1
|
Nourazarian A, Aghaei-Zarch SM, Panahi Y. Delayed complications of sulfur mustard poisoning: a focus on inflammation and telomere footprint. Arch Toxicol 2025:10.1007/s00204-025-04033-z. [PMID: 40335638 DOI: 10.1007/s00204-025-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025]
Abstract
Sulfur mustard (SM), a potent alkylating agent, has been widely used in chemical warfare, causing severe acute and long-term health complications. While its immediate toxic effects are well documented, the late-onset complications remain poorly understood. Chronic exposure to SM has been linked to persistent oxidative stress, inflammation, and genomic instability, contributing to the progression of various diseases, including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), and cancer. This review explores the emerging role of telomere biology in the delayed pathophysiology of SM exposure. Evidence suggests that telomere shortening and dysregulation of telomeric repeat-containing RNA (TERRA) may serve as key molecular indicators of SM-induced aging and cellular dysfunction. Furthermore, inflammatory pathways, particularly NF-κB and TGF-β signaling, appear to be closely associated with telomere attrition, perpetuating chronic inflammation and fibrosis. By integrating oxidative stress, inflammation, and telomere dynamics, we propose a novel model linking telomere biology to SM-induced late complications. Understanding these mechanisms could pave the way for targeted therapeutic strategies, including antioxidant and epigenetic interventions, to mitigate long-term effects. Future research should focus on validating telomere-based biomarkers for early detection and exploring novel interventions to alleviate SM-induced chronic health conditions.
Collapse
Affiliation(s)
- Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasin Panahi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, 58147-43343, Iran.
| |
Collapse
|
2
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
3
|
Martino P, Perez-Alarcón M, Deconinck L, De Raedt R, Vanderhasselt MA, Kozusznik MW, Kooy F, Hidalgo V, Venero C, Salvador A, Baeken C, Pulopulos MM. Stress and telomere length in leukocytes: Investigating the role of GABRA6 gene polymorphism and cortisol. Psychoneuroendocrinology 2025; 173:107358. [PMID: 39864119 PMCID: PMC11849805 DOI: 10.1016/j.psyneuen.2025.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/08/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Telomere length (TL) is considered a biomarker of aging, and short TL in leukocytes is related to age and stress-related health problems. Cumulative lifetime stress exposure has also been associated with shorter TL and age-related health problems, but the mechanisms are not well understood. We tested in 108 individuals whether shorter TL in leukocytes is observed in individuals with the GABRA6 TT genotype, which has been associated with dysregulation of hypothalamic-pituitary-adrenal axis activity (the main biological stress system) compared to the CC genotype. We also investigated if individuals carrying the TT genotype show higher stress-induced and diurnal cortisol secretion and if cortisol explains the interindividual variability in TL. The analysis pipeline of this study was pre-registered, and the results showed that GABRA6 TT carriers had shorter TL in CD8+CD28+ cells (Bonferroni corrected). In contrast to previous studies, no differences between groups in cortisol secretion were observed, and TL and cortisol did not show significant associations. This study shows, for the first time, shorter TL in CD8+CD28+ cells in TT carriers for GABRA6 compared to CC carriers, suggesting accelerated cellular aging. Although this difference could be linked to an increased susceptibility to stress in the TT carriers, this could not be attributed to the direct influence of cortisol, suggesting the involvement of other mechanisms.
Collapse
Affiliation(s)
- Pablo Martino
- Behavioral Science Research Laboratory, National University of San Luis, Argentina; National Scientific and Technical Research Council, Argentina
| | | | - Luna Deconinck
- Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium
| | - Malgorzata W Kozusznik
- Department of Marketing, Innovation and Organization, Ghent University, Ghent, Belgium; Research Group Organizational and Occupational Psychology and Professional Learning, KU Leuven, Leuven, Belgium
| | - Frank Kooy
- Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Vanesa Hidalgo
- Department of Psychobiology, University of Valencia, Valencia, Spain; Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
| | - César Venero
- COGNI-UNED, Department of Psychobiology, Faculty of Psychology, UNED, Madrid, Spain; University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Alicia Salvador
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Chris Baeken
- Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital UZ Brussel, Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Stajnko A, Pineda D, Klus JK, Love TM, Thurston SW, Mulhern MS, Strain JJ, McSorley EM, Myers GJ, Watson GE, Shroff E, Shamlaye CF, Yeates AJ, van Wijngaarden E, Broberg K. Associations of Prenatal Mercury Exposure and PUFA with Telomere Length and mtDNA Copy Number in 7-Year-Old Children in the Seychelles Child Development Nutrition Cohort 2. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:27002. [PMID: 39903555 PMCID: PMC11793161 DOI: 10.1289/ehp14776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) variations are linked to age-related diseases and are associated with environmental exposure and nutritional status. Limited data, however, exist on the associations with mercury exposure, particularly early in life. OBJECTIVE We examined the association between prenatal mercury (Hg) exposure and TL and mtDNAcn in 1,145 Seychelles children, characterized by a fish-rich diet. METHODS Total mercury (THg) was determined in maternal hair at delivery and cord blood. TL and mtDNAcn were determined relative to a single-copy hemoglobin beta gene in the saliva of 7-y-old children. Linear regression models assessed associations between THg and relative TL (rTL) and relative mtDNAcn (rmtDNAcn) while controlling for maternal and cord serum polyunsaturated fatty acid (PUFA) status and sociodemographic factors. Interactions between THg and child sex, PUFA, and telomerase genotypes were evaluated for rTL and rmtDNAcn. RESULTS Higher THg concentrations in maternal hair and cord blood were associated with longer rTL [β = 0.009 ; 95% confidence interval (CI): 0.002, 0.016 and β = 0.002 ; 95% CI: 0.001, 0.003, respectively], irrespective of sex, PUFA, or telomerase genotypes. Maternal serum n-6 PUFA and n-6/n-3 ratio were associated with shorter [β = - 0.24 ; 95% CI: - 0.33 , - 0.15 and β = - 0.032 ; 95% CI: - 0.048 , - 0.016 , respectively] and n - 3 PUFA with longer (β = 0.34 ; 95% CI: 0.032, 0.65) rTL. Cord blood n-6 PUFA was associated with longer (β = 0.15 ; 95% CI: 0.050, 0.26) rTL. Further analyses revealed linoleic acid in maternal blood and arachidonic acid in cord blood as the main drivers of the n-6 PUFA associations. No associations were observed for THg and PUFA with rmtDNAcn. DISCUSSION Our results indicate that prenatal THg exposure and PUFA status are associated with rTL later in childhood, although not consistently aligned with our initial hypothesis. Subsequent research is needed to confirm this finding, further evaluate the potential confounding of fish intake, and investigate the underlying molecular mechanisms to verify the use of rTL as a true biomarker of THg exposure. https://doi.org/10.1289/EHP14776.
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Jonathan K. Klus
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Tanzy M. Love
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Sally W. Thurston
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Maria S. Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - J. J. Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Emeir M. McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Gary J. Myers
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Gene E. Watson
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Emelyn Shroff
- The Ministry of Health, Mahé, Republic of Seychelles
| | | | - Alison J. Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Edwin van Wijngaarden
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Karin Broberg
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Xie JW, Wang HL, Lin LQ, Guo YF, Wang M, Zhu XZ, Niu JJ, Lin LR. Telomere-methylation genes: Novel prognostic biomarkers for hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2025; 49:102516. [PMID: 39675625 DOI: 10.1016/j.clinre.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Since telomere length and DNA methylation both correlate with hepatocellular carcinoma (HCC) prognosis, telomere-methylation genes could be novel prognostic markers for HCC. METHOD This study first investigated the interaction between telomere length and DNA methylation in HCC through Mendelian randomization analysis. Then, this study identified telomere-methylation genes in HCC by employing the TCGA-LIHC cohort, and explored the expression patterns of these genes in the tumor microenvironment of HCC and potential underlying mechanisms. Finally, the HCC risk-scoring model and prognostic model based on these genes were established, and the performance of the model was assessed. RESULT The findings revealed a bidirectional relationship between telomere length and DNA methylation in HCC. Fifty telomere-methylation genes were identified, and the prognosis-related telomere-methylation genes were closely associated with Treg and Tprolif cell subsets within the HCC tumor microenvironment. Telomere-methylation genes could potentially impact the prognosis of HCC patients by modulating chromosome stability and regulating the cell cycle. Additionally, the constructed risk scoring model and prognostic prediction model showcased compelling clinical applicability, as evidenced by the receiver operating characteristic curve, the decision curve analysis, and the calibration curves. CONCLUSION This study elucidated the potential of telomere-methylation genes as prognostic biomarkers for HCC and paves the way for novel approaches in prognostication and treatment management for HCC patients.
Collapse
Affiliation(s)
- Jia-Wen Xie
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Ling Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ling-Qing Lin
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yin-Feng Guo
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Mao Wang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China; Department of Pathology, Chengdu Wenjiang District People's Hospital, Chengdu, China
| | - Xiao-Zhen Zhu
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
He X, Cao L, Fu X, Wu Y, Wen H, Gao Y, Huo W, Wang M, Liu M, Su Y, Liu G, Zhang M, Hu F, Hu D, Zhao Y. The Association Between Telomere Length and Diabetes Mellitus: Accumulated Evidence From Observational Studies. J Clin Endocrinol Metab 2024; 110:e177-e185. [PMID: 39087945 DOI: 10.1210/clinem/dgae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE In order to assess the associations between telomere length (TL) and diabetes mellitus (DM), especially type 2 diabetes (T2DM), we performed this systematic review and meta-analysis. METHODS PubMed, Embase, and Web of Science were thoroughly searched up to July 11, 2023. The pooled standardized mean difference (SMD) and the 95% confidence interval (CI) were evaluated using the random-effects model. Age, sex, study design, duration of diabetes, region, sample size, and body mass index (BMI) were used to stratify subgroup analyses. RESULTS A total of 37 observational studies involving 18 181 participants from 14 countries were included in the quantitative meta-analysis. In this study, patients with diabetes had shorter TL than the non-diabetic, whether those patients had T1DM (-2.70; 95% CI: -4.47, -0.93; P < .001), T2DM (-3.70; 95% CI: -4.20, -3.20; P < .001), or other types of diabetes (-0.71; 95% CI: -1.10, -0.31; P < .001). Additionally, subgroup analysis of T2DM showed that TL was significantly correlated with age, sex, study design, diabetes duration, sample size, detection method, region, and BMI. CONCLUSION A negative correlation was observed between TL and DM. To validate this association in the interim, more extensive, superior prospective investigations and clinical trials are required.
Collapse
Affiliation(s)
- Xinxin He
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Lu Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Xueru Fu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuying Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Hongwei Wen
- Department of Public Health, Zhengzhou Shuqing Medical College, Zhengzhou, Henan 450000, People's Republic of China
| | - Yajuan Gao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Weifeng Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Mengdi Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Mengna Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yijia Su
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Ge Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
7
|
Liu S, Xu L, Cheng Y, Liu D, Zhang B, Chen X, Zheng M. Decreased telomerase activity and shortened telomere length in infants whose mothers have gestational diabetes mellitus and increased severity of telomere shortening in male infants. Front Endocrinol (Lausanne) 2024; 15:1490336. [PMID: 39736866 PMCID: PMC11682970 DOI: 10.3389/fendo.2024.1490336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring. Methods We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels. Results The length of telomeres in umbilical CBMCs in the GDM group was significantly shorter than that in the Ctrl group (P<0.001), and the shortening of telomeres in male infants in the GDM group was more significant than that in the Ctrl group (P<0.001) after adjustment for Pre-pregnancy body mass index (PBMI), Pregnancy weight gain (PGW), and Triglyceride (TG) as confounding factors. In addition, the TE expression level in the GDM group was lower after adjustment. There was no statistically significant difference in oxidative stress hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA) and superoxide dismutase (SOD) between the two groups. TL was positively correlated with TE activity, and both were negatively correlated with blood glucose levels. There was no correlation between TL and Gestational age (GA), PBMI, PGW, or TG levels. Conclusion The poor intrauterine environment in pregnant women with GDM increases telomere attrition and reduces TE activity, which may be potential genetic risk factors for an increased risk of metabolic diseases in offspring later in life due to intrauterine reprogramming.
Collapse
Affiliation(s)
- Shuhua Liu
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Liping Xu
- Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yan Cheng
- Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Dehong Liu
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Bin Zhang
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Xianxia Chen
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Liao YL, Fang YF, Sun JX, Dou GR. Senescent endothelial cells: a potential target for diabetic retinopathy. Angiogenesis 2024; 27:663-679. [PMID: 39215875 PMCID: PMC11564237 DOI: 10.1007/s10456-024-09943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.
Collapse
Affiliation(s)
- Ying-Lu Liao
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of the Cadet Team 6 of the School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi-Fan Fang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Jiang M, Zhao W, Liang Q, Cai M, Fan X, Hu S, Zhu Y, Xie H, Peng C, Liu J. Polystyrene microplastics enhanced the toxicity of cadmium to rice seedlings: Evidence from rice growth, physiology, and element metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173931. [PMID: 38885718 DOI: 10.1016/j.scitotenv.2024.173931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Microplastics (MPs) and cadmium (Cd) are toxic to rice; however, the effects and mechanisms of their combined exposure are unclear. The combined exposure effects of polystyrene microplastics (PS-MPs) with different particle sizes (1-10 μm, 50-150 μm) and concentrations (50, 500 mg·L-1) and Cd on rice were explored. PS-MPs combined with Cd amplifies the inhibition of each individual exposure on the height and biomass of rice seedlings, and they showed antagonistic effects. PS-MPs reduced the content of chlorophyll and increased the content of carotenoid rice seedlings significantly. High concentrations of PS-MPs enhanced the inhibition of Cd on chlorophyll content. Cd, PS-MPs single and combined exposures significantly altered the antioxidant enzyme (POD, CAT, SOD) activities in rice seedlings. Under PS-MPs exposure, overall, the MDA content in shoots and roots exhibited opposite trends, with a decrease in the former and an increase in the latter. In comparison with Cd treatment, the combined exposures' shoot and root MDA content was reduced. Cd and PS-MPs showed "low concentration antagonism, high concentration synergism" on the composite physiological indexes of rice seedlings. PS-MPs significantly increased the Cd accumulation in shoots. PS-MPs promoted the root absorption of Cd at 50 mg·L-1 while inhibited at 500 mg·L-1. Cd and PS-MPs treatments interfered with the balance of microelements (Mn, Zn, Fe, Cu, B, Mo) and macroelements (S, P, K, Mg, Ca) in rice seedlings; Mn was significantly inhibited. PS-MPs can enhance of Cd's toxicity to rice seedlings. The combined toxic effects of the two contaminants appear to be antagonistic or synergistic, relying on the particle size and concentration of the PS-MPs. Our findings offer information to help people understanding the combined toxicity of Cd and MPs on crops.
Collapse
Affiliation(s)
- Menglei Jiang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei Zhao
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiulian Liang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shiyu Hu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yunhua Zhu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hongyan Xie
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Medoro A, Saso L, Scapagnini G, Davinelli S. NRF2 signaling pathway and telomere length in aging and age-related diseases. Mol Cell Biochem 2024; 479:2597-2613. [PMID: 37917279 PMCID: PMC11455797 DOI: 10.1007/s11010-023-04878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is well recognized as a critical regulator of redox, metabolic, and protein homeostasis, as well as the regulation of inflammation. An age-associated decline in NRF2 activity may allow oxidative stress to remain unmitigated and affect key features associated with the aging phenotype, including telomere shortening. Telomeres, the protective caps of eukaryotic chromosomes, are highly susceptible to oxidative DNA damage, which can accelerate telomere shortening and, consequently, lead to premature senescence and genomic instability. In this review, we explore how the dysregulation of NRF2, coupled with an increase in oxidative stress, might be a major determinant of telomere shortening and age-related diseases. We discuss the relevance of the connection between NRF2 deficiency in aging and telomere attrition, emphasizing the importance of studying this functional link to enhance our understanding of aging pathologies. Finally, we present a number of compounds that possess the ability to restore NRF2 function, maintain a proper redox balance, and preserve telomere length during aging.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy.
| |
Collapse
|
11
|
Penrice DD, Jalan-Sakrikar N, Jurk D, Passos JF, Simonetto DA. Telomere dysfunction in chronic liver disease: The link from aging. Hepatology 2024; 80:951-964. [PMID: 37102475 PMCID: PMC10848919 DOI: 10.1097/hep.0000000000000426] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Daniel D. Penrice
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas A. Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Gao W, Wu D, Zhang D, Geng Z, Tong M, Duan Y, Xia W, Chu J, Yao X. Comparative analysis of the effects of microplastics and nitrogen on maize and wheat: Growth, redox homeostasis, photosynthesis, and AsA-GSH cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172555. [PMID: 38677420 DOI: 10.1016/j.scitotenv.2024.172555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Microplastics (MPs) pose a significant threat to the function of agro-ecosystems. At present, research on MPs has mainly focused on the effects of different concentrations or types of MPs on a crop, while ignoring other environmental factors. In agricultural production, the application of nitrogen (N) fertilizer is an important means to maintain the high yield of crops. The effects of MPs and N on growth parameters, photosynthetic system, active oxygen metabolism, nutrient content, and ascorbate-glutathione (AsA-GSH) cycle of maize and wheat were studied in order to explicit whether N addition could effectively alleviate the effects of MPs on maize and wheat. The results showed that MPs inhibited the plant height of both maize and wheat, and MPs effects on physiological traits of maize were more severe than those of wheat, reflecting in reactive oxygen metabolism and restriction of photosynthetic capacity. Under the condition of N supply, AsA-GSH cycle of two plants has different response strategies to MPs: Maize promoted enzyme activity and co-accumulation of AsA and GSH, while wheat tended to consume AsA and accumulate GSH. N application induced slight oxidative stress on maize, which was manifested as an increase in hydrogen peroxide and malonaldehyde contents, and activities of polyphenol oxidase and peroxidase. The antioxidant capacity of maize treated with the combination of MPs + N was better than that treated with N or MPs alone. N could effectively alleviate the adverse effects of MPs on wheat by improving the antioxidant capacity.
Collapse
Affiliation(s)
- Wang Gao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Dengyun Wu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Dan Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Zixin Geng
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
13
|
Zhang D, Zhang L, Yuan C, Zhai K, Xia W, Duan Y, Zhao B, Chu J, Yao X. Brassinolide as potential rescue agent for Pinellia ternata grown under microplastic condition: Insights into their modulatory role on photosynthesis, redox homeostasis, and AsA-GSH cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134116. [PMID: 38547753 DOI: 10.1016/j.jhazmat.2024.134116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Microplastic (MP), as a new pollutant, not only affects the growth and development of plants but also may affect the secondary metabolites of plants. The anti-tumor role of Pinellia ternata is related to secondary metabolites. The role of brassinolide (BR) in regulating plant resistance is currently one of the research hotspots. The paper mainly explores the regulation of BR on growth and physiology of Pinellia ternata under MP stress. The experimental design includes two levels of MP (0, 1%) and two levels of BR (0, 0.1 mg/L). MP led to a marked reduction in plant height (15.0%), Fv/Fm (3.2%), SOD and APX activity (15.0%, 5.1%), whereas induced an evident raise in the rate of O2·- production (29.6%) and GSH content (4.4%), as well as flavonoids (6.8%), alkaloids (75%), and β-sitosterol (26.5%) contents. Under MP addition, BR supply significantly increased plant height (15.7%), aboveground and underground biomass (16.1%, 10.3%), carotenoid and GSH content (11.8%, 4.2%), Fv/Fm (2.9%), and activities of SOD, GR, and MDHAR (32.2%, 21.08%, 20.9%). These results indicate that MP suppresses the growth of P. ternata, although it promotes secondary metabolism. BR can alleviate the inhibitory effect of MP on growth by improving photosynthesis, redox homeostasis, and the AsA-GSH cycle.
Collapse
Affiliation(s)
- Dan Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Lulu Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Chengwei Yuan
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Kuizhi Zhai
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Bingnan Zhao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
14
|
Barcenilla BB, Kundel I, Hall E, Hilty N, Ulianich P, Cook J, Turley J, Yerram M, Min JH, Castillo-González C, Shippen DE. Telomere dynamics and oxidative stress in Arabidopsis grown in lunar regolith simulant. FRONTIERS IN PLANT SCIENCE 2024; 15:1351613. [PMID: 38434436 PMCID: PMC10908177 DOI: 10.3389/fpls.2024.1351613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
15
|
Borghini A, Ndreu R, Canale P, Campolo J, Marinaro I, Mercuri A, Turchi S, Andreassi MG. Telomere Length, Mitochondrial DNA, and Micronucleus Yield in Response to Oxidative Stress in Peripheral Blood Mononuclear Cells. Int J Mol Sci 2024; 25:1428. [PMID: 38338706 PMCID: PMC10855977 DOI: 10.3390/ijms25031428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Telomere shortening, chromosomal damage, and mitochondrial dysfunction are major initiators of cell aging and biomarkers of many diseases. However, the underlying correlations between nuclear and mitochondrial DNA alterations remain unclear. We investigated the relationship between telomere length (TL) and micronucleus (MN) and their association with mitochondrial DNA copy number (mtDNAcn) in peripheral blood mononuclear cells (PBMCs) in response to 100 μM and 200 μM of hydrogen peroxide (H2O2) at 44, 72, and 96 h. Significant TL shortening was observed after both doses of H2O2 and at all times (all p < 0.05). A concomitant increase in MN was found at 72 h (p < 0.01) and persisted at 96 h (p < 0.01). An increase in mtDNAcn (p = 0.04) at 200 µM of H2O2 was also found. In PBMCs treated with 200 µM H2O2, a significant inverse correlation was found between TL and MN (r = -0.76, p = 0.03), and mtDNA content was directly correlated with TL (r = 0.6, p = 0.04) and inversely related to MN (r = -0.78, p = 0.02). Telomere shortening is the main triggering mechanism of chromosomal damage in stimulated T lymphocytes under oxidative stress. The significant correlations between nuclear DNA damage and mtDNAcn support the notion of a telomere-mitochondria axis that might influence age-associated pathologies and be a target for the development of relevant anti-aging drugs.
Collapse
Affiliation(s)
- Andrea Borghini
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Rudina Ndreu
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Paola Canale
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
- Health Science Interdisciplinary Center, Sant’Anna School of Advanced Studies, 56124 Pisa, Italy
| | - Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20142 Milan, Italy;
| | - Irene Marinaro
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Antonella Mercuri
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Stefano Turchi
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Maria Grazia Andreassi
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| |
Collapse
|
16
|
Thosar SA, Barnes RP, Detwiler A, Bhargava R, Wondisford A, O'Sullivan RJ, Opresko PL. Oxidative guanine base damage plays a dual role in regulating productive ALT-associated homology-directed repair. Cell Rep 2024; 43:113656. [PMID: 38194346 PMCID: PMC10851105 DOI: 10.1016/j.celrep.2023.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer cells maintain telomeres by upregulating telomerase or alternative lengthening of telomeres (ALT) via homology-directed repair at telomeric DNA breaks. 8-Oxoguanine (8oxoG) is a highly prevalent endogenous DNA lesion in telomeric sequences, altering telomere structure and telomerase activity, but its impact on ALT is unclear. Here, we demonstrate that targeted 8oxoG formation at telomeres stimulates ALT activity and homologous recombination specifically in ALT cancer cells. Mechanistically, an acute 8oxoG induction increases replication stress, as evidenced by increased telomere fragility and ATR kinase activation at ALT telomeres. Furthermore, ALT cells are more sensitive to chronic telomeric 8oxoG damage than telomerase-positive cancer cells, consistent with increased 8oxoG-induced replication stress. However, telomeric 8oxoG production in G2 phase, when ALT telomere elongation occurs, impairs telomeric DNA synthesis. Our study demonstrates that a common oxidative base lesion has a dual role in regulating ALT depending on when the damage arises in the cell cycle.
Collapse
Affiliation(s)
- Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan P Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ariana Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ragini Bhargava
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Wondisford
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roderick J O'Sullivan
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Ye H, Zhang H, Xiang J, Shen G, Yang F, Wang F, Wang J, Tang Y. Advances and prospects of natural dietary polyphenols as G-quadruplex stabilizers in biomedical applications. Int J Biol Macromol 2024; 254:127825. [PMID: 37926317 DOI: 10.1016/j.ijbiomac.2023.127825] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
G-quadruplexes (G4s) have arrested continuous interest in cancer research, and targeting G4s with small molecules has become an ideal approach for drug development. Plant-based dietary polyphenols have attracted much attention for their remarkable anti-cancer effects. Studies have suggested that polyphenols exhibit interesting scaffolds to bind G4s, which can effectively downregulate the proto-oncogenes by stabilizing those G4 structures. Therefore, this review not only summarizes studies on natural dietary polyphenols (including analogs) as G4 stabilizers, but also reveals their anti-cancer activities. Furthermore, the structural and antioxidant insights of polyphenols with G4s are discussed, and future development is proposed. These insights may pave the way for the development of the next generation of anti-cancer drugs targeting nucleic acids.
Collapse
Affiliation(s)
- Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| |
Collapse
|
18
|
Sapozhnikova YP, Koroleva AG, Yakhnenko VM, Volkova AA, Avezova TN, Glyzina OY, Sakirko MV, Tolstikova LI, Sukhanova LV. Thermal Preconditioning Alters the Stability of Hump-Snout Whitefish ( Coregonus fluviatilis) and Its Hybrid Form, Showing Potential for Aquaculture. BIOLOGY 2023; 12:1348. [PMID: 37887058 PMCID: PMC10603914 DOI: 10.3390/biology12101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
One of the little-studied ways that climate warming or temperature increases in aquaculture could affect aquatic animals is through accelerated aging. This study is dedicated to understanding the principles of molecular and cellular aging in the target tissues of juvenile whitefishes (Yenisei hump-snout whitefish and its hybrid) under the influence of acute heat stress (up to 26 °C), and the effects of thermal preconditioning as pre-adaptation. Non-adapted stressed hump-snout whitefish showed a higher induction threshold for functionally active mitochondria in the blood and a decrease in telomerase activity in the liver after heat shock exposure as a long-term compensatory response to prevent telomere shortening. However, we observed heat-induced telomere shortening in non-adapted hybrids, which can be explained by a decrease in mitochondrial membrane stability and a gradual increase in energy demand, leading to a decrease in protective telomerase activity. The pre-adapted groups of hump-snout whitefish and hybrids showed a long-term or delayed response of telomerase activity to heat shock, which served as a therapeutic mechanism against telomere shortening. We concluded that the telomerase and telomere responses to thermal stress demonstrate plasticity of tolerance limits and greater stability in hump-snout whitefish compared with hybrids.
Collapse
Affiliation(s)
- Yulia P. Sapozhnikova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, 664033 Irkutsk, Russia; (V.M.Y.); (A.A.V.); (T.N.A.); (O.Y.G.); (M.V.S.); (L.I.T.); (L.V.S.)
| | - Anastasia G. Koroleva
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, 664033 Irkutsk, Russia; (V.M.Y.); (A.A.V.); (T.N.A.); (O.Y.G.); (M.V.S.); (L.I.T.); (L.V.S.)
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
20
|
Kumar A, Thirumurugan K. Understanding cellular senescence: pathways involved, therapeutics and longevity aiding. Cell Cycle 2023; 22:2324-2345. [PMID: 38031713 PMCID: PMC10730163 DOI: 10.1080/15384101.2023.2287929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/15/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
A normal somatic cell undergoes cycles of finite cellular divisions. The presence of surveillance checkpoints arrests cell division in response to stress inducers: oxidative stress from excess free radicals, oncogene-induced abnormalities, genotoxic stress, and telomere attrition. When facing such stress when undergoing these damages, there is a brief pause in the cell cycle to enable repair mechanisms. Also, the nature of stress determines whether the cell goes for repair or permanent arrest. As the cells experience transient or permanent stress, they subsequently choose the quiescence or senescence stage, respectively. Quiescence is an essential stage that allows the arrested/damaged cells to go through appropriate repair mechanisms and then revert to the mainstream cell cycle. However, senescent cells are irreversible and accumulate with age, resulting in inflammation and various age-related disorders. In this review, we focus on senescence-associated pathways and therapeutics understanding cellular senescence as a cascade that leads to aging, while discussing the recent details on the molecular pathways involved in regulating senescence and the benefits of therapeutic strategies against accumulated senescent cells and their secretions.
Collapse
Affiliation(s)
- Ashish Kumar
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kavitha Thirumurugan
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
21
|
Romero-Haro AA, Figuerola J, Alonso-Alvarez C. Low Antioxidant Glutathione Levels Lead to Longer Telomeres: A Sex-Specific Link to Longevity? Integr Org Biol 2023; 5:obad034. [PMID: 37753451 PMCID: PMC10519275 DOI: 10.1093/iob/obad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/22/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Telomeres are repetitive DNA sequences at the end of chromosomes that protect them from degradation. They have been the focus of intense research because short telomeres would predict accelerated ageing and reduced longevity in vertebrates. Oxidative stress is considered a physiological driver of the telomere shortening and, consequently, short lifespan. Among molecules fighting against oxidative stress, glutathione is involved in many antioxidant pathways. Literature supports that oxidative stress may trigger a compensatory "hormetic" response increasing glutathione levels and telomere length. Here, we tested the link between total glutathione concentration and telomere length in captive birds (zebra finches; Taeniopygia guttata). Total glutathione levels were experimentally decreased during birds' growth using a specific inhibitor of glutathione synthesis (buthionine sulfoximine; BSO). We monitored the birds' reproductive performance in an outdoor aviary during the first month of life, and their longevity for almost 9 years. Among control individuals, erythrocyte glutathione levels during development positively predicted erythrocyte telomere length in adulthood. However, BSO-treated females, but not males, showed longer telomeres than control females in adulthood. This counterintuitive finding suggests that females mounted a compensatory response. Such compensation agrees with precedent findings in the same population where the BSO treatment increased growth and adult body mass in females but not males. BSO did not influence longevity or reproductive output in any sex. However, early glutathione levels and adult telomere length interactively predicted longevity only among control females. Those females with "naturally" low (non-manipulated) glutathione levels at the nestling age but capable of producing longer telomeres in adulthood seem to live longer. The results suggest that the capability to mount a hormetic response triggered by low early glutathione levels can improve fitness via telomere length. Overall, the results may indicate a sex-specific link between glutathione and telomere values. Telomerase activity and sexual steroids (estrogens) are good candidates to explain the sex-biased mechanism underlying the early-life impact of oxidative stress on adult telomere length.
Collapse
Affiliation(s)
- A A Romero-Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071Ciudad Real, 41092 Sevilla, Spain
| | - J Figuerola
- Estación Biológica de Doñana—CSIC, Sevilla, 28029 Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - C Alonso-Alvarez
- Evolutionary Ecology Department, National Museum of Natural Sciences (MNCN-CSIC), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Instituto Pirenaico de Ecología (IPE-CSIC) Avda. Nuestra Señora de la Victoria, 16. 22700 Jaca, Huesca, Spain
| |
Collapse
|
22
|
Wolf SE, Shalev I. The shelterin protein expansion of telomere dynamics: Linking early life adversity, life history, and the hallmarks of aging. Neurosci Biobehav Rev 2023; 152:105261. [PMID: 37268182 PMCID: PMC10527177 DOI: 10.1016/j.neubiorev.2023.105261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Aging is characterized by functional decline occurring alongside changes to several hallmarks of aging. One of the hallmarks includes attrition of repeated DNA sequences found at the ends of chromosomes called telomeres. While telomere attrition is linked to morbidity and mortality, whether and how it causally contributes to lifelong rates of functional decline is unclear. In this review, we propose the shelterin-telomere hypothesis of life history, in which telomere-binding shelterin proteins translate telomere attrition into a range of physiological outcomes, the extent of which may be modulated by currently understudied variation in shelterin protein levels. Shelterin proteins may expand the breadth and timing of consequences of telomere attrition, e.g., by translating early life adversity into acceleration of the aging process. We consider how the pleiotropic roles of shelterin proteins provide novel insights into natural variation in physiology, life history, and lifespan. We highlight key open questions that encourage the integrative, organismal study of shelterin proteins that enhances our understanding of the contribution of the telomere system to aging.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA.
| | - Idan Shalev
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
Rivosecchi J, Cusanelli E. TERRA beyond cancer: the biology of telomeric repeat-containing RNAs in somatic and germ cells. FRONTIERS IN AGING 2023; 4:1224225. [PMID: 37636218 PMCID: PMC10448526 DOI: 10.3389/fragi.2023.1224225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
The telomeric noncoding RNA TERRA is a key component of telomeres and it is widely expressed in normal as well as cancer cells. In the last 15 years, several publications have shed light on the role of TERRA in telomere homeostasis and cell survival in cancer cells. However, only few studies have investigated the regulation or the functions of TERRA in normal tissues. A better understanding of the biology of TERRA in non-cancer cells may provide unexpected insights into how these lncRNAs are transcribed and operate in cells, and their potential role in physiological processes, such as aging, age-related pathologies, inflammatory processes and human genetic diseases. In this review we aim to discuss the findings that have advanced our understanding of the biology of TERRA using non-cancer mammalian cells as a model system.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Trento, Italy
| | | |
Collapse
|
24
|
Montali I, Ceccatelli Berti C, Morselli M, Acerbi G, Barili V, Pedrazzi G, Montanini B, Boni C, Alfieri A, Pesci M, Loglio A, Degasperi E, Borghi M, Perbellini R, Penna A, Laccabue D, Rossi M, Vecchi A, Tiezzi C, Reverberi V, Boarini C, Abbati G, Massari M, Lampertico P, Missale G, Ferrari C, Fisicaro P. Deregulated intracellular pathways define novel molecular targets for HBV-specific CD8 T cell reconstitution in chronic hepatitis B. J Hepatol 2023; 79:50-60. [PMID: 36893853 DOI: 10.1016/j.jhep.2023.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND & AIMS In chronic HBV infection, elevated reactive oxygen species levels derived from dysfunctional mitochondria can cause increased protein oxidation and DNA damage in exhausted virus-specific CD8 T cells. The aim of this study was to understand how these defects are mechanistically interconnected to further elucidate T cell exhaustion pathogenesis and, doing so, to devise novel T cell-based therapies. METHODS DNA damage and repair mechanisms, including parylation, CD38 expression, and telomere length were studied in HBV-specific CD8 T cells from chronic HBV patients. Correction of intracellular signalling alterations and improvement of antiviral T cell functions by the NAD precursor nicotinamide mononucleotide and by CD38 inhibition was assessed. RESULTS Elevated DNA damage was associated with defective DNA repair processes, including NAD-dependent parylation, in HBV-specific CD8 cells of chronic HBV patients. NAD depletion was indicated by the overexpression of CD38, the major NAD consumer, and by the significant improvement of DNA repair mechanisms, and mitochondrial and proteostasis functions by NAD supplementation, which could also improve the HBV-specific antiviral CD8 T cell function. CONCLUSIONS Our study delineates a model of CD8 T cell exhaustion whereby multiple interconnected intracellular defects, including telomere shortening, are causally related to NAD depletion suggesting similarities between T cell exhaustion and cell senescence. Correction of these deregulated intracellular functions by NAD supplementation can also restore antiviral CD8 T cell activity and thus represents a promising potential therapeutic strategy for chronic HBV infection. IMPACT AND IMPLICATIONS Correction of HBV-specific CD8 T cell dysfunction is believed to represent a rational strategy to cure chronic HBV infection, which however requires a deep understanding of HBV immune pathogenesis to identify the most important targets for functional T cell reconstitution strategies. This study identifies a central role played by NAD depletion in the intracellular vicious circle that maintains CD8 T cell exhaustion, showing that its replenishment can correct impaired intracellular mechanisms and reconstitute efficient antiviral CD8 T cell function, with implications for the design of novel immune anti-HBV therapies. As these intracellular defects are likely shared with other chronic virus infections where CD8 exhaustion can affect virus clearance, these results can likely also be of pathogenetic relevance for other infection models.
Collapse
Affiliation(s)
- Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Marco Morselli
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Greta Acerbi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Neuroscience - Biophysics and Medical Physics Unit, University of Parma, Parma, Italy
| | - Barbara Montanini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Arianna Alfieri
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marco Pesci
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandro Loglio
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Elisabetta Degasperi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Marta Borghi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Riccardo Perbellini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Reverberi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Chiara Boarini
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Abbati
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Massari
- Unit of Infectious Diseases, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lampertico
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy; CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
25
|
Pendina AA, Krapivin MI, Sagurova YM, Mekina ID, Komarova EM, Tikhonov AV, Golubeva AV, Gzgzyan AM, Kogan IY, Efimova OA. Telomere Length in Human Spermatogenic Cells as a New Potential Predictor of Clinical Outcomes in ART Treatment with Intracytoplasmic Injection of Testicular Spermatozoa. Int J Mol Sci 2023; 24:10427. [PMID: 37445605 DOI: 10.3390/ijms241310427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Predicting the clinical outcomes of intracytoplasmic sperm injection (ICSI) cycles that use the testicular spermatozoa of azoospermic patients presents a challenge. Thus, the development of additional approaches to assessing the competence of a testicular-sperm-derived embryo without causing damage to gametes or the embryo is necessary. One of the key parameters in determining such developmental competence is telomere length (TL). We aimed to analyze TLs in spermatogenic cells from the testicular biopsy samples of azoospermic patients and determine how this parameter influences embryo competence for pre- and post-implantation development. Using Q-FISH, we studied the TL of the chromosomes in spermatogonia and spermatocytes I from the TESE biopsy samples of 30 azoospermic patients. An increase in TL was detected during the differentiation from spermatogonia to spermatocytes I. The patients' testicular spermatozoa were used in 37 ICSI cycles that resulted in 22 embryo transfers. Nine pregnancies resulted, of which, one was ectopic and eight ended in birth. The analysis of embryological outcomes revealed a dependence between embryo competence for development to the blastocyst stage and the TL in spermatogenic cells. The TLs in spermatogonia and spermatocytes I in the testicular biopsy samples were found to be higher in patients whose testicular sperm ICSI cycles resulted in a birth. Therefore, the length of telomeres in spermatogenic cells can be considered as a potential prognostic criterion in assessing the competence of testicular-sperm-derived embryos for pre- and post-implantation development. The results of this study provide the basis for the development of a laboratory test for the prediction of testicular sperm ICSI cycle outcomes.
Collapse
Affiliation(s)
- Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Mikhail I Krapivin
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Yanina M Sagurova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Irina D Mekina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Evgeniia M Komarova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Andrei V Tikhonov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Arina V Golubeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Alexander M Gzgzyan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| |
Collapse
|
26
|
Nousis L, Kanavaros P, Barbouti A. Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link? Antioxidants (Basel) 2023; 12:1250. [PMID: 37371980 DOI: 10.3390/antiox12061250] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is implicated in various physiological processes and a wide range of age-related pathologies. Oxidative stress, a condition caused by an imbalance between the production and the elimination of reactive oxygen species (ROS) in cells and tissues, is a common driver of cellular senescence. ROS encompass free radicals and other molecules formed as byproducts of oxygen metabolism, which exhibit varying chemical reactivity. A prerequisite for the generation of strong oxidizing ROS that can damage macromolecules and impair cellular function is the availability of labile (redox-active) iron, which catalyzes the formation of highly reactive free radicals. Targeting labile iron has been proven an effective strategy to counteract the adverse effects of ROS, but evidence concerning cellular senescence is sparse. In the present review article, we discuss aspects of oxidative stress-induced cellular senescence, with special attention to the potential implication of labile iron.
Collapse
Affiliation(s)
- Lambros Nousis
- Department of Hygiene and Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
27
|
Gong Y, Liu Y. R-Loops at Chromosome Ends: From Formation, Regulation, and Cellular Consequence. Cancers (Basel) 2023; 15:cancers15072178. [PMID: 37046839 PMCID: PMC10093737 DOI: 10.3390/cancers15072178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Telomeric repeat containing RNA (TERRA) is transcribed from subtelomeric regions to telomeres. TERRA RNA can invade telomeric dsDNA and form telomeric R-loop structures. A growing body of evidence suggests that TERRA-mediated R-loops are critical players in telomere length homeostasis. Here, we will review current knowledge on the regulation of R-loop levels at telomeres. In particular, we will discuss how the central player TERRA and its binding proteins modulate R-loop levels through various mechanisms. We will further provide an overview of the consequences of TERRA-mediated persistent or unscheduled R-loops at telomeres in human ALT cancers and other organisms, with a focus on telomere length regulation after replication interference-induced damage and DNA homologous recombination-mediated repair.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
28
|
Cocchetto A, Seymour C, Mothersill C. A Proposed New Model to Explain the Role of Low Dose Non-DNA Targeted Radiation Exposure in Chronic Fatigue and Immune Dysfunction Syndrome. Int J Mol Sci 2023; 24:ijms24076022. [PMID: 37046994 PMCID: PMC10094351 DOI: 10.3390/ijms24076022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Fatigue and Immune Dysfunction Syndrome (CFIDS) is considered to be a multidimensional illness whose etiology is unknown. However, reports from Chernobyl, as well as those from the United States, have revealed an association between radiation exposure and the development of CFIDS. As such, we present an expanded model using a systems biology approach to explain the etiology of CFIDS as it relates to this cohort of patients. This paper proposes an integrated model with ionizing radiation as a suggested trigger for CFIDS mediated through UVA induction and biophoton generation inside the body resulting from radiation-induced bystander effects (RIBE). Evidence in support of this approach has been organized into a systems view linking CFIDS illness markers with the initiating events, in this case, low-dose radiation exposure. This results in the formation of reactive oxygen species (ROS) as well as important immunologic and other downstream effects. Furthermore, the model implicates melanoma and subsequent hematopoietic dysregulation in this underlying process. Through the identification of this association with melanoma, clinical medicine, including dermatology, hematology, and oncology, can now begin to apply its expansive knowledge base to provide new treatment options for an illness that has had few effective treatments.
Collapse
Affiliation(s)
- Alan Cocchetto
- National CFIDS Foundation Inc., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
29
|
Uzuncakmak SK, Dirican E, Ozcan H, Takim U. Relation of ATPase6 Mutations and Telomere Length in Schizophrenia Patients. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:162-170. [PMID: 36700322 PMCID: PMC9889911 DOI: 10.9758/cpn.2023.21.1.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Schizophrenia is a serious mental disorder. Mutations in mitochondrial genes can change energy metabolism. Telomere is a tandem sequence at the end of chromosomes. Shorter telomere length has been shown in schizophrenia. The aim of this study was to determine the relationship between ATPase6 gene mutations and telomere length in schizophrenia patients. METHODS Blood samples of 34 patients and 34 healthy controls were used. In this study conventional PCR, Sanger sequencing technic and real-time PCR were utilized. RESULTS Five different mutations (A8860G, A8836, G8697A, C8676T, and A8701G) in the ATPase6 gene were identified in schizophrenia patients. The most seen mutation was A8860G (94%). Telomere length analysis indicated the relation of ATPase6 gene mutations and telomere length variations (p = 0.001). Patients carrying the A8860G mutation had shorter telomere lengths than patients carrying other mutations. Comparing telomere length between schizophrenia patients and healthy controls revealed that the mean telomere length of schizophrenia patients was shorter than healthy controls (p = 0.006). The demographic analysis demonstrated a significant relationship between marital status and telomere length (p = 0.011). Besides that, the duration of the illness is another factor that impacts telomere length (p = 0.044). There is no significant relation between telomere length and other clinical and demographic characteristics including education status, age, gender, etc. CONCLUSION In conclusion, telomere length and ATPase6 gene mutations have a significant relation. Studies with larger patient populations and investigation of other mitochondrial gene mutations will make the clearer link between telomere length and mitochondrial mutations.
Collapse
Affiliation(s)
| | - Ebubekir Dirican
- Health Services Vocational School, Bayburt University, Bayburt, Turkey
| | - Halil Ozcan
- Faculty of Medicine, Department of Psychiatry, Atatürk University, Erzurum, Turkey
| | - Ugur Takim
- Faculty of Medicine, Department of Psychiatry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
30
|
Wu S, Jiang L, Lei L, Fu C, Huang J, Hu Y, Dong Y, Chen J, Zeng Q. Crosstalk between G-quadruplex and ROS. Cell Death Dis 2023; 14:37. [PMID: 36653351 PMCID: PMC9849334 DOI: 10.1038/s41419-023-05562-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The excessive production of reactive oxygen species (ROS) can lead to single nucleic acid base damage, DNA strand breakage, inter- and intra-strand cross-linking of nucleic acids, and protein-DNA cross-linking involved in the pathogenesis of cancer, neurodegenerative diseases, and aging. G-quadruplex (G4) is a stacked nucleic acid structure that is ubiquitous across regulatory regions of multiple genes. Abnormal formation and destruction of G4s due to multiple factors, including cations, helicases, transcription factors (TFs), G4-binding proteins, and epigenetic modifications, affect gene replication, transcription, translation, and epigenetic regulation. Due to the lower redox potential of G-rich sequences and unique structural characteristics, G4s are highly susceptible to oxidative damage. Additionally, the formation, stability, and biological regulatory role of G4s are affected by ROS. G4s are involved in regulating gene transcription, translation, and telomere length maintenance, and are therefore key players in age-related degeneration. Furthermore, G4s also mediate the antioxidant process by forming stress granules and activating Nrf2, which is suggestive of their involvement in developing ROS-related diseases. In this review, we have summarized the crosstalk between ROS and G4s, and the possible regulatory mechanisms through which G4s play roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yumeng Dong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| |
Collapse
|
31
|
The 'stealth-bomber' paradigm for deciphering the tumour response to carbon-ion irradiation. Br J Cancer 2023; 128:1429-1438. [PMID: 36639527 PMCID: PMC10070470 DOI: 10.1038/s41416-022-02117-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
Numerous studies have demonstrated the higher biological efficacy of carbon-ion irradiation (C-ions) and their ballistic precision compared with photons. At the nanometre scale, the reactive oxygen species (ROS) produced by radiation and responsible for the indirect effects are differentially distributed according to the type of radiation. Photon irradiation induces a homogeneous ROS distribution, whereas ROS remain condensed in clusters in the C-ions tracks. Based on this linear energy transfer-dependent differential nanometric ROS distribution, we propose that the higher biological efficacy and specificities of the molecular response to C-ions rely on a 'stealth-bomber' effect. When biological targets are on the trajectories of the particles, the clustered radicals in the tracks are responsible for a 'bomber' effect. Furthermore, the low proportion of ROS outside the tracks is not able to trigger the cellular mechanisms of defence and proliferation. The ability of C-ions to deceive the cellular defence of the cancer cells is then categorised as a 'stealth' effect. This review aims to classify the biological arguments supporting the paradigm of the 'stealth-bomber' as responsible for the biological superiority of C-ions compared with photons. It also explains how and why C-ions will always be more efficient for treating patients with radioresistant cancers than conventional radiotherapy.
Collapse
|
32
|
Associations of green tea, coffee, and soft drink consumption with longitudinal changes in leukocyte telomere length. Sci Rep 2023; 13:492. [PMID: 36627320 PMCID: PMC9832020 DOI: 10.1038/s41598-022-26186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Whether beverage consumption is associated with longitudinal observation of telomere length remains unclear. We evaluated the association of green tea, coffee, and soft drink consumption with 6-year changes in leukocyte telomere length (LTL). The study included 1952 participants who provided whole blood samples for LTL assays during the baseline (year 2011-2012) and follow-up (year 2017-2018) periods and reported baseline information on consumption of green tea, coffee, and soft drinks. Robust regression analysis was used to analyze the association adjusted for potential confounding variables. In the results, an inverse association between green tea consumption and LTL changes from baseline, which indicate telomere shortening, was found; regression coefficient [95% confidence interval] was - 0.097 [- 0.164, - 0.029] for participants who daily consumed at least 1 cup of green tea compared with non-consumers (p value = 0.006). This association was stronger among women (versus men) and younger participants aged 50-64 years (versus older). However, a positive association between soft drink consumption and LTL shortening was observed among women (p value < 0.05). Coffee consumption was not associated with LTL changes. These findings suggested that green tea consumption may be protective against telomere shortening reflecting biological aging whereas coffee and soft drink consumption may not.
Collapse
|
33
|
Bloom SI, Tucker JR, Lim J, Thomas TG, Stoddard GJ, Lesniewski LA, Donato AJ. Aging results in DNA damage and telomere dysfunction that is greater in endothelial versus vascular smooth muscle cells and is exacerbated in atheroprone regions. GeroScience 2022; 44:2741-2755. [PMID: 36350415 PMCID: PMC9768045 DOI: 10.1007/s11357-022-00681-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Aging increases the risk of atherosclerotic cardiovascular disease which is associated with arterial senescence; however, the mechanisms responsible for the development of cellular senescence in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) remain elusive. Here, we study the effect of aging on arterial DNA damage and telomere dysfunction. Aging resulted in greater DNA damage in ECs than VSMCs. Further, telomere dysfunction-associated DNA damage foci (TAF: DNA damage signaling at telomeres) were elevated with aging in ECs but not VMSCs. Telomere length was modestly reduced in ECs with aging and not sufficient to induce telomere dysfunction. DNA damage and telomere dysfunction were greatest in atheroprone regions (aortic minor arch) versus non-atheroprone regions (thoracic aorta). Collectively, these data demonstrate that aging results in DNA damage and telomere dysfunction that is greater in ECs than VSMCs and elevated in atheroprone aortic regions.
Collapse
Affiliation(s)
- Samuel I Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Jordan R Tucker
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA
| | - Jisok Lim
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA
| | - Tyler G Thomas
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA
| | - Gregory J Stoddard
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA
- Geriatric Research and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Anthony J Donato
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA.
- Geriatric Research and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA.
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
34
|
Metcalfe NB, Olsson M. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol Ecol 2022; 31:6040-6052. [PMID: 34435398 DOI: 10.1111/mec.16150] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
It is well known that oxidative stress is a major cause of DNA damage and telomere attrition. Most endogenous reactive oxygen species (ROS) are produced in the mitochondria, producing a link between mitochondrial function, DNA integrity and telomere dynamics. In this review we will describe how ROS production, rates of damage to telomeric DNA and DNA repair are dynamic processes. The rate of ROS production depends on mitochondrial features such as the level of inner membrane uncoupling and the proportion of time that ATP is actively being produced. However, the efficiency of ATP production (the ATP/O ratio) is positively related to the rate of ROS production, so leading to a trade-off between the body's energy requirements and its need to prevent oxidative stress. Telomeric DNA is especially vulnerable to oxidative damage due to features such as its high guanine content; while repair to damaged telomere regions is possible through a range of mechanisms, these can result in more rapid telomere shortening. There is increasing evidence that mitochondrial efficiency varies over time and with environmental context, as do rates of DNA repair. We argue that telomere dynamics can only be understood by appreciating that the optimal solution to the trade-off between energetic efficiency and telomere protection will differ between individuals and will change over time, depending on resource availability, energetic demands and life history strategy.
Collapse
Affiliation(s)
- Neil B Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Pincemail J, Meziane S. On the Potential Role of the Antioxidant Couple Vitamin E/Selenium Taken by the Oral Route in Skin and Hair Health. Antioxidants (Basel) 2022; 11:2270. [PMID: 36421456 PMCID: PMC9686906 DOI: 10.3390/antiox11112270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 09/29/2023] Open
Abstract
The relationship between oxidative stress and skin aging/disorders is well established. Many topical and oral antioxidants (vitamins C and E, carotenoids, polyphenols) have been proposed to protect the skin against the deleterious effect induced by increased reactive oxygen species production, particularly in the context of sun exposure. In this review, we focused on the combination of vitamin E and selenium taken in supplements since both molecules act in synergy either by non-enzymatic and enzymatic pathways to eliminate skin lipids peroxides, which are strongly implicated in skin and hair disorders.
Collapse
Affiliation(s)
- Joël Pincemail
- CHU of Liège, Platform Antioxidant Nutrition and Health, Pathology Tower, 4130, Sart Tilman, 4000 Liège, Belgium
| | - Smail Meziane
- Institut Européen des Antioxydants, 54000 Nancy, France
| |
Collapse
|
36
|
Telomere Length Is Correlated with Resting Metabolic Rate and Aerobic Capacity in Women: A Cross-Sectional Study. Int J Mol Sci 2022; 23:ijms232113336. [PMID: 36362129 PMCID: PMC9654753 DOI: 10.3390/ijms232113336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study investigated the associations between relative telomere length (RTL) and resting metabolic rate (RMR), resting fat oxidation (RFO), and aerobic capacity and whether oxidative stress and inflammation are the underlying mechanisms in sedentary women. We also aimed to determine whether the correlations depend on age and obesity. Sixty-eight normal weight and 66 obese women participated in this study. After adjustment for age, energy expenditure, energy intake, and education level, the RTL of all participants was negatively correlated with absolute RMR (RMRAB) and serum high-sensitivity C-reactive protein (hsCRP) concentration, and positively correlated with maximum oxygen consumption (V˙O2max) (all p < 0.05). After additional adjustment for adiposity indices and fat-free mass (FFM), RTL was positively correlated with plasma vitamin C concentration (p < 0.05). Furthermore, after adjustment for fasting blood glucose concentration, RTL was negatively correlated with age and positively correlated with V˙O2max (mL/kg FFM/min). We found that normal weight women had longer RTL than obese women (p < 0.001). We suggest that RTL is negatively correlated with RMRAB and positively correlated with aerobic capacity, possibly via antioxidant and anti-inflammatory mechanisms. Furthermore, age and obesity influenced the associations. We provide useful information for the management of promotion strategies for health-related physical fitness in women.
Collapse
|
37
|
Liu Y, Betori RC, Pagacz J, Frost GB, Efimova EV, Wu D, Wolfgeher DJ, Bryan TM, Cohen SB, Scheidt KA, Kron SJ. Targeting telomerase reverse transcriptase with the covalent inhibitor NU-1 confers immunogenic radiation sensitization. Cell Chem Biol 2022; 29:1517-1531.e7. [PMID: 36206753 PMCID: PMC9588800 DOI: 10.1016/j.chembiol.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Beyond synthesizing telomere repeats, the telomerase reverse transcriptase (TERT) also serves multiple other roles supporting cancer growth. Blocking telomerase to drive telomere erosion appears impractical, but TERT's non-canonical activities have yet to be fully explored as cancer targets. Here, we used an irreversible TERT inhibitor, NU-1, to examine impacts on resistance to conventional cancer therapies. In vitro, inhibiting TERT sensitized cells to chemotherapy and radiation. NU-1 delayed repair of double-strand breaks, resulting in persistent DNA damage signaling and cellular senescence. Although NU-1 alone did not impact growth of syngeneic CT26 tumors in BALB/c mice, it dramatically enhanced the effects of radiation, leading to immune-dependent tumor elimination. Tumors displayed persistent DNA damage, suppressed proliferation, and increased activated immune infiltrate. Our studies confirm TERT's role in limiting genotoxic effects of conventional therapy but also implicate TERT as a determinant of immune evasion and therapy resistance.
Collapse
Affiliation(s)
- Yue Liu
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Rick C Betori
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Joanna Pagacz
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Grant B Frost
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Elena V Efimova
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ding Wu
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Donald J Wolfgeher
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Scott B Cohen
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Stephen J Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
38
|
Brandt M, Dörschmann H, Khraisat S, Knopp T, Ringen J, Kalinovic S, Garlapati V, Siemer S, Molitor M, Göbel S, Stauber R, Karbach SH, Münzel T, Daiber A, Wenzel P. Telomere Shortening in Hypertensive Heart Disease Depends on Oxidative DNA Damage and Predicts Impaired Recovery of Cardiac Function in Heart Failure. Hypertension 2022; 79:2173-2184. [PMID: 35862118 DOI: 10.1161/hypertensionaha.121.18935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart failure (HF) coincides with cardiomyocyte telomere shortening. Arterial hypertension is the most prominent risk factor for HF. Both HF and arterial hypertension are associated with dysregulation of the neurohormonal axis. How neurohormonal activation is linked to telomere shortening in the pathogenesis of HF is incompletely understood. METHODS Cardiomyocyte telomere length was assessed in a mouse model of hypertensive HF induced by excess neurohormonal activation (AngII [angiotensin II] infusion, high salt diet, and uninephrectomy), in AngII-stimulated cardiomyocytes and in endomyocardial biopsies from patients with HF. Superoxide production, expression of NOX2 (NADPH oxidase 2) and PRDX1 (peroxiredoxin 1) and HDAC6 (histone deacetylase 6) activity were assessed. RESULTS Telomere shortening occurred in vitro and in vivo, correlating with both left ventricular (LV) dilatation and LV systolic function impairment. Telomere shortening coincided with increased superoxide production, increased NOX2 expression, increased HDAC6 activity, loss of the telomere-specific antioxidant PRDX1, and increased oxidative DNA-damage. NOX2 knockout prevented PRDX1 depletion, DNA-damage and telomere shortening confirming this enzyme as a critical source of reactive oxygen species. Cotreatment with the NOX inhibitor apocynin ameliorated hypertensive HF and telomere shortening. Similarly, treatment with the HDAC6 inhibitor tubastatin A, which increases PRDX1 bioavailability, prevented telomere shortening in adult cardiomyocytes. To explore the clinical relevance of our findings, we examined endomyocardial biopsies from an all-comer population of patients with HF with reduced ejection fraction. Here, cardiomyocyte telomere length predicted the recovery of cardiac function. CONCLUSIONS Cardiomyocyte telomere shortening and oxidative damage in heart failure with reduced ejection fraction induced by excess neurohormonal activation depends on NOX2-derived superoxide and may help to stratify HF therapy.
Collapse
Affiliation(s)
- Moritz Brandt
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Hendrik Dörschmann
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sana'a Khraisat
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Tanja Knopp
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Julia Ringen
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sanela Kalinovic
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Venkata Garlapati
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Svenja Siemer
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center Mainz' Mainz' Germany (S.S., R.S.)
| | - Michael Molitor
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sebastian Göbel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Roland Stauber
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center Mainz' Mainz' Germany (S.S., R.S.)
| | - Susanne Helena Karbach
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Thomas Münzel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Andreas Daiber
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Philip Wenzel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Department of Biochemistry, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands (P.W.)
| |
Collapse
|
39
|
Liutkeviciene R, Mikalauskaite R, Gedvilaite G, Glebauskiene B, Kriauciuniene L, Žemaitienė R. Relative Leukocyte Telomere Length and Telomerase Complex Regulatory Markers Association with Leber's Hereditary Optic Neuropathy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091240. [PMID: 36143917 PMCID: PMC9504758 DOI: 10.3390/medicina58091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Background and Objectives: To evaluate the association of relative leukocyte telomere length (RLTL) and telomerase complex regulatory markers with Leber’s hereditary optic neuropathy (LHON). Material and Methods: A case-control study was performed in patients with LHON (≥18 years) and healthy subjects. The diagnosis of LHON was based on a genetic blood test (next-generation sequencing with Illumina MiSeq, computer analysis: BWA2.1 Illumina BaseSpace, Alamut, and mtDNA Variant analyzer 1000 were performed) and diagnostic criteria approved by the LHON disease protocol. Statistical analysis was performed using the standard statistical software package, IBM SPSS Statistics 27. Statistically significant results were considered when p < 0.05. Results: Significantly longer RLTL was observed in LHON patients than in healthy controls (p < 0.001). RLTL was significantly longer in women and men with LOHN than in healthy women and men in the control group (p < 0.001 and p = 0.003, respectively). In the elderly group (>32 years), RLTL was statistically significantly longer in LHON patients compared with healthy subjects (p < 0.001). The GG genotype of the TERC rs12696304 polymorphism was found to be statistically significantly higher in the LHON group (p = 0.041), and the C allele in the TERC rs12696304 polymorphism was found to be statistically significantly less common in the LHON group (p < 0.001). The RLTL of LHON patients was found to be statistically significantly longer in the TERC rs12696304 polymorphism in all tested genotypes (CC, p = 0.005; CG, p = 0.008; GG, p = 0.025), TEP1 rs1760904 polymorphism in the GA genotype (p < 0.001), and TEP1 gene rs1713418 in the AA and AG genotypes (p = 0.011 and p < 0.001, respectively). Conclusions: The RLTL in LHON patients was found to be longer than in healthy subjects regardless of treatment with idebenone. The TERC rs12696304 polymorphism, of all studied polymorphisms, was the most significantly associated with changes in LHON and telomere length.
Collapse
Affiliation(s)
- Rasa Liutkeviciene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Mikalauskaite
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence:
| | - Brigita Glebauskiene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Reda Žemaitienė
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
40
|
Wang J, Lu S, Guo L, Wang P, He C, Liu D, Bian H, Sheng L. Effects of polystyrene nanoplastics with different functional groups on rice (Oryza sativa L.) seedlings: Combined transcriptome, enzymology, and physiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155092. [PMID: 35398132 DOI: 10.1016/j.scitotenv.2022.155092] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/03/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Plastic particles originate from the daily use of plastics and have become a new form of pollutant. However, the effects of nanoplastics (NPs) on higher plants remain largely unclear, thus requiring further research. In this study, rice plants were exposed to polystyrene (PS) NPs with different functional groups to determine their toxicity. The presence of NPs reduced the biomass and photosynthetic capacity of rice. Compared with control (CK), the heights of rice plants exposed to no-modified PS, carboxyl-modified PS (PS-COOH) and amino-modified PS (PS-NH2) groups decreased by 13.59%, 26.61%, and 42.71%, while the dry shoot weight decreased by 47.46%, 50.09%, and 71.04%, respectively. All treatments activated the antioxidant levels of rice and reduced photosynthesis. Transcriptome analysis showed that NPs induced the expression of genes related to antioxidant enzyme activity in rice roots. Rice could partially reduce the xenobiotic toxicity caused by external sources by regulating phenylpropane biosynthesis and the processes involved in cell detoxification. PS mainly affected the process of RNA metabolism, while PS-COOH mainly affected ion transport, and PS-NH2 mainly affected the synthesis of macromolecular protein, which had different effects on rice growth.
Collapse
Affiliation(s)
- Junyuan Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Liquan Guo
- Key Laboratory of Straw Biology and Higher Value Application, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Ping Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Dong Liu
- Jilin Busyness and Technology College, Changchun 130507, China
| | - Hongfeng Bian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China.
| |
Collapse
|
41
|
Mitoribosomal Deregulation Drives Senescence via TPP1-Mediated Telomere Deprotection. Cells 2022; 11:cells11132079. [PMID: 35805162 PMCID: PMC9265344 DOI: 10.3390/cells11132079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
While mitochondrial bioenergetic deregulation has long been implicated in cellular senescence, its mechanistic involvement remains unclear. By leveraging diverse mitochondria-related gene expression profiles derived from two different cellular senescence models of human diploid fibroblasts, we found that the expression of mitoribosomal proteins (MRPs) was generally decreased during the early-to-middle transition prior to the exhibition of noticeable SA-β-gal activity. Suppressed expression patterns of the identified senescence-associated MRP signatures (SA-MRPs) were validated in aged human cells and rat and mouse skin tissues and in aging mouse fibroblasts at single-cell resolution. TIN2- and POT1-interaction protein (TPP1) was concurrently suppressed, which induced senescence, accompanied by telomere DNA damage. Lastly, we show that SA-MRP deregulation could be a potential upstream regulator of TPP1 suppression. Our results indicate that mitoribosomal deregulation could represent an early event initiating mitochondrial dysfunction and serve as a primary driver of cellular senescence and an upstream regulator of shelterin-mediated telomere deprotection.
Collapse
|
42
|
Castillo-González C, Barbero Barcenilla B, Young PG, Hall E, Shippen DE. Quantification of 8-oxoG in Plant Telomeres. Int J Mol Sci 2022; 23:ijms23094990. [PMID: 35563379 PMCID: PMC9102096 DOI: 10.3390/ijms23094990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Chemical modifications in DNA impact gene regulation and chromatin structure. DNA oxidation, for example, alters gene expression, DNA synthesis and cell cycle progression. Modification of telomeric DNA by oxidation is emerging as a marker of genotoxic damage and is associated with reduced genome integrity and changes in telomere length and telomerase activity. 8-oxoguanine (8-oxoG) is the most studied and common outcome of oxidative damage in DNA. The G-rich nature of telomeric DNA is proposed to make it a hotspot for oxidation, but because telomeres make up only a tiny fraction of the genome, it has been difficult to directly test this hypothesis by studying dynamic DNA modifications specific to this region in vivo. Here, we present a new, robust method to differentially enrich telomeric DNA in solution, coupled with downstream methods for determination of chemical modification. Specifically, we measure 8-oxoG in Arabidopsis thaliana telomeres under normal and oxidative stress conditions. We show that telomere length is unchanged in response to oxidative stress in three different wild-type accessions. Furthermore, we report that while telomeric DNA comprises only 0.02–0.07% of the total genome, telomeres contribute between 0.2 and 15% of the total 8-oxoG. That is, plant telomeres accumulate 8-oxoG at levels approximately 100-fold higher than the rest of the genome under standard growth conditions. Moreover, they are the primary targets of further damage upon oxidative stress. Interestingly, the accumulation of 8-oxoG in the chromosome body seems to be inversely proportional to telomere length. These findings support the hypothesis that telomeres are hotspots of 8-oxoG and may function as sentinels of oxidative stress in plants.
Collapse
|
43
|
Ali S, Scapagnini G, Davinelli S. Effect of omega-3 fatty acids on the telomere length: A mini meta-analysis of clinical trials. Biomol Concepts 2022; 13:25-33. [DOI: 10.1515/bmc-2021-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 01/22/2023] Open
Abstract
Abstract
Telomeres are protective caps at the end of eukaryotic chromosomes, whose length is correlated with health and lifespan. Telomere attrition is a common feature of the aging process and can be accelerated by oxidative stress and chronic inflammation. Various nutrients influence the telomere length, partially due to their antioxidant and anti-inflammatory properties. The aim of this review was to meta-analytically assess the effect of omega-3 fatty acids on the telomere length. We searched four databases (PubMed, Web of Sciences, Scopus, and the Cochrane Library) from inception until November 2021. Of 573 records, a total of 5 clinical trials were included for the quantitative meta-analysis, comprising a total of 337 participants. The results revealed an overall beneficial effect of omega-3 fatty acids on the telomere length (mean difference = 0.16; 95% CI, 0.02, 0.30; p = 0.02). Despite a limited number of studies, the available evidence suggests that omega-3 fatty acids may positively affect the telomere length. However, larger clinical trials are needed to confirm our findings, along with studies aimed to clarify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise , Via V. De Sanctis, s.n.c. , Campobasso , Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise , Via V. De Sanctis, s.n.c. , Campobasso , Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise , Via V. De Sanctis, s.n.c. , Campobasso , Italy
| |
Collapse
|
44
|
Taniguchi Y. Development of Artificial Nucleoside Analogues for the Recognition and Detection of Damaged Nucleoside in DNA. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Guzonjić A, Sopić M, Ostanek B, Kotur-Stevuljević J. Telomere length as a biomarker of aging and diseases. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
As research related to healthspan and lifespan has become a hot topic, the necessity for a reliable and practical biomarker of aging (BoA), which can provide information about mortality and morbidity risk, along with remaining life expectancy, has increased. The chromosome terminus non-coding protective structure that prevents genomic instability is called a telomere. The continual shortening of telomeres, which affects their structure as well as function, is a hallmark of agedness. The aforementioned process is a potential cause of age-related diseases (ARDs), leading to a bad prognosis and a low survival rate, which compromise health and longevity. Hence, studies scrutinizing the BoAs often include telomere length (TL) as a prospective candidate. The results of these studies suggest that TL measurement can only provide an approximate appraisal of the aging rate, and its implementation into clinical practice and routine use as a BoA has many limitations and challenges. Nevertheless, measuring TL while determining other biomarkers can be used to assess biological age. This review focuses on the importance of telomeres in health, senescence, and diseases, as well as on summarizing the results and conclusions of previous studies evaluating TL as a potential BoA.
Collapse
|
46
|
Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev 2022; 73:101507. [PMID: 34736994 PMCID: PMC8920518 DOI: 10.1016/j.arr.2021.101507] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Short telomeres confer risk of degenerative diseases. Chronic psychological stress can lead to disease through many pathways, and research from in vitro studies to human longitudinal studies has pointed to stress-induced telomere damage as an important pathway. However, there has not been a comprehensive model to describe how changes in stress physiology and neuroendocrine pathways can lead to changes in telomere biology. Critically short telomeres or the collapse of the telomere structure caused by displacement of telomere binding protein complex shelterin elicit a DNA damage response and lead to senescence or apoptosis. In this narrative review, we summarize the key roles glucocorticoids, reactive oxygen species (ROS) and mitochondria, and inflammation play in mediating the relationship between psychological stress and telomere maintenance. We emphasis that these mediators are interconnected and reinforce each other in positive feedback loops. Telomere length has not been studied across the lifespan yet, but the initial setting point at birth appears to be the most influential point, as it sets the lifetime trajectory, and is influenced by stress. We describe two types of intergenerational stress effects on telomeres - prenatal stress effects on telomeres during fetal development, and 'telotype transmission" -the directly inherited transmission of short telomeres from parental germline. It is clear that the initial simplistic view of telomere length as a mitotic clock has evolved into a far more complex picture of both transgenerational telomere influences, and of interconnected molecular and cellular pathways and networks, as hallmarks of aging where telomere maintenance is a key player interacting with mitochondria. Further mechanistic investigations testing this comprehensive model of stress mediators shaping telomere biology and the telomere-mitochondrial nexus will lead to better understanding from cell to human lifespan aging, and could lead to anti-aging interventions.
Collapse
|
47
|
Ruiz A, Flores-Gonzalez J, Buendia-Roldan I, Chavez-Galan L. Telomere Shortening and Its Association with Cell Dysfunction in Lung Diseases. Int J Mol Sci 2021; 23:425. [PMID: 35008850 PMCID: PMC8745057 DOI: 10.3390/ijms23010425] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Telomeres are localized at the end of chromosomes to provide genome stability; however, the telomere length tends to be shortened with each cell division inducing a progressive telomere shortening (TS). In addition to age, other factors, such as exposure to pollutants, diet, stress, and disruptions in the shelterin protein complex or genes associated with telomerase induce TS. This phenomenon favors cellular senescence and genotoxic stress, which increases the risk of the development and progression of lung diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, SARS-CoV-2 infection, and lung cancer. In an infectious environment, immune cells that exhibit TS are associated with severe lymphopenia and death, whereas in a noninfectious context, naïve T cells that exhibit TS are related to cancer progression and enhanced inflammatory processes. In this review, we discuss how TS modifies the function of the immune system cells, making them inefficient in maintaining homeostasis in the lung. Finally, we discuss the advances in drug and gene therapy for lung diseases where TS could be used as a target for future treatments.
Collapse
Affiliation(s)
| | | | | | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.R.); (J.F.-G.); (I.B.-R.)
| |
Collapse
|
48
|
Carrier M, Šimončičová E, St-Pierre MK, McKee C, Tremblay MÈ. Psychological Stress as a Risk Factor for Accelerated Cellular Aging and Cognitive Decline: The Involvement of Microglia-Neuron Crosstalk. Front Mol Neurosci 2021; 14:749737. [PMID: 34803607 PMCID: PMC8599581 DOI: 10.3389/fnmol.2021.749737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The relationship between the central nervous system (CNS) and microglia is lifelong. Microglia originate in the embryonic yolk sac during development and populate the CNS before the blood-brain barrier forms. In the CNS, they constitute a self-renewing population. Although they represent up to 10% of all brain cells, we are only beginning to understand how much brain homeostasis relies on their physiological functions. Often compared to a double-edged sword, microglia hold the potential to exert neuroprotective roles that can also exacerbate neurodegeneration once compromised. Microglia can promote synaptic growth in addition to eliminating synapses that are less active. Synaptic loss, which is considered one of the best pathological correlates of cognitive decline, is a distinctive feature of major depressive disorder (MDD) and cognitive aging. Long-term psychological stress accelerates cellular aging and predisposes to various diseases, including MDD, and cognitive decline. Among the underlying mechanisms, stress-induced neuroinflammation alters microglial interactions with the surrounding parenchymal cells and exacerbates oxidative burden and cellular damage, hence inducing changes in microglia and neurons typical of cognitive aging. Focusing on microglial interactions with neurons and their synapses, this review discusses the disrupted communication between these cells, notably involving fractalkine signaling and the triggering receptor expressed on myeloid cells (TREM). Overall, chronic stress emerges as a key player in cellular aging by altering the microglial sensome, notably via fractalkine signaling deficiency. To study cellular aging, novel positron emission tomography radiotracers for TREM and the purinergic family of receptors show interest for human study.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Kim St-Pierre
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Impact of Chromatin Dynamics and DNA Repair on Genomic Stability and Treatment Resistance in Pediatric High-Grade Gliomas. Cancers (Basel) 2021; 13:cancers13225678. [PMID: 34830833 PMCID: PMC8616465 DOI: 10.3390/cancers13225678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in pediatric neuro-oncology, due in great part to treatment resistance driven by complex DNA repair mechanisms. pHGGs have recently been divided into molecular subtypes based on mutations affecting the N-terminal tail of the histone variant H3.3 and the ATRX/DAXX histone chaperone that deposits H3.3 at repetitive heterochromatin loci that are of paramount importance to the stability of our genome. This review addresses the functions of H3.3 and ATRX/DAXX in chromatin dynamics and DNA repair, as well as the impact of mutations affecting H3.3/ATRX/DAXX on treatment resistance and how the vulnerabilities they expose could foster novel therapeutic strategies. Abstract Despite their low incidence, pediatric high-grade gliomas (pHGGs), including diffuse intrinsic pontine gliomas (DIPGs), are the leading cause of mortality in pediatric neuro-oncology. Recurrent, mutually exclusive mutations affecting K27 (K27M) and G34 (G34R/V) in the N-terminal tail of histones H3.3 and H3.1 act as key biological drivers of pHGGs. Notably, mutations in H3.3 are frequently associated with mutations affecting ATRX and DAXX, which encode a chaperone complex that deposits H3.3 into heterochromatic regions, including telomeres. The K27M and G34R/V mutations lead to distinct epigenetic reprogramming, telomere maintenance mechanisms, and oncogenesis scenarios, resulting in distinct subgroups of patients characterized by differences in tumor localization, clinical outcome, as well as concurrent epigenetic and genetic alterations. Contrasting with our understanding of the molecular biology of pHGGs, there has been little improvement in the treatment of pHGGs, with the current mainstays of therapy—genotoxic chemotherapy and ionizing radiation (IR)—facing the development of tumor resistance driven by complex DNA repair pathways. Chromatin and nucleosome dynamics constitute important modulators of the DNA damage response (DDR). Here, we summarize the major DNA repair pathways that contribute to resistance to current DNA damaging agent-based therapeutic strategies and describe the telomere maintenance mechanisms encountered in pHGGs. We then review the functions of H3.3 and its chaperones in chromatin dynamics and DNA repair, as well as examining the impact of their mutation/alteration on these processes. Finally, we discuss potential strategies targeting DNA repair and epigenetic mechanisms as well as telomere maintenance mechanisms, to improve the treatment of pHGGs.
Collapse
|
50
|
Biomarkers of cellular aging during a controlled human malaria infection. Sci Rep 2021; 11:18733. [PMID: 34548530 PMCID: PMC8455531 DOI: 10.1038/s41598-021-97985-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
Cellular aging is difficult to study in individuals with natural infection, given the diversity of symptom duration and clinical presentation, and the high interference of aging-related processes with host and environmental factors. To address this challenge, we took advantage of the controlled human malaria infection (CHMI) model. This approach allowed us to characterize the relationship among cellular aging markers prior, during and post malaria pathophysiology in humans, controlling for infection dose, individual heterogeneity, previous exposure and co-infections. We demonstrate that already low levels of Plasmodium falciparum impact cellular aging by inducing high levels of inflammation and redox-imbalance; and that cellular senescence reversed after treatment and parasite clearance. This study provides insights into the complex relationship of telomere length, cellular senescence, telomerase expression and aging-related processes during a single malaria infection.
Collapse
|