1
|
Gozdowska M, Stoń-Egiert J, Kulczykowska E. Short communication: An alternative pathway for melatonin synthesis in the skin of European flounder (Platichthys flesus). Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111731. [PMID: 39187010 DOI: 10.1016/j.cbpa.2024.111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
The classic melatonin biosynthesis pathway (Mel; N-acetyl-5-methoxytryptamine) involves two consecutive enzymatic steps that are decisive in hormone production: conversion of serotonin (5-hydroxytryptamine; 5-HT) to N-acetylserotonin (NAS) and the methylation of the last compound to Mel. This pathway requires the activity of the enzymes: the first is of the category of N-acetyltransferases (AANAT, SNAT, or NAT) and the second is N-acetylserotonin O-methyltransferase (ASMT; also known as HIOMT). However, quite recently, new information has been provided on the possibility of an alternative Mel synthesis pathway; it would include a two-step action by these enzymes, but in reverse order, where ASMT (or ASMTL, the enzyme related to ASMT) methylates 5-HT to 5-methoxytryptamine (5-MT), and then the last compound is acetylated by an enzyme of the category of N-acetyltransferases to Mel. In our study on the activity of enzymes in the Mel biosynthesis pathway in flounder skin, we have found an increase in 5-MT level, as a result of the increase in 5-HT concentration, which is followed by a growing concentration of Mel. However, we have not found any increase in Mel concentration, despite an increase in NAS in the samples. Our data strongly suggest an alternative way of Mel production in flounder skin in which 5-HT is first methylated to 5-MT, which is then acetylated to Mel.
Collapse
Affiliation(s)
- Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland
| | - Joanna Stoń-Egiert
- Department of Marine Physics, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland.
| |
Collapse
|
2
|
Badawy AAB, Dawood S. Molecular Insights into the Interaction of Tryptophan Metabolites with the Human Aryl Hydrocarbon Receptor in Silico: Tryptophan as Antagonist and no Direct Involvement of Kynurenine. FRONT BIOSCI-LANDMRK 2024; 29:333. [PMID: 39344334 DOI: 10.31083/j.fbl2909333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND A direct link between the tryptophan (Trp) metabolite kynurenine (Kyn) and the aryl hydrocarbon receptor (AhR) is not supported by metabolic considerations and by studies demonstrating the failure of Kyn concentrations of up to 100 μM to activate the receptor in cell culture systems using the proxy system of cytochrome P-450-dependent metabolism. The Kyn metabolite kynurenic acid (KA) activates the AhR and may mediate the Kyn link. Recent studies demonstrated down regulation and antagonism of activation of the AhR by Trp. We have addressed the link between Kyn and the AhR by looking at their direct molecular interaction in silico. METHODS Molecular docking of Kyn, KA, Trp and a range of Trp metabolites to the crystal structure of the human AhR was performed under appropriate docking conditions. RESULTS Trp and 30 of its metabolites docked to the AhR to various degrees, whereas Kyn and 3-hydroxykynurenine did not. The strongest docking was observed with the Trp metabolite and photooxidation product 6-Formylindolo[3,2-b]carbazole (FICZ), cinnabarinic acid, 5-hydroxytryptophan, N-acetyl serotonin and indol-3-yllactic acid. Strong docking was also observed with other 5-hydroxyindoles. CONCLUSIONS We propose that the Kyn-AhR link is mediated by KA. The strong docking of Trp and its recently reported down regulation of the receptor suggest that Trp is an AhR antagonist and may thus play important roles in body homeostasis beyond known properties or simply being the precursor of biologically active metabolites. Differences in AhR activation reported in the literature are discussed.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, CF5 2YB Wales, UK
| | - Shazia Dawood
- Pharmacy and Allied Health Sciences, Iqra University, 7580 Karachi, Pakistan
| |
Collapse
|
3
|
Vongnhay V, Shukla MR, Ayyanath MM, Sriskantharajah K, Saxena PK. Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi ( Ocimum sanctum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1370. [PMID: 38794439 PMCID: PMC11125241 DOI: 10.3390/plants13101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
The medicinal plant tulsi (Ocimum sanctum L.) is acknowledged for its invigorating and healing properties that enhance resilience to stress in various human and animal models by modulating antioxidant compounds. While extensive research has documented these effects in humans, the adaptogenic potential of tulsi in stressful in vitro plant systems has not been explored. This study aimed to elucidate the adaptogenic properties of tulsi leaf extract on the in vitro regeneration of tobacco leaf explants through an investigation of the indoleamines at different developmental stages. Shoot regeneration from leaf explants on the medium supplemented with tulsi extract (20%) was compared to the control, and the differences in indoleamine compounds were analyzed using ultra-performance liquid chromatography. Treatment of the explants with the extract resulted in an almost two-fold increase in the number of regenerants after four weeks of culture, and 9% of the regenerants resembled somatic embryo-like structures. The occurrence of browning in the extract-treated explants stopped on day 10, shoots began to develop, and a significant concentration of tryptamine and N-acetyl-serotonin accumulated. A comparative analysis of indoleamine compounds in intact and cut tobacco leaves also revealed the pivotal role of melatonin and 2-hydroxymelatonin functioning as antioxidants during stress adaptation. This study demonstrates that tulsi is a potent adaptogen that is capable of modulating plant morphogenesis in vitro, paving the way for further investigations into the role of adaptogens in plant stress biology.
Collapse
Affiliation(s)
| | | | | | | | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (M.R.S.); (M.-M.A.); (K.S.)
| |
Collapse
|
4
|
Boutin JA, Liberelle M, Yous S, Ferry G, Nepveu F. Melatonin facts: Lack of evidence that melatonin is a radical scavenger in living systems. J Pineal Res 2024; 76:e12926. [PMID: 38146602 DOI: 10.1111/jpi.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 12/27/2023]
Abstract
Melatonin is a small natural compound, so called a neuro-hormone that is synthesized mainly in pineal gland in animals. Its main role is to master the clock of the body, under the surveillance of light. In other words, it transfers the information concerning night and day to the peripheral organs which, without it, could not "know" which part of the circadian rhythm the body is in. Besides its main circadian and circannual rhythms mastering, melatonin is reported to be a radical scavenger and/or an antioxidant. Because radical scavengers are chemical species able to neutralize highly reactive and toxic species such as reactive oxygen species, one would like to transfer this property to living system, despite impossibilities already largely reported in the literature. In the present commentary, we refresh the memory of the readers with this notion of radical scavenger, and review the possible evidence that melatonin could be an in vivo radical scavenger, while we only marginally discuss here the fact that melatonin is a molecular antioxidant, a feature that merits a review on its own. We conclude four things: (i) the evidence that melatonin is a scavenger in acellular systems is overwhelming and could not be doubted; (ii) the transposition of this property in living (animal) systems is (a) theoretically impossible and (b) not proven in any system reported in the literature where most of the time, the delay of the action of melatonin is over several hours, thus signing a probable induction of cellular enzymatic antioxidant defenses; (iii) this last fact needs a confirmation through the discovery of a nuclear factor-a key relay in induction processes-that binds melatonin and is activated by it and (iv) we also gather the very important description of the radical scavenging capacity of melatonin in acellular systems that is now proven and shared by many other double bond-bearing molecules. We finally discussed briefly on the reason-scientific or else-that led this description, and the consequences of this claim, in research, in physiology, in pathology, but most disturbingly in therapeutics where a vast amount of money, hope, and patient bien-être are at stake.
Collapse
Affiliation(s)
- Jean A Boutin
- Laboratory of Regulatory Peptides, Energy Metabolism and Motivated Behavior, Department of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, Rouen, France
| | - Maxime Liberelle
- University of Lille, Lille Neurosciences and Cognition Research Center, U1172, Lille, France
| | - Saïd Yous
- University of Lille, Lille Neurosciences and Cognition Research Center, U1172, Lille, France
| | | | - Françoise Nepveu
- Dpt Sciences Pharmaceutiques, Faculté de santé, PHARMADEV, UMR 152, Université Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
5
|
Adedara IA, Atanda OE, Sant'Anna Monteiro C, Rosemberg DB, Aschner M, Farombi EO, Rocha JBT, Furian AF, Emanuelli T. Cellular and molecular mechanisms of aflatoxin B 1-mediated neurotoxicity: The therapeutic role of natural bioactive compounds. ENVIRONMENTAL RESEARCH 2023; 237:116869. [PMID: 37567382 DOI: 10.1016/j.envres.2023.116869] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Aflatoxin B1 (AFB1), a dietary toxin from the mold Aspergillus species, is well acknowledged to elicit extra-hepatic toxicity in both animals and humans. The neurotoxicity of AFB1 has become a global public health concern. Contemporary research on how AFB1 enters the brain to elicit neuronal dysregulation leading to noxious neurological outcomes has increased greatly in recent years. The current review discusses several neurotoxic outcomes and susceptible targets of AFB1 toxicity at cellular, molecular and genetic levels. Specifically, neurotoxicity studies involving the use of brain homogenates, neuroblastoma cell line IMR-32, human brain microvascular endothelial cells, microglial cells, and astrocytes, as well as mammalian and non-mammalian models to unravel the mechanisms associated with AFB1 exposure are highlighted. Further, some naturally occurring bioactive compounds with compelling therapeutic effects on AFB1-induced neurotoxicity are reviewed. In conclusion, available data from literature highlight AFB1 as a neurotoxin and its possible pathological contribution to neurological disorders. Further mechanistic studies aimed at discovering and developing effective therapeutics for AFB1 neurotoxicity is warranted.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwadarasimi E Atanda
- Human Toxicology Program, Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Camila Sant'Anna Monteiro
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Department of Biochemical and Molecular Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
6
|
Yang X, Yang Y, Gao F, Lu K, Wang C. N-Acetyl Serotonin Provides Neuroprotective Effects by Inhibiting Ferroptosis in the Neonatal Rat Hippocampus Following Hypoxic Brain Injury. Mol Neurobiol 2023; 60:6307-6315. [PMID: 37452222 DOI: 10.1007/s12035-023-03464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Hypoxic-ischemic encephalopathy is the main cause of infant brain damage, perinatal death, and chronic neonatal disability worldwide. Ferroptosis is a new form of cell death that is closely related to hypoxia-induced brain damage. N-Acetyl serotonin (NAS) exerts neuroprotective effects, but its effects and underlying mechanisms in hypoxia-induced brain damage remain unclear. In the present study, 5-day-old neonatal Sprague-Dawley rats were exposed to hypoxia for 7 days to establish a hypoxia model. Histochemical staining was used to measure the effects of hypoxia on the rat hippocampus. The hippocampal tissue in the hypoxia group showed significant atrophy. Hypoxia significantly increased the levels of prostaglandin-endoperoxide synthase 2 (PTGS2) and the iron metabolism-related protein transferrin receptor 1 (TfR1) and decreased the levels of glutathione peroxidase 4 (GPX4). These changes resulted in mitochondrial damage, causing neuronal ferroptosis in the hippocampus. More importantly, NAS may improve mitochondrial function and alleviate downstream ferroptosis and damage to the hippocampus following hypoxia. In conclusion, we found that NAS could suppress neuronal ferroptosis in the hippocampus following hypoxic brain injury. These discoveries highlight the potential use of NAS as a treatment for neuronal damage through the suppression of ferroptosis, suggesting new treatment strategies for hypoxia-induced brain damage.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital of Shangdong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Department of Anesthesiology, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yue Yang
- Department of Anesthesiology, Qilu Hospital of Shangdong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Feng Gao
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Kangping Lu
- Department of Anesthesiology, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital of Shangdong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Yidian W, Jihe K, Xudong G, Daxue Z, Mingqiang L, Xuewen K. N-Acetylserotonin Protects Rat Nucleus Pulposus Cells Against Oxidative Stress Injury by Activating the PI3K/AKT Signaling Pathway. World Neurosurg 2023; 176:e109-e124. [PMID: 37169069 DOI: 10.1016/j.wneu.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Current studies suggest that the pathogenesis of intervertebral disc degeneration (IDD) is related to oxidative stress damage in nucleus pulposus cells (NPCs). N-acetylserotonin (NAS) is an effective scavenger of reactive oxygen species, but its role in IDD and its underlying mechanisms are not yet clear. Therefore, the aim of this study was to investigate the effect of NAS on oxidative stress injury in NPCs and its mechanism. METHODS NP tissue of rat intervertebral disc was collected and NPCs were isolated. NPCs were treated with H2O2 to simulate the state of oxidative stress. The effects of NAS on cell viability, apoptosis, senescence, extracellular matrix (ECM), redox status and PI3K/AKT signal pathway were evaluated by cell counting kit-8, western blot, immunofluorescence, flow cytometry and SA-β-gal staining. Finally, the changes of the above indexes were further observed after the inhibition of PI3K pathway by LY294002. RESULTS Flow cytometry showed that NAS reduced H2O2-induced apoptosis of NPCs. SA-β-Gal staining showed that H2O2-induced senescence of NP cells was reversed by NAS. Immunofluorescence staining showed that NAS inhibited H2O2-induced ECM degradation. Western blotting analysis revealed that NAS significantly decreased apoptosis, senescence and ECM degradation. Further analysis showed that NAS treatment activated the PI3K/AKT pathway in H2O2-stimulated NPCs. However, these protected effects were inhibited after LY294002 treatment. CONCLUSIONS The results of the present study suggest that NAS inhibits H2O2-induced NPCs degeneration by activating PI3K/AKT pathway, suggesting that NAS has the potential to treat IDD.
Collapse
Affiliation(s)
- Wang Yidian
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, PR China; Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kang Jihe
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, PR China
| | - Guo Xudong
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, PR China
| | - Zhu Daxue
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, PR China
| | - Liu Mingqiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, PR China
| | - Kang Xuewen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, PR China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China; The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Lanzhou, Gansu, PR China.
| |
Collapse
|
8
|
Boutin JA, Kennaway DJ, Jockers R. Melatonin: Facts, Extrapolations and Clinical Trials. Biomolecules 2023; 13:943. [PMID: 37371523 DOI: 10.3390/biom13060943] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Melatonin is a fascinating molecule that has captured the imagination of many scientists since its discovery in 1958. In recent times, the focus has changed from investigating its natural role as a transducer of biological time for physiological systems to hypothesized roles in virtually all clinical conditions. This goes along with the appearance of extensive literature claiming the (generally) positive benefits of high doses of melatonin in animal models and various clinical situations that would not be receptor-mediated. Based on the assumption that melatonin is safe, high doses have been administered to patients, including the elderly and children, in clinical trials. In this review, we critically review the corresponding literature, including the hypotheses that melatonin acts as a scavenger molecule, in particular in mitochondria, by trying not only to contextualize these interests but also by attempting to separate the wheat from the chaff (or the wishful thinking from the facts). We conclude that most claims remain hypotheses and that the experimental evidence used to promote them is limited and sometimes flawed. Our review will hopefully encourage clinical researchers to reflect on what melatonin can and cannot do and help move the field forward on a solid basis.
Collapse
Affiliation(s)
- J A Boutin
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandy, INSERM U1239, 76000 Rouen, France
| | - D J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Science Building, North Terrace, Adelaide, SA 5006, Australia
| | - R Jockers
- Institut Cochin, Université Paris Cité, INSERM, CNRS, 75014 Paris, France
| |
Collapse
|
9
|
Jing X, Luo X, Fang C, Zhang B. N-acetylserotonin inhibits oxidized mitochondrial DNA-induced neuroinflammation by activating the AMPK/PGC-1α/TFAM pathway in neonatal hypoxic-ischemic brain injury model. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Hafza N, Li N, Luqman A, Götz F. Identification of a serotonin N-acetyltransferase from Staphylococcus pseudintermedius ED99. Front Microbiol 2023; 14:1073539. [PMID: 36910235 PMCID: PMC9992809 DOI: 10.3389/fmicb.2023.1073539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Serotonin N-acetyltransferase (SNAT) catalyzes the biosynthesis of N-acetylserotonin (NAS) and N-acetyltryptamine (NAT), two pleiotropic molecules with neurotransmitter functions. Here, we report the identification of a SNAT protein in the genus Staphylococcus. The SNAT gene identified in Staphylococcus pseudintermedius ED99, namely SPSE_0802, encodes a 140 residues-long cytoplasmic protein. The recombinant protein SPSE_0802 was expressed in E. coli BL21 and found to acetylate serotonin (SER) and tryptamine (TRY) as well as other trace amines in vitro. The production of the neuromodulators NAS and NAT was detected in the cultures of different members of the genus Staphylococcus and the role of SPSE_0802 in this production was confirmed in an ED99 SPSE_0802 deletion mutant. A search for SNAT homologues showed that the enzyme is widely distributed across the genus which correlated with the SNAT activity detected in 22 out of the 40 Staphylococcus strains tested. The N-acetylated products of SNAT are precursors for melatonin synthesis and are known to act as neurotransmitters and activate melatonin receptors, among others, inducing various responses in the human body. The identification of SNAT in staphylococci could contribute to a better understanding of the interaction between those human colonizers and the host peripheral nervous system.
Collapse
Affiliation(s)
- Nourhane Hafza
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Ningna Li
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Kang C, Jeong S, Kim J, Ju S, Im E, Heo G, Park S, Yoo JW, Lee J, Yoon IS, Jung Y. N-Acetylserotonin is an oxidation-responsive activator of Nrf2 ameliorating colitis in rats. J Pineal Res 2023; 74:e12835. [PMID: 36214640 DOI: 10.1111/jpi.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.
Collapse
Affiliation(s)
- Changyu Kang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
12
|
Badawy AB. Tryptophan metabolism and disposition in cancer biology and immunotherapy. Biosci Rep 2022; 42:BSR20221682. [PMID: 36286592 PMCID: PMC9653095 DOI: 10.1042/bsr20221682] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 08/31/2023] Open
Abstract
Tumours utilise tryptophan (Trp) and its metabolites to promote their growth and evade host defences. They recruit Trp through up-regulation of Trp transporters, and up-regulate key enzymes of Trp degradation and down-regulate others. Thus, Trp 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase 1 (IDO1), IDO2, N'-formylkynurenine formamidase (FAMID) and Kyn aminotransferase 1 (KAT1) are all up-regulated in many cancer types, whereas Kyn monooxygenase (KMO), kynureninase (KYNU), 2-amino-3-carboxymuconic acid-6-semialdehyde decarboxylase (ACMSD) and quinolinate phosphoribosyltransferase (QPRT) are up-regulated in a few, but down-regulated in many, cancers. This results in accumulation of the aryl hydrocarbon receptor (AhR) ligand kynurenic acid and in depriving the host of NAD+ by blocking its synthesis from quinolinic acid. The host loses more NAD+ by up-regulation of the NAD+-consuming poly (ADP-ribose) polymerases (PARPs) and the protein acetylaters SIRTs. The nicotinamide arising from PARP and SIRT activation can be recycled in tumours to NAD+ by the up-regulated key enzymes of the salvage pathway. Up-regulation of the Trp transporters SLC1A5 and SLC7A5 is associated mostly with that of TDO2 = FAMID > KAT1 > IDO2 > IDO1. Tumours down-regulate enzymes of serotonin synthesis, thereby removing competition for Trp from the serotonin pathway. Strategies for combating tumoral immune escape could involve inhibition of Trp transport into tumours, inhibition of TDO and IDOs, inhibition of FAMID, inhibition of KAT and KYNU, inhibition of NMPRT and NMNAT, inhibition of the AhR, IL-4I1, PARPs and SIRTs, and by decreasing plasma free Trp availability to tumours by albumin infusion or antilipolytic agents and inhibition of glucocorticoid induction of TDO by glucocorticoid antagonism.
Collapse
Affiliation(s)
- Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K
| |
Collapse
|
13
|
Melatonin Metabolites Protect Human Retinal Pigment Epithelial Cells from Death Caused by Oxidative Stress. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Abdu-Allah GAM, Seong KM, Mittapalli O, Ojo JA, Sun W, Posos-Parra O, Mota-Sanchez D, Clark JM, Pittendrigh BR. Dietary antioxidants impact DDT resistance in Drosophila melanogaster. PLoS One 2020; 15:e0237986. [PMID: 32841282 PMCID: PMC7447025 DOI: 10.1371/journal.pone.0237986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022] Open
Abstract
Insects experience a diversity of subtoxic and/or toxic xenobiotics through exposure to pesticides and, in the case of herbivorous insects, through plant defensive compounds in their diets. Many insects are also concurrently exposed to antioxidants in their diets. The impact of dietary antioxidants on the toxicity of xenobiotics in insects is not well understood, in part due to the challenge of developing appropriate systems in which doses and exposure times (of both the antioxidants and the xenobiotics) can be controlled and outcomes can be easily measured. However, in Drosophila melanogaster, a well-established insect model system, both dietary factors and pesticide exposure can be easily controlled. Additionally, the mode of action and xenobiotic metabolism of dichlorodiphenyltrichloroethane (DDT), a highly persistent neurotoxic organochlorine insecticide that is detected widely in the environment, have been well studied in DDT-susceptible and -resistant strains. Using a glass-vial bioassay system with blue diet as the food source, seven compounds with known antioxidant effects (ascorbic acid, β-carotene, glutathione, α-lipoic acid, melatonin, minocycline, and serotonin) were orally tested for their impact on DDT toxicity across three strains of D. melanogaster: one highly susceptible to DDT (Canton-S), one mildly susceptible (91-C), and one highly resistant (91-R). Three of the antioxidants (serotonin, ascorbic acid, and β-carotene) significantly impacted the toxicity of DDT in one or more strains. Fly strain and gender, antioxidant type, and antioxidant dose all affected the relative toxicity of DDT. Our work demonstrates that dietary antioxidants can potentially alter the toxicity of a xenobiotic in an insect population.
Collapse
Affiliation(s)
- Gamal A. M. Abdu-Allah
- Department of Entomology, Michigan State University, East Lansing, MI, United States of America
- Department of Plant Protection, Assiut University, Assiut, Egypt
| | - Keon Mook Seong
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Omprakash Mittapalli
- Department of Entomology, University of Kentucky, Lexington, KY, United States of America
| | - James Adebayo Ojo
- Department of Crop Production, Kwara State University, Malete, Ilorin, Nigeria
| | - Weilin Sun
- Department of Entomology, Michigan State University, East Lansing, MI, United States of America
| | - Omar Posos-Parra
- Department of Entomology, Michigan State University, East Lansing, MI, United States of America
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI, United States of America
| | - John M. Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Barry R. Pittendrigh
- Department of Entomology, Michigan State University, East Lansing, MI, United States of America
- * E-mail:
| |
Collapse
|
15
|
Purushothaman A, Sheeja AA, Janardanan D. Hydroxyl radical scavenging activity of melatonin and its related indolamines. Free Radic Res 2020; 54:373-383. [PMID: 32567401 DOI: 10.1080/10715762.2020.1774575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The hydroxyl radical (•OH) scavenging activities of Melatonin, an endogenously produced neurohormone and its related indolamines like N-acetyl tryptophan (NAT) and N-acetyl serotonin (NAS) have been investigated using density functional theory. The mechanism involves 4 steps: initial radical addition to position-3 of the indole ring, keto-amine to enol-imine tautomerization, cyclisation, and finally, addition of a second •OH leading to a cyclic end product. Incorporation of an explicit water molecule in tautomerization step leads to a significant reduction in the barrier of this step, so that the subsequent cyclisation step becomes rate-limiting. In agreement with the very high reactivity of •OH, the initial and final addition of •OH to indolamine are found to be barrierless. Radical adduct formed in the initial step was found to be very stable due to the extensive conjugation present in the substrate. Our calculations show that melatonin is the most effective radical scavenger among the three molecules chosen. NAS was found to exhibit antiradical property comparable to that of melatonin. In contrast to the general observation of reduced antioxidant activity of tryptophan, a non-natural derivative of tryptophan used here (NAT) is found to have good radical scavenging activity. This work further implies that non-natural derivatives of indolamines might as well be useful in the detoxification of free radicals as they exhibit almost comparable antioxidant efficiency as that of melatonin.
Collapse
Affiliation(s)
- Aiswarya Purushothaman
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Achutha Anil Sheeja
- PG and Research Department of Chemistry, Sree Narayana College Kollam, Kollam, Kerala, India
| | - Deepa Janardanan
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala, India
| |
Collapse
|
16
|
Liang H, Liu N, Wang R, Zhang Y, Chen J, Dai Z, Yang Y, Wu G, Wu Z. N-Acetyl Serotonin Alleviates Oxidative Damage by Activating Nuclear Factor Erythroid 2-Related Factor 2 Signaling in Porcine Enterocytes. Antioxidants (Basel) 2020; 9:antiox9040303. [PMID: 32272634 PMCID: PMC7222184 DOI: 10.3390/antiox9040303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Apoptosis of intestinal epithelial cells following oxidative stress is a major cause of mucosal barrier dysfunction and is associated with the pathogenesis of various gastrointestinal diseases. Although L-tryptophan (Trp) is known to improve intestinal integrity and function, a beneficial effect of N-acetyl serotonin (NAS), a metabolite of Trp, on the apoptosis of enterocytes and the underlying mechanisms remain largely unknown. In the present study, we showed that porcine enterocytes treated with 4-hydroxy-2-nonenal (4-HNE), a metabolite of lipid peroxidation, led to upregulation of apoptotic proteins, including Bax and cleaved caspase-3, and reduction of tight junction proteins. These effects of 4-HNE were significantly abrogated by NAS. In addition, NAS reduced ROS accumulation while increasing the intracellular concentration of glutathione (GSH), and the abundance of the Nrf2 protein in the nucleus and its downstream target proteins. Importantly, these protective effects of NAS were abrogated by Atra, an inhibitor of Nrf2, indicating a dependence on Nrf2 signaling. Taken together, we demonstrated that NAS attenuated oxidative stress-induced cellular injury in porcine enterocytes by regulating Nrf2 signaling. These findings provide new insights into a functional role of NAS in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Haiwei Liang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Ning Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-6273-1003
| |
Collapse
|
17
|
Vašíček O, Lojek A, Číž M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J Physiol Biochem 2020; 76:49-60. [PMID: 31900806 DOI: 10.1007/s13105-019-00714-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/08/2019] [Indexed: 01/02/2023]
Abstract
In this study, we focused on comparing the effects of serotonin and its metabolites on the functions of RAW264.7 cells (emphasis on oxidative burst and production of nitric oxide and cytokines), thereby expanding the scope of existing knowledge with advent of novel findings in this field. Changes in production of reactive oxygen species (ROS) by RAW264.7 cells after treatment with serotonin, N-acetylserotonin and melatonin were determined using the chemiluminescence (CL) assay. To exclude the direct scavenging effects of the studied compounds on the CL response, the antioxidant properties of all respective compounds were measured using TRAP and amperometrical method. Nitric oxide (NO) production was measured by Griess reagent and inducible NO synthase (iNOS) expression by Western blot. Cytokine production was assessed using the Mouse Cytokine Panel A Array kit and ELISA. We showed that all tested compounds were able to reduce oxidative stress, as well as inhibit production of inflammatory cytokines by macrophages. Of the tested compounds, serotonin and N-acetylserotonin were markedly better antioxidants than melatonin. In comparison, other effects of tested compounds were very similar. It can be concluded that antioxidant capacity of tested compounds is a major advantage in the early stages of inflammation. Since plasma concentrations of N-acetylserotonin and melatonin are lower than serotonin, it can be deduced that serotonin plays a key role in modulation of inflammation and the regulatory functions of immune cells, while also protecting cells against oxidative stress.
Collapse
Affiliation(s)
- Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Antonín Lojek
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Milan Číž
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic. .,Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
18
|
Rui T, Wang Z, Li Q, Wang H, Wang T, Zhang M, Tao L, Luo C. A TrkB receptor agonist N-acetyl serotonin provides cerebral protection after traumatic brain injury by mitigating apoptotic activation and autophagic dysfunction. Neurochem Int 2020; 132:104606. [DOI: 10.1016/j.neuint.2019.104606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 01/26/2023]
|
19
|
Luo C, Yang Q, Liu Y, Zhou S, Jiang J, Reiter RJ, Bhattacharya P, Cui Y, Yang H, Ma H, Yao J, Lawler SE, Zhang X, Fu J, Rozental R, Aly H, Johnson MD, Chiocca EA, Wang X. The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radic Biol Med 2019; 130:215-233. [PMID: 30315933 DOI: 10.1016/j.freeradbiomed.2018.10.402] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/01/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a neurohormone associated with sleep and wakefulness and is mainly produced by the pineal gland. Numerous physiological functions of melatonin have been demonstrated including anti-inflammation, suppressing neoplastic growth, circadian and endocrine rhythm regulation, and its potent antioxidant activity as well as its role in regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others. In this review, we summarize the recent advances related to the multiple protective roles of melatonin receptor agonists, melatonin and N-acetylserotonin (NAS), in brain injury, liver damage, and bone health. Brain injury, including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, and newborn perinatal hypoxia-ischemia encephalopathy, is a major cause of mortality and disability. Liver disease causes serious public health problems and various factors including alcohol, chemical pollutants, and drugs induce hepatic damage. Osteoporosis is the most common bone disease in humans. Due in part to an aging population, both the cost of care of fracture patients and the annual fracture rate have increased steadily. Despite the discrepancy in the pathophysiological processes of these disorders, time frames and severity, they may share several common molecular mechanisms. Oxidative stress is considered to be a critical factor in these pathogeneses. We update the current state of knowledge related to the molecular processes, mainly including anti-oxidative stress, anti-apoptosis, autophagy dysfunction, and anti-inflammation as well as other properties of melatonin and NAS. Particularly, the abilities of melatonin and NAS to directly scavenge oxygen-centered radicals and toxic reactive oxygen species, and indirectly act through antioxidant enzymes are disscussed. In this review, we summarize the similarities and differences in the protection provided by melatonin and/or NAS in brain, liver and bone damage. We analyze the involvement of melatonin receptor 1A (MT1), melatonin receptor 1B (MT2), and melatonin receptor 1C (MT3) in the protection of melatonin and/or NAS. Additionally, we evaluate their potential clinical applications. The multiple mechanisms of action and multiple organ-targeted properties of melatonin and NAS may contribute to development of promising therapies for clinical trials.
Collapse
Affiliation(s)
- Chengliang Luo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiying Jiang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University Texas Health Science Center, San Antonio, TX, USA
| | - Pallab Bhattacharya
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Yongchun Cui
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongwei Yang
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - He Ma
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiemin Yao
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinmu Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Renato Rozental
- Lab Neuroproteção & Estratégias Regenerativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | - Mark D Johnson
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
21
|
Yoo JM, Lee BD, Sok DE, Ma JY, Kim MR. Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells. Redox Biol 2017; 11:592-599. [PMID: 28110215 PMCID: PMC5247570 DOI: 10.1016/j.redox.2016.12.034] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 12/22/2022] Open
Abstract
N-acetyl serotonin (NAS) as a melatonin precursor has neuroprotective actions. Nonetheless, it is not clarified how NAS protects neuronal cells against oxidative stress. Recently, we have reported that N-palmitoyl serotonins possessed properties of antioxidants and neuroprotection. Based on those, we hypothesized that NAS, a N-acyl serotonin, may have similar actions in oxidative stress-induced neuronal cells, and examined the effects of NAS based on in vitro and in vivo tests. NAS dose-dependently inhibited oxidative stress-induced cell death in HT-22 cells. Moreover, NAS suppressed glutamate-induced apoptosis by suppressing expression of AIF, Bax, calpain, cytochrome c and cleaved caspase-3, whereas it enhanced expression of Bcl-2. Additionally, NAS improved phosphorylation of tropomyosin-related kinase receptor B (TrkB) and cAMP response element-binding protein (CREB) as well as expression of brain-derived neurotrophic factor (BDNF), whereas the inclusion of each inhibitor of JNK, p38 or Akt neutralized the neuroprotective effect of NAS, but not that of ERK. Meanwhile, NAS dose-dependently reduced the level of reactive oxygen species, and enhanced the level of glutathione in glutamate-treated HT-22 cells. Moreover, NAS significantly increased expression of heme oxygenase-1, NAD(P)H quinine oxidoreductase-1 and glutamate-cysteine ligase catalytic subunit as well as nuclear translocation of NF-E2-related factor-2. Separately, NAS at 30 mg/kg suppressed scopolamine-induced memory impairment and cell death in CA1 and CA3 regions in mice. In conclusion, NAS shows actions of antioxidant and anti-apoptosis by activating TrkB/CREB/BDNF pathway and expression of antioxidant enzymes in oxidative stress-induced neurotoxicity. Therefore, such effects of NAS may provide the information for the application of NAS against neurodegenerative diseases. NAS protects apoptosis induced by oxidative stress in neuronal cells. NAS exerts an antioxidant property in neuronal cells. NAS improves activation of BDNF/TrkB/CREB pathway in neuronal cells. NAS enhances activation of Akt/Nrf2/Antioxidant enzyme pathway in neuronal cells. NAS recovers memory and neuronal cells in scopolamine-treated mice.
Collapse
Affiliation(s)
- Jae-Myung Yoo
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Bo Dam Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dai-Eun Sok
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Yuel Ma
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
22
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
23
|
Slyepchenko A, Maes M, Köhler CA, Anderson G, Quevedo J, Alves GS, Berk M, Fernandes BS, Carvalho AF. T helper 17 cells may drive neuroprogression in major depressive disorder: Proposal of an integrative model. Neurosci Biobehav Rev 2016; 64:83-100. [PMID: 26898639 DOI: 10.1016/j.neubiorev.2016.02.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/04/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
The exact pathophysiology of major depressive disorder (MDD) remains elusive. The monoamine theory, which hypothesizes that MDD emerges as a result of dysfunctional serotonergic, dopaminergic and noradrenergic pathways, has guided the therapy of this illness for several decades. More recently, the involvement of activated immune, oxidative and nitrosative stress pathways and of decreased levels of neurotrophic factors has provided emerging insights regarding the pathophysiology of MDD, leading to integrated theories emphasizing the complex interplay of these mechanisms that could lead to neuroprogression. In this review, we propose an integrative model suggesting that T helper 17 (Th17) cells play a pivotal role in the pathophysiology of MDD through (i) microglial activation, (ii) interactions with oxidative and nitrosative stress, (iii) increases of autoantibody production and the propensity for autoimmunity, (iv) disruption of the blood-brain barrier, and (v) dysregulation of the gut mucosa and microbiota. The clinical and research implications of this model are discussed.
Collapse
Affiliation(s)
- Anastasiya Slyepchenko
- Womens Health Concerns Clinic, St. Joseph's Healthcare Hamilton, MiNDS Program, McMaster University; Hamilton, Ontario, Canada
| | - Michael Maes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health, Geelong, VIC, Australia
| | - Cristiano A Köhler
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - João Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gilberto S Alves
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Berk
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health, Geelong, VIC, Australia; Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - Brisa S Fernandes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health, Geelong, VIC, Australia; Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
24
|
New melatonin–cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection. Future Med Chem 2015; 7:1961-9. [DOI: 10.4155/fmc.15.99] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Neurodegenerative diseases share many pathological pathways, such as abnormal protein aggregation, mitochondrial dysfunction, extensive oxidative stress and neuroinflammation. Cells have an intrinsic mechanism of protection, the Nrf2 transcriptional factor, known as the master regulator of redox homeostasis. Results: Based on the common features of these diseases we have designed a multi-target hybrid structure derived from melatonin and ethyl cinnamate. The obtained derivatives were Nrf2 inducers and potent-free radical scavengers. These new compounds showed a very interesting neuroprotective profile in several in vitro models of oxidative stress, Alzheimer's disease and brain ischemia. Conclusion: We have designed a new hybrid structure with complementary activities. We have identified compound 5h as an interesting Nrf2 inducer, very potent antioxidant and neuroprotectant.
Collapse
|
25
|
Álvarez-Diduk R, Galano A, Tan DX, Reiter RJ. N-Acetylserotonin and 6-Hydroxymelatonin against Oxidative Stress: Implications for the Overall Protection Exerted by Melatonin. J Phys Chem B 2015; 119:8535-43. [DOI: 10.1021/acs.jpcb.5b04920] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ruslán Álvarez-Diduk
- Departamento
de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa. C. P. 09340, México D. F. México
| | - Annia Galano
- Departamento
de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa. C. P. 09340, México D. F. México
| | - Dun Xian Tan
- Department
of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas 78229, United States
| | - Russel J. Reiter
- Department
of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas 78229, United States
| |
Collapse
|
26
|
Jiang ZC, Liang CH, Wang HL, Chen Y, Zheng J, Yu SN, Jiang JY. Effect of N-acetylserotonin on hepatocyte apoptosis after liver ischemia-reperfusion injury in rats. Shijie Huaren Xiaohua Zazhi 2015; 23:1387-1394. [DOI: 10.11569/wcjd.v23.i9.1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of N-acetylserotonin (NAS) on hepatocyte apoptosis after liver ischemia-reperfusion (I/R) injury in rats.
METHODS: Adult male SD rats weighting 200-250 g were used. The afferent vessels of the left and median lobes were occluded by a microvascular bulldog clamp and then reperfused after 60 min with or without NAS. The morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE) staining and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, respectively. The expression of Bcl-2, Bax and activated Caspase3 was evaluated by immunohistochemistry.
RESULTS: The hepatocytes exhibited marked ballooning hydropic degeneration and focal necrosis in the I/R group. NAS pretreatment rescued the morphological damage. Compared with the sham operation group, the expression of cleaved Caspase3, Bcl-2 and Bax in the liver tissue was increased, and the ratio of Bcl-2/Bax was decreased in the I/R group (P < 0.01). The apoptosis index (AI) and expression of cleaved Caspase3 and Bax were decreased in the NAS intervention group compared with the I/R group (P < 0.01), and the expression of Bcl-2 and Bcl-2/Bax ratio were increased (P < 0.01).
CONCLUSION: NAS could attenuate hepatocyte apoptosis after liver I/R injury via mechanisms possibly associated with induction of Bcl-2 protein expression and inhibition of Bax protein expression in hepatocytes.
Collapse
|
27
|
Kaur H, Mukherjee S, Baluska F, Bhatla SC. Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants. PLANT SIGNALING & BEHAVIOR 2015; 10:e1049788. [PMID: 26633566 PMCID: PMC4883943 DOI: 10.1080/15592324.2015.1049788] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/27/2015] [Accepted: 05/06/2015] [Indexed: 05/20/2023]
Abstract
Understanding the physiological and biochemical basis of abiotic stress tolerance in plants has always been one of the major aspects of research aiming to enhance plant productivity in arid and semi-arid cultivated lands all over the world. Growth of stress-tolerant transgenic crops and associated agricultural benefits through increased productivity, and related ethical issues, are also the major concerns of current research in various laboratories. Interesting data on the regulation of abiotic stress tolerance in plants by serotonin and melatonin has accumulated in the recent past. These two indoleamines possess antioxidative and growth-inducing properties, thus proving beneficial for stress acclimatization. Present review shall focus on the modes of serotonin and melatonin-induced regulation of abiotic stress tolerance in plants. Complex molecular interactions of serotonin and auxin-responsive genes have suggested their antagonistic nature. Data from genomic and metabolomic analyses of melatonin-induced abiotic stress signaling have lead to an understanding of the regulation of stress tolerance through the modulation of transcription factors, enzymes and various signaling molecules. Melatonin, nitric oxide (NO) and calmodulin interactions have provided new avenues for research on the molecular aspects of stress physiology in plants. Investigations on the characterization of receptors associated with serotonin and melatonin responses, are yet to be undertaken in plants. Patenting of biotechnological inventions pertaining to serotonin and melatonin formulations (through soil application or foliar spray) are expected to be some of the possible ways to regulate abiotic stress tolerance in plants. The present review, thus, summarizes the regulatory roles of serotonin and melatonin in modulating the signaling events accompanying abiotic stress in plants.
Collapse
Affiliation(s)
- Harmeet Kaur
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| | - Soumya Mukherjee
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| | - Frantisek Baluska
- Institute of Cellular and Molecular Botany; University of Bonn; Bonn, Germany
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| |
Collapse
|
28
|
Slominski AT, Kleszczyński K, Semak I, Janjetovic Z, Zmijewski MA, Kim TK, Slominski RM, Reiter RJ, Fischer TW. Local melatoninergic system as the protector of skin integrity. Int J Mol Sci 2014; 15:17705-32. [PMID: 25272227 PMCID: PMC4227185 DOI: 10.3390/ijms151017705] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
The human skin is not only a target for the protective actions of melatonin, but also a site of melatonin synthesis and metabolism, suggesting an important role for a local melatoninergic system in protection against ultraviolet radiation (UVR) induced damages. While melatonin exerts many effects on cell physiology and tissue homeostasis via membrane bound melatonin receptors, the strong protective effects of melatonin against the UVR-induced skin damage including DNA repair/protection seen at its high (pharmocological) concentrations indicate that these are mainly mediated through receptor-independent mechanisms or perhaps through activation of putative melatonin nuclear receptors. The destructive effects of the UVR are significantly counteracted or modulated by melatonin in the context of a complex intracutaneous melatoninergic anti-oxidative system with UVR-enhanced or UVR-independent melatonin metabolites. Therefore, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin or metabolites would be expected to represent one of the most potent anti-oxidative defense systems against the UV-induced damage to the skin. In summary, we propose that melatonin can be exploited therapeutically as a protective agent or as a survival factor with anti-genotoxic properties or as a “guardian” of the genome and cellular integrity with clinical applications in UVR-induced pathology that includes carcinogenesis and skin aging.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Konrad Kleszczyński
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Igor Semak
- Department of Biochemistry, Belarusian State University, Minsk 220030, Belarus.
| | - Zorica Janjetovic
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Michał A Zmijewski
- Department of Histology, Medical University of Gdańsk, Gdańsk 80-211, Poland.
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Radomir M Slominski
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA.
| | - Tobias W Fischer
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
29
|
N-acetyl-serotonin protects HepG2 cells from oxidative stress injury induced by hydrogen peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:310504. [PMID: 25013541 PMCID: PMC4074966 DOI: 10.1155/2014/310504] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/10/2014] [Accepted: 05/03/2014] [Indexed: 12/12/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity.
Collapse
|
30
|
N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J Neurosci 2014; 34:2967-78. [PMID: 24553937 DOI: 10.1523/jneurosci.1948-13.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N-acetylserotonin (NAS) is an immediate precursor of melatonin, which we have reported is neuroprotective against ischemic injury. Here we test whether NAS is a potential neuroprotective agent in experimental models of ischemic injury. We demonstrate that NAS inhibits cell death induced by oxygen-glucose deprivation or H2O2 in primary cerebrocortical neurons and primary hippocampal neurons in vitro, and organotypic hippocampal slice cultures ex vivo and reduces hypoxia/ischemia injury in the middle cerebral artery occlusion mouse model of cerebral ischemia in vivo. We find that NAS is neuroprotective by inhibiting the mitochondrial cell death pathway and the autophagic cell death pathway. The neuroprotective effects of NAS may result from the influence of mitochondrial permeability transition pore opening, mitochondrial fragmentation, and inhibition of the subsequent release of apoptogenic factors cytochrome c, Smac, and apoptosis-inducing factor from mitochondria to cytoplasm, and activation of caspase-3, -9, as well as the suppression of the activation of autophagy under stress conditions by increasing LC3-II and Beclin-1 levels and decreasing p62 level. However, NAS, unlike melatonin, does not provide neuroprotection through the activation of melatonin receptor 1A. We demonstrate that NAS reaches the brain subsequent to intraperitoneal injection using liquid chromatography/mass spectrometry analysis. Given that it occurs naturally and has low toxicity, NAS, like melatonin, has potential as a novel therapy for ischemic injury.
Collapse
|
31
|
N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J Neurosci 2014. [PMID: 24553937 DOI: 10.1523/jneurosci.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N-acetylserotonin (NAS) is an immediate precursor of melatonin, which we have reported is neuroprotective against ischemic injury. Here we test whether NAS is a potential neuroprotective agent in experimental models of ischemic injury. We demonstrate that NAS inhibits cell death induced by oxygen-glucose deprivation or H2O2 in primary cerebrocortical neurons and primary hippocampal neurons in vitro, and organotypic hippocampal slice cultures ex vivo and reduces hypoxia/ischemia injury in the middle cerebral artery occlusion mouse model of cerebral ischemia in vivo. We find that NAS is neuroprotective by inhibiting the mitochondrial cell death pathway and the autophagic cell death pathway. The neuroprotective effects of NAS may result from the influence of mitochondrial permeability transition pore opening, mitochondrial fragmentation, and inhibition of the subsequent release of apoptogenic factors cytochrome c, Smac, and apoptosis-inducing factor from mitochondria to cytoplasm, and activation of caspase-3, -9, as well as the suppression of the activation of autophagy under stress conditions by increasing LC3-II and Beclin-1 levels and decreasing p62 level. However, NAS, unlike melatonin, does not provide neuroprotection through the activation of melatonin receptor 1A. We demonstrate that NAS reaches the brain subsequent to intraperitoneal injection using liquid chromatography/mass spectrometry analysis. Given that it occurs naturally and has low toxicity, NAS, like melatonin, has potential as a novel therapy for ischemic injury.
Collapse
|
32
|
Protective effect of N-acetylserotonin against acute hepatic ischemia-reperfusion injury in mice. Int J Mol Sci 2013; 14:17680-93. [PMID: 23994834 PMCID: PMC3794748 DOI: 10.3390/ijms140917680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/29/2013] [Accepted: 08/09/2013] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to investigate the possible protective effect of N-acetylserotonin (NAS) against acute hepatic ischemia-reperfusion (I/R) injury in mice. Adult male mice were randomly divided into three groups: sham, I/R, and I/R + NAS. The hepatic I/R injury model was generated by clamping the hepatic artery, portal vein, and common bile duct with a microvascular bulldog clamp for 30 min, and then removing the clamp and allowing reperfusion for 6 h. Morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. Activated caspase-3 expression was evaluated by immunohistochemistry and Western blot. The activation of aspartate aminotransferase (AST), malondialdehyde (MDA), and superoxide dismutase (SOD) was evaluated by enzyme-linked immunosorbent assay (ELISA). The data show that NAS rescued hepatocyte morphological damage and dysfunction, decreased the number of apoptotic hepatocytes, and reduced caspase-3 activation. Our work demonstrates that NAS ameliorates hepatic IR injury.
Collapse
|
33
|
Abstract
PURPOSE Melatonin (MEL) is an effective antioxidant in numerous experimental models, both in vitro and in vivo. However, it should be stressed that there are also papers reporting limited antioxidative activity of MEL or even giving evidence for its pro-oxidative properties. In the present paper we investigated the influence of MEL on the oxidative damage of human erythrocytes during prolonged incubation. MATERIAL/METHODS Human erythrocytes suspended in phosphate-buffered saline (PBS), pH 7.4 were incubated at 37ºC either in absence or presence of melatonin at concentration range 0.02 mM-3 mM for up to 96 hrs. The influence of MEL on erythrocyte damage was assessed on the basis of the intensity of intracellular oxidation processes (the oxidation of HbO₂, GSH, fluorescent label DCFH₂) as well as damage to the plasma membrane (lipid peroxidation, the potassium leakage) and the kinetics of hemolysis. RESULTS The prolonged incubation of erythrocytes induced a progressive destruction of erythrocytes. Melatonin prevented lipid peroxidation and hemolysis whereas the oxidation of HbO₂ and DCFH₂ was enhanced by melatonin at concentrations higher than 0.6 mM. In the case of erythrocytes incubated with 3 mM of MEL, the hemolysis rate constant (0.0498±0.0039 H%•h⁻¹) was 50% lower than that of the control while the HbO₂ oxidation rate constants were about 1.4 and 1.5 times higher for 1.5 and 3 mM of MEL, respectively. Melatonin had no influence on the oxidation of GSH and the potassium leakage. CONCLUSIONS Probably, MEL can stabilize the erythrocyte membrane due to interaction with lipids, thus prolonging the existence of cells. On the contrary, in the presence of MEL the accelerated oxidation of HbO₂ and generally, increased oxidative stress was observed in erythrocytes. Pro- and antioxidative properties of melatonin depend on the type of cells, redox state, as well as experimental conditions.
Collapse
|
34
|
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011; 15:2011-35. [PMID: 21126177 PMCID: PMC3159108 DOI: 10.1089/ars.2010.3603] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is a brain disorder that has been intensively studied for over a century; yet, its etiology and multifactorial pathophysiology remain a puzzle. However, significant advances have been made in identifying numerous abnormalities in key biochemical systems. One among these is the antioxidant defense system (AODS) and redox signaling. This review summarizes the findings to date in human studies. The evidence can be broadly clustered into three major themes: perturbations in AODS, relationships between AODS alterations and other systems (i.e., membrane structure, immune function, and neurotransmission), and clinical implications. These domains of AODS have been examined in samples from both the central nervous system and peripheral tissues. Findings in patients with SZ include decreased nonenzymatic antioxidants, increased lipid peroxides and nitric oxides, and homeostatic imbalance of purine catabolism. Reductions of plasma antioxidant capacity are seen in patients with chronic illness as well as early in the course of SZ. Notably, these data indicate that many AODS alterations are independent of treatment effects. Moreover, there is burgeoning evidence indicating a link among oxidative stress, membrane defects, immune dysfunction, and multineurotransmitter pathologies in SZ. Finally, the body of evidence reviewed herein provides a theoretical rationale for the development of novel treatment approaches.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
35
|
Fagali N, Catalá A. Melatonin and structural analogues do not possess antioxidant properties on Fe(2+)-initiated peroxidation of sonicated liposomes made of retinal lipids. Chem Phys Lipids 2011; 164:688-95. [PMID: 21827740 DOI: 10.1016/j.chemphyslip.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
Melatonin and its structural analogues display antioxidant activity in vivo but their activity in model membranes is not very well known. In this study, we have investigated the antioxidant capacity of melatonin and structural analogues on Fe(2+)-initiated peroxidation of sonicated liposomes made of retinal lipids. The indoleamines were evaluated against butylated hydroxitoluene (BHT) which was chosen as a reference standard because of its high antioxidant capacity. After the addition of Fe(2+) as initiator of lipid peroxidation, quick production of conjugated dienes was observed. With addition of increasing concentrations of BHT the start of the reaction was delayed and initial reaction rates were lower. However, this reduction was not proportional to the increase in concentration. The start of the reaction and initial reaction rates were not modified in the presence of melatonin and its structural analogues. The formation of TBARS started immediately after the addition of Fe(2+). The increase in the concentration of BHT avoided the emergence of TBARS. Changes were not observed in the presence of melatonin or structural analogues. Retinal lipids showed a high content of docosahexaenoic (22: 6 (Δ4,7,10,13,16,19) acid, characteristic of this tissue. A little bit of that fatty acid was lost when sonicated liposomes were prepared with these retinal lipids. The polyunsaturated fatty acids (PUFAs) diminished significantly after incubation of liposomes with Fe(2+) during 1h. BHT preserved PUFAs whereas melatonin and its related indoleamines did not. These data reinforce the hypothesis that melatonin and structural analogues do not possess antioxidant properties per se in this liposomal model system.
Collapse
Affiliation(s)
- Natalia Fagali
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, (INIFTA-CCT La Plata-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
| | | |
Collapse
|
36
|
Abderrahim F, Estrella S, Susín C, Arribas SM, González MC, Condezo-Hoyos L. The Antioxidant Activity and Thermal Stability of Lemon Verbena (Aloysia triphylla) Infusion. J Med Food 2011; 14:517-27. [DOI: 10.1089/jmf.2010.0102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fatima Abderrahim
- Department of Physiology, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | - Cristina Susín
- “Albert Sols” Institute of Biomedical Investigations, Spanish National Research Council, Madrid, Spain
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - M. Carmen González
- Department of Physiology, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Luis Condezo-Hoyos
- Department of Physiology, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
37
|
Yao JK, Dougherty GG, Reddy RD, Keshavan MS, Montrose DM, Matson WR, Rozen S, Krishnan RR, McEvoy J, Kaddurah-Daouk R. Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol Psychiatry 2010; 15:938-53. [PMID: 19401681 PMCID: PMC2953575 DOI: 10.1038/mp.2009.33] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schizophrenia is characterized by complex and dynamically interacting perturbations in multiple neurochemical systems. In the past, evidence for these alterations has been collected piecemeal, limiting our understanding of the interactions among relevant biological systems. Earlier, both hyper- and hyposerotonemia were variously associated with the longitudinal course of schizophrenia, suggesting a disturbance in the central serotonin (5-hydroxytryptamine (5-HT)) function. Using a targeted electrochemistry-based metabolomics platform, we compared metabolic signatures consisting of 13 plasma tryptophan (Trp) metabolites simultaneously between first-episode neuroleptic-naive patients with schizophrenia (FENNS, n=25) and healthy controls (HC, n=30). We also compared these metabolites between FENNS at baseline (BL) and 4 weeks (4w) after antipsychotic treatment. N-acetylserotonin was increased in FENNS-BL compared with HC (P=0.0077, which remained nearly significant after Bonferroni correction). N-acetylserotonin/Trp and melatonin (Mel)/serotonin ratios were higher, and Mel/N-acetylserotonin ratio was lower in FENNS-BL (all P-values<0.0029), but not after treatment, compared with HC volunteers. All three groups had highly significant correlations between Trp and its metabolites, Mel, kynurenine, 3-hydroxykynurenine and tryptamine. However, in the HC, but in neither of the FENNS groups, serotonin was highly correlated with Trp, Mel, kynurenine or tryptamine, and 5-hydroxyindoleacetic acid (5HIAA) was highly correlated with Trp, Mel, kynurenine or 3-hydroxykynurenine. A significant difference between HC and FENNS-BL was further shown only for the Trp-5HIAA correlation. Thus, some metabolite interactions within the Trp pathway seem to be altered in the FENNS-BL patients. Conversion of serotonin to N-acetylserotonin by serotonin N-acetyltransferase may be upregulated in FENNS patients, possibly related to the observed alteration in Trp-5HIAA correlation. Considering N-acetylserotonin as a potent antioxidant, such increases in N-acetylserotonin might be a compensatory response to increased oxidative stress, implicated in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- JK Yao
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA, Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - GG Dougherty
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA, Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - RD Reddy
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA, Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - MS Keshavan
- Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA, Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard University, Boston, MA, USA
| | - DM Montrose
- Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - WR Matson
- Bedford VA Medical Center, Bedford, MA, USA
| | - S Rozen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - RR Krishnan
- Duke University Medical Center, Durham, NC, USA
| | - J McEvoy
- Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
38
|
Inui Y, Hazeki O. Acute effects of melatonin and its time of administration on core body temperature and heart rate in cynomolgus monkeys. J Toxicol Sci 2010; 35:383-91. [DOI: 10.2131/jts.35.383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yoshitaka Inui
- Development Research Center, Takeda Pharmaceutical Company Limited
- Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University
| | - Osamu Hazeki
- Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University
| |
Collapse
|
39
|
|
40
|
Fagali N, Catalá A. The effect of melatonin and structural analogues on the lipid peroxidation of triglycerides enriched in omega-3 polyunsaturated fatty acids. Life Sci 2007; 81:299-305. [PMID: 17603083 DOI: 10.1016/j.lfs.2007.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/24/2007] [Accepted: 05/15/2007] [Indexed: 11/21/2022]
Abstract
The lipid peroxidation of triglycerides enriched in polyunsaturated fatty acids was investigated by photoemission techniques and the TBARS assay. Butylated hydroxytoluene, 5-OH-tryptophan and N-acetylserotonin inhibited light emission and TBARS formation in a concentration dependent manner. However, it was enhanced in the presence of melatonin and 5-methoxytryptamine and was dependent on its concentration. The total relative luminic units were found to be lower in those systems incubated in the presence of butylated hydroxytoluene, N-acetylserotonin or 5-OH-tryptophan; this decreased proportionally to the concentration of the compound tested. The order of inhibition was 5-OH-tryptophan>N-acetylserotonin>butylated hydroxytoluene with the following IC50 values: 0.65, 6.5 and 9.0 mM respectively. The free-radical scavenging activity of the indole derivatives was also analyzed by the DPPH method, and the results indicate that 5-OH-tryptophan, and N-acetylserotonin exhibited a dose-dependent free-radical scavenging ability at all of the tested concentrations. Thus, at 10 microM concentration a decrease of 84.71% and 73.50% of initial DPPH was observed, compared to 51.00% of BHT. Melatonin and 5-methoxytriptamine decreased the initial concentration of DPPH only 1.85% and 5.0%, respectively. The possible formation of N(1)-acetyl-N(2) formyl-5-methoxykynuramine (AFMK) during lipid peroxidation of triglycerides enriched in PUFAs with cumene hydroperoxide in the presence of melatonin was also analyzed.
Collapse
Affiliation(s)
- Natalia Fagali
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
| | | |
Collapse
|
41
|
Albertini MC, Radogna F, Accorsi A, Uguccioni F, Paternoster L, Cerella C, De Nicola M, D'Alessio M, Bergamaschi A, Magrini A, Ghibelli L. Intracellular pro-oxidant activity of melatonin deprives U937 cells of reduced glutathione without affecting glutathione peroxidase activity. Ann N Y Acad Sci 2007; 1091:10-6. [PMID: 17341598 DOI: 10.1196/annals.1378.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It was long believed that melatonin might counteract intracellular oxidative stress because it was shown to potentiate antioxidant endogenous defences, and to increase the activity of many antioxidant enzymes. However, it is now becoming evident that when radicals are measured within cells, melatonin increases, rather than decreasing, radical production. Herein we demonstrate a pro-oxidant effect of melatonin in U937 cells by showing an increase of intracellular oxidative species and a depletion of glutathione (GSH). The activity of glutathione peroxidase is not modified by melatonin treatment as it does occur in other experimental models.
Collapse
|
42
|
Tang GY, Ip AK, Siu AW. Pinoline and N-acetylserotonin reduce glutamate-induced lipid peroxidation in retinal homogenates. Neurosci Lett 2006; 412:191-4. [PMID: 17125922 DOI: 10.1016/j.neulet.2006.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/23/2022]
Abstract
Glutamate is a neurotransmitter associated with oxidative retinal disorders. Pinoline (PIN) and N-acetylserotonin (NAS) are newly identified neural protectors. We investigated the glutamate-induced lipid peroxidation (LPO) and the protective effects of PIN and NAS in the retina. Porcine retinal homogenates were treated with different concentrations of glutamate. The malondialdehyde (MDA) level per unit weight of protein was quantified spectro-photometrically as an index of LPO. The glutamate concentration that induced a significant increase in retinal MDA was determined. The glutamate-treated retinal homogenate was then co-incubated with 5 different concentrations (0, 35.7, 71.5, 143 and 286 microM) of PIN, NAS or their combinations (concentration corresponding to 25, 50 and 75% of protection). Glutamate induced a significant dose-dependent increase in retinal MDA (p<0.0001). Co-incubation with PIN or NAS significantly suppressed the glutamate-induced MDA (p<0.01) in a dose-dependent manner (p<0.0001). The concentrations to inhibit 50% of LPO were 132.8 and 98.6 microM for PIN and NAS, respectively. In summary, elevated glutamate induced retinal LPO. Both PIN and NAS suppressed the glutamate-induced LPO and a synergic protection was evident after incubation in PIN/NAS mixtures.
Collapse
Affiliation(s)
- Gordon Y Tang
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
43
|
López-Olmeda JF, Bayarri MJ, Rol de Lama MA, Madrid JA, Sánchez-Vázquez FJ. Effects of melatonin administration on oxidative stress and daily locomotor activity patterns in goldfish. J Physiol Biochem 2006; 62:17-25. [PMID: 16909928 DOI: 10.1007/bf03165802] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Melatonin has a number of physiological functions in addition to light-dark transduction. In recent years, many in vivo and in vitro studies in rodents have revealed an important antioxidant activity of melatonin, both directly and indirectly. Nevertheless, the potential effects of melatonin as an antioxidant in fish remain unknown. The aim of this research was to evaluate the capacity of melatonin injections (3 mg/kg) to attenuate oxidative damage after submitting goldfish to oxidative stress caused directly by hydrogen peroxide (H2O2) baths and indirectly by hypoxia and subsequent reoxygenation, as well as the locomotor activity. The results revealed that melatonin decreased lipid damage in muscle after hypoxia/reoxygenation (1.22 vs. 2.27 nmoles lipid peroxides/g tissue), but not in liver. Mortality caused by oxidative stress was not attenuated by melatonin. Surprisingly, melatonin caused an increase of mortality (50 vs. 95%) when administered before hypoxia. Locomotor activity was also affected by melatonin but not by the administration of the vehicle, suggesting a sedative effect of melatonin in goldfish. In conclusion, melatonin administration provoked slight effects on lipid peroxidation and mortality resulting from oxidative stress, with reduction of locomotor activity in relation to the vehicle.
Collapse
Affiliation(s)
- J F López-Olmeda
- Department of Physiology, Faculty of Biology, University of Murcia, 30100 Espinardo, Murcia, Spain.
| | | | | | | | | |
Collapse
|
44
|
Aguiar LM, Macedo DS, de Freitas RM, de Albuquerque Oliveira A, Vasconcelos SMM, de Sousa FCF, de Barros Viana GS. Protective effects of N-acetylserotonin against 6-hydroxydopamine-induced neurotoxicity. Life Sci 2005; 76:2193-202. [PMID: 15733934 DOI: 10.1016/j.lfs.2004.09.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 09/25/2004] [Indexed: 10/25/2022]
Abstract
The present work studied in vivo neuroprotective effects of n-acetylserotonin (NAS), the immediate precursor of melatonin, on the dopaminergic system, in rats lesioned with the unilateral intrastriatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA). Two weeks after the lesion, the dopamine receptor agonist, apomorphine, produced rotational asymmetry, and the NAS treatment significantly reduced the motor deficit following the apomorphine challenge. The apomorphine-induced rotational behavior was blocked by 84, 86 and 53% after NAS, at doses of 2, 5 and 10 mg/kg, i.p., respectively. The injection of 6-OHDA significantly decreased DA, DOPAC and HVA levels in the rat striatum. In contrast, the NAS (2, 5 and 10 mg/kg, i.p., daily for 7 days) treatment partially reversed the decreases caused by 6-OHDA, and the neurotransmitter levels were brought to approximately 50% of that observed in the contralateral sides. NAS was more efficient at the smaller doses. NAS (5 mg/kg) produced an up-regulation of D1 (37%) and D2 (37%) receptors associated with a decrease in Kd values.
Collapse
|
45
|
Semak I, Korik E, Naumova M, Wortsman J, Slominski A. Serotonin metabolism in rat skin: characterization by liquid chromatography-mass spectrometry. Arch Biochem Biophys 2004; 421:61-6. [PMID: 14678785 DOI: 10.1016/j.abb.2003.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have recently uncovered the full expression of novel cutaneous serotoninergic and melatoninergic systems in the human and hamster skin. In this work, we have characterized serotonin metabolism in the rat skin using liquid chromatography-mass spectrometry and found that serotonin undergoes acetylation in the presence of acetyl coenzyme A. Inhibition of serotonin acetylation with Cole bisubstrate inhibitor shows that rat skin expresses both arylalkylamine and arylamine N-acetyltransferase activities. The serotonin degradation product-5-hydroxyindole acetic acid is also detected and pargyline (monoaminooxidase inhibitor) suppresses almost completely 5-hydroxyindole acetic acid accumulation. Together with previous data, the present study clearly demonstrates that biotransformation of serotonin in mammalian skin follows two alternate pathways. In the first pathway, serotonin is acetylated by arylalkylamine and arylamine N-acetyltransferases to generate the precursor of melatonin. Alternately, serotonin may undergo oxidative deamination by monoaminooxidase followed by enzymatic degradation by aldehyde dehydrogenase into 5-hydroxyindole acetic acid, which is presumably devoid of biological activity. Thus, the current methodological development of a liquid chromatography-mass spectrometry-based assay allows rapid resolution of the cutaneous metabolism of serotonin.
Collapse
Affiliation(s)
- Igor Semak
- Department of Biochemistry, Belarus State University, Minsk, Belarus
| | | | | | | | | |
Collapse
|
46
|
Bondarenko LA, Gubina-Vakulik GI. Morphofunctional changes in the pineal gland during dynamic adaptation to hypothermia. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2003; 33:405-9. [PMID: 12774844 DOI: 10.1023/a:1022859910477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of stress induced by hypothermia (+4 degrees C for 3 h) on the pathways of serotonin metabolism in the pineal gland and on its structure were studied in adult male Wistar rats. These experiments showed that the melatonin-forming function of the epiphysis undergoes phasic changes during adaptation: there was a significant increase during the first 15 min, which was followed by gradual inhibition (to initial by 30 min) and then sharp suppression (at 3 h). Suppression of the functional activity of the pineal gland occurred because of exclusion of a proportion of pinealocytes from the process of active functioning.
Collapse
Affiliation(s)
- L A Bondarenko
- Chronoendocrinology Laboratory, V. Ya. Danilevskii Institute of Problems of Endocrine Pathology, Ukrainian Academy of Medical Sciences, 10 Artem Street, 61002 Khar'kov-2, Ukraine
| | | |
Collapse
|
47
|
Bachurin SO, Shevtsova EP, Kireeva EG, Oxenkrug GF, Sablin SO. Mitochondria as a target for neurotoxins and neuroprotective agents. Ann N Y Acad Sci 2003; 993:334-44; discussion 345-9. [PMID: 12853325 DOI: 10.1111/j.1749-6632.2003.tb07541.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondrial permeability transition pores represent a multiprotein complex that includes components of both inner and outer membrane. The pores regulate transport of ions and peptides in and out of mitochondria, and their regulation is associated with a general mechanism for maintaining Ca(2+) homeostasis in the cell and apoptosis. Various pathologic factors may induce a pathologic activation of the permeability transition and an irreversible opening of mitochondria pores. This event is a major step in the development of neurotoxicity and neurodegeneration. This paper explores the effect of MPP(+) and beta-amyloid fragment 25-35, neurotoxins that are known to generate Parkinson's-like syndrome and Alzheimer's disease, on the regulation of the mitochondrial pores. Both neurotoxins induce opening of mitochondrial pores, which is prevented by cyclosporin A, a specific inhibitor of the permeability transition. The effect of MPP(+) and beta-amyloid may be also prevented by an endogenous precursor of melatonin, N-acetylserotonin, by an anti-Alzheimer's medication tacrine, and by dimebon, which is in development as an agent for the therapy of Alzheimer's disease and other types of dementia. The paper illustrates that the effect on mitochondrial pores is an important aspect of the mechanism of neurotoxicity. Substances that may prevent opening of mitochondrial pores induced by neurotoxins may preserve the mitochondrial function and, thus, may have potential as neuroprotective agents.
Collapse
Affiliation(s)
- Sergey O Bachurin
- Institute of Physiologically Active Compounds, Chernogolovka, Russia
| | | | | | | | | |
Collapse
|
48
|
Mayo JC, Tan DX, Sainz RM, Natarajan M, Lopez-Burillo S, Reiter RJ. Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: comparative effects of melatonin and other antioxidants. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1620:139-50. [PMID: 12595083 DOI: 10.1016/s0304-4165(02)00527-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin is a well-known hydroxyl radical (*OH) scavenger that protects DNA and lipids from free radical attack. In this paper, we studied the ability of melatonin to prevent oxidative damage to bovine serum albumin (BSA) induced by two different paradigms: the metal-catalyzed oxidation (MCO) induced by Cu(2+)/H(2)O(2) and the alkoxyl and alkylperoxyl radicals formed by the azo initiator 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH, 40 mM). The protective effects of melatonin were compared with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox), glutathione (GSH), ascorbate, 3,4',5-trihydroxy-trans-stilbene (resveratrol, 0.1 microM-4 mM) and mannitol (50 microM-100 mM). Melatonin efficiently prevented protein modification induced by both models, as assayed by polyacrylamide gel electrophoresis and carbonyl content. Both trolox and ascorbate had an obvious pro-oxidant effect in the Cu(2+)/H(2)O(2) model, whereas both prevented BSA damage induced by AAPH. In the MCO model, the efficacy of GSH in terms of protein protection was higher than melatonin at relatively high concentrations (250 microM-4 mM); however, at lower concentrations (50-250 microM), the efficacy of melatonin was superior to GSH. D-Mannitol (50 microM-100 mM) and resveratrol did not protect BSA from the site-specific damage induced by Cu(2+)/H(2)O(2). On the other hand, the relative protective efficiency in the AAPH model was melatonin approximately trolox>GSH>ascorbate.
Collapse
Affiliation(s)
- J C Mayo
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
49
|
Bachurin SO. Medicinal chemistry approaches for the treatment and prevention of Alzheimer's disease. Med Res Rev 2003; 23:48-88. [PMID: 12424753 DOI: 10.1002/med.10026] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which is characterised by progressive deterioration of memory and higher cortical functions that ultimately result in total degradation of intellectual and mental activities. Modern strategies in the search of new therapeutic approaches are based on the morphological and biochemical characteristics of AD, and focused on following directions: agents that compensate the hypofunction of cholinergic system, agents that interfere with the metabolism of beta-amyloid peptide, agents that protect nerve cells from toxic metabolites formed in neurodegenerative processes, agents that activate other neurotransmitter systems that indirectly compensate for the deficit of cholinergic functions, agents that affect the process of the formation of neurofibrillary tangles, anti-inflammatory agents that prevent the negative response of nerve cells to the pathological process. The goal of the present review is the validation and an analysis from the point of view of medicinal chemistry of the principles of the directed search of drugs for the treatment and prevention of AD and related neurodegenerative disorders. It is based on systematization of the data on biochemical and structural similarities in the interaction between physiologically active compounds and their biological targets related to the development of such pathologies. The main emphasis is on cholinomimetic, anti-amyloid and anti-metabolic agents, using the data that were published during the last 3 to 4 years, as well as the results of clinical trials presented on corresponding websites.
Collapse
Affiliation(s)
- S O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Moscow region, Russia.
| |
Collapse
|
50
|
Wölfler A, Abuja PM, Linkesch W, Schauenstein K, Liebmann PM. Questionable benefit of melatonin for antioxidant pharmacologic therapy. J Clin Oncol 2002; 20:4127-8; author reply 4128-9. [PMID: 12351615 DOI: 10.1200/jco.2002.99.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|