech.2021.110245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/06/2020] [Accepted: 01/03/2021] [Indexed: 11/22/2022]
Abstract
Damage accumulation in the bone under continuous daily loading causes local mechanical overloading known to induce osteocyte apoptosis, which promotes bone resorption to repair bone damage. However, only a few studies have investigated the mechanism of apoptosis in mechanically overloaded osteocytes. As mechanically stimulated osteocytes produce nitric oxide (NO), which triggers apoptosis in various cell types, we aimed to elucidate the mechanism underlying apoptosis in mechanically overloaded osteocytes, focusing on intracellular NO. To investigate the effects of force magnitude on apoptosis and intracellular NO production, we isolated osteocytes from DMP1-EGFP mice and subjected them to quantitative local forces via fibronectin-coated micro beads targeting integrin on the cell surface using a magnetic tweezer. Cell shrinkage was microscopically examined, and intracellular NO production was visualized using DAR-4 M. Mechanical stimulation revealed relationships between force magnitude, apoptosis, and intracellular NO production. The application of a smaller force resulted in no significant cell shrinkage or intracellular NO production; however, a larger force caused a rapid increase in intracellular NO production followed by cell shrinkage. Besides, intracellular NOS (NO synthase) inhibition and NO donation revealed the pro-apoptotic roles of NO in osteocytes. L-NAME (NOS inhibitor)-treated cells displayed no significant shrinkage under a larger force, whereas SNP (NO donor)-treated cells showed cell shrinkage and Annexin V fluorescence, indicating apoptosis. Collectively, our study demonstrates that larger force leads to NO production-mediated osteocyte shrinkage, implying an initial apoptotic response and highlighting the importance of NO production in bone damage.
Collapse
|
10
|
Kim SM, Choi KC. Acrylonitrile induced cell cycle arrest and apoptosis by promoting the formation of reactive oxygen species in human choriocarcinoma cells. J Toxicol Sci 2020; 45:713-724. [PMID: 33132245 DOI: 10.2131/jts.45.713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acrylonitrile (AN), which is widely utilized in the manufacture of plastics, acrylamide, acrylic fibers, and resins, is also one of main components of cigarette smoke (CS). In this study, we examined the effects of AN on the cell viability and apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cell lines. A cell viability assay confirmed that AN decreased the cell proliferation of JEG-3 and BeWo cells in a dose-dependent manner. Additionally, Western blot assay revealed that protein expression of cyclin D and cyclin E decreased, while protein expression of p21 and p27 increased in response to AN treatment for 48 hr. The changes in reactive oxygen species (ROS) levels in JEG-3 and BeWo cells exposed to AN were also measured by a dichlorofluorescein diacetate (DCFH-DA) assay, which revealed that ROS levels increased in response to AN treatment for 48 hr. Moreover, western blot assay confirmed that AN treatment of JEG-3 and BeWo cells for 4 hr promoted the expression of phosphorylated eukaryotic initiation factor 2 alpha protein (p-eIF2α), C/EBP homologous protein (CHOP) and caspase 12, which are known to be involved in ROS-mediated endoplasmic reticulum stress (ER-stress)-related apoptosis. Overall, the protein expression of p53 and Bax (a pro-apoptosis marker) increased, while the expression of Bcl-xl (an anti-apoptotic marker) decreased and the number of apoptotic cells increased in response to AN treatment for 48 hr. Taken together, these results suggest that AN has the potential to induce apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cells by activating ROS.
Collapse
Affiliation(s)
- Soo-Min Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Korea
| |
Collapse
|
11
|
Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal 2020; 18:62. [PMID: 32293472 PMCID: PMC7158016 DOI: 10.1186/s12964-020-00549-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. Despite its high prevalence, effective treatment strategies for TBI are limited. Traumatic brain injury induces structural and functional alterations of astrocytes, the most abundant cell type in the brain. As a way of coping with the trauma, astrocytes respond in diverse mechanisms that result in reactive astrogliosis. Astrocytes are involved in the physiopathologic mechanisms of TBI in an extensive and sophisticated manner. Notably, astrocytes have dual roles in TBI, and some astrocyte-derived factors have double and opposite properties. Thus, the suppression or promotion of reactive astrogliosis does not have a substantial curative effect. In contrast, selective stimulation of the beneficial astrocyte-derived molecules and simultaneous attenuation of the deleterious factors based on the spatiotemporal-environment can provide a promising astrocyte-targeting therapeutic strategy. In the current review, we describe for the first time the specific dual roles of astrocytes in neuronal plasticity and reconstruction, including neurogenesis, synaptogenesis, angiogenesis, repair of the blood-brain barrier, and glial scar formation after TBI. We have also classified astrocyte-derived factors depending on their neuroprotective and neurotoxic roles to design more appropriate targeted therapies. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China.
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China
| |
Collapse
|
12
|
Bae H, Kim T, Lim I. Effects of nitric oxide on apoptosis and voltage-gated calcium channels in human cardiac myofibroblasts. Clin Exp Pharmacol Physiol 2019; 47:16-26. [PMID: 31519057 DOI: 10.1111/1440-1681.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023]
Abstract
We characterised the voltage-gated Ca2+ channels (VGCCs) in human cardiac fibroblasts (HCFs) and myofibroblasts (HCMFs) and investigated the effects of nitric oxide (NO) on apoptosis and on these channels. Western blotting and immunofluorescence analyses show that α-smooth muscle actin (a myofibroblast marker) was markedly expressed in passage (P) 12-15 but not in P4 HCF cells, whereas calponin (a fibroblast marker) was expressed only in P4 cells. CaV 1.2 (L-type) and CaV 3.3 (T-type) of VGCCs were highly expressed in P12-15 cells, but only weak CaV 2.3 (R-type) expression was identified in P4 cells using reverse transcription-polymerase chain reaction analysis. S-Nitroso-N-acetylpenicillamine (SNAP, an NO donor) decreased cell viability of HCMFs in a dose-dependent manner and induced apoptotic changes, and nifedipine (an L-type Ca2+ channel blocker) prevented apoptosis as shown with immunofluorescence staining and flow cytometry. Whole-cell mode patch-clamp recordings demonstrate the presence of L-type Ca2+ (IC a,L ) and T-type Ca2+ (IC a,T ) currents in HCMFs. SNAP inhibited IC a,L of HCMFs, but pre-treatment with ODQ (a guanylate cyclase inhibitor) or KT5823 (a PKG inhibitor) prevented it. Pre-treating cells with KT5720 (a PKA inhibitor) or SQ22536 (an adenylate cyclase inhibitor) blocked SNAP-induced inhibition of IC a,L . 8-Bromo-cyclic GMP or 8-bromo-cyclic AMP also inhibited IC a,L . However, pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) did not block the SNAP effect, nor did DL-dithiothreitol (a reducing agent) reverse it. These data suggest that high concentrations of NO injure HCMFs and inhibit IC a,L through the PKG and PKA signalling pathways but not through the S-nitrosylation pathway.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Zhou X, Qian Y, Yuan D, Feng Q, He P. H 2 O 2 -induced microvessel barrier dysfunction: the interplay between reactive oxygen species, nitric oxide, and peroxynitrite. Physiol Rep 2019; 7:10.14814/phy2.14206. [PMID: 31448579 PMCID: PMC6709418 DOI: 10.14814/phy2.14206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/30/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated H2 O2 is implicated in many cardiovascular diseases. We previously demonstrated that H2 O2 -induced endothelial nitric oxide synthase (eNOS) activation and excessive NO production contribute to vascular cell injury and increases in microvessel permeability. However, the mechanisms of excessive NO-mediated vascular injury and hyperpermeability remain unknown. This study aims to examine the functional role of NO-derived peroxynitrite (ONOO- ) in H2 O2 -induced vascular barrier dysfunction by elucidating the interrelationships between H2 O2 -induced NO, superoxide, ONOO- , and changes in endothelial [Ca2+ ]i and microvessel permeability. Experiments were conducted on intact rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp). Endothelial [Ca2+ ]i , NO, and O2- were assessed with fluorescence imaging. Perfusion of vessels with H2 O2 (10 µmol/L) induced marked productions of NO and O2- , resulting in extensive protein tyrosine nitration, a biomarker of ONOO- . The formation of ONOO- was abolished by inhibition of NOS with NG -Methyl-L-arginine. Blocking NO production or scavenging ONOO- by uric acid prevented H2 O2 -induced increases in endothelial [Ca2+ ]i and Lp. Additionally, the application of exogenous ONOO- to microvessels induced delayed and progressive increases in endothelial [Ca2+ ]i and microvessel Lp, a pattern similar to that observed in H2 O2 -perfused vessels. Importantly, ONOO- caused further activation of eNOS with amplified NO production. We conclude that the augmentation of NO-derived ONOO- is essential for H2 O2 -induced endothelial Ca2+ overload and progressively increased microvessel permeability, which is achieved by self-promoted amplifications of NO-dependent signaling cascades. This novel mechanism provides new insight into the reactive oxygen and/or reactive nitrogen species-mediated vascular dysfunction in cardiovascular diseases.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWest Virginia
| | - Yan Qian
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWest Virginia
| | - Dong Yuan
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWest Virginia
| | - Qilong Feng
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPennsylvania
| | - Pingnian He
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWest Virginia
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPennsylvania
| |
Collapse
|
14
|
Gholinejad Z, Khadem Ansari MH, Rasmi Y. Titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and p38, PI3K/Akt, NF-κB signaling pathways modulation. J Trace Elem Med Biol 2019; 54:27-35. [PMID: 31109618 DOI: 10.1016/j.jtemb.2019.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/27/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Titanium dioxide nanoparticles (TiO2 NPs) are widely used nanoparticles. Despite, several studies investigated the toxic effects of TiO2 NPs on HUVECs, the results are contradictory and the possible underlying mechanisms remain unclear. METHODS In the present study, we conducted an in vitro study to re-evaluate the possible toxic effects of TiO2 NPs on HUVECs including cell viability, lipids peroxidation, intracellular signaling pathways and nitric oxide syntheses enzymes. RESULTS Our results demonstrated that, TiO2 NPs were internalized to HUVECs and induce intracellular reactive oxygen species production and cell membrane oxidative damage at the higher concentration. TiO2 NPs induce IKKα/β and Akt phosphorylation and p38 dephosphorylation. After 24 h treatment, pro-inflammatory cytokines, adhesion molecules and chemokine upregulated significantly. TiO2 NPs have no significant effects on eNOS enzymatic activation and iNOS gene expression. At cellular level, apoptosis is the main process that occur in response to TiO2 NPs treatment. HUVECs pretreatment with N-acetyl-l-cysteine (NAC) ameliorate the toxic effects of TiO2 NPs that indicate the oxidative stress is essential in TiO2 NPs -induced toxicity. Total antioxidant capacity show a trend to increase in response to TiO2 NPs exposure. CONCLUSIONS Taken together, this study confirmed the effects of TiO2 NPs on endothelial cells and proposed multiple underlying mechanisms including cell membrane oxidative damage and intracellular processes.
Collapse
Affiliation(s)
- Zafar Gholinejad
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Scienc, Urmia, Iran
| | | | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Scienc, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
15
|
Chennoufi R, Cabrié A, Nguyen NH, Bogliotti N, Simon F, Cinquin B, Tauc P, Boucher JL, Slama-Schwok A, Xie J, Deprez E. Light-induced formation of NO in endothelial cells by photoactivatable NADPH analogues targeting nitric-oxide synthase. Biochim Biophys Acta Gen Subj 2019; 1863:1127-1137. [PMID: 30986510 DOI: 10.1016/j.bbagen.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nitric-oxide synthases (NOS) catalyze the formation of NO using NADPH as electron donor. We have recently designed and synthesized a new series of two-photon absorbing and photoactivatable NADPH analogues (NT). These compounds bear one or two carboxymethyl group(s) on the 2'- or/and 3'-position(s) of the ribose in the adenosine moiety, instead of a 2'-phosphate group, and differ by the nature of the electron donor in their photoactivatable chromophore (replacing the nicotinamide moiety). Here, we addressed the ability of NTs to photoinduce eNOS-dependent NO production in endothelial cells. METHODS The cellular fate of NTs and their photoinduced effects were studied using multiphoton fluorescence imaging, cell viability assays and a BODIPY-derived NO probe for NO measurements. The eNOS dependence of photoinduced NO production was addressed using two NOS inhibitors (NS1 and L-NAME) targeting the reductase and the oxygenase domains, respectively. RESULTS We found that, two compounds, those bearing a single carboxymethyl group on the 3'-position of the ribose, colocalize with the Golgi apparatus (the main intracellular location of eNOS) and display high intracellular two-photon brightness. Furthermore, a eNOS-dependent photooxidation was observed for these two compounds only, which is accompanied by a substantial intracellular NO production accounting for specific photocytotoxic effects. CONCLUSIONS We show for the first time that NT photoactivation efficiently triggers electron flow at the eNOS level and increases the basal production of NO by endothelial cells. GENERAL SIGNIFICANCE Efficient photoactivatable NADPH analogues targeting NOS could have important implications for generating apoptosis in tumor cells or modulating NO-dependent physiological processes.
Collapse
Affiliation(s)
- Rahima Chennoufi
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Aimeric Cabrié
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Nhi Ha Nguyen
- PPSM, CNRS UMR8531, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Nicolas Bogliotti
- PPSM, CNRS UMR8531, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Françoise Simon
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Bertrand Cinquin
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Patrick Tauc
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Jean-Luc Boucher
- Laboratoire de "Chimie et Biochimie Pharmacologiques et Toxicologiques", CNRS UMR8601, Université Paris Descartes, 75270 Paris, France
| | - Anny Slama-Schwok
- Laboratoire de "Stabilité Génétique et Oncogénèse", CNRS UMR8200, Gustave Roussy, Université Paris-Saclay, 94607 Villejuif, France
| | - Juan Xie
- PPSM, CNRS UMR8531, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Eric Deprez
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France.
| |
Collapse
|
16
|
KMUP-1 Ameliorates Ischemia-Induced Cardiomyocyte Apoptosis through the NO⁻cGMP⁻MAPK Signaling Pathways. Molecules 2019; 24:molecules24071376. [PMID: 30965668 PMCID: PMC6479774 DOI: 10.3390/molecules24071376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
To test whether KMUP-1 (7-[2-[4-(2-chlorophenyl) piperazinyl]ethyl]-1,3-dimethylxanthine) prevents myocardial ischemia-induced apoptosis, we examined KMUP-1-treated H9c2 cells culture. Recent attention has focused on the activation of nitric oxide (NO)-guanosine 3’, 5’cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway triggered by mitogen-activated protein kinase (MAPK) family, including extracellular-signal regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 in the mechanism of cardiac protection during ischemia-induced cell-death. We propose that KMUP-1 inhibits ischemia-induced apoptosis in H9c2 cells culture through these pathways. Cell viability was assessed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and apoptotic evaluation was conducted using DNA ladder assay and Hoechst 33342 staining. The level of intracellular calcium was detected using-Fura2-acetoxymethyl (Fura2-AM) staining, and mitochondrial calcium with Rhod 2-acetoxymethyl (Rhod 2-AM) staining under fluorescence microscopic observation. The expression of endothelium NO synthase (eNOS), inducible NO synthase (iNOS), soluble guanylate cyclase α1 (sGCα1), PKG, Bcl-2/Bax ratio, ERK1/2, p38, and JNK proteins were measured by Western blotting assay. KMUP-1 pretreatment improved cell viability and inhibited ischemia-induced apoptosis of H9c2 cells. Calcium overload both in the intracellular and mitochondrial sites was attenuated by KMUP-1 pretreatment. Moreover, KMUP-1 reduced intracellular reactive oxygen species (ROS), increased plasma NOx (nitrite and nitrate) level, and the expression of eNOS. Otherwise, the iNOS expression was downregulated. KMUP-1 pretreatment upregulated the expression of sGCα1 and PKG protein. The ratio of Bcl-2/Bax expression was increased by the elevated level of Bcl2 and decreased level of Bax. In comparison with the ischemia group, KMUP-1 pretreatment groups reduced the expression of phosphorylated extracellular signal-regulated kinases ERK1/2, p-p38, and p-JNK as well. Therefore, KMUP-1 inhibits myocardial ischemia-induced apoptosis by restoration of cellular calcium influx through the mechanism of NO-cGMP-MAPK pathways.
Collapse
|
17
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
18
|
Protective Effects and Mechanisms of N-Phenethyl Caffeamide from UVA-Induced Skin Damage in Human Epidermal Keratinocytes through Nrf2/HO-1 Regulation. Int J Mol Sci 2019; 20:ijms20010164. [PMID: 30621167 PMCID: PMC6337442 DOI: 10.3390/ijms20010164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
The skin provides an effective barrier against physical, chemical, and microbial invasion; however, overexposure to ultraviolet (UV) radiation causes excessive cellular oxidative stress, which leads to skin damage, DNA damage, mutations, and skin cancer. This study investigated the protective effects of N-phenethyl caffeamide (K36) from UVA damage on human epidermal keratinocytes. We found that K36 reduced UVA-induced intracellular reactive oxygen species (ROS) production and induced the expression of the intrinsic antioxidant enzyme heme oxygenase-1 (HO-1) by increasing the translocation of nuclear factor erythroid 2⁻related factor 2 (Nrf2). K36 could inhibit the phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinases (JNK) and reduce UVA-induced matrix metalloproteinase (MMP)-1 and MMP-2 overexpression; it could also elevate the expression of tissue inhibitors of metalloproteinases (TIMP). In addition, K36 ameliorated 8-hydroxy-2'-deoxyguanosine (8-OHdG) induced by UVA irradiation. Furthermore, K36 could downregulate the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) and the subsequent production of nitric oxide (NO) and prostaglandin E₂ (PGE₂). Based on our findings, K36 possessed potent antioxidant, anti-inflammatory, antiphotodamage, and even antiphotocarcinogenesis activities. Thus, K36 has the potential to be used to multifunctional skin care products and drugs.
Collapse
|
19
|
Routray I, Ali S. Boron inhibits apoptosis in hyperapoptosis condition: Acts by stabilizing the mitochondrial membrane and inhibiting matrix remodeling. Biochim Biophys Acta Gen Subj 2018; 1863:144-152. [PMID: 30312768 DOI: 10.1016/j.bbagen.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 11/29/2022]
Abstract
An abnormally high apoptosis has been associated with a number of clinical conditions including embryonal malformations and various pathologies such as neuronal degeneration and diabetes. In this study, boron is reported to inhibit apoptosis in hyperapoptosis conditions as demonstrated in a model of hyperapoptosis. Boron is a metalloid which is present in food in small amounts and is suggested here to inhibit apoptosis by stabilizing the mitochondrial membrane structure, thus preventing matrix remodeling and the release of cytochrome c, an apoptosis-inducer protein from the mitochondrion. The protective effect was assessed by measuring the changes in mitochondrial membrane potential, the levels of cytochrome c and downstream activation of caspase 3, besides phosphatidylserine exposure on the cell surface and DNA damage. The study has implication in clinical conditions characterized by hyperapoptosis as seen in certain embryonal malformations and various pathologies.
Collapse
Affiliation(s)
- Indusmita Routray
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), Hamdard Nagar, New Delhi 110062, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
20
|
Endothelial nitric oxide synthase overexpressing human early outgrowth cells inhibit coronary artery smooth muscle cell migration through paracrine functions. Sci Rep 2018; 8:877. [PMID: 29343714 PMCID: PMC5772515 DOI: 10.1038/s41598-017-18848-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Cells mobilized from the bone marrow can contribute to endothelial regeneration and repair. Nevertheless, cardiovascular diseases are associated with diminished numbers and function of these cells, attenuating their healing potential. Gene transfer of endothelial nitric oxide synthase (eNOS) can restore the activity of circulating cells. Furthermore, estrogen accelerates the reendothelialization capacity of early outgrowth cells (EOCs). We hypothesized that overexpressing eNOS alone or in combination with estrogen stimulation in EOCs would potentiate the beneficial effects of these cells in regulating smooth muscle cell (SMC) function. Native human EOCs did not have any effect on human coronary artery SMC (hCASMC) proliferation or migration. Transfecting EOCs with a human eNOS plasmid and/or stimulating with 17β-estradiol (E2) increased NO production 3-fold and enhanced EOC survival. Moreover, in co-culture studies, eNOS overexpressing or E2-stimulated EOCs reduced hCASMC migration (by 23% and 56% respectively), vs. control EOCs. These effects do not implicate ERK1/2 or focal adhesion kinases. Nevertheless, NOS-EOCs had no effect on hCASMC proliferation. These results suggest that overexpressing or activating eNOS in EOCs increases their survival and enhances their capacity to regulate SMC migration through paracrine effects. These data elucidate how eNOS overexpression or activation in EOCs can prevent vascular remodeling.
Collapse
|
21
|
Studies on the Dual Cytotoxicity and Antioxidant Properties of Berberis vulgaris Extracts and Its Main Constituent Berberine. Adv Pharmacol Sci 2018; 2018:3018498. [PMID: 29805448 PMCID: PMC5817274 DOI: 10.1155/2018/3018498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
The present study attempts to investigate the cytotoxic activity of ethanol and ethyl acetate extracts of the Moroccan Berberis vulgaris and its major component berberine, together with exploring their antioxidant properties. It also consists of studying the combination effect of berberine and S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, against the human breast adenocarcinoma cell line (MCF-7). Using the MTT assay, we report a differential cytotoxic effect of ethanol and ethyl acetate extracts since the ethanol extract is more cytotoxic than the ethyl acetate one, with IC50 = 3.54 μg/mL and 596.71 μg/mL, respectively. Interestingly, no cytotoxic effect was observed against normal cells. Furthermore, these extracts showed a remarkable antioxidant activity as measured by the DPPH free radicals scavenging assay. In fact, the IC50 values are 69.65 μg/mL and 77.75 μg/mL for the ethanol and ethyl acetate extracts, respectively. In addition, several concentrations of berberine, when combined with the NO donor used at IC30, induced a synergistic cytotoxic activity at concentrations ranging from 8.40 μM to 33.60 μM, as revealed by the combination index values, using the Chou–Talalay method. However, at the other concentrations tested, an antagonistic effect was observed. The observed cytotoxicity was related to apoptosis induction as demonstrated by the annexin-V-streptavidin FITC-staining analysis.
Collapse
|
22
|
Harwani SC. Macrophages under pressure: the role of macrophage polarization in hypertension. Transl Res 2018; 191:45-63. [PMID: 29172035 PMCID: PMC5733698 DOI: 10.1016/j.trsl.2017.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Sailesh C Harwani
- Department of Internal Medicine, Iowa City, IA; Center for Immunology and Immune Based Diseases, Iowa City, IA; Abboud Cardiovascular Research Center, Iowa City, Io.
| |
Collapse
|
23
|
Sreedhar A, Zhao Y. Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells. Biomed Rep 2017; 8:3-10. [PMID: 29399334 PMCID: PMC5772474 DOI: 10.3892/br.2017.1022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Tumor cells carry various genetic and metabolic alterations, which directly contribute to their growth and malignancy. Links between metabolism and cancer are multifaceted. Metabolic reprogramming, such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid (TCA) cycle metabolic enzymes, and dependence on lipid and glutamine metabolism are key characteristics of cancer cells. Understanding these metabolic alterations is crucial for development of novel anti-cancer therapeutic strategies. In the present review, the broad importance of metabolism in tumor biology is discussed, and the current knowledge on dysregulated metabolic enzymes involved in the vital regulatory steps of glycolysis, the TCA cycle, the pentose phosphate pathway, and lipid, amino acid, and mitochondrial metabolism pathways are reviewed.
Collapse
Affiliation(s)
- Annapoorna Sreedhar
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center Shreveport, LA 71130-3932, USA
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center Shreveport, LA 71130-3932, USA
| |
Collapse
|
24
|
Günzle J, Osterberg N, Saavedra JE, Weyerbrock A. Nitric oxide released from JS-K induces cell death by mitotic catastrophe as part of necrosis in glioblastoma multiforme. Cell Death Dis 2016; 7:e2349. [PMID: 27584787 PMCID: PMC5059858 DOI: 10.1038/cddis.2016.254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 01/28/2023]
Abstract
The nitric oxide (NO) donor JS-K is specifically activated by glutathione S-transferases (GSTs) in GST-overexpressing cells. We have shown the induction of cell death in glioblastoma multiforme (GBM) cells at high JS-K doses but the mechanism remains unclear. The aim of this study was to determine whether NO-induced cell death is triggered by induction of apoptotic or necrotic pathways. For the first time, we demonstrate that NO induces cell death via mitotic catastrophe (MC) with non-apoptotic mechanisms in GBM cells. Moreover, the level of morphological changes indicating MC correlates with increased necrosis. Therefore, we conclude that MC is the main mechanism by which GBM cells undergo cell death after treatment with JS-K associated with necrosis rather than apoptosis. In addition, we show that PARP1 is not an exclusive marker for late apoptosis but is also involved in MC. Activating an alternative way of cell death can be useful for the multimodal cancer therapy of GBM known for its strong anti-apoptotic mechanisms and drug resistance.
Collapse
Affiliation(s)
- Jessica Günzle
- Department of Neurosurgery, Medical Center-University of Freiburg, Breisacher Str. 64 Freiburg, D-79106, Germany.,University of Freiburg, Faculty of Biology, Schaenzlestr. 1, Freiburg D-79104, Germany
| | - Nadja Osterberg
- Department of Neurosurgery, Medical Center-University of Freiburg, Breisacher Str. 64 Freiburg, D-79106, Germany
| | - Joseph E Saavedra
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Building 567, Room 254, Frederick MD 21702, USA
| | - Astrid Weyerbrock
- Department of Neurosurgery, Medical Center-University of Freiburg, Breisacher Str. 64 Freiburg, D-79106, Germany
| |
Collapse
|
25
|
Ishag HZA, Wu YZ, Liu MJ, Xiong QY, Feng ZX, Yang RS, Shao GQ. In vitro protective efficacy of Lithium chloride against Mycoplasma hyopneumoniae infection. Res Vet Sci 2016; 106:93-6. [PMID: 27234543 PMCID: PMC7111794 DOI: 10.1016/j.rvsc.2016.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 12/03/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) infection affects the swine industry. Lithium chloride (LiCl), is a drug used to treat bipolar disorder and has also shown activity against bacterial and viral infections. Herein, we evaluated the antibacterial activity of LiCl on PK-15 cells infected with M. hyopneumoniae. Incubation of LiCl (40 mM) with cells for 24 h, did not significantly affect the cell viability. The qRT–PCR showed ~80% reduction in M. hyopneumoniae genome when LiCl added post-infection. A direct effect of LiCl on bacteria was also observed. However, treatment of cells with LiCl prior infection, does not protect against the infection. Anti-bacterial activity of LiCl was further confirmed by IFA, which demonstrated a reduction in the bacterial protein. With 40 mM LiCI, the apoptotic cell death, production of nitric oxide and superoxide anion induced by M. hyopneumoniae, were prevented by ~80%, 60% and 58% respectively. Moreover, caspase-3 activity was also reduced (82%) in cells treated with 40 mM LiCl. LiCl showed activity against various strains of M. hyopneumoniae examined in our study. Collectively, our data showed that LiCl inhibited the infection of M. hyopneumoniae through anti-apoptotic mechanism. LiCl inhibits Mycoplasma hyopneumoniae infection in PK-15 cells dose-dependent manner. LiCl inhibits 80% of apoptosis induced M. hyopneumoniae infection in PK-15 cells. LiCl protects against the infection of various strains of M. hyopneumoniae infected PK-15 cells.
Collapse
Affiliation(s)
- Hassan Z A Ishag
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China; College of Veterinary Sciences, University of Nyala, Nyala, Sudan
| | - Yu-Zi Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Mao-Jun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Qi-Yan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Zhi-Xin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Ruo-Song Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Guo-Qing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China.
| |
Collapse
|
26
|
Mula RVR, Machiah D, Holland L, Wang X, Parihar H, Sharma AC, Selvaraj P, Shashidharamurthy R. Immune Complex-Induced, Nitric Oxide-Mediated Vascular Endothelial Cell Death by Phagocytes Is Prevented with Decoy FcγReceptors. PLoS One 2016; 11:e0153620. [PMID: 27101012 PMCID: PMC4839578 DOI: 10.1371/journal.pone.0153620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023] Open
Abstract
Autoimmune vasculitis is an endothelial inflammatory disease that results from the deposition of immune-complexes (ICs) in blood vessels. The interaction between Fcgamma receptors (FcγRs) expressed on inflammatory cells with ICs is known to cause blood vessel damage. Hence, blocking the interaction of ICs and inflammatory cells is essential to prevent the IC-mediated blood vessel damage. Thus we tested if uncoupling the interaction of FcγRs and ICs prevents endothelium damage. Herein, we demonstrate that dimeric FcγR-Igs prevented nitric oxide (NO) mediated apoptosis of human umbilical vein endothelial cells (HUVECs) in an in vitro vasculitis model. Dimeric FcγR-Igs significantly inhibited the IC-induced upregulation of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) release by murine monocytic cell line. However, FcγR-Igs did not affect the exogenously added NO-induced upregulation of pro-apoptotic genes such as Bax (15 fold), Bak (35 fold), cytochrome-C (11 fold) and caspase-3 (30 fold) in HUVECs. In conclusion, these data suggest that IC-induced NO could be one of the major inflammatory mediator promoting blood vessel inflammation and endothelial cell death during IC-mediated vasculitis which can be effectively blocked by dimeric decoy FcγRs.
Collapse
Affiliation(s)
- Ramanjaneya V. R. Mula
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Deepa Machiah
- Department of Molecular Pathology Laboratory, Yerkes National Primate Research Centre, Atlanta, Georgia, United States of America
| | - Lauren Holland
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Xinyu Wang
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Harish Parihar
- Department of Pharmacy Practice, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Avadhesh C. Sharma
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rangaiah Shashidharamurthy
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
- * E-mail:
| |
Collapse
|
27
|
Teng L, Bennett E, Cai C. Preconditioning c-Kit-positive Human Cardiac Stem Cells with a Nitric Oxide Donor Enhances Cell Survival through Activation of Survival Signaling Pathways. J Biol Chem 2016; 291:9733-47. [PMID: 26940876 DOI: 10.1074/jbc.m115.687806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac stem cell therapy has shown very promising potential to repair the infarcted heart but is severely limited by the poor survival of donor cells. Nitric oxide (NO) has demonstrated cytoprotective properties in various cells, but its benefits are unknown specifically for human cardiac stem cells (hCSCs). Therefore, we investigated whether pretreatment of hCSCs with a widely used NO donor, diethylenetriamine nitric oxide adduct (DETA-NO), promotes cell survival. Results from lactate dehydrogenase release assays showed a dose- and time-dependent attenuation of cell death induced by oxidative stress after DETA-NO preconditioning; this cytoprotective effect was abolished by the NO scavenger. Concomitant up-regulation of several cell signaling molecules after DETA-NO preconditioning was observed by Western blotting, including elevated phosphorylation of NRF2, NFκB, STAT3, ERK, and AKT, as well as increased protein expression of HO-1 and COX2. Furthermore, pharmaceutical inhibition of ERK, STAT3, and NFκB activities significantly diminished NO-induced cytoprotection against oxidative stress, whereas inhibition of AKT or knockdown of NRF2 only produced a minor effect. Blocking PI3K activity or knocking down COX2 expression did not alter the protective effect of DETA-NO on cell survival. The crucial roles of STAT3 and NFκB in NO-mediated signaling pathways were further confirmed by stable expression of gene-specific shRNAs in hCSCs. Thus, preconditioning hCSCs with DETA-NO promotes cell survival and resistance to oxidative stress by activating multiple cell survival signaling pathways. These results will potentially provide a simple and effective strategy to enhance survival of hCSCs after transplantation and increase their efficacy in repairing infarcted myocardium.
Collapse
Affiliation(s)
- Lei Teng
- From the Center for Cardiovascular Sciences and Department of Medicine, Albany Medical College and
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, Albany, New York 12208
| | - Chuanxi Cai
- From the Center for Cardiovascular Sciences and Department of Medicine, Albany Medical College and
| |
Collapse
|
28
|
Luo R, Liu Y, Yao H, Jiang L, Wang J, Weng Y, Zhao A, Huang N. Copper-Incorporated Collagen/Catechol Film for in Situ Generation of Nitric Oxide. ACS Biomater Sci Eng 2015; 1:771-779. [DOI: 10.1021/acsbiomaterials.5b00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rifang Luo
- School of Material Science and
Engineering and §Key Lab of Advanced Technology of
Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yujie Liu
- School of Material Science and
Engineering and §Key Lab of Advanced Technology of
Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hang Yao
- School of Material Science and
Engineering and §Key Lab of Advanced Technology of
Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lang Jiang
- School of Material Science and
Engineering and §Key Lab of Advanced Technology of
Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jin Wang
- School of Material Science and
Engineering and §Key Lab of Advanced Technology of
Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yajun Weng
- School of Material Science and
Engineering and §Key Lab of Advanced Technology of
Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ansha Zhao
- School of Material Science and
Engineering and §Key Lab of Advanced Technology of
Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nan Huang
- School of Material Science and
Engineering and §Key Lab of Advanced Technology of
Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
29
|
Vatrinet R, Iommarini L, Kurelac I, De Luise M, Gasparre G, Porcelli AM. Targeting respiratory complex I to prevent the Warburg effect. Int J Biochem Cell Biol 2015; 63:41-5. [PMID: 25668477 DOI: 10.1016/j.biocel.2015.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/15/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
In the last 10 years, studies of energetic metabolism in different tumors clearly indicate that the definition of Warburg effect, i.e. the glycolytic shift cells undergo upon transformation, ought to be revisited considering the metabolic plasticity of cancer cells. In fact, recent findings show that the shift from glycolysis to re-established oxidative metabolism is required for certain steps of tumor progression, suggesting that mitochondrial function and, in particular, respiratory complex I are crucial for metabolic and hypoxic adaptation. Based on these evidences, complex I can be considered a lethality target for potential anticancer strategies. In conclusion, in this mini review we summarize and discuss why it is not paradoxical to develop pharmacological and genome editing approaches to target complex I as novel adjuvant therapies for cancer treatment. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
Affiliation(s)
- Renaud Vatrinet
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, via Irnerio 42, 40126 Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Luisa Iommarini
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, via Irnerio 42, 40126 Bologna, Italy
| | - Ivana Kurelac
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Monica De Luise
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Giuseppe Gasparre
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, via Irnerio 42, 40126 Bologna, Italy; Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, 40100 Bologna, Italy.
| |
Collapse
|
30
|
Gu L, Li S, Zhang R, Zhang Y, Wang X, Zhang K, Liu Z, Bi K, Chen X. Integrative investigation of Semen Strychni nephrotoxicity and the protective effect of Radix Glycyrrhizae by a UPLC-MS/MS method based cell metabolomics strategy in HEK 293t cell lysates. RSC Adv 2015. [DOI: 10.1039/c5ra07708g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Scheme of the cell metabolomics strategy workflow.
Collapse
Affiliation(s)
- Liqiang Gu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Shujuan Li
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Ruowen Zhang
- Stem Cell Institute
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Yuanyuan Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xiaofan Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Kexia Zhang
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Ziying Liu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Kaishun Bi
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xiaohui Chen
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
31
|
Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver failure. FEBS Open Bio 2014; 4:777-87. [PMID: 25349782 PMCID: PMC4208088 DOI: 10.1016/j.fob.2014.08.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/29/2014] [Accepted: 08/30/2014] [Indexed: 12/13/2022] Open
Abstract
RIPK-dependent necrosis is involved in acetaminophen (APAP)-induced hepatotoxicity. Necrostatin-1 (Nec-1) protects mice against APAP-induced acute liver damage. Nec-1 suppresses APAP-induced ROS generation in hepatocytes. Nec-1 promotes resistance to oxidative stress in hepatocytes.
Excessive acetaminophen (APAP) use is one of the most common causes of acute liver failure. Various types of cell death in the damaged liver are linked to APAP-induced hepatotoxicity, and, of these, necrotic cell death of hepatocytes has been shown to be involved in disease pathogenesis. Until recently, necrosis was commonly considered to be a random and unregulated form of cell death; however, recent studies have identified a previously unknown form of programmed necrosis called receptor-interacting protein kinase (RIPK)-dependent necrosis (or necroptosis), which is controlled by the kinases RIPK1 and RIPK3. Although RIPK-dependent necrosis has been implicated in a variety of disease states, including atherosclerosis, myocardial organ damage, stroke, ischemia–reperfusion injury, pancreatitis, and inflammatory bowel disease. However its involvement in APAP-induced hepatocyte necrosis remains elusive. Here, we showed that RIPK1 phosphorylation, which is a hallmark of RIPK-dependent necrosis, was induced by APAP, and the expression pattern of RIPK1 and RIPK3 in the liver overlapped with that of CYP2E1, whose activity around the central vein area has been demonstrated to be critical for the development of APAP-induced hepatic injury. Moreover, a RIPK1 inhibitor ameliorated APAP-induced hepatotoxicity in an animal model, which was underscored by significant suppression of the release of hepatic enzymes and cytokine expression levels. RIPK1 inhibition decreased reactive oxygen species levels produced in APAP-injured hepatocytes, whereas CYP2E1 expression and the depletion rate of total glutathione were unaffected. Of note, RIPK1 inhibition also conferred resistance to oxidative stress in hepatocytes. These data collectively demonstrated a RIPK-dependent necrotic mechanism operates in the APAP-injured liver and inhibition of this pathway may be beneficial for APAP-induced fulminant hepatic failure.
Collapse
Key Words
- ABTS, 2,2′-azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid
- ALF, acute liver failure
- ALT, alanine aminotransferase
- APAP, acetaminophen
- AST, aspartate aminotransferase
- Acetaminophen
- Acute liver failure
- CM-H2DCFDA, 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester
- CXCL1, chemokine (C-X-C motif) ligand 1
- CYP2E1, cytochrome P450 2E1
- DMSO, dimethyl sulfoxide
- Drp1, dynamin-related protein 1
- FBS, fetal bovine serum
- GSH, glutathione
- Hepatocytes
- LDH, lactate dehydrogenase
- NAPQI, N-acetyl-p-benzoquinone
- NO, nitric oxide
- Nec-1, necrostatin-1
- Necroptosis
- PGAM5, phosphoglycerate mutase family member 5
- PI, propidium iodide
- RIPK, receptor-interacting protein kinase
- RIPK-dependent necrosis
- ROS, reactive oxygen species
- Reactive oxygen species
- SNAP, S-nitroso-N-acetyl-dl-penicillamine
- WST-8, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium
- bFGF, basic fibroblast growth factor
- λPP, lambda protein phosphatase
Collapse
|
32
|
Sierra A, Navascués J, Cuadros MA, Calvente R, Martín-Oliva D, Ferrer-Martín RM, Martín-Estebané M, Carrasco MC, Marín-Teva JL. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina. PLoS One 2014; 9:e106048. [PMID: 25170849 PMCID: PMC4149512 DOI: 10.1371/journal.pone.0106048] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/28/2014] [Indexed: 12/17/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid microglia, resulting in a significant iNOS upregulation.
Collapse
Affiliation(s)
- Ana Sierra
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Julio Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel A. Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ruth Calvente
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - David Martín-Oliva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Rosa M. Ferrer-Martín
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María Martín-Estebané
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María-Carmen Carrasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José L. Marín-Teva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
33
|
Satohisa S, Zhang HH, Feng L, Yang YY, Huang L, Chen DB. Endogenous NO upon estradiol-17β stimulation and NO donor differentially regulate mitochondrial S-nitrosylation in endothelial cells. Endocrinology 2014; 155:3005-16. [PMID: 24877627 PMCID: PMC4098011 DOI: 10.1210/en.2013-2174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adduction of a nitric oxide (NO) moiety (NO(•)) to cysteines termed as S-nitrosylation (SNO) has emerged as a crucial mechanism for NO signaling crucial for mediating the vascular effects of estrogens. Mitochondrion is a known vascular risk factor; however, the effects of estrogens on mitochondrial SNO are incompletely understood. In this study we determined the effects of estradiol-17β (E2β) on mitochondrial protein SNO in primary human umbilical vein endothelial cells and compared the mitochondrial nitroso-proteomes in E2β- and a NO donor S-nitrosoglutathione (GSNO)-treated cells using a proteomics approach. Treatment with 10 nM E2β and 1 mM GSNO for 30 minutes significantly increased the levels of mitochondrial SNO-proteins. Subcellular localization of SNO-proteins showed mitochondria as the major cellular organelle for protein SNO in response to E2β and GSNO. E2β stimulated mitochondrial endothelial nitric oxide synthase (eNOS) phosphorylation and mitochondrial protein SNO that was enhanced by overexpression of mitochondrion or Golgi, but not membrane targeting eNOS constructs. We identified 11, 32, and 54 SNO-proteins in the mitochondria from the untreated, E2β-, and GSNO-treated human umbilical vein endothelial cells, respectively. Comparisons of the nitroso-proteomes revealed that common and different mitochondrial SNO-proteins were affected by endogenous NO on E2β stimulation and exogenous NO from donor. These SNO-proteins were associated with various mitochondrial functions, including energy and redox regulation, transport, iron homeostasis, translation, mitochondrial morphology, and apoptosis, etc. Collectively, we conclude that estrogens rapidly stimulate protein SNO in endothelial mitochondria via mitochondrial eNOS, providing a mechanism for mediating the vascular effects of estrogens.
Collapse
Affiliation(s)
- Seiro Satohisa
- Departments of Obstetrics and Gynecology (S.S., H-h.Z., L.F., D-b.C.), Biophysics and Physiology (Y-y.Y., L.H.), and Pathology (D-b.C.), University of California, Irvine, California 92697
| | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
35
|
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remain major causes of morbidity and mortality in critical care medicine despite advances in therapeutic modalities. ALI can be associated with sepsis, trauma, pharmaceutical or xenobiotic exposures, high oxygen therapy (hyperoxia), and mechanical ventilation. Of the small gas molecules (NO, CO, H₂S) that arise in human beings from endogenous enzymatic activities, the physiological significance of NO is well established, whereas that of CO or H₂S remains controversial. Recent studies have explored the potential efficacy of inhalation therapies using these small gas molecules in animal models of ALI. NO has vasoregulatory and redox-active properties and can function as a selective pulmonary vasodilator. Inhaled NO (iNO) has shown promise as a therapy in animal models of ALI including endotoxin challenge, ischemia/reperfusion (I/R) injury, and lung transplantation. CO, another diatomic gas, can exert cellular tissue protection through antiapoptotic, anti-inflammatory, and antiproliferative effects. CO has shown therapeutic potential in animal models of endotoxin challenge, oxidative lung injury, I/R injury, pulmonary fibrosis, ventilator-induced lung injury, and lung transplantation. H₂S, a third potential therapeutic gas, can induce hypometabolic states in mice and can confer both pro- and anti-inflammatory effects in rodent models of ALI and sepsis. Clinical studies have shown variable results for the efficacy of iNO in lung transplantation and failure for this therapy to improve mortality in ARDS patients. No clinical studies have been conducted with H₂S. The clinical efficacy of CO remains unclear and awaits further controlled clinical studies in transplantation and sepsis.
Collapse
Affiliation(s)
- Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
36
|
Combined treatment of hydroxytyrosol with carbon monoxide-releasing molecule-2 prevents TNF α-induced vascular endothelial cell dysfunction through NO production with subsequent NFκB inactivation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:912431. [PMID: 24066302 PMCID: PMC3771260 DOI: 10.1155/2013/912431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/24/2013] [Indexed: 01/06/2023]
Abstract
This study investigated the atheroprotective properties of olive oil polyphenol, hydroxytyrosol (HT), in combination with carbon monoxide-releasing molecule-2 (CORM-2) that acts as a carbon monoxide donor using vascular endothelial cells (VECs). Our results showed that CORM-2 could strengthen the cytoprotective and anti-apoptotic effects of HT against TNFα-induced cellular damage by enhancing cell survival and the suppression of caspase-3 activation. While HT alone attenuated NFκBp65 phosphorylation and IκBα degradation triggered by TNFα in a dose-dependent manner, combined treatment of HT with CORM-2 but not iCORM-2 nearly completely blocked these TNFα effects. Furthermore, combined action of both compounds results in the inhibition of NFκB nuclear translocation. Results also indicate that both compounds time-dependently increased eNOS phosphorylation levels and the combination of HT with CORM-2 was more effective in enhancing eNOS activation and NO production in VECs. The NOS inhibitor, L-NMMA, significantly suppressed the combined effects of HT and CORM-2 on TNFα-triggered NFκBp65 and IκBα phosphorylation as well as decreased cell viability. Together, these data suggest that carbon monoxide-dependent regulation of NO production by the combination of HT with CORM-2 may provide a therapeutic benefit in the treatment of endothelial dysfunction and atherosclerosis.
Collapse
|
37
|
Sesamin ameliorates arterial dysfunction in spontaneously hypertensive rats via downregulation of NADPH oxidase subunits and upregulation of eNOS expression. Acta Pharmacol Sin 2013; 34:912-20. [PMID: 23624755 DOI: 10.1038/aps.2013.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/11/2013] [Indexed: 02/07/2023]
Abstract
AIM Sesamin is one of the major lignans in sesame seeds with antihyperlipidemic, antioxidative and antihypertensive activities. The aim of this study was to examine the effects of sesamin on arterial function in spontaneously hypertensive rats (SHRs). METHODS SHRs were orally administered sesamin (40, 80 and 160 mg·kg(-1)·d(-1)) for 16 weeks. After the rats were killed, thoracic aortas were dissected out. The vasorelaxation responses of aortic rings to ACh and nitroprusside were measured. The expression of eNOS and NADPH oxidase subunits p47(phox) and p22(phox) in aortas were detected using Western blotting and immunohistochemistry. Aortic nitrotyrosine was measured with ELISA. The total antioxidant capacity (T-AOC) and MDA levels in aortas were also determined. RESULTS The aortic rings of SHRs showed significantly smaller ACh-induced and nitroprusside-induced relaxation than those of control rats. Treatment of SHRs with sesamin increased both the endothelium-dependent and endothelium-independent relaxation of aortic rings in a dose-dependent manner. In aortas of SHRs, the level of T-AOC and the expression of nitrotyrosine, p22(phox) and p47(phox) proteins were markedly increased, while the level of MDA and the expression of eNOS protein were significantly decreased. Treatment of SHRs with sesamin dose-dependently reversed these biochemical and molecular abnormalities in aortas. CONCLUSION Long-term treatment with sesamin improves arterial function in SHR through the upregulation of eNOS expression and downregulation of p22(phox) and p47(phox) expression.
Collapse
|
38
|
Huang CY, Kuo WW, Liao HE, Lin YM, Kuo CH, Tsai FJ, Tsai CH, Chen JL, Lin JY. Lumbrokinase attenuates side-stream-smoke-induced apoptosis and autophagy in young hamster hippocampus: correlated with eNOS induction and NFκB/iNOS/COX-2 signaling suppression. Chem Res Toxicol 2013; 26:654-61. [PMID: 23682761 DOI: 10.1021/tx300429s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have found that cigarette smoke is epidemiologically linked to an increased risk for impaired cognitive development in adolescents. This study evaluated the influence of side stream smoke (SSS) exposure on hippocampal apoptosis and of the lumbrokinase (LK) effects on SSS induced apoptosis in young hamster hippocampus. Twenty male hamsters at six weeks of age were randomly divided into control group, SSS group (exposed to tobacco cigarettes smoke at doses of 10 cigarettes for 30 min twice a day for 1 month), and SSS hamsters with LK treatment (1.2 mg/kg, ip) for twice a week for 1 month. TUNEL assay and Western blotting were performed. The TUNEL-positive apoptotic cells, as well as Fas-dependent activity and mitochondria-dependent apoptotic pathways, such as Fas, FADD, activated caspase-8, t-Bid, activated caspase-9, and activated caspase-3, were significantly increased in the SSS-exposed hippocampus compared to the control and highly attenuated in the LK treatment group. Additionally, SSS exposure significantly increased the autophagy marker proteins, Beclin-1, ATG7, and LC3-II levels, in the hippocampus compared to those in the control group and obviously attenuated after LK treatment. LK also reduced hippocampus injury by enhancing eNOS expression and remarkably inhibited the proinflammatory NFκB/iNOS/COX-2 signaling activity. We found that the detrimental effects of SSS on the hippocampus are truly mediated by cell apoptosis and autophagy. However, LK reduced the hippocampus apoptosis and autophagy related injuries induced by SSS in a widespread manner. We suggest that LK presents protective effects on hippocampus apoptosis and has therapeutic potential against abnormal hippocampal function.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, 2. Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wu M, Wang F, Zhang C, Xie Y, Han B, Huang J, Shen W. Heme oxygenase-1 is involved in nitric oxide- and cGMP-induced α-Amy2/54 gene expression in GA-treated wheat aleurone layers. PLANT MOLECULAR BIOLOGY 2013; 81:27-40. [PMID: 23090695 DOI: 10.1007/s11103-012-9979-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/15/2012] [Indexed: 05/04/2023]
Abstract
Here, α-Amy2/54 gene expression was used as a molecular probe to investigate the interrelationship among nitric oxide (NO), cyclic GMP (cGMP), and heme oxygenase-1 (HO-1) in GA-treated wheat aleurone layers. The inducible expressions of α-Amy2/54 and α-amylase activity were respectively amplified by two NO-releasing compounds, sodium nitroprusside (SNP) and spermine NONOate, in a GA-dependent fashion. Similar responses were observed when an inducer of HO-1, hemin-or one of its catalytic products, carbon monoxide (CO) in aqueous solution-was respectively added. The SNP-induced responses, mimicked by 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP), a cGMP derivative, were NO-dependent. This conclusion was supported by the fact that endogenous NO overproduction was rapidly induced by SNP, and thereafter induction of α-Amy2/54 gene expression and increased α-amylase activity were sensitive to the NO scavenger. We further observed that the above induction triggered by SNP and 8-Br-cGMP was partially prevented by zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1. These blocking effects were clearly reversed by CO, confirming that the above response was HO-1-specific. Further analyses showed that both SNP and 8-Br-cGMP rapidly up-regulated HO-1 gene expression and increased HO activity, and SNP responses were sensitive to cPTIO and the guanylate cyclase inhibitor 6-anilino-5,8-quinolinedione (LY83583). Molecular evidence confirmed that GA-induced GAMYB and ABA-triggered PKABA1 transcripts were up-regulated or down-regulated by SNP, 8-Br-cGMP or CO cotreated with GA. Contrasting changes were observed when cPTIO, LY83583, or ZnPPIX was added. Together, our results suggested that HO-1 is involved in NO- and cGMP-induced α-Amy2/54 gene expression in GA-treated aleurone layers.
Collapse
Affiliation(s)
- Mingzhu Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhou X, Yuan D, Wang M, He P. H2O2-induced endothelial NO production contributes to vascular cell apoptosis and increased permeability in rat venules. Am J Physiol Heart Circ Physiol 2012; 304:H82-93. [PMID: 23086988 DOI: 10.1152/ajpheart.00300.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although elevated levels of H(2)O(2) have been implicated to play important roles in the pathogenesis of various cardiovascular diseases, the underlying mechanisms remain unclear. This study aims to examine the effect of H(2)O(2) on endothelial nitric oxide (NO) production in intact venules, and elucidate the role and mechanisms of NO in H(2)O(2)-induced increases in microvessel permeability. Experiments were conducted on individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp), and endothelial [Ca(2+)](i) was measured on fura-2-loaded vessels. Perfusion of H(2)O(2) (10 μM) caused a delayed and progressively increased endothelial [Ca(2+)](i) and Lp, a pattern different from inflammatory mediator-induced immediate and transient response. Under the same experimental conditions, measuring endothelial NO via DAF-2 and the spatial detection of cell apoptosis by fluorescent markers revealed that H(2)O(2) induced two phases of NO production followed by caspase activation, intracellular Ca(2+) accumulation, and vascular cell apoptosis. The initial NO production was correlated with increased endothelial NO synthase (eNOS) Ser(1177) phosphorylation in the absence of elevated endothelial [Ca(2+)](i), whereas the second phase of NO depended on increased [Ca(2+)](i) and was associated with Thr(495) dephosphorylation without increased Ser(1177) phosphorylation. Inhibition of NOS prevented H(2)O(2)-induced caspase activation, cell apoptosis, and increases in endothelial [Ca(2+)](i) and Lp. Our results indicate that H(2)O(2) at micromolar concentration is able to induce a large magnitude of NO in intact venules, causing caspase activation-mediated endothelial Ca(2+) accumulation, cell apoptosis, and increases in permeability. The mechanisms revealed from intact microvessels may contribute to the pathogenesis of oxidant-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | | | | | | |
Collapse
|
41
|
Dimitroulas T, Sandoo A, Kitas GD. Asymmetric dimethylarginine as a surrogate marker of endothelial dysfunction and cardiovascular risk in patients with systemic rheumatic diseases. Int J Mol Sci 2012. [PMID: 23202900 PMCID: PMC3497274 DOI: 10.3390/ijms131012315] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The last few decades have witnessed an increased life expectancy of patients suffering with systemic rheumatic diseases, mainly due to improved management, advanced therapies and preventative measures. However, autoimmune disorders are associated with significantly enhanced cardiovascular morbidity and mortality not fully explained by traditional cardiovascular disease (CVD) risk factors. It has been suggested that interactions between high-grade systemic inflammation and the vasculature lead to endothelial dysfunction and atherosclerosis, which may account for the excess risk for CVD events in this population. Diminished nitric oxide synthesis—due to down regulation of endothelial nitric oxide synthase—appears to play a prominent role in the imbalance between vasoactive factors, the consequent impairment of the endothelial hemostasis and the early development of atherosclerosis. Asymmetric dimethylarginine (ADMA) is one of the most potent endogenous inhibitors of the three isoforms of nitric oxide synthase and it is a newly discovered risk factor in the setting of diseases associated with endothelial dysfunction and adverse cardiovascular events. In the context of systemic inflammatory disorders there is increasing evidence that ADMA contributes to the vascular changes and to endothelial cell abnormalities, as several studies have revealed derangement of nitric oxide/ADMA pathway in different disease subsets. In this article we discuss the role of endothelial dysfunction in patients with rheumatic diseases, with a specific focus on the nitric oxide/ADMA system and we provide an overview on the literature pertaining to ADMA as a surrogate marker of subclinical vascular disease.
Collapse
Affiliation(s)
- Theodoros Dimitroulas
- Department of Rheumatology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, Dudley, West Midlands DY1 2HQ, UK; E-Mails: (A.S.); (G.D.K.)
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +44-1384-244842; Fax: +44-1283-244272
| | - Aamer Sandoo
- Department of Rheumatology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, Dudley, West Midlands DY1 2HQ, UK; E-Mails: (A.S.); (G.D.K.)
| | - George D. Kitas
- Department of Rheumatology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, Dudley, West Midlands DY1 2HQ, UK; E-Mails: (A.S.); (G.D.K.)
- Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester M15 6SZ, UK
| |
Collapse
|
42
|
Affiliation(s)
- Cristina E Carnovale
- Instituto de Fisiología Experimental-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570-2000 Rosario, Argentina.
| | | |
Collapse
|
43
|
Angiogenic response of endothelial cells to fibronectin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:131-51. [PMID: 22695843 DOI: 10.1007/978-1-4614-3381-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
COX-2 and survivin reduction may play a role in berberine-induced apoptosis in human ductal breast epithelial tumor cell line. Tumour Biol 2011; 33:207-14. [PMID: 22081376 DOI: 10.1007/s13277-011-0263-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/27/2011] [Indexed: 01/05/2023] Open
Abstract
Berberine is an isoquinoline alkaloid that has several pharmacological effects such as antiinflammatory, antimicrobial, apoptosis-inducing and anticancer effects. It has been illustrated that the antiinflammatory effect is mediated by suppressing the nuclear factor-kappa B (NF-κB) that activates expression of some antiinflammatory and antiapoptotic proteins including cyclooxygenase-2(COX-2), inducible nitric oxide synthase (iNOS) and survivin; therefore, berberine may induce apoptosis by reducing antiinflammatory and antiapoptotic agents, which suggest the relationship between antiinflammatory and apoptosis pathways. For further illustration of the mechanism of berberine action, the human ductal breast epithelial tumor cell line (T47D cell line) was treated with different concentrations of berberine (25-100 μM/ml). Berberine in 50 μM/ml had the most reducing effect on cell viability and inducing of apoptosis. The level of COX-2, iNOS and survivin proteins decreased in berberine-treated cells; however, treatment of the cells with aspirin and aminoguanidine (AG), COX-2 and iNOS inhibitors, respectively, showed that despite the cell growth-reducing effect of aspirin, AG did not have a significant effect on cell viability. On the other hand, with the attention to reduction in survivin protein level in berberine-treated cells, the results suggest that the apoptotic effect of berberine may be mediated by reduction in both of the COX-2 and survivin in T47D cell line, while the iNOS does not play any effective role in berberine-induced apoptosis.
Collapse
|
45
|
Lee SA, Lee KM, Yoo KY, Noh DY, Ahn SH, Kang D. Combined effects of antioxidant vitamin and NOS3 genetic polymorphisms on breast cancer risk in women. Clin Nutr 2011; 31:93-8. [PMID: 21872972 DOI: 10.1016/j.clnu.2011.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND & AIMS It is becoming increasingly clear that there is wide heterogeneity in genetic predisposition to breast cancer and that breast cancer risk is determined by interactive effect between genetic and environmental factors. METHODS We investigated the combined effects of antioxidant vitamin intake and NOS3 genetic polymorphisms on breast cancer risk in a Korean population (Seoul Breast Cancer Study). Histologically confirmed breast cancer cases (n = 512) and age, menopause status-matched controls (n = 512) with no present or previous history of cancer were recruited from several teaching hospitals in Seoul during 2001-2003. Two genetic polymorphisms of NOS3 (298G > T and -786 T > C) were assessed by single base extension assays. RESULTS No overall association between the individual NOS3 genotypes or diplotypes and breast cancer risk was found, although the difference between cases and controls in the frequency of the NOS3 894 G > T polymorphism showed borderline significance (OR = 0.74, 95% CI = 0.52-1.06). There was no significant difference in energy intake or the intake of antioxidant vitamins between cases and controls, with the exception of vitamin E (OR = 0.49 lowest vs. highest quartile, P(trend) < 0.01). On the other hand, our results suggest that antioxidant vitamin intake may modify the effects of the NOS3 -786 T > C or 894 G > T genetic polymorphisms on breast cancer risk. Although a multiplicative interaction was not observed, the protective effect of β-carotene intake on breast cancer risk was observed predominantly in individuals with the TG:TG diplotype of NOS3 (OR = 0.68) but not observed with others diplotype. An inverse association between vitamin E intake and breast cancer risk was observed for individuals with the NOS3 786 TC + TT genotype and the NOS3 894 GG genotype. In addition, folic acid had a protective effect in the NOS3 786 TT and NOS3 894 GT + TT genotype. CONCLUSION Our results suggest that intake of antioxidant vitamins might modify the association between genetic polymorphisms of NOS3 and breast cancer risk.
Collapse
Affiliation(s)
- Sang-Ah Lee
- Department of Preventive Medicine, Kangwon National University, Kangwon-do, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Harnek J, Zoucas E, de Sá VP, Ekblad E, Arner A, Stenram U. Intimal hyperplasia in balloon dilated coronary arteries is reduced by local delivery of the NO donor, SIN-1 via a cGMP-dependent pathway. BMC Cardiovasc Disord 2011; 11:30. [PMID: 21663688 PMCID: PMC3123303 DOI: 10.1186/1471-2261-11-30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 06/11/2011] [Indexed: 02/05/2023] Open
Abstract
Background To elucidate the mechanism by which local delivery of 3-morpholino-sydnonimine (SIN-1) affects intimal hyperplasia after percutaneous transluminal coronary angioplasty (PTCA). Methods Porcine coronary arteries were treated with PTCA and immediately afterwards locally treated for 5 minutes, with a selective cytosolic guanylate cyclase inhibitor, 1 H-(1,2,4)oxadiazole(4,3-alpha)quinoxaline-1-one (ODQ) + SIN-1 or only SIN-1 using a drug delivery-balloon. Arteries were angiographically depicted, morphologically evaluated and analyzed after one and eight weeks for actin, myosin and intermediate filaments (IF) and nitric oxide synthase (NOS) contents. Results Luminal diameter after PCI in arteries treated with SIN-1 alone and corrected for age-growth was significantly larger as compared to ODQ + SIN-1 or to controls (p < 0.01). IF/actin ratio after one week in SIN-1 treated segments was not different compared to untreated segments, but was significantly reduced compared to ODQ + SIN-1 treated vessels (p < 0.05). Expression of endothelial NADPH diaphorase activity was significantly lower in untreated segments and in SIN-1 treated segments compared to controls and SIN-1 + ODQ treated arteries (p < 0.01). Restenosis index (p < 0.01) and intimal hyperplasia (p < 0.01) were significantly reduced while the residual lumen was increased (p < 0.01) in SIN-1 segments compared to controls and ODQ + SIN-1 treated vessels. Conclusions After PTCA local delivery of high concentrations of the NO donor SIN-1 for 5 minutes inhibited injury induced neointimal hyperplasia. This favorable effect was abolished by inhibition of guanylyl cyclase indicating mediation of a cyclic guanosine 3',5'-monophosphate (cGMP)-dependent pathway. The momentary events at the time of injury play crucial role in the ensuring development of intimal hyperplasia.
Collapse
Affiliation(s)
- Jan Harnek
- Department of Coronary Heart Disease, Skane University Hospital, Institute of Clinical Sciences, Lunds University, Getingev 4, SE-22185 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
47
|
Ratovitski EA. ΔNp63α/IRF6 interplay activates NOS2 transcription and induces autophagy upon tobacco exposure. Arch Biochem Biophys 2011; 506:208-15. [PMID: 21129360 DOI: 10.1016/j.abb.2010.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/05/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022]
Abstract
Tobacco-induced oxidative stress leads to chronic inflammation and is implicated in the development of many human epithelial cancers, including head and neck cancer. Cigarette smoke exposure was shown to induce the expression of the ΔNp63α and nitric oxide synthase (NOS)-2 in head and neck squamous cell carcinoma cells and immortalized oral keratinocytes. The NOS2 promoter was found to contain various cognate sequences for several transcription factors including interferon regulatory factor (IRF)-6 and p63, which were shown in vivo binding to the NOS2 promoter in response to smoke exposure. Small interfering (si)-RNAs against both ΔNp63α and IRF6 decreased the induction of NOS2 promoter-driven reporter luciferase activity and were shown to inhibit NOS2 activity. Furthermore, both mainstream (MSE) and sidestream (SSE) smoking extracts induced changes in expression of autophagic marker, LC3B, while siRNA against ΔNp63α, IRF6 and NOS2 modulated these autophagic changes. Overall, these data support the notion that ΔNp63α/IRF6 interplay regulates NOS2 transcription, thereby underlying the autophagic-related cancer cell response to tobacco exposure.
Collapse
Affiliation(s)
- Edward A Ratovitski
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
48
|
Singh A, Rathaur S. Combination of DEC plus aspirin induced mitochondrial mediated apoptosis in filarial parasite Setaria cervi. Biochimie 2010; 92:894-900. [DOI: 10.1016/j.biochi.2010.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/24/2010] [Indexed: 02/01/2023]
|
49
|
Malan D, Wenzel D, Schmidt A, Geisen C, Raible A, Bölck B, Fleischmann BK, Bloch W. Endothelial beta1 integrins regulate sprouting and network formation during vascular development. Development 2010; 137:993-1002. [PMID: 20179098 DOI: 10.1242/dev.045377] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
beta1 integrins are important regulators of vascular differentiation and development, as their endothelial-specific deletion results in embryonic lethality. In the present study, we investigated the molecular mechanisms underlying the prominent vascular abnormalities that occur in the absence of beta1 integrins. Because of the early embryonic lethality of knockout mice, we studied endothelial cell and vessel development in beta1-integrin-deficient murine embryonic stem cells to gain novel insights into the role of beta1 integrins in vasculo-angiogenesis. We found that vessel development was strongly defective in the mutant embryoid bodies (EBs), as only primitive and short sprouts developed from clusters of vascular precursors in beta1 integrin(-/-) EBs, whereas complex network formation of endothelial tubes was observed in wild-type EBs. The vascular defect was due to deficient beta1 integrin expression in endothelial cells, as its endothelial-specific re-expression rescued the phenotype entirely. The mechanism responsible for defective vessel formation was found to be reduced endothelial cell maturation, migration and elongation. Moreover, the lower number of endothelial cells in beta1 integrin(-/-) EBs was due to an increased apoptosis versus proliferation rate. The enhanced apoptosis and proliferation of beta1 integrin(-/-) endothelial cells was related to the elevation of peNOS and pAKT signaling molecules, respectively. Our data demonstrate that endothelial beta1 integrins are determinants of vessel formation and that this effect is mediated via different signaling pathways.
Collapse
Affiliation(s)
- Daniela Malan
- Institute of Physiology I, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Brocato RL, Voss TG. Pichinde virus induces microvascular endothelial cell permeability through the production of nitric oxide. Virol J 2009; 6:162. [PMID: 19814828 PMCID: PMC2765958 DOI: 10.1186/1743-422x-6-162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/08/2009] [Indexed: 11/17/2022] Open
Abstract
This report is the first to demonstrate infection of human endothelial cells by Pichinde virus (PIC). PIC infection induces an upregulation of the inducible nitric oxide synthase gene; as well as an increase in detectable nitric oxide (NO). PIC induces an increase in permeability in endothelial cell monolayers which can be abrogated at all measured timepoints with the addition of a nitric oxide synthase inhibitor, indicating a role for NO in the alteration of endothelial barrier function. Because NO has shown antiviral activity against some viruses, viral titer was measured after addition of the NO synthase inhibitor and found to have no effect in altering virus load in infected EC. The NO synthase inhibition also has no effect on levels of activated caspases induced by PIC infection. Taken together, these data indicate NO production induced by Pichinde virus infection has a pathogenic effect on endothelial cell monolayer permeability.
Collapse
Affiliation(s)
- Rebecca L Brocato
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | | |
Collapse
|