1
|
Huang WC, Ohnsman CM, Atiskova Y, Falabella P, Spitzer MS, Schulz A, Dulz S. OCT Biomarkers in Ocular CLN2 Disease in Patients Treated With Intraventricular Enzyme Replacement Therapy. Invest Ophthalmol Vis Sci 2024; 65:45. [PMID: 39078732 PMCID: PMC11290571 DOI: 10.1167/iovs.65.8.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/27/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose Bilateral progressive, symmetrical loss of central retinal thickness (CRT) has been described in neuronal ceroid lipofuscinosis type 2 (CLN2) disease. This study details the pattern of morphological changes underlying CRT loss and disease progression in patients receiving intracerebroventricular (ICV) enzyme replacement therapy (ERT) with cerliponase alfa. Methods Spectral-domain optical coherence tomography macular cube scans were collected from 16 patients with classic CLN2 disease receiving ICV ERT. Detailed retinal structure analyses were performed on manually segmented horizontal B-scans through the fovea to determine the thickness of six retinal parameters and the extent of ellipsoid zone (EZ) loss. Results Anatomical changes primarily occurred in photoreceptor (PR)-related retinal parameters and correlated with ocular disease severity. Retinal degeneration began with initial focal parafoveal EZ discontinuities signaling the onset of rapid PR degeneration in a predictable pattern: parafoveal PR involvement with foveal sparing followed by profound parafoveal and foveal PR loss with additional thinning beyond the central retina. PR degeneration began with outer segment loss and progressed to outer nuclear layer (ONL) involvement. Longitudinal analyses confirmed these observations. The rate of PR loss was fastest at the fovea at ∼58 mm per year and became slower at locations farther away from the fovea. Conclusions Retinal degeneration in CLN2 disease is primarily associated with PR loss in a predictable pattern, with EZ disruption signaling early PR stress. CRT, ONL thickness, and PR layer thickness are useful anatomical biomarkers for understanding disease progression and treatment efficacy in CLN2. Studies using en face images will further clarify CLN2-related retinal degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Angela Schulz
- Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Hamburg, Hamburg, Germany
| | - Simon Dulz
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Sleat DE, Banach-Petrosky W, Larrimore KE, Nemtsova Y, Wiseman JA, Najafi A, Johnson D, Poole TA, Takahashi K, Cooper JD, Lobel P. A mouse mutant deficient in both neuronal ceroid lipofuscinosis-associated proteins CLN3 and TPP1. J Inherit Metab Dis 2023; 46:720-734. [PMID: 37078466 PMCID: PMC10330656 DOI: 10.1002/jimd.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Late-infantile neuronal ceroid lipofuscinosis (LINCL) and juvenile neuronal ceroid lipofuscinosis (JNCL) are inherited neurodegenerative diseases caused by mutations in the genes encoding lysosomal proteins tripeptidyl peptidase 1 (TPP1) and CLN3 protein, respectively. TPP1 is well-understood and, aided by animal models that accurately recapitulate the human disease, enzyme replacement therapy has been approved and other promising therapies are emerging. In contrast, there are no effective treatments for JNCL, partly because the function of the CLN3 protein remains unknown but also because animal models have attenuated disease and lack robust survival phenotypes. Mouse models for LINCL and JNCL, with mutations in Tpp1 and Cln3, respectively, have been thoroughly characterized but the phenotype of a double Cln3/Tpp1 mutant remains unknown. We created this double mutant and find that its phenotype is essentially indistinguishable from the single Tpp1-/- mutant in terms of survival and brain pathology. Analysis of brain proteomic changes in the single Tpp1-/- and double Cln3-/- ;Tpp1-/- mutants indicates largely overlapping sets of altered proteins and reinforces earlier studies that highlight GPNMB, LYZ2, and SERPINA3 as promising biomarker candidates in LINCL while several lysosomal proteins including SMPD1 and NPC1 appear to be altered in the Cln3-/- animals. An unexpected finding was that Tpp1 heterozygosity significantly decreased lifespan of the Cln3-/- mouse. The truncated survival of this mouse model makes it potentially useful in developing therapies for JNCL using survival as an endpoint. In addition, this model may also provide insights into CLN3 protein function and its potential functional interactions with TPP1.
Collapse
Affiliation(s)
- David E. Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, NJ, United States of America
| | - Whitney Banach-Petrosky
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Katherine E. Larrimore
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Yuliya Nemtsova
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Jennifer A. Wiseman
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Allison Najafi
- The Lundquist Institute (formerly Los Angeles Biomedical Research Institute), Harbor-UCLA Medical Center, and David Geffen School of Medicine, University of California, Los Angeles, Torrance, CA United States of America
| | - Dymonn Johnson
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Timothy A. Poole
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Keigo Takahashi
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Jonathan D. Cooper
- The Lundquist Institute (formerly Los Angeles Biomedical Research Institute), Harbor-UCLA Medical Center, and David Geffen School of Medicine, University of California, Los Angeles, Torrance, CA United States of America
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
- Genetics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
- Neurology, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, NJ, United States of America
| |
Collapse
|
3
|
Kick GR, Whiting REH, Ota-Kuroki J, Castaner LJ, Morgan-Jack B, Sabol JC, Meiman EJ, Ortiz F, Katz ML. Intravitreal gene therapy preserves retinal function in a canine model of CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2023; 226:109344. [PMID: 36509165 PMCID: PMC9839638 DOI: 10.1016/j.exer.2022.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
CLN2 neuronal ceroid lipofuscinosis is a rare hereditary neurodegenerative disorder characterized by deleterious sequence variants in TPP1 that result in reduced or abolished function of the lysosomal enzyme tripeptidyl peptidase 1 (TPP1). Children with this disorder experience progressive neurological decline and vision loss starting around 2-4 years of age. Ocular disease is characterized by progressive retinal degeneration and impaired retinal function culminating in total loss of vision. Similar retinal pathology occurs in a canine model of CLN2 disease with a null variant in TPP1. A study using the dog model was performed to evaluate the efficacy of ocular gene therapy to provide a continuous, long-term source of human TPP1 (hTPP1) to the retina, inhibit retinal degeneration and preserve retinal function. TPP1-/- dogs received an intravitreal injection of 1 x 1012 viral genomes of AAV2.CAG.hTPP1 in one eye and AAV2.CAG.GFP in the contralateral eye at 4 months of age. Ophthalmic exams, in vivo ocular imaging and electroretinography were repeated monthly to assess retinal structure and function. Retinal morphology, hTPP1 and GFP expression in the retina, optic nerve and lateral geniculate nucleus, and hTPP1 concentrations in the vitreous were evaluated after the dogs were euthanized at end stage neurological disease at approximately 10 months of age. Intravitreal administration of AAV2.CAG.hTPP1 resulted in stable, widespread expression of hTPP1 throughout the inner retina, prevented disease-related declines in retinal function and inhibited disease-related cell loss and storage body accumulation in the retina for at least 6 months. Uveitis occurred in eyes treated with the hTPP1 vector, but this did not prevent therapeutic efficacy. The severity of the uveitis was ameliorated with anti-inflammatory treatments. These results indicate that a single intravitreal injection of AAV2.CAG.hTPP1 is an effective treatment to inhibit ocular disease progression in canine CLN2 disease.
Collapse
Affiliation(s)
- Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Rebecca E H Whiting
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Juri Ota-Kuroki
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Brandie Morgan-Jack
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Julianna C Sabol
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Elizabeth J Meiman
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Francheska Ortiz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
4
|
Miao SB, Guo H, Kong DX, Zhao YY, Pan SH, Jiang Y, Gao X, Wu XH. Case report: Analysis of novel compound heterozygous TPP1 variants in a Chinese patient with neuronal ceroid lipofuscinosis type 2. Front Genet 2022; 13:937485. [PMID: 36118858 PMCID: PMC9471087 DOI: 10.3389/fgene.2022.937485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal ceroid lipofuscinosis type 2 (CLN2) is an autosomal recessive neurodegenerative disease caused by variants in the TPP1 gene that lead to the deficiency of the lysosomal enzyme tripeptidyl peptidase I (TPP1) activity. Herein, we report a rare case of CLN2 caused by two novel variants of TPP1. The patient presented with seizures at onset, followed by progressive cognitive impairment, motor decline, and vision loss. Novel compound heterozygous variants, c.544_545del and c.230-3C>G, in TPP1 were identified by whole-exome sequencing. The variant assessment showed that the c.544_545del is a frameshift variant mediating mRNA decay and that c.230-3C>G is a splice variant generating aberrantly spliced TPP1 mRNA, as confirmed by a Splicing Reporter Minigene assay. In conclusion, clinical history, variant assessment, and molecular analyses demonstrate that the novel compound heterozygous variants are responsible for CLN2 disease in this patient. This study expands the mutation spectrum of TPP1.
Collapse
Affiliation(s)
- Sui-Bing Miao
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Institute of Reproductive Medicine of Shijiazhuang, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Hui Guo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - De-Xian Kong
- Department of Endocrinology, The Fourth Affiliated Hospital of Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - Yuan-Yuan Zhao
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Institute of Reproductive Medicine of Shijiazhuang, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Shu-Hong Pan
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Institute of Reproductive Medicine of Shijiazhuang, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Yan Jiang
- Center of Reproductive Medicine, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Xing Gao
- Center of Reproductive Medicine, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Xiao-Hua Wu
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Institute of Reproductive Medicine of Shijiazhuang, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiao-Hua Wu,
| |
Collapse
|
5
|
Kaminiów K, Kozak S, Paprocka J. Recent Insight into the Genetic Basis, Clinical Features, and Diagnostic Methods for Neuronal Ceroid Lipofuscinosis. Int J Mol Sci 2022; 23:5729. [PMID: 35628533 PMCID: PMC9145894 DOI: 10.3390/ijms23105729] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare, inherited, neurodegenerative lysosomal storage disorders that affect children and adults. They are traditionally grouped together, based on shared clinical symptoms and pathological ground. To date, 13 autosomal recessive gene variants, as well as one autosomal dominant gene variant, of NCL have been described. These genes encode a variety of proteins, whose functions have not been fully defined; most are lysosomal enzymes, transmembrane proteins of the lysosome, or other organelles. Common symptoms of NCLs include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and, in rare adult-onset cases, dementia. Depending on the mutation, these symptoms can vary, with respect to the severity and onset of symptoms by age. Currently, all forms of NCL are fatal, and no curative treatments are available. Herein, we provide an overview to summarize the current knowledge regarding the pathophysiology, genetics, and clinical manifestation of these conditions, as well as the approach to diagnosis.
Collapse
Affiliation(s)
- Konrad Kaminiów
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.)
| | - Sylwia Kozak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.)
| | - Justyna Paprocka
- Pediatric Neurology Department, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
6
|
Rodrigues D, de Castro MJ, Crujeiras P, Duat-Rodriguez A, Marco AV, Del Toro M, Couce ML, Colón C. The LINCE Project: A Pathway for Diagnosing NCL2 Disease. Front Pediatr 2022; 10:876688. [PMID: 35425725 PMCID: PMC9002010 DOI: 10.3389/fped.2022.876688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Neuronal Ceroid Lipofuscinosis (NCL) comprises a clinically and genetically heterogeneous group of 13 neurodegenerative lysosomal storage disorders. Neuronal Ceroid lipofuscinosis type 2 disease (NCL2), caused by the deficient lysosomal enzyme tripeptidyl peptidase 1 (TPP1), is the only one with an approved enzyme replacement treatment (ERT). Early initiation of ERT appears to modify significantly the natural history of the disease. We aimed to shorten the time to diagnosis of NCL2. METHODS In March 2017, we started per first time in Spain a selective screening program, the LINCE project, in pediatric patients with clinical symptoms compatible with NCL2 disease. The program covered the whole country. We distributed kits to pediatricians with the necessary material to assess patients. All samples in this study were received within one week of collection. Enzymatic activity determined on dried blood spots was the main method used to screen for TPP1 and palmitoyl protein thioesterase 1 (PPT1) for the differential diagnosis with neuronal ceroid lipofuscinosis type 1 (NCL1). RESULTS Over a period of three years, we received 71 samples. The analysis was minimally invasive, relatively cheap and fast-executing. Three cases identified as a direct result of the selective screening strategy were confirmed by genetic study of NCL2 disease with a median age of 4.5 years. Our screening method has a specificity of 100%, and, with the absence to date of false negatives. We did not detect any NCL1-positive cases. CONCLUSIONS LINCE proved to be a simple, useful, and reliable tool for the diagnosis of NCL2, enabling clinicians to diagnose NCL2 faster. The presence of NCL2-positive cases in our population and availability of treatment may facilitate the inclusion of NCL2 in neonatal screening programs for early diagnosis.
Collapse
Affiliation(s)
- Daniel Rodrigues
- Congenital Metabolic Diseases Unit, Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Department of Pediatrics, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria José de Castro
- Congenital Metabolic Diseases Unit, Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Pablo Crujeiras
- Congenital Metabolic Diseases Unit, Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Department of Pediatrics, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Anna Duat-Rodriguez
- Department of Neuropediatrics, Niño Jesús Children's Hospital, Madrid, Spain
| | - Ana Victoria Marco
- Genomics Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Mireia Del Toro
- Pediatric Neurology Unit, Vall D'Hebron University Hospital, Barcelona, Spain
| | - María L Couce
- Congenital Metabolic Diseases Unit, Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Department of Pediatrics, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristóbal Colón
- Congenital Metabolic Diseases Unit, Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| |
Collapse
|
7
|
Haver HN, Scaglione KM. Dictyostelium discoideum as a Model for Investigating Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:759532. [PMID: 34776869 PMCID: PMC8578527 DOI: 10.3389/fncel.2021.759532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
The social amoeba Dictyostelium discoideum is a model organism that is used to investigate many cellular processes including chemotaxis, cell motility, cell differentiation, and human disease pathogenesis. While many single-cellular model systems lack homologs of human disease genes, Dictyostelium's genome encodes for many genes that are implicated in human diseases including neurodegenerative diseases. Due to its short doubling time along with the powerful genetic tools that enable rapid genetic screening, and the ease of creating knockout cell lines, Dictyostelium is an attractive model organism for both interrogating the normal function of genes implicated in neurodegeneration and for determining pathogenic mechanisms that cause disease. Here we review the literature involving the use of Dictyostelium to interrogate genes implicated in neurodegeneration and highlight key questions that can be addressed using Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
Kovacs KD, Orlin A, Sondhi D, Kaminsky SM, D'Amico DJ, Crystal RG, Kiss S. Automated Retinal Layer Segmentation in CLN2-Associated Disease: Commercially Available Software Characterizing a Progressive Maculopathy. Transl Vis Sci Technol 2021; 10:23. [PMID: 34313725 PMCID: PMC8322716 DOI: 10.1167/tvst.10.8.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose CLN2-associated disease is a hereditary, fatal lysosomal storage disorder characterized by progressive brain and retinal deterioration. Here, we characterize the inner and outer retinal degeneration using automated segmentation software in optical coherence tomography scans, providing an objective, quantifiable metric for monitoring subtle changes previously identified with a validated disease classification scale (the Weill Cornell Batten Scale). Methods This study is a retrospective, single-center cohort review of images from examinations under anesthesia in treatment-naïve patients with CLN2-associated disease. Automated segmentation software was used to delineate retinal nerve fiber, ganglion cell layer (GCL), and outer nuclear layer (ONL) thickness measurements in the fovea, parafovea, and perifovea based on age groups (months): 30 to 38, 39 to 45, 46 to 52, 53 to 59, 60 to 66, and 67 or older. Results Twenty-seven eyes from 14 patients were included, with 8 serial images yielding 36 interpretable optical coherence tomography scans. There was a significant difference in parafoveal ONL thickness between 39 to 45 and 46 to 52 months of age (P = 0.032) not seen in other regions or retinal layers. Perifoveal ONL demonstrated a difference in thickness between the 60 to 66 and greater than 67 months age cohorts (P = 0.047). There was strong symmetry between eyes, and high segmentation repeatability. Conclusions Parafoveal ONL thickness represents a sensitive, early age indicator of CLN2-associated degeneration. Outer retinal degeneration is apparent at younger ages than inner retinal changes though in treatment-naïve patients all retinal layers showed significant differences between 60 to 66 and more than 67 months of age. Translational Relevance This study establishes sensitive, quantitative biomarkers for assessing retinal degeneration in a large cohort natural history study in anticipation of future clinical trials.
Collapse
Affiliation(s)
- Kyle D Kovacs
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | - Anton Orlin
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Donald J D'Amico
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Szilárd Kiss
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
9
|
Singh RB, Gupta P, Kartik A, Farooqui N, Singhal S, Shergill S, Singh KP, Agarwal A. Ocular Manifestations of Neuronal Ceroid Lipofuscinoses. Semin Ophthalmol 2021; 36:582-595. [PMID: 34106804 DOI: 10.1080/08820538.2021.1936571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare neurodegenerative storage disorders associated with devastating visual prognosis, with an incidence of 1/1,000,000 in the United States and comparatively higher incidence in European countries. The pathophysiological mechanisms causing NCLs occur due to enzymatic or transmembrane defects in various sub-cellular organelles including lysosomes, endoplasmic reticulum, and cytoplasmic vesicles. NCLs are categorized into different types depending upon the underlying cause i.e., soluble lysosomal enzyme deficiencies or non-enzymatic deficiencies (functions of identified proteins), which are sub-divided based on an axial classification system. In this review, we have evaluated the current evidence in the literature and reported the incidence rates, underlying mechanisms and currently available management protocols for these rare set of neuroophthalmological disorders. Additionally, we also highlighted the potential therapies under development that can expand the treatment of these rare disorders beyond symptomatic relief.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Prakash Gupta
- Department of Internal Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Kartik
- Department of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Naba Farooqui
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sachi Singhal
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sukhman Shergill
- Department of Anesthesiology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Kanwar Partap Singh
- Department of Ophthalmology, Dayanand Medical College & Hospital, Ludhiana, India
| | - Aniruddha Agarwal
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
11
|
Stepien KM, Roncaroli F, Turton N, Hendriksz CJ, Roberts M, Heaton RA, Hargreaves I. Mechanisms of Mitochondrial Dysfunction in Lysosomal Storage Disorders: A Review. J Clin Med 2020; 9:jcm9082596. [PMID: 32796538 PMCID: PMC7463786 DOI: 10.3390/jcm9082596] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is emerging as an important contributory factor to the pathophysiology of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs appears to be multifactorial, although impaired mitophagy and oxidative stress appear to be common inhibitory mechanisms shared amongst these heterogeneous disorders. Once impaired, dysfunctional mitochondria may impact upon the function of the lysosome by the generation of reactive oxygen species as well as depriving the lysosome of ATP which is required by the V-ATPase proton pump to maintain the acidity of the lumen. Given the reported evidence of mitochondrial dysfunction in LSDs together with the important symbiotic relationship between these two organelles, therapeutic strategies targeting both lysosome and mitochondrial dysfunction may be an important consideration in the treatment of LSDs. In this review we examine the putative mechanisms that may be responsible for mitochondrial dysfunction in reported LSDs which will be supplemented with morphological and clinical information.
Collapse
Affiliation(s)
- Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Correspondence:
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, School of Biology, Medicine and Health, University of Manchester and Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Nadia Turton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Christian J. Hendriksz
- Paediatrics and Child Health, Steve Biko Academic Unit, University of Pretoria, 0002 Pretoria, South Africa;
| | - Mark Roberts
- Neurology Department, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Robert A. Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Iain Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| |
Collapse
|
12
|
Diagnosis of late-infantile neuronal ceroid lipofuscinosis using dried blood spot-based assay for TPPI enzyme activity: TPPI diagnostic assay from DBS. Clin Chim Acta 2020; 507:62-68. [PMID: 32298681 DOI: 10.1016/j.cca.2020.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND The neuronal ceroid lipofuscinosis 2 (NCL2) or classic late-infantile neuronal ceroid lipofuscinosis (LINCL) is a neurogenetic disorder caused by mutations in the TPPI gene, which codes for the lysosomal tripeptidyl peptidase 1 (TPPI) EC 3.4.14.9. Loss of functional TPPI activity results in progressive visual and neurological symptoms starting at around 1-2 years of age causing early death. METHODS We report a DBS-based TPPI assay that cleaves a synthetic tetrapeptide substrate generating a product that is detected by HPLC. Probands and carriers were identified with 100% accuracy (7 probands, 30 carriers, 13 controls). RESULTS The assay detected a single TPPI activity at a lower pH towards the substrate tested. TPPI activity measurable when extracted at lower pH while inactive at neutral pH showed steady increase for at least 8 h incubation. No loss in TPPI activity was observed when DBS were stored for at least 2 weeks either in freezer, refrigerator, room temperature or 42 °C. CONCLUSION A sequence variant causing Arg339Gln substitution in a proband had 12% TPPI. TPPI activity can be reliably measured in DBS, giving an opportunity to diagnose NCL2 at birth and refer patients for enzyme replacement or other therapies for earliest intervention, or alternatively offers a second-tier confirmatory test.
Collapse
|
13
|
Abstract
The progressive myoclonic epilepsies (PMEs) represent a rare but devastating group of syndromes characterized by epileptic myoclonus, typically action-induced seizures, neurological regression, medically refractory epilepsy, and a variety of other signs and symptoms depending on the specific syndrome. Most of the PMEs begin in children who are developing as expected, with the onset of the disorder heralded by myoclonic and other seizure types. The conditions are considerably heterogenous, but medical intractability to epilepsy, particularly myoclonic seizures, is a core feature. With the increasing use of molecular genetic techniques, mutations and their abnormal protein products are being delineated, providing a basis for disease-based therapy. However, genetic and enzyme replacement or substrate removal are in the nascent stage, and the primary therapy is through antiepileptic drugs. Epilepsy in children with progressive myoclonic seizures is notoriously difficult to treat. The disorder is rare, so few double-blinded, placebo-controlled trials have been conducted in PME, and drugs are chosen based on small open-label trials or extrapolation of data from drug trials of other syndromes with myoclonic seizures. This review discusses the major PME syndromes and their neurogenetic basis, pathophysiological underpinning, electroencephalographic features, and currently available treatments.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont College of Medicine, Stafford Hall, 118C, Burlington, VT, 05405, USA.
| |
Collapse
|
14
|
Abstract
Coxiella burnetii is a unique bacterial pathogen that replicates to high numbers in a lysosome-like intracellular niche. This study identified host proteins that contribute to the pathogen’s capacity to establish this niche and activate the Dot/Icm secretion system required for intracellular replication. Many host proteins were found to contribute to the establishment of C. burnetii virulence by aiding trafficking of the pathogen to the lysosome and creating the degradative lysosome environment. Pathogenic bacteria are able to sense and adapt to their environment by altering their gene expression profile. Here we demonstrated that C. burnetii detects specific amino acids present in the lysosome using a two-component system that up-regulates expression of genes required for Dot/Icm activity. Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-like vacuole through activation of a Dot/Icm-type IVB secretion system and subsequent translocation of effectors that remodel the host cell. Here a genome-wide small interfering RNA screen and reporter assay were used to identify host proteins required for Dot/Icm effector translocation. Significant, and independently validated, hits demonstrated the importance of multiple protein families required for endocytic trafficking of the C. burnetii-containing vacuole to the lysosome. Further analysis demonstrated that the degradative activity of the lysosome created by proteases, such as TPP1, which are transported to the lysosome by receptors, such as M6PR and LRP1, are critical for C. burnetii virulence. Indeed, the C. burnetii PmrA/B regulon, responsible for transcriptional up-regulation of genes encoding the Dot/Icm apparatus and a subset of effectors, induced expression of a virulence-associated transcriptome in response to degradative products of the lysosome. Luciferase reporter strains, and subsequent RNA-sequencing analysis, demonstrated that particular amino acids activate the C. burnetii PmrA/B two-component system. This study has further enhanced our understanding of C. burnetii pathogenesis, the host–pathogen interactions that contribute to bacterial virulence, and the different environmental triggers pathogens can sense to facilitate virulence.
Collapse
|
15
|
Collier AM, Nemtsova Y, Kuber N, Banach-Petrosky W, Modak A, Sleat DE, Nanda V, Lobel P. Lysosomal protein thermal stability does not correlate with cellular half-life: global observations and a case study of tripeptidyl-peptidase 1. Biochem J 2020; 477:727-745. [PMID: 31957806 PMCID: PMC8442665 DOI: 10.1042/bcj20190874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Late-infantile neuronal ceroid lipofuscinosis (LINCL) is a neurodegenerative lysosomal storage disorder caused by mutations in the gene encoding the protease tripeptidyl-peptidase 1 (TPP1). Progression of LINCL can be slowed or halted by enzyme replacement therapy, where recombinant human TPP1 is administered to patients. In this study, we utilized protein engineering techniques to increase the stability of recombinant TPP1 with the rationale that this may lengthen its lysosomal half-life, potentially increasing the potency of the therapeutic protein. Utilizing multiple structure-based methods that have been shown to increase the stability of other proteins, we have generated and evaluated over 70 TPP1 variants. The most effective mutation, R465G, increased the melting temperature of TPP1 from 55.6°C to 64.4°C and increased its enzymatic half-life at 60°C from 5.4 min to 21.9 min. However, the intracellular half-life of R465G and all other variants tested in cultured LINCL patient-derived lymphoblasts was similar to that of WT TPP1. These results provide structure/function insights into TPP1 and indicate that improving in vitro thermal stability alone is insufficient to generate TPP1 variants with improved physiological stability. This conclusion is supported by a proteome-wide analysis that indicates that lysosomal proteins have higher melting temperatures but also higher turnover rates than proteins of other organelles. These results have implications for similar efforts where protein engineering approaches, which are frequently evaluated in vitro, may be considered for improving the physiological properties of proteins, particularly those that function in the lysosomal environment.
Collapse
Affiliation(s)
- Aaron M. Collier
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
| | - Yuliya Nemtsova
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
| | - Narendra Kuber
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
| | | | - Anurag Modak
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
| | - David E. Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
- Department of Biochemistry and Molecular Biology, Rutgers
University, Piscataway, NJ 08854
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
- Department of Biochemistry and Molecular Biology, Rutgers
University, Piscataway, NJ 08854
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
- Department of Biochemistry and Molecular Biology, Rutgers
University, Piscataway, NJ 08854
| |
Collapse
|
16
|
Kovacs KD, Patel S, Orlin A, Kim K, Van Everen S, Conner T, Sondhi D, Kaminsky SM, D'Amico DJ, Crystal RG, Kiss S. Symmetric Age Association of Retinal Degeneration in Patients with CLN2-Associated Batten Disease. Ophthalmol Retina 2020; 4:728-736. [PMID: 32146219 DOI: 10.1016/j.oret.2020.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Mutations in the CLN2 gene lead to a neurodegenerative and blinding lysosomal storage disorder: late infantile neuronal ceroid lipofucinosis, also known as "CLN2 disease." The purpose of the current study was to characterize the evolution of CLN2-associated retinal manifestations using the Weill Cornell Batten Scale (WCBS) and the age association of the retinal degeneration using central subfield thickness (CST) measurements and then correlate these findings with fundus photography and OCT to determine a critical period for retinal intervention. DESIGN Retrospective, single-center cohort. PARTICIPANTS Eighty-four eyes of 42 treatment-naïve patients with CLN2 disease. METHODS Clinical records, fundus photographs, and OCT imaging for patients with CLN2 disease collected during examinations under anesthesia were reviewed. Imaging was categorized per WCBS criteria by 3 masked graders. MAIN OUTCOME MEASURES CLN2-associated retinopathy assessed using WCBS scores, fundus photographs, and OCT imaging, correlated with patient age. RESULTS Eighty-four eyes of 42 patients had baseline fundus photographs, with baseline OCT in 31 eyes of 16 patients. Fundus photographs were obtained serially for 26 eyes of 13 patients, and serial OCT scans were obtained in 10 eyes of 5 patients. At baseline, bilateral WCBS scores were highly correlated for OCT and fundus photographs (r = 0.96 and 0.82, respectively). Central subfield thickness was negatively correlated with left and right eye WCBS OCT scores (r = -0.92 and -0.83, respectively; P < 0.001) and fundus photograph scores (r = -0.80 and -0.83, respectively; P < 0.001). OCT thickness was symmetrical between each eye. Baseline OCT data with age fit using a sigmoid function demonstrated a period of accelerated loss between 48 and 72 months of age. CONCLUSIONS Retinal degeneration associated with CLN2 disease manifests as a progressive, symmetrical decline, which appears to accelerate during a critical period at 48 to 72 months of age, suggesting intervention with retina-specific CLN2 gene therapy should occur ideally before or as early as possible within this critical period. The WCBS is a valuable tool and is highly correlated with the extent of retinal degeneration observed in OCT or fundus photographs; by using the fellow eye as a control, this grading scale can be used to monitor the effect of CLN2 gene therapy in future trials.
Collapse
Affiliation(s)
- Kyle D Kovacs
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, New York
| | | | - Anton Orlin
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, New York
| | | | | | | | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Donald J D'Amico
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Szilárd Kiss
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
17
|
Chakrabarti S, Chandra S, Roy A, Dasarathi S, Kundu M, Pahan K. Upregulation of tripeptidyl-peptidase 1 by 3-hydroxy-(2,2)-dimethyl butyrate, a brain endogenous ligand of PPARα: Implications for late-infantile Batten disease therapy. Neurobiol Dis 2019; 127:362-373. [PMID: 30928643 PMCID: PMC6588492 DOI: 10.1016/j.nbd.2019.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 03/24/2019] [Indexed: 11/24/2022] Open
Abstract
The late-infantile Batten disease or late-infantile neuronal ceroid lipofuscinosis (LINCL) is an autosomal recessive lysosomal storage disorder caused by mutations in the Cln2 gene leading to deficiency of lysosomal enzyme tripeptidyl peptidase 1 (TPP1). At present, available options for this fatal disorder are enzyme replacement therapy and gene therapy, which are extensively invasive and expensive. Our study demonstrates that 3-hydroxy-(2,2)-dimethyl butyrate (HDMB), a brain endogenous molecule, is capable of stimulating TPP1 expression and activity in mouse primary astrocytes and a neuronal cell line. HDMB activated peroxisome proliferator-activated receptor-α (PPARα), which, by forming heterodimer with Retinoid X receptor-α (RXRα), transcriptionally upregulated the Cln2 gene. Moreover, by using primary astrocytes from wild type, PPARα-/- and PPARβ-/- mice, we demonstrated that HDMB specifically required PPARα for inducing TPP1 expression. Finally, oral administration of HDMB to Cln2 heterozygous (Cln2+/-) mice led to a marked upregulation of TPP1 expression in the motor cortex and striatum in a PPARα-dependent fashion. Our study suggests that HDMB, a brain endogenous ligand of PPARα, might have therapeutic importance for LINCL treatment.
Collapse
Affiliation(s)
- Sudipta Chakrabarti
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Sujyoti Chandra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Sridevi Dasarathi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.
| |
Collapse
|
18
|
Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15:161-178. [PMID: 30783219 PMCID: PMC6681450 DOI: 10.1038/s41582-019-0138-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Batten disease (also known as neuronal ceroid lipofuscinoses) constitutes a family of devastating lysosomal storage disorders that collectively represent the most common inherited paediatric neurodegenerative disorders worldwide. Batten disease can result from mutations in 1 of 13 genes. These mutations lead to a group of diseases with loosely overlapping symptoms and pathology. Phenotypically, patients with Batten disease have visual impairment and blindness, cognitive and motor decline, seizures and premature death. Pathologically, Batten disease is characterized by lysosomal accumulation of autofluorescent storage material, glial reactivity and neuronal loss. Substantial progress has been made towards the development of effective therapies and treatments for the multiple forms of Batten disease. In 2017, cerliponase alfa (Brineura), a tripeptidyl peptidase enzyme replacement therapy, became the first globally approved treatment for CLN2 Batten disease. Here, we provide an overview of the promising therapeutic avenues for Batten disease, highlighting current FDA-approved clinical trials and prospective future treatments.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
19
|
Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, Zhang Z, Bagh MB. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. Mol Neurodegener 2019; 14:4. [PMID: 30651094 PMCID: PMC6335712 DOI: 10.1186/s13024-018-0300-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/04/2022] Open
Abstract
Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.
Collapse
Affiliation(s)
- Anil B. Mukherjee
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Abhilash P. Appu
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Sydney Casey
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Avisek Mondal
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Zhongjian Zhang
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
- Present address: Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Maria B. Bagh
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| |
Collapse
|
20
|
Civallero G, de Kremer R, Giugliani R. High-Risk Screening and Diagnosis of Inborn Errors of Metabolism. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409818792065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Gabriel Civallero
- Medical Genetics Service, HCPA, Porto Alegre, Brazil
- Department of Genetics, UFRGS, Porto Alegre, Brazil
| | - Raquel de Kremer
- Centro de Estudios de las Metabolopatías Congénitas, CEMECO, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Roberto Giugliani
- Medical Genetics Service, HCPA, Porto Alegre, Brazil
- Department of Genetics, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
21
|
Itagaki R, Endo M, Yanagisawa H, Hossain MA, Akiyama K, Yaginuma K, Miyajima T, Wu C, Iwamoto T, Igarashi J, Kobayashi Y, Tohyama J, Iwama K, Matsumoto N, Shintaku H, Eto Y. Characteristics of PPT1 and TPP1 enzymes in neuronal ceroid lipofuscinosis (NCL) 1 and 2 by dried blood spots (DBS) and leukocytes and their application to newborn screening. Mol Genet Metab 2018; 124:64-70. [PMID: 29599076 DOI: 10.1016/j.ymgme.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
Abstract
We first characterized PPT1 and TPP1 enzymes in dried blood spots (DBS), plasma/serum, and leukocytes/lymphocytes using neuronal ceroid lipofuscinosis (NCL) 1 and 2 patients and control subjects. PPT1 enzyme had only one acid form in control DBS, plasma/serum, and leukocytes/lymphocytes and showed deficient activities in these samples from NCL 1 patients. Conversely, TPP1 enzymes in control DBS and leukocytes/lymphocytes consisted of two forms, an acidic form and a neutral form, whereas serum TPP1 enzyme had only a neutral form. In control subjects, the optimal pH of PPT1 enzyme in DBS, plasma/serum, and leukocytes/lymphocytes was 4.5 to 5.0 in the acidic form, whereas TPP1 enzyme in control DBS and leukocytes/lymphocytes was pH 4.5 and 6.5, respectively. In NCL 1 and 2, both PPT1 and TPP1 enzyme activities in DBS, plasma, and leukocytes/lymphocytes were markedly reduced in acidic pH, whereas heterozygotes of NCL 1 and 2 in the acidic form showed intermediate activities between patients and control subjects. In neutral conditions, pH 6.0, the PPT1 enzyme activities in NCL 1 patients showed rather higher residual activities and intermediate activities in heterozygotes in NCL 1, which was probably caused by mutated proteins in three cases with NCL 1 patients. TPP1 enzyme activities at neutral pH 6.5 to 7.0 in DBS and leukocytes/lymphocytes showed higher enzyme activities in NCL 2 patients and heterozygotes. The reason for the increases of neutral TPP1 enzyme activities at pH 6.5 to 7.0 in NCL 2 DBS and leukocytes/lymphocytes, is obscure, but possibly caused by secondary activation of neutral TPP1 enzyme due to the absence of the acidic form. Interestingly, TPP1 activity in serum only consisted of a neutral form, no acidic form, and was not deficient in any NCL 2 patient. Therefore, we can diagnose NCL 1 patients by plasma/serum enzyme assay of PPT1, but not diagnose NCL 2 by serum TPP1 enzyme assay. A pilot study of newborn screening of NCL 1 and 2 has been established by more than 1000 newborn DBS assays. Using this assay system, we will be able to perform newborn screening of NCL 1 and 2 by DBS.
Collapse
Affiliation(s)
- Rina Itagaki
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Masahiro Endo
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Hiroko Yanagisawa
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Mohammad Arif Hossain
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Keiko Akiyama
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Keiko Yaginuma
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Takashi Miyajima
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan; Institute of Rare disease, AnGes Co., Tokyo, Japan
| | - Chen Wu
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan; Institute of Rare disease, AnGes Co., Tokyo, Japan
| | - Takeo Iwamoto
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan; Core Laboratory, Institute of Medical Science, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | | | - Yu Kobayashi
- Department of Child Neurology, Epilepsy Center, Nishi-Niigata, Chuo National Hospital, Niigata, Japan
| | - Jun Tohyama
- Department of Child Neurology, Epilepsy Center, Nishi-Niigata, Chuo National Hospital, Niigata, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan; Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
22
|
Junaid MA, Clark GM, Pullarkat RK. A Lysosomal Pepstatin-Insensitive Proteinase as a Novel Biomarker for Breast Carcinoma. Int J Biol Markers 2018; 15:129-34. [PMID: 10883885 DOI: 10.1177/172460080001500201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lysosomal proteinases play an important role in the turnover of intracellular proteins, and acidic proteinases such as cathepsin D are known to be increased in breast carcinoma. In the present study the activity of a newly discovered acidic lysosomal pepstatin-insensitive proteinase (CLN2p) was measured in breast tissues by the most sensitive and highly specific assay that we had developed for the diagnosis of late-infantile neuronal ceroid lipofuscinosis (LINCL) (2). Samples from eight normal subjects undergoing reductive mammoplasty and 200 patients with primary breast carcinoma were analyzed. The results suggest a two- to seventeen-fold higher CLN2p activity in tumors, which was significantly and positively correlated with already known breast cancer biomarkers such as levels of cathepsin D, estrogen receptor and progesterone receptor. These results suggest a diagnostic and prognostic potential for this novel acid proteinase in breast cancer.
Collapse
Affiliation(s)
- M A Junaid
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, USA
| | | | | |
Collapse
|
23
|
Cudjoe EK, Saleh T, Hawkridge AM, Gewirtz DA. Proteomics Insights into Autophagy. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Emmanuel K. Cudjoe
- Department of Pharmacotherapy & Outcomes Science; Virginia Commonwealth University; Richmond VA
| | - Tareq Saleh
- Department of Pharmacology & Toxicology; Virginia Commonwealth University; Richmond VA
| | - Adam M. Hawkridge
- Department of Pharmacotherapy & Outcomes Science; Virginia Commonwealth University; Richmond VA
- Department of Pharmaceutics; Virginia Commonwealth University; Richmond VA
| | - David A. Gewirtz
- Department of Pharmacology & Toxicology; Virginia Commonwealth University; Richmond VA
- Massey Cancer Center; Virginia Commonwealth University; Richmond VA
| |
Collapse
|
24
|
Cloning, Purification, and Characterization of Tripeptidyl Peptidase from Streptomyces herbaricolor TY-21. Appl Biochem Biotechnol 2017; 184:239-252. [DOI: 10.1007/s12010-017-2547-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|
25
|
Stumpf M, Müller R, Gaßen B, Wehrstedt R, Fey P, Karow MA, Eichinger L, Glöckner G, Noegel AA. A tripeptidyl peptidase 1 is a binding partner of the Golgi pH regulator (GPHR) in Dictyostelium. Dis Model Mech 2017; 10:897-907. [PMID: 28546289 PMCID: PMC5536908 DOI: 10.1242/dmm.029280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023] Open
Abstract
Mutations in tripeptidyl peptidase 1 (TPP1) have been associated with late infantile neuronal ceroid lipofuscinosis (NCL), a neurodegenerative disorder. TPP1 is a lysosomal serine protease, which removes tripeptides from the N-terminus of proteins and is composed of an N-terminal prodomain and a catalytic domain. It is conserved in mammals, amphibians, fish and the amoeba Dictyostelium discoideum. D. discoideum harbors at least six genes encoding TPP1, tpp1A to tpp1F. We identified TPP1F as binding partner of Dictyostelium GPHR (Golgi pH regulator), which is an evolutionarily highly conserved intracellular transmembrane protein. A region encompassing the DUF3735 (GPHR_N) domain of GPHR was responsible for the interaction. In TPP1F, the binding site is located in the prodomain of the protein. The tpp1F gene is transcribed throughout development and translated into a polypeptide of ∼65 kDa. TPP1 activity was demonstrated for TPP1F-GFP immunoprecipitated from D. discoideum cells. Its activity could be inhibited by addition of the recombinant DUF3735 domain of GPHR. Knockout tpp1F mutants did not display any particular phenotype, and TPP1 activity was not abrogated, presumably because tpp1B compensates as it has the highest expression level of all the TPP1 genes during growth. The GPHR interaction was not restricted to TPP1F but occurred also with TPP1B. As previous reports show that the majority of the TPP1 mutations in NCL resulted in reduction or loss of enzyme activity, we suggest that Dicyostelium could be used as a model system in which to test new reagents that could affect the activity of the protein and ameliorate the disease. Summary: Interaction of Dictyostelium tripeptidyl peptidase 1 with GPHR could be relevant for studies of the human enzyme, which is associated with a neurodegenerative disorder.
Collapse
Affiliation(s)
- Maria Stumpf
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Rolf Müller
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Berthold Gaßen
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Regina Wehrstedt
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Petra Fey
- Dicty Base, Northwestern University, Biomedical Informatics Center and Center for Genetic Medicine, Chicago, IL 60611, USA
| | - Malte A Karow
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Ludwig Eichinger
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Gernot Glöckner
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| |
Collapse
|
26
|
Fietz M, AlSayed M, Burke D, Cohen-Pfeffer J, Cooper JD, Dvořáková L, Giugliani R, Izzo E, Jahnová H, Lukacs Z, Mole SE, Noher de Halac I, Pearce DA, Poupetova H, Schulz A, Specchio N, Xin W, Miller N. Diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2 disease): Expert recommendations for early detection and laboratory diagnosis. Mol Genet Metab 2016; 119:160-7. [PMID: 27553878 DOI: 10.1016/j.ymgme.2016.07.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/23/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a heterogeneous group of lysosomal storage disorders. NCLs include the rare autosomal recessive neurodegenerative disorder neuronal ceroid lipofuscinosis type 2 (CLN2) disease, caused by mutations in the tripeptidyl peptidase 1 (TPP1)/CLN2 gene and the resulting TPP1 enzyme deficiency. CLN2 disease most commonly presents with seizures and/or ataxia in the late-infantile period (ages 2-4), often in combination with a history of language delay, followed by progressive childhood dementia, motor and visual deterioration, and early death. Atypical phenotypes are characterized by later onset and, in some instances, longer life expectancies. Early diagnosis is important to optimize clinical care and improve outcomes; however, currently, delays in diagnosis are common due to low disease awareness, nonspecific clinical presentation, and limited access to diagnostic testing in some regions. In May 2015, international experts met to recommend best laboratory practices for early diagnosis of CLN2 disease. When clinical signs suggest an NCL, TPP1 enzyme activity should be among the first tests performed (together with the palmitoyl-protein thioesterase enzyme activity assay to rule out CLN1 disease). However, reaching an initial suspicion of an NCL or CLN2 disease can be challenging; thus, use of an epilepsy gene panel for investigation of unexplained seizures in the late-infantile/childhood ages is encouraged. To confirm clinical suspicion of CLN2 disease, the recommended gold standard for laboratory diagnosis is demonstration of deficient TPP1 enzyme activity (in leukocytes, fibroblasts, or dried blood spots) and the identification of causative mutations in each allele of the TPP1/CLN2 gene. When it is not possible to perform both analyses, either demonstration of a) deficient TPP1 enzyme activity in leukocytes or fibroblasts, or b) detection of two pathogenic mutations in trans is diagnostic for CLN2 disease.
Collapse
Affiliation(s)
- Michael Fietz
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, Australia
| | - Moeenaldeen AlSayed
- Department of Medical Genetics, Alfaisal University, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Derek Burke
- Chemical Pathology, Camelia Botnar Laboratories, Great Ormond Street Hospital, London, UK
| | | | - Jonathan D Cooper
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Lenka Dvořáková
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Prague, Czech Republic
| | - Roberto Giugliani
- Medical Genetics Service, HCPA, Department of Genetics, UFRGS, INAGEMP, Porto Alegre, Brazil
| | | | - Helena Jahnová
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Prague, Czech Republic
| | - Zoltan Lukacs
- Newborn Screening and Metabolic Diagnostics Unit, Hamburg University Medical Center, Hamburg, Germany
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, UCL Institute of Child Health, University College London, London, UK
| | - Ines Noher de Halac
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba and National Research Council-CONICET, Córdoba, Argentina
| | - David A Pearce
- Sanford Children's Health Research Center, Sioux Falls, SD, USA
| | - Helena Poupetova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Prague, Czech Republic
| | - Angela Schulz
- Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Specchio
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Winnie Xin
- Neurogenetics DNA Diagnostic Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
27
|
Geraets RD, Koh SY, Hastings ML, Kielian T, Pearce DA, Weimer JM. Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis. Orphanet J Rare Dis 2016; 11:40. [PMID: 27083890 PMCID: PMC4833901 DOI: 10.1186/s13023-016-0414-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs) are a family of autosomal recessive neurodegenerative disorders that annually affect 1:100,000 live births worldwide. This family of diseases results from mutations in one of 14 different genes that share common clinical and pathological etiologies. Clinically, the diseases are subcategorized into infantile, late-infantile, juvenile and adult forms based on their age of onset. Though the disease phenotypes may vary in their age and order of presentation, all typically include progressive visual deterioration and blindness, cognitive impairment, motor deficits and seizures. Pathological hallmarks of NCLs include the accumulation of storage material or ceroid in the lysosome, progressive neuronal degeneration and massive glial activation. Advances have been made in genetic diagnosis and counseling for families. However, comprehensive treatment programs that delay or halt disease progression have been elusive. Current disease management is primarily targeted at controlling the symptoms rather than "curing" the disease. Recognizing the growing need for transparency and synergistic efforts to move the field forward, this review will provide an overview of the therapeutic approaches currently being pursued in preclinical and clinical trials to treat different forms of NCL as well as provide insight to novel therapeutic approaches in development for the NCLs.
Collapse
Affiliation(s)
- Ryan D. Geraets
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Seung yon Koh
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
| | - Michelle L. Hastings
- />Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL USA
| | - Tammy Kielian
- />Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE USA
| | - David A. Pearce
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Jill M. Weimer
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| |
Collapse
|
28
|
Dyke JP, Sondhi D, Voss HU, Yohay K, Hollmann C, Mancenido D, Kaminsky SM, Heier LA, Rudser KD, Kosofsky B, Casey BJ, Crystal RG, Ballon D. Brain Region-Specific Degeneration with Disease Progression in Late Infantile Neuronal Ceroid Lipofuscinosis (CLN2 Disease). AJNR Am J Neuroradiol 2016; 37:1160-9. [PMID: 26822727 DOI: 10.3174/ajnr.a4669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 11/30/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is a uniformly fatal lysosomal storage disease resulting from mutations in the CLN2 gene. Our hypothesis was that regional analysis of cortical brain degeneration may identify brain regions that are affected earliest and most severely by the disease. MATERIALS AND METHODS Fifty-two high-resolution 3T MR imaging datasets were prospectively acquired on 38 subjects with CLN2. A retrospective cohort of 52 disease-free children served as a control population. The FreeSurfer software suite was used for calculation of cortical thickness. RESULTS An increased rate of global cortical thinning in CLN2 versus control subjects was the primary finding in this study. Three distinct patterns were observed across brain regions. In the first, subjects with CLN2 exhibited differing rates of cortical thinning versus age. This was true in 22 and 26 of 34 regions in the left and right hemispheres, respectively, and was also clearly discernable when considering brain lobes as a whole and Brodmann regions. The second pattern exhibited a difference in thickness from healthy controls but with no discernable change with age (9 left hemispheres, 5 right hemispheres). In the third pattern, there was no difference in either the rate of cortical thinning or the mean cortical thickness between groups (3 left hemispheres, 3 right hemispheres). CONCLUSIONS This study demonstrates that CLN2 causes differential rates of degeneration across the brain. Anatomic and functional regions that degenerate sooner and more severely than others compared with those in healthy controls may offer targets for directed therapies. The information gained may also provide neurobiologic insights regarding the mechanisms underlying disease progression.
Collapse
Affiliation(s)
- J P Dyke
- From the Departments of Radiology (J.P.D., H.U.V., L.A.H., D.B.)
| | - D Sondhi
- Genetic Medicine (D.S., C.H., D.M., S.M.K., R.G.C., D.B.)
| | - H U Voss
- From the Departments of Radiology (J.P.D., H.U.V., L.A.H., D.B.)
| | | | - C Hollmann
- Genetic Medicine (D.S., C.H., D.M., S.M.K., R.G.C., D.B.)
| | - D Mancenido
- Genetic Medicine (D.S., C.H., D.M., S.M.K., R.G.C., D.B.)
| | - S M Kaminsky
- Genetic Medicine (D.S., C.H., D.M., S.M.K., R.G.C., D.B.)
| | - L A Heier
- From the Departments of Radiology (J.P.D., H.U.V., L.A.H., D.B.)
| | - K D Rudser
- Division of Biostatistics (K.D.R.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis, Minnesota
| | | | - B J Casey
- Psychiatry (B.J.C.), Weill Cornell Medical College, New York, New York
| | - R G Crystal
- Genetic Medicine (D.S., C.H., D.M., S.M.K., R.G.C., D.B.)
| | - D Ballon
- From the Departments of Radiology (J.P.D., H.U.V., L.A.H., D.B.) Genetic Medicine (D.S., C.H., D.M., S.M.K., R.G.C., D.B.)
| |
Collapse
|
29
|
Phillips JE, Gomer RH. Partial genetic suppression of a loss-of-function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum. Dis Model Mech 2014; 8:147-56. [PMID: 25540127 PMCID: PMC4314780 DOI: 10.1242/dmm.018820] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is the most common childhood-onset neurodegenerative disease. NCL is inevitably fatal, and there is currently no treatment available. Children with NCL show a progressive decline in movement, vision and mental abilities, and an accumulation of autofluorescent deposits in neurons and other cell types. Late-infantile NCL is caused by mutations in the lysosomal protease tripeptidyl peptidase 1 (TPP1). TPP1 cleaves tripeptides from the N-terminus of proteins in vitro, but little is known about the physiological function of TPP1. TPP1 shows wide conservation in vertebrates but it is not found in Drosophila, Caenorhabditis elegans or Saccharomyces cerevisiae. Here, we characterize ddTpp1, a TPP1 ortholog present in the social amoeba Dictyostelium discoideum. Lysates from cells lacking ddTpp1 show a reduced but not abolished ability to cleave a TPP1 substrate, suggesting that other Dictyostelium enzymes can perform this cleavage. ddTpp1 and human TPP1 localize to the lysosome in Dictyostelium, indicating conserved function and trafficking. Cells that lack ddTpp1 show precocious multicellular development and a reduced ability to form spores during development. When cultured in autophagy-stimulating conditions, cells lacking ddTpp1 rapidly decrease in size and are less viable than wild-type cells, suggesting that one function of ddTpp1 could be to limit autophagy. Cells that lack ddTpp1 exhibit strongly impaired development in the presence of the lysosome-perturbing drug chloroquine, and this phenotype can be suppressed through a secondary mutation in the gene that we name suppressor of tpp1− A (stpA), which encodes a protein with some similarity to mammalian oxysterol-binding proteins (OSBPs). Taken together, these results suggest that targeting specific proteins could be a viable way to suppress the effects of loss of TPP1 function.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA.
| |
Collapse
|
30
|
Orlin A, Sondhi D, Witmer MT, Wessel MM, Mezey JG, Kaminsky SM, Hackett NR, Yohay K, Kosofsky B, Souweidane MM, Kaplitt MG, D’Amico DJ, Crystal RG, Kiss S. Spectrum of ocular manifestations in CLN2-associated batten (Jansky-Bielschowsky) disease correlate with advancing age and deteriorating neurological function. PLoS One 2013; 8:e73128. [PMID: 24015292 PMCID: PMC3756041 DOI: 10.1371/journal.pone.0073128] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022] Open
Abstract
Background Late infantile neuronal ceroid lipofuscinosis (LINCL), one form of Batten’s disease is a progressive neurodegenerative disorder resulting from a CLN2 gene mutation. The spectrum of ophthalmic manifestations of LINCL and the relationship with neurological function has not been previously described. Methods Patients underwent ophthalmic evaluations, including anterior segment and dilated exams, optical coherence tomography, fluorescein and indocyanine green angiography. Patients were also assessed with the LINCL Neurological Severity Scale. Ophthalmic findings were categorized into one of five severity scores, and the association of the extent of ocular disease with neurological function was assessed. Results Fifty eyes of 25 patients were included. The mean age at the time of exam was 4.9 years (range 2.5 to 8.1). The mean ophthalmic severity score was 2.6 (range 1 to 5). The mean neurological severity score was 6.1 (range 2 to 11). Significantly more severe ophthalmic manifestations were observed among older patients (p<0.005) and patients with more severe neurological findings (p<0.03). A direct correlation was found between the Ophthalmic Severity Scale and the Weill Cornell Neurological Scale (p<0.002). A direct association was also found between age and the ophthalmic manifestations (p<0.0002), with older children having more severe ophthalmic manifestations. Conclusions Ophthalmic manifestations of LINCL correlate closely with the degree of neurological function and the age of the patient. The newly established LINCL Ophthalmic Scale may serve as an objective marker of LINCL severity and disease progression, and may be valuable in the evaluation of novel therapeutic strategies for LINCL, including gene therapy.
Collapse
Affiliation(s)
- Anton Orlin
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States of America
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Matthew T. Witmer
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States of America
| | - Matthew M. Wessel
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States of America
| | - Jason G. Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Stephen M. Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Neil R. Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Kaleb Yohay
- Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Barry Kosofsky
- Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Mark M. Souweidane
- Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Michael G. Kaplitt
- Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Donald J. D’Amico
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Szilárd Kiss
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Beaudoin D, Hagenzieker J, Jack R. Neuronal Ceroid Lipofuscinosis: What Are the Roles of Electron Microscopy, DNA, and Enzyme Analysis in Diagnosis? J Histotechnol 2013. [DOI: 10.1179/his.2004.27.4.237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
32
|
Mahmood F, Fu S, Cooke J, Wilson SW, Cooper JD, Russell C. A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation. Brain 2013; 136:1488-507. [DOI: 10.1093/brain/awt043] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Getty AL, Rothberg PG, Pearce DA. Diagnosis of neuronal ceroid lipofuscinosis: mutation detection strategies. ACTA ACUST UNITED AC 2013; 1:351-62. [PMID: 23489355 DOI: 10.1517/17530059.1.3.351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCL) are a group of rare genetically inherited neurodegenerative disorders in children. These diseases are classified by age of onset (congenital, infantile, late-infantile, juvenile and adult-onset) and by the gene bearing mutations (CLN10/CTSD, CLN1/PPT1, CLN2/TPP1, CLN3, CLN5, CLN6, CLN7/MFSD8 and CLN8). Enzyme activity assays are helpful in identifying several of these disorders; however confirmation of the mutation in the gene causing these diseases is vital for definitive diagnosis. There exists considerable heterogeneity in the NCLs as a whole and within each type of NCL both in phenotype (disease manifestation and progression) and genotype (type of mutation), which complicates NCL diagnosis. In order to streamline the diagnostic process, the age of symptom onset, geography and/or ethnicity, and enzyme activity may be considered together. However, these ultimately serve to guide targeting the correct route to genetic confirmation of an NCL through mutational analysis. Herein, an effective protocol to diagnose NCLs using these criteria is presented.
Collapse
Affiliation(s)
- Amanda L Getty
- University of Rochester School of Medicine and Dentistry, Center for Neural Development and Disease, Aab Institute of Biomedical Sciences, Box 645, Rochester, New York 14642, USA +1 585 506 1972 ;
| | | | | |
Collapse
|
34
|
Vidal-Donet JM, Cárcel-Trullols J, Casanova B, Aguado C, Knecht E. Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts. PLoS One 2013; 8:e55526. [PMID: 23408996 PMCID: PMC3567113 DOI: 10.1371/journal.pone.0055526] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/27/2012] [Indexed: 12/21/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCL) are lysosomal storage disorders characterized by the accumulation of lipofuscin within lysosomes. Late infantile (LINCL) and juvenile (JNCL) are their most common forms and are caused by loss-of-function mutations in tripeptidyl peptidase 1 (TPP1), a lysosomal endopeptidase, and CLN3 protein (CLN3p), whose location and function is still controversial. LINCL patients suffer more severely from NCL consequences than JNCL patients, in spite of having in common an abnormal accumulation of material with a similar composition in the lysosomes. To identify distinctive characteristics that could explain the differences in the severity of LINCL and JNCL pathologies, we compared the protein degradation mechanisms in patientś fibroblasts. Pulse-chase experiments show a significant decrease in protein degradation by macroautophagy in fibroblasts bearing TPP1 (CLN2) and CLN3p (CLN3) mutations. In CLN2 fibroblasts, LC3-II levels and other procedures indicate an impaired formation of autophagosomes, which confirms the pulse-chase experiments. This defect is linked to an accumulation of reactive oxygen species (ROS), an upregulation of the Akt-mTOR signalling pathway and increased activities of the p38α and ERK1/2 MAPKs. In CLN3 fibroblasts, LC3-II analysis indicates impairment in autophagosome maturation and there is also a defect in fluid phase endocytosis, two alterations that can be related to an observed increase of 0.5 units in lysosomal pH. CLN3 fibroblasts also accumulate ROS but to a lower extent than CLN2. TPP1 activity is completely abrogated in CLN2 and partially diminished in CLN3 fibroblasts. TPP1 cleaves small hydrophobic proteins like subunit c of mitochondrial ATP synthase and the lack or a lower activity of this enzyme can contribute to lipofuscin accumulation. These alterations in TPP1 activity lead to an increased ROS production, especially in CLN2 in which it is aggravated by a decrease in catalase activity. This could explain the earlier appearance of the symptoms in the LINCL form.
Collapse
Affiliation(s)
| | - Jaime Cárcel-Trullols
- Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Carmen Aguado
- Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Erwin Knecht
- Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- * E-mail:
| |
Collapse
|
35
|
Sondhi D, Johnson L, Purpura K, Monette S, Souweidane MM, Kaplitt MG, Kosofsky B, Yohay K, Ballon D, Dyke J, Kaminksy SM, Hackett NR, Crystal RG. Long-term expression and safety of administration of AAVrh.10hCLN2 to the brain of rats and nonhuman primates for the treatment of late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther Methods 2012; 23:324-35. [PMID: 23131032 DOI: 10.1089/hgtb.2012.120] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Late infantile neuronal ceroid lipofuscinosis (LINCL), a fatal, lysosomal storage disorder caused by mutations in the CLN2 gene, results in a deficiency of tripeptidyl-peptidase I (TPP-I) activity in neurons. Our prior studies showed that delivery of the human CLN2 cDNA directly to the CNS, using an adeno-associated virus serotype 2 (AAV2) vector, is safe in children with LINCL. As a second-generation strategy, we have demonstrated that AAVrh.10hCLN2, a rhesus-derived AAV vector, mediates wide distribution of TPP-I through the CNS in a murine model. This study tests the hypothesis that direct administration of AAVrh.10hCLN2 to the CNS of rats and nonhuman primates at doses scalable to humans has an acceptable safety profile and mediates significant CLN2 expression in the CNS. A dose of 10(11) genome copies (GC) was administered bilaterally to the striatum of Sprague Dawley rats with sacrifice at 7 and 90 days with no significant impact except for mild vector-related histopathological changes at the site of vector administration. A dose of 1.8×10(12) GC of AAVrh.10hCLN2 was administered to the CNS of 8 African green monkeys. The vector-treated monkeys did not differ from controls in any safety parameter except for mild to moderate white matter edema and inflammation localized to the administration sites of the vector. There were no clinical sequelae to these localized findings. TPP-I activity was >2 SD over background in 31.7±8.1% of brain at 90 days. These findings establish the dose and safety profile for human clinical studies for the treatment of LINCL with AAVrh.10hCLN2.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sondhi D, Johnson L, De B, Janda K, Souweidane M, Kaplitt M, Rosenberg J, Moreno A, Pagovich O, Koob G, Kaminsky S, Hicks M, Crystal R. Long Term Expression and Safety of Administration of AAVrh.10hCLN2 to the Brain of Rats and Non-human Primates for the Treatment of Late Infantile Neuronal Lipofuscinosis. Hum Gene Ther Methods 2012. [DOI: 10.1089/hum.2012.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Ghosh A, Corbett GT, Gonzalez FJ, Pahan K. Gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, up-regulate tripeptidyl-peptidase 1 in brain cells via peroxisome proliferator-activated receptor α: implications for late infantile Batten disease therapy. J Biol Chem 2012; 287:38922-35. [PMID: 22989886 DOI: 10.1074/jbc.m112.365148] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The classical late infantile neuronal ceroid lipofuscinosis (LINCLs) is an autosomal recessive disease, where the defective gene is Cln2, encoding tripeptidyl-peptidase I (TPP1). At the molecular level, LINCL is caused by accumulation of autofluorescent storage materials in neurons and other cell types. Currently, there is no established treatment for this fatal disease. This study reveals a novel use of gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, in up-regulating TPP1 in brain cells. Both gemfibrozil and fenofibrate up-regulated mRNA, protein, and enzymatic activity of TPP1 in primary mouse neurons and astrocytes as well as human astrocytes and neuronal cells. Because gemfibrozil and fenofibrate are known to activate peroxisome proliferator-activated receptor-α (PPARα), the role of PPARα in gemfibrozil- and fenofibrate-mediated up-regulation of TPP1 was investigated revealing that both drugs up-regulated TPP1 mRNA, protein, and enzymatic activity both in vitro and in vivo in wild type (WT) and PPARβ(-/-), but not PPARα(-/-), mice. In an attempt to delineate the mechanism of TPP1 up-regulation, it was found that the effects of the fibrate drugs were abrogated in the absence of retinoid X receptor-α (RXRα), a molecule known to form a heterodimer with PPARα. Accordingly, all-trans-retinoic acid, alone or together with gemfibrozil, up-regulated TPP1. Co-immunoprecipitation and ChIP studies revealed the formation of a PPARα/RXRα heterodimer and binding of the heterodimer to an RXR-binding site on the Cln2 promoter. Together, this study demonstrates a unique mechanism for the up-regulation of TPP1 by fibrate drugs via PPARα/RXRα pathway.
Collapse
Affiliation(s)
- Arunava Ghosh
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
38
|
Meng Y, Sohar I, Wang L, Sleat DE, Lobel P. Systemic administration of tripeptidyl peptidase I in a mouse model of late infantile neuronal ceroid lipofuscinosis: effect of glycan modification. PLoS One 2012; 7:e40509. [PMID: 22792360 PMCID: PMC3391252 DOI: 10.1371/journal.pone.0040509] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/10/2012] [Indexed: 01/13/2023] Open
Abstract
Late-infantile neuronal ceroid lipofuscinosis (LINCL) is a recessive genetic disease of childhood caused by deficiencies in the lysosomal protease tripeptidyl peptidase I (TPP1). Disease is characterized by progressive and extensive neuronal death. One hurdle towards development of enzyme replacement therapy is delivery of TPP1 to the brain. In this study, we evaluated the effect of modifying N-linked glycans on recombinant human TPP1 on its pharmacokinetic properties after administration via tail vein injection to a mouse model of LINCL. Unmodified TPP1 exhibited a dose-dependent serum half-life of 12 min (0.12 mg) to 45 min (2 mg). Deglycosylation or modification using sodium metaperiodate oxidation and reduction with sodium borohydride increased the circulatory half-life but did not improve targeting to the brain compared to unmodified TPP1. Analysis of liver, brain, spleen, kidney and lung demonstrated that for all preparations, >95% of the recovered activity was in the liver. Interestingly, administration of a single 2 mg dose (80 mg/kg) of unmodified TPP1 resulted in ∼10% of wild-type activity in brain. This suggests that systemic administration of unmodified recombinant enzyme merits further exploration as a potential therapy for LINCL.
Collapse
Affiliation(s)
- Yu Meng
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
| | - Istvan Sohar
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
| | - Lingling Wang
- Vivarium, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - David E. Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
39
|
Muzaffar NE, Pearce DA. Analysis of NCL Proteins from an Evolutionary Standpoint. Curr Genomics 2011; 9:115-36. [PMID: 19440452 PMCID: PMC2674804 DOI: 10.2174/138920208784139573] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 02/18/2008] [Accepted: 02/27/2008] [Indexed: 11/22/2022] Open
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs) are the most common group of neurodegenerative disorders of childhood. While mutations in eight different genes have been shown to be responsible for these clinically distinct types of NCL, the NCLs share many clinical and pathological similarities. We have conducted an exhaustive Basic Local Alignment Search Tool (BLAST) analysis of the human protein sequences for each of the eight known NCL proteins- CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN8 and CLN10. The number of homologous species per CLN-protein identified by BLAST searches varies depending on the parameters set for the BLAST search. For example, a lower threshold is able to pull up more homologous sequences whereas a higher threshold decreases this number. Nevertheless, the clade confines are consistent despite this variation in BLAST searching parameters. Further phylogenetic analyses on the appearance of NCL proteins through evolution reveals a different time line for the appearance of the CLN-proteins. Moreover, divergence of each protein shows a different pattern, providing important clues on the evolving role of these proteins. We present and review in-depth bioinformatic analysis of the NCL proteins and classify the CLN-proteins into families based on their structures and evolutionary relationships, respectively. Based on these analyses, we have grouped the CLN-proteins into common clades indicating a common evolving pathway within the evolutionary tree of life. CLN2 is grouped in Eubacteria, CLN1 and CLN10 in Viridiplantae, CLN3 in Fungi/ Metazoa, CLN7 in Bilateria and CLN5, CLN6 and CLN8 in Euteleostomi.
Collapse
Affiliation(s)
- Neda E Muzaffar
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
40
|
Xu S, Wang L, El-Banna M, Sohar I, Sleat DE, Lobel P. Large-volume intrathecal enzyme delivery increases survival of a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther 2011; 19:1842-8. [PMID: 21730969 DOI: 10.1038/mt.2011.130] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Late infantile neuronal ceroid lipofuscinosis (LINCL) is a progressive neurodegenerative lysosomal storage disorder caused by mutations in TPP1, the gene encoding the lysosomal protease tripeptidyl-peptidase (TPP1). LINCL primarily affects children, is fatal and there is no effective treatment. Administration of recombinant protein has proved effective in treatment of visceral manifestations of other lysosomal storage disorders but to date, only marginal improvement in survival has been obtained for neurological diseases. In this study, we have developed and optimized a large-volume intrathecal administration strategy to deliver therapeutic amounts of TPP1 to the central nervous system (CNS) of a mouse model of LINCL. To determine the efficacy of treatment, we have monitored survival as the primary endpoint and demonstrate that an acute treatment regimen (three consecutive daily doses started at 4 weeks of age) increases median lifespan of the LINCL mice from 16 (vehicle treated) to 23 weeks (enzyme treated). Consistent with the increase in life-span, we also observed significant reversal of pathology and improvement in neurological phenotype. These results provide a strong basis for both clinical investigation of large-volume/high-dose delivery of TPP1 to the brain via the cerebrospinal fluid (CSF) and extension of this approach towards other neurological lysosomal storage diseases.
Collapse
Affiliation(s)
- Su Xu
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | |
Collapse
|
41
|
de Melo-Martín I, Sondhi D, Crystal RG. When ethics constrains clinical research: trial design of control arms in "greater than minimal risk" pediatric trials. Hum Gene Ther 2011; 22:1121-7. [PMID: 21446781 DOI: 10.1089/hum.2010.230] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For more than three decades clinical research in the United States has been explicitly guided by the idea that ethical considerations must be central to research design and practice. In spite of the centrality of this idea, attempting to balance the sometimes conflicting values of advancing scientific knowledge and protecting human subjects continues to pose challenges. Possible conflicts between the standards of scientific research and those of ethics are particularly salient in relation to trial design. Specifically, the choice of a control arm is an aspect of trial design in which ethical and scientific issues are deeply entwined. Although ethical quandaries related to the choice of control arms may arise when conducting any type of clinical trials, they are conspicuous in early phase gene transfer trials that involve highly novel approaches and surgical procedures and have children as the research subjects. Because of children's and their parents' vulnerabilities, in trials that investigate therapies for fatal, rare diseases affecting minors, the scientific and ethical concerns related to choosing appropriate controls are particularly significant. In this paper we use direct gene transfer to the central nervous system to treat late infantile neuronal ceroid lipofuscinosis to illustrate some of these ethical issues and explore possible solutions to real and apparent conflicts between scientific and ethical considerations.
Collapse
Affiliation(s)
- Inmaculada de Melo-Martín
- Division of Medical Ethics, Department of Public Health, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
42
|
Kuizon S, DiMaiuta K, Walus M, Jenkins EC, Kuizon M, Kida E, Golabek AA, Espinoza DO, Pullarkat RK, Junaid MA. A critical tryptophan and Ca2+ in activation and catalysis of TPPI, the enzyme deficient in classic late-infantile neuronal ceroid lipofuscinosis. PLoS One 2010; 5:e11929. [PMID: 20689811 PMCID: PMC2914745 DOI: 10.1371/journal.pone.0011929] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/07/2010] [Indexed: 11/18/2022] Open
Abstract
Background Tripeptidyl aminopeptidase I (TPPI) is a crucial lysosomal enzyme that is deficient in the fatal neurodegenerative disorder called classic late-infantile neuronal ceroid lipofuscinosis (LINCL). It is involved in the catabolism of proteins in the lysosomes. Recent X-ray crystallographic studies have provided insights into the structural/functional aspects of TPPI catalysis, and indicated presence of an octahedrally coordinated Ca2+. Methodology Purified precursor and mature TPPI were used to study inhibition by NBS and EDTA using biochemical and immunological approaches. Site-directed mutagenesis with confocal imaging technique identified a critical W residue in TPPI activity, and the processing of precursor into mature enzyme. Principal Findings NBS is a potent inhibitor of the purified TPPI. In mammalian TPPI, W542 is critical for tripeptidyl peptidase activity as well as autocatalysis. Transfection studies have indicated that mutants of the TPPI that harbor residues other than W at position 542 have delayed processing, and are retained in the ER rather than transported to lysosomes. EDTA inhibits the autocatalytic processing of the precursor TPPI. Conclusions/Significance We propose that W542 and Ca2+ are critical for maintaining the proper tertiary structure of the precursor proprotein as well as the mature TPPI. Additionally, Ca2+ is necessary for the autocatalytic processing of the precursor protein into the mature TPPI. We have identified NBS as a potent TPPI inhibitor, which led in delineating a critical role for W542 residue. Studies with such compounds will prove valuable in identifying the critical residues in the TPPI catalysis and its structure-function analysis.
Collapse
Affiliation(s)
- Salomon Kuizon
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Kathleen DiMaiuta
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Marius Walus
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Edmund C. Jenkins
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Marisol Kuizon
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elizabeth Kida
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Adam A. Golabek
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Daniel O. Espinoza
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Raju K. Pullarkat
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Mohammed A. Junaid
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Kay GW, Verbeek MM, Furlong JM, Willemsen MAAP, Palmer DN. Neuropeptide changes and neuroactive amino acids in CSF from humans and sheep with neuronal ceroid lipofuscinoses (NCLs, Batten disease). Neurochem Int 2009; 55:783-8. [PMID: 19664668 PMCID: PMC2764820 DOI: 10.1016/j.neuint.2009.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 01/21/2023]
Abstract
Anomalies in neuropeptides and neuroactive amino acids have been postulated to play a role in neurodegeneration in a variety of diseases including the inherited neuronal ceroid lipofuscinoses (NCLs, Batten disease). These are often indicated by concentration changes in cerebrospinal fluid (CSF). Here we compare CSF neuropeptide concentrations in patients with the classical juvenile CLN3 form of NCL and the classical late infantile CLN2 form with neuropeptide and neuroactive amino acid concentrations in CSF from sheep with the late infantile variant CLN6 form. A marked disease related increase in CSF concentrations of neuron specific enolase and tau protein was noted in the juvenile CLN3 patients but this was not observed in an advanced CLN2 patient nor CLN6 affected sheep. No changes were noted in S-100b, GFAP or MBP in patients or of S-100b, GFAP or IGF-1 in affected sheep. There were no disease related changes in CSF concentrations of the neuroactive amino acids, aspartate, glutamate, serine, glutamine, glycine, taurine and GABA in these sheep. The changes observed in the CLN3 patients may be progressive markers of neurodegeneration, or of underlying metabolic changes perhaps associated with CLN3 specific changes in neuroactive amino acids, as have been postulated. The lack of changes in the CLN2 and CLN6 subjects indicate that these changes are not shared by the CLN2 or CLN6 forms and changes in CSF concentrations of these compounds are unreliable as biomarkers of neurodegeneration in the NCLs in general.
Collapse
Affiliation(s)
- Graham W Kay
- Agriculture and Life Sciences Faculty, Lincoln University, Lincoln 7647, New Zealand
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Julie M Furlong
- Agriculture and Life Sciences Faculty, Lincoln University, Lincoln 7647, New Zealand
| | - Michèl AAP Willemsen
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - David N Palmer
- Agriculture and Life Sciences Faculty, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
44
|
Guhaniyogi J, Sohar I, Das K, Stock AM, Lobel P. Crystal structure and autoactivation pathway of the precursor form of human tripeptidyl-peptidase 1, the enzyme deficient in late infantile ceroid lipofuscinosis. J Biol Chem 2009; 284:3985-97. [PMID: 19038967 PMCID: PMC2635056 DOI: 10.1074/jbc.m806943200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/07/2008] [Indexed: 11/20/2022] Open
Abstract
Late infantile neuronal ceroid lipofuscinosis is a fatal childhood neurological disorder caused by a deficiency in the lysosomal protease tripeptidyl-peptidase 1 (TPP1). TPP1 represents the only known mammalian member of the S53 family of serine proteases, a group characterized by a subtilisin-like fold, a Ser-Glu-Asp catalytic triad, and an acidic pH optimum. TPP1 is synthesized as an inactive proenzyme (pro-TPP1) that is proteolytically processed into the active enzyme after exposure to low pH in vitro or targeting to the lysosome in vivo. In this study, we describe an endoglycosidase H-deglycosylated form of TPP1 containing four Asn-linked N-acetylglucosamines that is indistinguishable from fully glycosylated TPP1 in terms of autocatalytic processing of the proform and enzymatic properties of the mature protease. The crystal structure of deglycosylated pro-TPP1 was determined at 1.85 angstroms resolution. A large 151-residue C-shaped prodomain makes extensive contacts as it wraps around the surface of the catalytic domain with the two domains connected by a 24-residue flexible linker that passes through the substrate-binding groove. The proenzyme structure reveals suboptimal catalytic triad geometry with its propiece linker partially blocking the substrate-binding site, which together serve to prevent premature activation of the protease. Finally, we have identified numerous processing intermediates and propose a structural model that explains the pathway for TPP1 activation in vitro. These data provide new insights into TPP1 function and represent a valuable resource for constructing improved TPP1 variants for treatment of late infantile neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Jayita Guhaniyogi
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Jersey, USA
| | | | | | | | | |
Collapse
|
45
|
Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N, Dyke JP, Ballon D, Heier L, Greenwald BM, Christos P, Mazumdar M, Souweidane MM, Kaplitt MG, Crystal RG. Treatment of Late Infantile Neuronal Ceroid Lipofuscinosis by CNS Administration of a Serotype 2 Adeno-Associated Virus Expressing CLN2 cDNA. Hum Gene Ther 2008; 19:463-74. [DOI: 10.1089/hum.2008.022] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Stefan Worgall
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Neil R. Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Barry Kosofsky
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065
| | - Minal V. Kekatpure
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065
| | - Nurunisa Neyzi
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065
| | - Douglas Ballon
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065
| | - Linda Heier
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065
| | - Bruce M. Greenwald
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065
| | - Paul Christos
- Department of Public Health, Weill Cornell Medical College, New York, NY 10065
| | - Madhu Mazumdar
- Department of Public Health, Weill Cornell Medical College, New York, NY 10065
| | - Mark M. Souweidane
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Michael G. Kaplitt
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
46
|
Bessa C, Teixeira CA, Dias A, Alves M, Rocha S, Lacerda L, Loureiro L, Guimarães A, Ribeiro MG. CLN2/TPP1 deficiency: the novel mutation IVS7-10A>G causes intron retention and is associated with a mild disease phenotype. Mol Genet Metab 2008; 93:66-73. [PMID: 17959406 DOI: 10.1016/j.ymgme.2007.08.124] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 11/19/2022]
Abstract
The classical form of late infantile neuronal ceroid lipofuscinosis (LINCL) is a childhood hereditary neurodegenerative disease usually fatal in the first decade of life. The underlying gene, CLN2, encodes the lysosomal soluble enzyme tripeptidyl-peptidase 1 (TPP1). In a Portuguese patient with juvenile form of the disease, the histochemical study revealed the presence of curvilinear inclusions typical of LINCL. In vitro TPP1 activity was deficient in patient's cells. CLN2 gene analysis revealed the transition IVS7-10A>G (g.4196A>G) in both alleles. In silico analysis suggested that A-to-G change in the A-rich region of intron 7 could cause aberrant splicing of exon 8 by creating a novel acceptor splice site. However, because the wild-type acceptor of intron 7 is weak and it was not apparently affected, the severity of this mutation could not be established through sequencing data of gDNA. Normal level of spliced CLN2/mRNA was observed in patient's fibroblasts. In the cDNA, the 9-nt retention of intronic sequence (c.886_887ins9) was observed. The mutation is predicted to result in a protein with three extra amino acids between proline 295 and glycine 296. In patient's fibroblasts the level of mutant CLN2p was reduced to about 60% but the migration pattern was similar to the wild-type protein, suggesting that it was correctly targeted to the lysosomes. Taken together, these findings suggest that the first "ag" is selected for splicing and the mutant protein must retain some residual catalytic activity, thus explaining the late onset and the delayed progression of the disease.
Collapse
Affiliation(s)
- C Bessa
- Unidade de Enzimologia, Instituto de Genética Médica Jacinto Magalhães, Pç. Pedro Nunes 88, 4050-466 Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sondhi D, Hackett NR, Peterson DA, Stratton J, Baad M, Travis KM, Wilson JM, Crystal RG. Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector. Mol Ther 2006; 15:481-91. [PMID: 17180118 DOI: 10.1038/sj.mt.6300049] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Late infantile neuronal ceroid lipofuscinosis (LINCL) is a lysosomal storage disorder caused by mutations in the CLN2 gene and a deficiency of tripeptidyl peptidase I (TPP-I). Prior studies with adeno-associated virus (AAV) serotype 2 or 5 mediated transfer of the CLN2 complementary DNA to the central nervous system (CNS) of CLN2(-/-) mice cleared CNS storage granules, but provided no improvement in the phenotype or survival of this model of LINCL. In this study, AAV serotypes (AAV2, AAV5, AAV8, and AAVrh.10) were compared for the delivery of the same CLN2 expression cassette. AAVrh.10, derived from rhesus macaque, provided the highest TPP-I level and maximum spread beyond the site of injection. The AAVrh.10-based vector functioned equally well in naive rats and in rats previously immunized against human serotypes of AAV. When administered to the CNS of CLN2(-/-) mice, the AAVrh.10CLN2 vector provided widespread TPP-I activity comparable to that in the wild-type mice. Importantly, the AAVrh.10CLN2-treated CLN2(-/-) mice had significant reduction in CNS storage granules and demonstrated improvement in gait, nest-making abilities, seizures, balance beam function, and grip strength, as well as having a survival advantage.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bessa C, Teixeira CAF, Mangas M, Dias A, Sá Miranda MC, Guimarães A, Ferreira JC, Canas N, Cabral P, Ribeiro MG. Two novel CLN5 mutations in a Portuguese patient with vLINCL: insights into molecular mechanisms of CLN5 deficiency. Mol Genet Metab 2006; 89:245-53. [PMID: 16814585 DOI: 10.1016/j.ymgme.2006.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/09/2006] [Accepted: 04/09/2006] [Indexed: 11/22/2022]
Abstract
The neuronal ceroid-lipofuscinoses are the most common neurodegenerative disorders in childhood characterized by progressive blindness, epilepsy, brain atrophy, and premature death. Based on the age at onset, disease progression and ultrastructural features three classical (infantile, late-infantile, and juvenile) and three variant late-infantile forms are generally distinguished (Finnish variant, Costa Rican variant, and epilepsy with progressive motor retardation). The Finnish variant late-infantile form has been associated with CLN5 gene defects, with only five mutations described to date. We report a patient with vLINCL/CLN5 who represents the first evidence of the disease in the Portuguese population. Mutational screening revealed the previously described missense mutation c.835G>A (D279N) inherited from the mother, and two novel mutations, c.565C>T (Q189X) and c.335G>C (R112P) from paternal and maternal inheritance, respectively. Based on data here reported: (i) the number of possible mutations in CLN5 gene is now 7; (ii) the CLN5 Portuguese case represents the third description of the disease outside northern Europe; (iii) the CLN5/mRNA expression level reduced to 45% supports the existence of one mRNA non-producing allele, further noticeable at the protein level; (iv) Western blotting data using a specific antibody to human CLN5p provided evidence for the presence of four integral membrane isoforms in human fibroblasts; (v) data from differential expression of CLN2, CLN3, and CLN5 suggest down-regulation of CLN3 gene expression in CLN2 and CLN5-deficient human patients and this observation strengths the hypothesis of functional redundancy of the CLN system.
Collapse
Affiliation(s)
- C Bessa
- Unidade de Enzimologia, Instituto de Genética Médica Jacinto Magalhães, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Awano T, Katz ML, O'Brien DP, Sohar I, Lobel P, Coates JR, Khan S, Johnson GC, Giger U, Johnson GS. A frame shift mutation in canine TPP1 (the ortholog of human CLN2) in a juvenile Dachshund with neuronal ceroid lipofuscinosis. Mol Genet Metab 2006; 89:254-60. [PMID: 16621647 DOI: 10.1016/j.ymgme.2006.02.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/22/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage diseases characterized by progressive neuropathy and the accumulation of autofluorescent cytoplasmic granules. Clinical signs of a new canine NCL began in a 9-month-old male Dachshund with vomiting, mental dullness, and loss of previously learned commands and rapidly progressed to include disorientation, ataxia, visual deficits, generalized myoclonic seizures, and death at 12 months of age. Neurons throughout the CNS contained autofluorescent storage granules that stained with periodic acid-Schiff and Luxol fast blue stains. Electron microscopy revealed that the storage granule contents consisted of curvilinear-appearing material characteristic of human late infantile NCL caused by CLN2 mutations. Nucleotide sequence analysis of canine TPP1, the ortholog of human CLN2, revealed a single nucleotide deletion in exon 4 which predicted a frame shift with a premature stop codon. Brain tissue from the affected dog lacked detectable activity of the tripeptidyl-peptidase enzyme encoded by TPP1, whereas the specific activities of 15 other lysosomal enzymes were higher than those in the brains of three control dogs. The affected Dachshund was homozygous for the mutant c.325delC allele, his sire and dam were heterozygotes, and 181 unrelated dogs, including 77 Dachshunds, were all homozygous for the wild-type allele. A DNA assay that detects the mutant allele will help Dachshund breeders avoid producing affected puppies in future generations. Furthermore, this Dachshund NCL may prove to be a useful model for studying the pathogenesis of neurodegeneration in human late infantile NCL and for evaluating novel therapeutic interventions for this disease.
Collapse
Affiliation(s)
- Tomoyuki Awano
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kyttälä A, Lahtinen U, Braulke T, Hofmann SL. Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1762:920-33. [PMID: 16839750 DOI: 10.1016/j.bbadis.2006.05.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/19/2006] [Accepted: 05/23/2006] [Indexed: 11/28/2022]
Abstract
Neuronal ceroid lipofucinoses (NCLs) are a group of severe neurodegenerative disorders characterized by accumulation of autofluorescent ceroid lipopigment in patients' cells. The different forms of NCL share many similar pathological features but result from mutations in different genes. The genes affected in NCLs encode both soluble and transmembrane proteins and are localized to ER or to the endosomes/lysosomes. Due to selective vulnerability of the central nervous system in the NCL disorders, the corresponding proteins are proposed to have important, tissue specific roles in the brain. The pathological similarities of the different NCLs have led not only to the grouping of these disorders but also to suggestion that the NCL proteins function in the same biological pathway. Despite extensive research, including the development of several model organisms for NCLs and establishment of high-throughput techniques, the precise biological function of many of the NCL proteins has remained elusive. The aim of this review is to summarize the current knowledge of the functions, or proposed functions, of the different NCL proteins.
Collapse
Affiliation(s)
- Aija Kyttälä
- National Public Health Institute, Department of Molecular Medicine, Biomedicum Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|