1
|
Basu RS, Sherman MB, Gagnon MG. Compact IF2 allows initiator tRNA accommodation into the P site and gates the ribosome to elongation. Nat Commun 2022; 13:3388. [PMID: 35697706 PMCID: PMC9192638 DOI: 10.1038/s41467-022-31129-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
During translation initiation, initiation factor 2 (IF2) holds initiator transfer RNA (fMet-tRNAifMet) in a specific orientation in the peptidyl (P) site of the ribosome. Upon subunit joining IF2 hydrolyzes GTP and, concomitant with inorganic phosphate (Pi) release, changes conformation facilitating fMet-tRNAifMet accommodation into the P site and transition of the 70 S ribosome initiation complex (70S-IC) to an elongation-competent ribosome. The mechanism by which IF2 separates from initiator tRNA at the end of translation initiation remains elusive. Here, we report cryo-electron microscopy (cryo-EM) structures of the 70S-IC from Pseudomonas aeruginosa bound to compact IF2-GDP and initiator tRNA. Relative to GTP-bound IF2, rotation of the switch 2 α-helix in the G-domain bound to GDP unlocks a cascade of large-domain movements in IF2 that propagate to the distal tRNA-binding domain C2. The C2-domain relocates 35 angstroms away from tRNA, explaining how IF2 makes way for fMet-tRNAifMet accommodation into the P site. Our findings provide the basis by which IF2 gates the ribosome to the elongation phase.
Collapse
Affiliation(s)
- Ritwika S Basu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Matthieu G Gagnon
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
2
|
Tomsic J, Smorlesi A, Caserta E, Giuliodori AM, Pon CL, Gualerzi CO. Disparate Phenotypes Resulting from Mutations of a Single Histidine in Switch II of Geobacillus stearothermophilus Translation Initiation Factor IF2. Int J Mol Sci 2020; 21:ijms21030735. [PMID: 31979156 PMCID: PMC7037019 DOI: 10.3390/ijms21030735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
The conserved Histidine 301 in switch II of Geobacillus stearothermophilus IF2 G2 domain was substituted with Ser, Gln, Arg, Leu and Tyr to generate mutants displaying different phenotypes. Overexpression of IF2H301S, IF2H301L and IF2H301Y in cells expressing wtIF2, unlike IF2H301Q and IF2H301R, caused a dominant lethal phenotype, inhibiting in vivo translation and drastically reducing cell viability. All mutants bound GTP but, except for IF2H301Q, were inactive in ribosome-dependent GTPase for different reasons. All mutants promoted 30S initiation complex (30S IC) formation with wild type (wt) efficiency but upon 30S IC association with the 50S subunit, the fMet-tRNA reacted with puromycin to different extents depending upon the IF2 mutant present in the complex (wtIF2 ≥ to IF2H301Q > IF2H301R >>> IF2H301S, IF2H301L and IF2H301Y) whereas only fMet-tRNA 30S-bound with IF2H301Q retained some ability to form initiation dipeptide fMet-Phe. Unlike wtIF2, all mutants, regardless of their ability to hydrolyze GTP, displayed higher affinity for the ribosome and failed to dissociate from the ribosomes upon 50S docking to 30S IC. We conclude that different amino acids substitutions of His301 cause different structural alterations of the factor, resulting in disparate phenotypes with no direct correlation existing between GTPase inactivation and IF2 failure to dissociate from ribosomes.
Collapse
|
3
|
An evolutionarily conserved element in initiator tRNAs prompts ultimate steps in ribosome maturation. Proc Natl Acad Sci U S A 2016; 113:E6126-E6134. [PMID: 27698115 DOI: 10.1073/pnas.1609550113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ribosome biogenesis, a complex multistep process, results in correct folding of rRNAs, incorporation of >50 ribosomal proteins, and their maturation. Deficiencies in ribosome biogenesis may result in varied faults in translation of mRNAs causing cellular toxicities and ribosomopathies in higher organisms. How cells ensure quality control in ribosome biogenesis for the fidelity of its complex function remains unclear. Using Escherichia coli, we show that initiator tRNA (i-tRNA), specifically the evolutionarily conserved three consecutive GC base pairs in its anticodon stem, play a crucial role in ribosome maturation. Deficiencies in cellular contents of i-tRNA confer cold sensitivity and result in accumulation of ribosomes with immature 3' and 5' ends of the 16S rRNA. Overexpression of i-tRNA in various strains rescues biogenesis defects. Participation of i-tRNA in the first round of initiation complex formation licenses the final steps of ribosome maturation by signaling RNases to trim the terminal extensions of immature 16S rRNA.
Collapse
|
4
|
Dongre R, Folkers GE, Gualerzi CO, Boelens R, Wienk H. A model for the interaction of the G3-subdomain of Geobacillus stearothermophilus IF2 with the 30S ribosomal subunit. Protein Sci 2016; 25:1722-33. [PMID: 27364543 DOI: 10.1002/pro.2977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Abstract
Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2-30S interaction, is positioned between the GTP-binding G2 and the fMet-tRNA binding C-terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two β-sheets with each four anti-parallel strands, followed by a C-terminal α-helix. In line with its role as linker between G3 and subdomain C1, this helix has no well-defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB-fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA-binding modules such as IF2-C2, IF1 and subdomains II of elongation factors EF-Tu and EF-G. Structural comparisons have resulted in a model that describes the interaction between IF2-G3 and the 30S ribosomal subunit.
Collapse
Affiliation(s)
- Ramachandra Dongre
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Gert E Folkers
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Claudio O Gualerzi
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, Italy
| | - Rolf Boelens
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Hans Wienk
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| |
Collapse
|
5
|
Delle Fratte S, Piubelli C, Domenici E. Development of a High-Throughput Scintillation Proximity Assay for the Identification of C-Domain Translational Initiation Factor 2 Inhibitors. ACTA ACUST UNITED AC 2016; 7:541-6. [PMID: 14599352 DOI: 10.1177/1087057102238628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Translational initiation factor 2 (IF2) is the largest of the 3 factors required for translation initiation in prokaryotes and has been shown to be essential in Escherichia coli. It stimulates the binding of fMet-tRNAfMet to the 30S ribosomal subunit in the presence of GTP. The selectivity is achieved through specific recognition of the tRNAfMet blocked α-amino group. IF2 is composed of 3 structural domains: N-domain, whose function is not known; G-domain, which contains the GTP/GDP binding site and the GTPase catalytic center; and C-domain, which recognizes and binds fMet-tRNAfMet. Its activity is strictly bacteria specific and highly conserved among prokaryotes. So far, antibiotics targeting IF2 function are not known, and this makes it an ideal target for new drugs with mechanisms of resistance not yet developed. A few assays have been developed in the past, which allow the detection of IF2 activity either directly or indirectly. In both instances, the assays are based on radioactive detection and do not allow for high throughput because of the need for separation or solvent extraction steps. The authors describe a novel biochemical assay for IF2 that exploits the molecular recognition of fMet-tRNAfMet by the C-domain. The assay is based on the incubation of biotinyl-IF2 with fMet-tRNAfMet and the subsequent capture of the radiolabeled complex by streptavidin-coated beads, exploiting the scintillation proximity assay (SPA) technology. The assay has been designed in an automatable, homogeneous, miniaturized fashion suitable for high-throughput screening and is rapid, sensitive, and robust to dimethyl sulfoxide (DMSO) up to 10% v/v. The assay, used to screen a limited chemical collection of about 5000 compounds and a subset of compounds originated by a 2-D substructural search, has shown to be able to detect potential IF2 inhibitors.
Collapse
|
6
|
Stokes JM, Brown ED. Chemical modulators of ribosome biogenesis as biological probes. Nat Chem Biol 2015; 11:924-32. [PMID: 26575239 DOI: 10.1038/nchembio.1957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/13/2015] [Indexed: 01/17/2023]
Abstract
Small-molecule inhibitors of protein biosynthesis have been instrumental in the dissection of the complexities of ribosome structure and function. Ribosome biogenesis, on the other hand, is a complex and largely enigmatic process for which there is a paucity of chemical probes. Indeed, ribosome biogenesis has been studied almost exclusively using genetic and biochemical approaches without the benefit of small-molecule inhibitors of this process. Here, we provide a perspective on the promise of chemical inhibitors of ribosome assembly for future research. We explore key obstacles that complicate the interpretation of studies aimed at perturbing ribosome biogenesis in vivo using genetic methods, and we argue that chemical inhibitors are especially powerful because they can be used to induce perturbations in a manner that obviates these difficulties. Thus, in combination with leading-edge biochemical and structural methods, chemical probes offer unique advantages toward elucidating the molecular events that define the assembly of ribosomes.
Collapse
Affiliation(s)
- Jonathan M Stokes
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Goyal A, Belardinelli R, Maracci C, Milón P, Rodnina MV. Directional transition from initiation to elongation in bacterial translation. Nucleic Acids Res 2015; 43:10700-12. [PMID: 26338773 PMCID: PMC4678851 DOI: 10.1093/nar/gkv869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/18/2015] [Indexed: 01/21/2023] Open
Abstract
The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNA(fMet) from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S-mRNA-IF1-IF2-fMet-tRNA(fMet) complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation.
Collapse
Affiliation(s)
- Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Pohl Milón
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Zheng A, Yu J, Yamamoto R, Ose T, Tanaka I, Yao M. X-ray structures of eIF5B and the eIF5B-eIF1A complex: the conformational flexibility of eIF5B is restricted on the ribosome by interaction with eIF1A. ACTA ACUST UNITED AC 2014; 70:3090-8. [PMID: 25478828 DOI: 10.1107/s1399004714021476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/29/2014] [Indexed: 11/11/2022]
Abstract
eIF5B and eIF1A are two translation-initiation factors that are universally conserved among all kingdoms. They show a unique interaction in eukaryotes which is important for ribosomal subunit joining. Here, the structures of two isolated forms of yeast eIF5B and of the eIF5B-eIF1A complex (eIF1A and eIF5B do not contain the respective N-terminal domains) are reported. The eIF5B-eIF1A structure shows that the C-terminal tail of eIF1A binds to eIF5B domain IV, while the core domain of eIF1A is invisible in the electron-density map. Although the individual domains in all structures of eIF5B or archaeal IF5B (aIF5B) are similar, their domain arrangements are significantly different, indicating high structural flexibility, which is advantageous for conformational change during ribosomal subunit joining. Based on these structures, models of eIF5B, eIF1A and tRNAi(Met) on the 80S ribosome were built. The models suggest that the interaction between the eIF1A C-terminal tail and eIF5B helps tRNAi(Met) to bind to eIF5B domain IV, thus preventing tRNAi(Met) dissociation, stabilizing the interface for subunit joining and providing a checkpoint for correct ribosome assembly.
Collapse
Affiliation(s)
- Aiping Zheng
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Jian Yu
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Reo Yamamoto
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Toyoyuki Ose
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Isao Tanaka
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
9
|
Stokes JM, Davis JH, Mangat CS, Williamson JR, Brown ED. Discovery of a small molecule that inhibits bacterial ribosome biogenesis. eLife 2014; 3:e03574. [PMID: 25233066 PMCID: PMC4371806 DOI: 10.7554/elife.03574] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/17/2014] [Indexed: 11/29/2022] Open
Abstract
While small molecule inhibitors of the bacterial ribosome have been instrumental in
understanding protein translation, no such probes exist to study ribosome biogenesis.
We screened a diverse chemical collection that included previously approved drugs for
compounds that induced cold sensitive growth inhibition in the model bacterium
Escherichia coli. Among the most cold sensitive was lamotrigine,
an anticonvulsant drug. Lamotrigine treatment resulted in the rapid accumulation of
immature 30S and 50S ribosomal subunits at 15°C. Importantly, this was not the result
of translation inhibition, as lamotrigine was incapable of perturbing protein
synthesis in vivo or in vitro. Spontaneous suppressor mutations blocking lamotrigine
activity mapped solely to the poorly characterized domain II of translation
initiation factor IF2 and prevented the binding of lamotrigine to IF2 in vitro. This
work establishes lamotrigine as a widely available chemical probe of bacterial
ribosome biogenesis and suggests a role for E. coli IF2 in ribosome
assembly. DOI:http://dx.doi.org/10.7554/eLife.03574.001 Inside cells, molecular machines called ribosomes make proteins from instructions
that are provided by genes. The ribosomes themselves are made up of about 50 proteins
and three RNA molecules that need to be assembled like a 3-D jigsaw. In bacteria, a
group of proteins called ribosome biogenesis factors help to assemble these pieces
correctly. To study how a biological process works, scientists often look at what happens when a
component is missing or not working properly. However, this approach cannot be used
to study how ribosomes are made because stopping protein production entirely will
kill the cell. Another approach is to use chemicals to temporarily stop or slow down
a biological process, but researchers are yet to find a chemical that can do this for
ribosome assembly. To address this problem, Stokes et al. ‘screened’ 30,000 chemicals in an effort to
find one or more that could affect ribosome assembly in bacteria. The screen revealed
that a drug called lamotrigine—which is used to treat epilepsy and other conditions
in humans—could stop the assembly of ribosomes, but did not affect the production of
proteins by completed ribosomes. The experiments also suggest that initiation factor 2, a protein that is involved in
the production of other proteins, may also have a role in ribosome assembly. Another
recent study found that the equivalent of initiation factor 2 in yeast acts as a
quality control checkpoint during ribosome assembly, so the bacterial version may
also perform a similar role. It is also be possible that lamotrigine might be used to help develop a novel
mechanistic class of antibiotics. DOI:http://dx.doi.org/10.7554/eLife.03574.002
Collapse
Affiliation(s)
- Jonathan M Stokes
- Michael G DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Joseph H Davis
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Chand S Mangat
- Michael G DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Eric D Brown
- Michael G DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
10
|
Initiation factor 2 crystal structure reveals a different domain organization from eukaryotic initiation factor 5B and mechanism among translational GTPases. Proc Natl Acad Sci U S A 2013; 110:15662-7. [PMID: 24029018 DOI: 10.1073/pnas.1309360110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The initiation of protein synthesis uses initiation factor 2 (IF2) in prokaryotes and a related protein named eukaryotic initiation factor 5B (eIF5B) in eukaryotes. IF2 is a GTPase that positions the initiator tRNA on the 30S ribosomal initiation complex and stimulates its assembly to the 50S ribosomal subunit to make the 70S ribosome. The 3.1-Å resolution X-ray crystal structures of the full-length Thermus thermophilus apo IF2 and its complex with GDP presented here exhibit two different conformations (all of its domains except C2 domain are visible). Unlike all other translational GTPases, IF2 does not have an effecter domain that stably contacts the switch II region of the GTPase domain. The domain organization of IF2 is inconsistent with the "articulated lever" mechanism of communication between the GTPase and initiator tRNA binding domains that has been proposed for eIF5B. Previous cryo-electron microscopy reconstructions, NMR experiments, and this structure show that IF2 transitions from being flexible in solution to an extended conformation when interacting with ribosomal complexes.
Collapse
|
11
|
Abstract
Translation initiation is a crucial step of protein synthesis which largely defines how the composition of the cellular transcriptome is converted to the proteome and controls the response and adaptation to environmental stimuli. The efficiency of translation of individual mRNAs, and hence the basal shape of the proteome, is defined by the structures of the mRNA translation initiation regions. Initiation efficiency can be regulated by small molecules, proteins, or antisense RNAs, underscoring its importance in translational control. Although initiation has been studied in bacteria for decades, many aspects remain poorly understood. Recent evidence has suggested an unexpected diversity of pathways by which mRNAs can be recruited to the bacterial ribosome, the importance of structural dynamics of initiation intermediates, and the complexity of checkpoints for mRNA selection. In this review, we discuss how the ribosome shapes the landscape of translation initiation by non-linear kinetic processing of the transcriptome information. We summarize the major pathways by which mRNAs enter the ribosome depending on the structure of their 5' untranslated regions, the assembly and the structure of initiation intermediates, the individual and synergistic roles of initiation factors, and the mechanisms of mRNA and initiator tRNA selection.
Collapse
Affiliation(s)
- Pohl Milón
- Department of Physical Biochemistry, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | | |
Collapse
|
12
|
Wienk H, Tishchenko E, Belardinelli R, Tomaselli S, Dongre R, Spurio R, Folkers GE, Gualerzi CO, Boelens R. Structural dynamics of bacterial translation initiation factor IF2. J Biol Chem 2012; 287:10922-32. [PMID: 22308033 DOI: 10.1074/jbc.m111.333393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial translation initiation factor IF2 promotes ribosomal subunit association, recruitment, and binding of fMet-tRNA to the ribosomal P-site and initiation dipeptide formation. Here, we present the solution structures of GDP-bound and apo-IF2-G2 of Bacillus stearothermophilus and provide evidence that this isolated domain binds the 50 S ribosomal subunit and hydrolyzes GTP. Differences between the free and GDP-bound structures of IF2-G2 suggest that domain reorganization within the G2-G3-C1 regions underlies the different structural requirements of IF2 during the initiation process. However, these structural signals are unlikely forwarded from IF2-G2 to the C-terminal fMet-tRNA binding domain (IF2-C2) because the connected IF2-C1 and IF2-C2 modules show completely independent mobility, indicating that the bacterial interdomain connector lacks the rigidity that was found in the archaeal IF2 homolog aIF5B.
Collapse
Affiliation(s)
- Hans Wienk
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNAMet base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria.
Collapse
|
14
|
Belotserkovsky JM, Dabbs ER, Isaksson LA. Mutations in 16S rRNA that suppress cold-sensitive initiation factor 1 affect ribosomal subunit association. FEBS J 2011; 278:3508-17. [PMID: 21791000 DOI: 10.1111/j.1742-4658.2011.08272.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mutation in the infA gene encoding initiation factor 1 (IF1) gives rise to a cold-sensitive phenotype. An Escherichia coli strain with this mutation was used as a tool to select for second-site suppressors that compensate for the cold sensitivity and map specifically to rRNA. Several suppressor mutants with altered 16S rRNA that partially restore growth of an IF1 mutant strain in the cold were isolated and characterized. Suppressor mutations were found in helix (h)18, h32, h34 and h41 in 16S rRNA. These mutations are not clustered to any particular region in 16S rRNA and none overlap previously reported sites of interaction with IF1. While the isolated suppressors are structurally diverse, they are functionally related because all affect ribosomal subunit association in vivo. Furthermore, in vitro subunit-association experiments indicate that most of the suppressor mutations directly influence ribosomal subunit association even though none of these are confined to any of the known intersubunit bridges. These results are consistent with the model that IF1 is an rRNA chaperone that induces large-scale conformational changes in the small ribosomal subunit, and as a consequence modulates initiation of translation by affecting subunit association.
Collapse
|
15
|
Julián P, Milon P, Agirrezabala X, Lasso G, Gil D, Rodnina MV, Valle M. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol 2011; 9:e1001095. [PMID: 21750663 PMCID: PMC3130014 DOI: 10.1371/journal.pbio.1001095] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/24/2011] [Indexed: 12/04/2022] Open
Abstract
Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation. Translation is the process by which a ribosome converts the sequence of a messenger RNA (mRNA)—produced from a gene—into the sequence of amino acids that comprise a protein. Bacterial ribosomes each have one large and one small subunit: the 50S and 30S subunits. Initiation of translation entails selection of an mRNA, identification of the correct starting point from which to read its code, and engagement of the initial amino acid carrier (tRNA). These events take place in the 30S subunit and require the presence of three initiation factors (IF1, IF2, IF3). Formation of this 30S initiation complex precedes joining with the 50S subunit to assemble the functional ribosome. By using a cryo-electron microscopy approach to visualize the structures without fixation or staining, we have determined the structure of a complete 30S initiation complex and identified the positions and orientations of the tRNA and all three initiation factors. We found that the presence of the initiation factors and tRNA induces rotation of the head relative to the body of the 30S subunit, which may be essential for rapid binding to the 50S subunit and for regulating selection of the mRNA. IF3 had not been seen previously in the context of the 30S structure and its visualization gives insight into a potential role in preventing association of the two ribosomal subunits. These findings are important for understanding how the interplay of elements during the early stages of translation selects the mRNA and regulates formation of functional ribosomes.
Collapse
Affiliation(s)
- Patricia Julián
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Pohl Milon
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xabier Agirrezabala
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Gorka Lasso
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - David Gil
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Marina V. Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Mikel Valle
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
- Department of Biochemistry and Molecular Biology. Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
- * E-mail:
| |
Collapse
|
16
|
Solubility partner IF2 Domain I enables high yield synthesis of transducible transcription factors in Escherichia coli. Protein Expr Purif 2011; 80:145-51. [PMID: 21757009 DOI: 10.1016/j.pep.2011.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 06/24/2011] [Accepted: 06/26/2011] [Indexed: 12/21/2022]
Abstract
Since the discovery that somatic cells could be reprogrammed back to a pluripotent state through the viral expression of a certain set of transcription factors, there has been great interest in reprogramming using a safer and more clinically relevant protein-based approach. However, the search for an efficient reprogramming approach utilizing the transcription factors in protein form requires a significant amount of protein material. Milligram quantities of transcription factors are challenging to obtain due to low yields and poor solubility. In this work, we describe enhanced production of the pluripotency transcription factors Oct4, Sox2, Klf4, Nanog, and Lin28 after fusing them to a solubility partner, IF2 Domain I (IF2D1). We expressed and purified milligram quantities of the fusion proteins. Though the transcription factor passenger proteins became insoluble after removal of the IF2D1, the un-cleaved Oct4, Sox2, Klf4, and Nanog fusion proteins exhibited specific binding to their consensus DNA sequences. However, when we administered the un-cleaved IF2D1-Oct4-R9 and IF2D1-Sox2-R9 to fibroblasts and measured their ability to influence transcriptional activity, we found that they were not fully bioactive; IF2D1-Oct4-R9 and IF2D1-Sox2-R9 influenced only a subset of their downstream gene targets. Thus, while the IF2D1 solubility partner enabled soluble production of the fusion protein at high levels, it did not yield fully bioactive transcription factors.
Collapse
|
17
|
Caserta E, Ferrara C, Milon P, Fabbretti A, Rocchetti A, Tomsic J, Pon CL, Gualerzi CO, La Teana A. Ribosomal interaction of Bacillus stearothermophilus translation initiation factor IF2: characterization of the active sites. J Mol Biol 2009; 396:118-29. [PMID: 19917289 DOI: 10.1016/j.jmb.2009.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/26/2022]
Abstract
InfB-encoded translation initiation factor IF2 contains a non-conserved N-terminal domain and two conserved domains (G and C) constituted by three (G1, G2 and G3) and two (C1 and C2) sub-domains. Here, we show that: (i) Bacillus stearothermophilus IF2 complements in vivo an Escherichia coli infB null mutation and (ii) the N-domain of B. stearothermophilus IF2, like that of E. coli IF2, provides a strong yet dispensable interaction with 30 S and 50 S subunits in spite of the lack of any size, sequence or structural homology between the N-domains of the two factors. Furthermore, the nature of the B. stearothermophilus IF2 sites involved in establishing the functional interactions with the ribosome was investigated by generating deletion, random and site-directed mutations within sub-domains G2 or G3 of a molecule carrying an H301Y substitution in switch II of the G2 module, which impairs the ribosome-dependent GTPase activity of IF2. By selecting suppressors of the dominant-lethal phenotype caused by the H301Y substitution, three independent mutants impaired in ribosome binding were identified; namely, S387P (in G2) and G420E and E424K (in G3). The functional properties of these mutants and those of the deletion mutants are compatible with the premise that IF2 interacts with 30 S and 50 S subunits via G3 and G2 modules, respectively. However, beyond this generalization, because the mutation in G2 resulted in a functional alteration of G3 and vice versa, our results indicate the existence of extensive "cross-talking" between these two modules, highlighting a harmonic conformational cooperation between G2 and G3 required for a functional interaction between IF2 and the two ribosomal subunits. It is noteworthy that the E424K mutant, which completely lacks GTPase activity, displays IF2 wild-type capacity in supporting initiation of dipeptide formation.
Collapse
Affiliation(s)
- Enrico Caserta
- Laboratory of Genetics, Department of Biology, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Acker MG, Shin BS, Nanda JS, Saini AK, Dever TE, Lorsch JR. Kinetic analysis of late steps of eukaryotic translation initiation. J Mol Biol 2008; 385:491-506. [PMID: 18976658 DOI: 10.1016/j.jmb.2008.10.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/21/2008] [Accepted: 10/07/2008] [Indexed: 11/26/2022]
Abstract
Little is known about the molecular mechanics of the late events of translation initiation in eukaryotes. We present a kinetic dissection of the transition from a preinitiation complex after start codon recognition to the final 80S initiation complex. The resulting framework reveals that eukaryotic initiation factor (eIF)5B actually accelerates the rate of ribosomal subunit joining, and this acceleration is influenced by the conformation of the GTPase active site of the factor mediated by the bound nucleotide. eIF1A accelerates joining through its C-terminal interaction with eIF5B, and eIF1A release from the initiating ribosome, which occurs only after subunit joining, is accelerated by GTP hydrolysis by eIF5B. Following subunit joining, GTP hydrolysis by eIF5B alters the conformation of the final initiation complex and clears a path to promote rapid release of eIF1A. Our data, coupled with previous work, indicate that eIF1A is present on the ribosome throughout the entire initiation process and plays key roles at every stage.
Collapse
Affiliation(s)
- Michael G Acker
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kapralou S, Fabbretti A, Garulli C, Spurio R, Gualerzi CO, Dahlberg AE, Pon CL. Translation initiation factor IF1 of Bacillus stearothermophilus and Thermus thermophilus substitute for Escherichia coli IF1 in vivo and in vitro without a direct IF1-IF2 interaction. Mol Microbiol 2008; 70:1368-77. [PMID: 18976282 DOI: 10.1111/j.1365-2958.2008.06466.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bacterial translation initiation factor IF1 is homologous to archaeal aIF1A and eukaryal eIF1A, which form a complex with their homologous IF2-like factors (aIF5B and eIF5B respectively) during initiation of protein synthesis. A similar IF1-IF2 interaction is assumed to occur in all bacteria and supported by cross-linking data and stabilization of the 30S-IF2 interaction by IF1. Here we compare Escherichia coli IF1 with thermophilic factors from Bacillus stearothermophilus and Thermus thermophilus. All three IF1s are structurally similar and functionally interchangeable in vivo and in vitro. However, the thermophilic factors do not stimulate ribosomal binding of IF2DeltaN, regardless of 30S subunits and IF2 origin. We conclude that an IF1-IF2 interaction is not universally conserved and is not essential for cell survival.
Collapse
Affiliation(s)
- Stavroula Kapralou
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
de Breyne S, Bonderoff JM, Chumakov KM, Lloyd RE, Hellen CUT. Cleavage of eukaryotic initiation factor eIF5B by enterovirus 3C proteases. Virology 2008; 378:118-22. [PMID: 18572216 PMCID: PMC2580754 DOI: 10.1016/j.virol.2008.05.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 03/25/2008] [Accepted: 05/16/2008] [Indexed: 11/28/2022]
Abstract
The enteroviruses poliovirus (PV), Coxsackie B virus (CVB) and rhinovirus (HRV) are members of Picornaviridae that inhibit host cell translation early in infection. Enterovirus translation soon predominates in infected cells, but eventually also shuts off. This complex pattern of modulation of translation suggests regulation by a multifactorial mechanism. We report here that eIF5B is proteolytically cleaved during PV and CVB infection of cultured cells, beginning at 3 hours post-infection and increasing thereafter. Recombinant PV, CVB and HRV 3Cpro cleaved purified native rabbit eukaryotic initiation factor (eIF) 5B in vitro at a single site (VVEQG, equivalent to VMEQG479 in human eIF5B) that is consistent with the cleavage specificity of enterovirus 3C proteases. Cleavage separates the N-terminal domain of eIF5B from its essential conserved central GTPase and C-terminal domains. 3Cpro-mediated cleavage of eIF5B may thus play an accessory role in the shutoff of translation that occurs in enterovirus-infected cells.
Collapse
Affiliation(s)
- Sylvain de Breyne
- Department of Microbiology and Immunology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Jennifer M. Bonderoff
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Konstantin M. Chumakov
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Rockville, Maryland 20852
| | - Richard E. Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Christopher U. T. Hellen
- Department of Microbiology and Immunology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
21
|
Rasheedi S, Ghosh S, Suragani M, Tuteja N, Sopory SK, Hasnain SE, Ehtesham NZ. Pisum sativum contains a factor with strong homology to eIF5B. Gene 2007; 399:144-51. [PMID: 17582707 DOI: 10.1016/j.gene.2007.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 04/19/2007] [Accepted: 05/10/2007] [Indexed: 10/23/2022]
Abstract
Immunoscreening of a cDNA expression library, prepared from 7 days old young shoots of pea (Pisum sativum), identified a novel gene comprising of 2586 bp open reading frame (ORF) with 381 bp and 532 bp 5' and 3'untranslated regions (UTRs), respectively. Sequence analysis of this gene, termed as PeIF5B, revealed striking homology to eukaryotic translation initiation factor eIF5B - a sequence homologue of prokaryotic translation initiation factor IF2. Southern blot analyses indicated that PeIF5B exists as a single copy gene in P. sativum genome. Northern blot hybridization revealed the presence of a 7 kb transcript in pea plant. In vitro translation using rabbit reticulocyte lysate system yielded a protein corresponding to 116 kDa which was higher than the calculated value of 96 kDa. Phylogenetic analyses of PeIF5B placed it closer to eIF5B from yeast, human and Drosophila. Pfam domain search analysis pointed to its likely role as a translation initiation factor. The presence of an eIF5B-like factor in a plant system will aid in better understanding of the mechanism of translation initiation in plants.
Collapse
Affiliation(s)
- Sheeba Rasheedi
- Laboratory of Molecular and Cellular Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 076, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Caserta E, Tomsic J, Spurio R, La Teana A, Pon CL, Gualerzi CO. Translation initiation factor IF2 interacts with the 30 S ribosomal subunit via two separate binding sites. J Mol Biol 2006; 362:787-99. [PMID: 16935296 DOI: 10.1016/j.jmb.2006.07.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/15/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The functional properties of the two natural forms of Escherichia coli translation initiation factor IF2 (IF2alpha and IF2beta) and of an N-terminal deletion mutant of the factor (IF2DeltaN) lacking the first 294 residues, corresponding to the entire N-terminal domain, were analysed comparatively. The results revealed that IF2alpha and IF2beta display almost indistinguishable properties, whereas IF2DeltaN, although fully active in all steps of the translation initiation pathway, displays functional activities having properties and requirements distinctly different from those of the intact molecule. Indeed, binding of IF2DeltaN to the 30 S subunit, IF2DeltaN-dependent stimulation of fMet-tRNA binding to the ribosome and of initiation dipeptide formation strongly depend upon the presence of IF1 and GTP, unlike with IF2alpha and IF2beta. The present results indicate that, using two separate active sites, IF2 establishes two interactions with the 30 S ribosomal subunit which have different properties and functions. The first site, located in the N domain of IF2, is responsible for a high-affinity interaction which "anchors" the factor to the subunit while the second site, mainly located in the beta-barrel module homologous to domain II of EF-G and EF-Tu, is responsible for the functional ("core") interaction of IF2 leading to the decoding of fMet-tRNA in the 30 S subunit P-site. The first interaction is functionally dispensable, sensitive to ionic-strength variations and essentially insensitive to the nature of the guanosine nucleotide ligand and to the presence of IF1, unlike the second interaction which strongly depends upon the presence of IF1 and GTP.
Collapse
Affiliation(s)
- Enrico Caserta
- Laboratory of Genetics, Department of Biology, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
23
|
Acker MG, Shin BS, Dever TE, Lorsch JR. Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining. J Biol Chem 2006; 281:8469-75. [PMID: 16461768 DOI: 10.1074/jbc.m600210200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor 5B (eIF5B) is a GTPase that facilitates joining of the 60 S ribosomal subunit to the 40 S ribosomal subunit during translation initiation. Formation of the resulting 80 S initiation complex triggers eIF5B to hydrolyze its bound GTP, reducing the affinity of the factor for the complex and allowing it to dissociate. Here we present a kinetic analysis of GTP hydrolysis by eIF5B in the context of the translation initiation pathway. Our data indicate that stimulation of GTP hydrolysis by eIF5B requires the completion of early steps in translation initiation, including the eIF1- and eIF1A-dependent delivery of initiator methionyl-tRNA to the 40 S ribosomal subunit and subsequent GTP hydrolysis by eIF2. Full activation of GTP hydrolysis by eIF5B requires the extreme C terminus of eIF1A, which has previously been shown to interact with the C terminus of eIF5B. Disruption of either isoleucine residue in the eIF1A C-terminal sequence DIDDI reduces the rate constant for GTP hydrolysis by approximately 20-fold, whereas changing the aspartic acid residues has no effect. Changing the isoleucines in the C terminus of eIF1A also disrupts the ability of eIF5B to facilitate subunit joining. These data indicate that the interaction of the C terminus of eIF1A with eIF5B promotes ribosomal subunit joining and possibly provides a checkpoint for correct complex formation, allowing full activation of GTP hydrolysis only upon formation of a properly organized 80 S initiation complex.
Collapse
Affiliation(s)
- Michael G Acker
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
24
|
Wienk H, Tomaselli S, Bernard C, Spurio R, Picone D, Gualerzi CO, Boelens R. Solution structure of the C1-subdomain of Bacillus stearothermophilus translation initiation factor IF2. Protein Sci 2005; 14:2461-8. [PMID: 16081655 PMCID: PMC2253463 DOI: 10.1110/ps.051531305] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
IF2 is one of three bacterial translation initiation factors that are conserved through all kingdoms of life. It binds the 30S and 50S ribosomal subunits, as well as fMet-tRNAf(Met). After these interactions, fMet-tRNAf(Met) is oriented to the ribosomal P-site where the first amino acid of the nascent polypeptide, formylmethionine, is presented. The C-terminal domain of Bacillus stearothermophilus IF2, which is responsible for recognition and binding of fMet-tRNAf(Met), contains two structured modules. Previously, the solution structure of the most C-terminal module, IF2-C2, has been elucidated by NMR spectroscopy and direct interactions between this subdomain and fMet-tRNAf(Met) were reported. In the present NMR study we have obtained the spectral assignment of the other module of the C-terminal domain (IF2-C1) and determined its solution structure and backbone dynamics. The IF2-C1 core forms a flattened fold consisting of a central four-stranded parallel beta-sheet flanked by three alpha-helices. Although its overall organization resembles that of subdomain III of the archaeal IF2-homolog eIF5B whose crystal structure had previously been reported, some differences of potential functional significance are evident.
Collapse
Affiliation(s)
- Hans Wienk
- Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J. The Cryo-EM Structure of a Translation Initiation Complex from Escherichia coli. Cell 2005; 121:703-12. [PMID: 15935757 DOI: 10.1016/j.cell.2005.03.023] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/14/2005] [Accepted: 03/22/2005] [Indexed: 11/22/2022]
Abstract
The 70S ribosome and its complement of factors required for initiation of translation in E. coli were purified separately and reassembled in vitro with GDPNP, producing a stable initiation complex (IC) stalled after 70S assembly. We have obtained a cryo-EM reconstruction of the IC showing IF2*GDPNP at the intersubunit cleft of the 70S ribosome. IF2*GDPNP contacts the 30S and 50S subunits as well as fMet-tRNA(fMet). IF2 here adopts a conformation radically different from that seen in the recent crystal structure of IF2. The C-terminal domain of IF2 binds to the single-stranded portion of fMet-tRNA(fMet), thereby forcing the tRNA into a novel orientation at the P site. The GTP binding domain of IF2 binds to the GTPase-associated center of the 50S subunit in a manner similar to EF-G and EF-Tu. Additionally, we present evidence for the localization of IF1, IF3, one C-terminal domain of L7/L12, and the N-terminal domain of IF2 in the initiation complex.
Collapse
Affiliation(s)
- Gregory S Allen
- Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
26
|
Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 2005; 69:101-23. [PMID: 15755955 PMCID: PMC1082788 DOI: 10.1128/mmbr.69.1.101-123.2005] [Citation(s) in RCA: 428] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Valuable information on translation initiation is available from biochemical data and recently solved structures. We present a detailed description of current knowledge about the structure, function, and interactions of the individual components involved in bacterial translation initiation. The first section describes the ribosomal features relevant to the initiation process. Subsequent sections describe the structure, function, and interactions of the mRNA, the initiator tRNA, and the initiation factors IF1, IF2, and IF3. Finally, we provide an overview of mechanisms of regulation of the translation initiation event. Translation occurs on ribonucleoprotein complexes called ribosomes. The ribosome is composed of a large subunit and a small subunit that hold the activities of peptidyltransfer and decode the triplet code of the mRNA, respectively. Translation initiation is promoted by IF1, IF2, and IF3, which mediate base pairing of the initiator tRNA anticodon to the mRNA initiation codon located in the ribosomal P-site. The mechanism of translation initiation differs for canonical and leaderless mRNAs, since the latter is dependent on the relative level of the initiation factors. Regulation of translation occurs primarily in the initiation phase. Secondary structures at the mRNA ribosomal binding site (RBS) inhibit translation initiation. The accessibility of the RBS is regulated by temperature and binding of small metabolites, proteins, or antisense RNAs. The future challenge is to obtain atomic-resolution structures of complete initiation complexes in order to understand the mechanism of translation initiation in molecular detail.
Collapse
Affiliation(s)
- Brian Søgaard Laursen
- Department of Molecular Biology, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
27
|
Spencer AC, Spremulli LL. The interaction of mitochondrial translational initiation factor 2 with the small ribosomal subunit. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1750:69-81. [PMID: 15935986 DOI: 10.1016/j.bbapap.2005.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/03/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
Bovine mitochondrial translational initiation factor 2 (IF-2(mt)) is organized into four domains, an N-terminal domain, a central G-domain and two C-terminal domains. These domains correspond to domains III-VI in the six-domain model of Escherichia coli IF-2. Variants in IF-2(mt) were prepared and tested for their abilities to bind the small (28S) subunit of the mitochondrial ribosome. The binding of wild-type IF-2(mt) was strong (K(d) approximately 10-20 nM) and was not affected by fMet-tRNA. Deletion of the N-terminal domain substantially reduced the binding of IF-2(mt) to 28S subunits. However, the addition of fMet-tRNA stimulated the binding of this variant at least 2-fold demonstrating that contacts between fMet-tRNA and IF-2(mt) can stabilize the binding of this factor to 28S subunits. No binding was observed for IF-2(mt) variants lacking the G-domain which probably plays a critical role in organizing the structure of IF-2(mt). IF-2(mt) contains a 37-amino acid insertion region between domains V and VI that is not found in the prokaryotic factors. Mutations in this region caused a significant reduction in the ability of the factor to promote initiation complex formation and to bind 28S subunits.
Collapse
Affiliation(s)
- Angela C Spencer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
28
|
Laursen BS, Kjaergaard AC, Mortensen KK, Hoffman DW, Sperling-Petersen HU. The N-terminal domain (IF2N) of bacterial translation initiation factor IF2 is connected to the conserved C-terminal domains by a flexible linker. Protein Sci 2004; 13:230-9. [PMID: 14691238 PMCID: PMC2286522 DOI: 10.1110/ps.03337604] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacterial translation initiation factor IF2 is a multidomain protein that is an essential component of a system for ensuring that protein synthesis begins at the correct codon within a messenger RNA. Full-length IF2 from Escherichia coli and seven fragments of the protein were expressed, purified, and characterized using nuclear magnetic resonance (NMR) and circular dichroism (CD) methods. Interestingly, resonances of the 6 kD IF2N domain located at the extreme N terminus of IF2 can be clearly identified within the NMR spectra of the full-length 97-kD protein. (15)N NMR relaxation rate data indicate that (1) the IF2N domain is internally well ordered and tumbles in solution in a manner that is independent of the other domains of the IF2 protein, and (2) the IF2N domain is connected to the C-terminal regions of IF2 by a flexible linker. Chemical shifts of resonances within the isolated IF2N domain do not significantly differ from those of the corresponding residues within the context of the full-length 97-kD protein, indicating that IF2N is a structurally independent unit that does not strongly interact with other regions of IF2. CD and NMR data together provide evidence that Domains I-III of IF2 have unstructured and flexible regions as well as substantial helical content; CD data indicate that the helical content of these regions decreases significantly at temperatures above 35 degrees C. The features of structurally well-ordered N- and C-terminal domains connected by a flexible linker with significant helical content are reminiscent of another translation initiation factor, IF3.
Collapse
|
29
|
Sørensen HP, Kristensen JE, Sperling-Petersen HU, Mortensen KK. Soluble expression of aggregating proteins by covalent coupling to the ribosome. Biochem Biophys Res Commun 2004; 319:715-9. [PMID: 15184041 DOI: 10.1016/j.bbrc.2004.05.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Indexed: 11/18/2022]
Abstract
Ribosomes are extremely soluble ribonucleoprotein complexes. Heterologous target proteins were fused to ribosomal protein L23 (rpL23) and expressed in an rpL23 deficient Escherichia coli strain. This enabled the isolation of 70S ribosomes with covalently bound target protein. Isolation of recombinant proteins from 70S ribosomes was achieved by specific proteolytic cleavage followed by efficient removal of ribosomes by centrifugation. By this procedure we isolated active green fluorescent protein, streptavidin (SA), and murine interleukin-6 (mIL-6). Approximately 500microg of each protein was isolated per gram cellular wet weight. By pull-down assays we demonstrate that SA covalently bound to the ribosome binds d-biotin. Ribosomal coupling is therefore suggested as a method for the investigation of protein interactions. The presented strategy is in particular efficient for the expression, purification, and investigation of proteins forming inclusion bodies in the E. coli cytoplasm.
Collapse
Affiliation(s)
- Hans Peter Sørensen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
30
|
Croitoru V, Bucheli-Witschel M, Hägg P, Abdulkarim F, Isaksson LA. Generation and characterization of functional mutants in the translation initiation factor IF1 of Escherichia coli. ACTA ACUST UNITED AC 2004; 271:534-44. [PMID: 14728680 DOI: 10.1046/j.1432-1033.2003.03954.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three protein factors IF1, IF2 and IF3 are involved in the initiation of translation in prokaryotes. No clear function has been assigned to the smallest of these three factors, IF1. Therefore, to investigate the role of this protein in the initiation process in Escherichia coli we have mutated the corresponding gene infA. Because IF1 is essential for cell viability and no mutant selection has so far been described, the infA gene in a plasmid was mutated by site-directed mutagenesis in a strain with a chromosomal infA+ gene, followed by deletion of this infA+ gene. Using this approach, the six arginine residues of IF1 were altered to leucine or aspartate. Another set of plasmid-encoded IF1 mutants with a cold-sensitive phenotype was collected using localized random mutagenesis. All mutants with a mutated infA gene on a plasmid and a deletion of the chromosomal infA copy were viable, except for an R65D alteration. Differences in growth phenotypes of the mutants were observed in both minimal and rich media. Some of the mutated infA genes were successfully recombined into the chromosome thereby replacing the wild-type infA+ allele. Several of these recombinants showed reduced growth rate and a partial cold-sensitive phenotype. This paper presents a collection of IF1 mutants designed for in vivo and in vitro studies on the function of IF1.
Collapse
|
31
|
Brandi L, Marzi S, Fabbretti A, Fleischer C, Hill WE, Gualerzi CO, Stephen Lodmell J. The translation initiation functions of IF2: targets for thiostrepton inhibition. J Mol Biol 2004; 335:881-94. [PMID: 14698286 DOI: 10.1016/j.jmb.2003.10.067] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacterial translation initiation factor IF2 was localized on the ribosome by rRNA cleavage using free Cu(II):1,10-orthophenanthroline. The results indicated proximity of IF2 to helix 89, to the sarcin-ricin loop and to helices 43 and 44, which constitute the "L11/thiostrepton" stem-loops of 23S rRNA. These findings prompted an investigation of the L11 contribution to IF2 activity and a re-examination of the controversial issue of the effect on IF2 functions of thiostrepton, a peptide antibiotic known primarily as a powerful inhibitor of translocation. Ribosomes lacking L11 were found to have wild-type capacity to bind IF2 but a strongly reduced ability to elicit its GTPase activity. We found that thiostrepton caused a faster recycling of this factor on and off the 70S ribosomes and 50S subunits, which in turn resulted in an increased rate of the multiple turnover IF2-dependent GTPase. Although thiostrepton did not inhibit the P-site binding of fMet-tRNA, the A-site binding of the EF-Tu-GTP-Phe-tRNA or the activity of the ribosomal peptidyl transferase center (as measured by the formation of fMet-puromycin), it severely inhibited IF2-dependent initiation dipeptide formation. This inhibition can probably be traced back to a thiostrepton-induced distortion of the ribosomal-binding site of IF2, which leads to a non-productive interaction between the ribosome and the aminoacyl-tRNA substrates of the peptidyl transferase reaction. Overall, our data indicate that the translation initiation function of IF2 is as sensitive as the translocation function of EF-G to thiostrepton inhibition.
Collapse
Affiliation(s)
- Letizia Brandi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Spremulli LL, Coursey A, Navratil T, Hunter SE. Initiation and elongation factors in mammalian mitochondrial protein biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:211-61. [PMID: 15196894 DOI: 10.1016/s0079-6603(04)77006-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Linda L Spremulli
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | | | | | |
Collapse
|
33
|
Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS. Ribosomal localization of translation initiation factor IF2. RNA (NEW YORK, N.Y.) 2003; 9:958-69. [PMID: 12869707 PMCID: PMC1370462 DOI: 10.1261/rna.2116303] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 05/15/2003] [Indexed: 05/22/2023]
Abstract
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.
Collapse
Affiliation(s)
- Stefano Marzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC) Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Laursen BS, Mortensen KK, Sperling-Petersen HU, Hoffman DW. A conserved structural motif at the N terminus of bacterial translation initiation factor IF2. J Biol Chem 2003; 278:16320-8. [PMID: 12600987 DOI: 10.1074/jbc.m212960200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 18-kDa Domain I from the N-terminal region of translation initiation factor IF2 from Escherichia coli was expressed, purified, and structurally characterized using multidimensional NMR methods. Residues 2-50 were found to form a compact subdomain containing three short beta-strands and three alpha-helices, folded to form a betaalphaalphabetabetaalpha motif with the three helices packed on the same side of a small twisted beta-sheet. The hydrophobic amino acids in the core of the subdomain are conserved in a wide range of species, indicating that a similarly structured motif is present at the N terminus of IF2 in many of the bacteria. External to the compact 50-amino acid subdomain, residues 51-97 are less conserved and do not appear to form a regular structure, whereas residues 98-157 form a helix containing a repetitive sequence of mostly hydrophilic amino acids. Nitrogen-15 relaxation rate measurements provide evidence that the first 50 residues form a well ordered subdomain, whereas other regions of Domain I are significantly more mobile. The compact subdomain at the N terminus of IF2 shows structural homology to the tRNA anticodon stem contact fold domains of the methionyl-tRNA and glutaminyl-tRNA synthetases, and a similar fold is also found in the B5 domain of the phenylalanine-tRNA synthetase. The results of the present work will provide guidance for the design of future experiments directed toward understanding the functional roles of this widely conserved structural domain within IF2.
Collapse
|
35
|
Laursen BS, de A Steffensen SA, Hedegaard J, Moreno JMP, Mortensen KK, Sperling-Petersen HU. Structural requirements of the mRNA for intracistronic translation initiation of the enterobacterial infB gene. Genes Cells 2003; 7:901-10. [PMID: 12296821 DOI: 10.1046/j.1365-2443.2002.00571.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The gene infB encodes the prokaryotic translation initiation factor IF2, a central macromolecular component in the formation of the ribosomal 70S initiation complex. In Escherichia coli, infB encodes three forms of IF2: IF2alpha, IF2beta and IF2gamma. The expression of IF2beta and IF2gamma is a tandem translation from intact infB mRNA and not merely a translation of post-transcriptionally truncated mRNA. The molecular mechanism responsible for the ribosomal recognition of the two intracistronic translation initiation sites in E. coli infB is not well characterized. RESULTS We found three different forms of IF2 in Enterobacter cloacae, Klebsiella oxytoca, Salmonella enterica, Salmonella typhimurium, and two different forms in Proteus vulgaris. We identified the intracistronic translation initiation sites of the mRNA by isolation and N-terminal sequencing of the shorter isoforms of IF2 in S. enterica and S. typhimurium. A further search in the readily available public sequence databases revealed that infB from Yersinia pestis also contains an intracistronic in-frame initiation site used for the translation of IF2beta. The base composition in a part of the 5' end of the DNA coding strand of the enterobacterial infB gene shows a strong preference for adenine (A) over thymine (T) with a maximum ratio of A-to-T around the intracistronic initiation sites. We demonstrate that the mRNA has an open structure around the ribosomal binding region. CONCLUSION Efficient intracistronic translation initiation of the infB gene is suggested to require an mRNA with this special base composition that results in an open, single-stranded structure at the ribosomal binding region.
Collapse
Affiliation(s)
- Brian Søgaard Laursen
- Laboratory of BioDesign, Department of Molecular and Structural Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
36
|
Marintchev A, Kolupaeva VG, Pestova TV, Wagner G. Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: a new interaction between old partners. Proc Natl Acad Sci U S A 2003; 100:1535-40. [PMID: 12569173 PMCID: PMC149867 DOI: 10.1073/pnas.0437845100] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The translation initiation factors (IFs) IF1/eIF1A and IF2e/IF5B have been conserved throughout all kingdoms. Although the central roles of the bacterial factors IF1 and IF2 were established long ago, the importance of their eukaryotic homologs, eukaryotic IFs (eIFs) eIF1A and eIF5B, has only recently become evident. The translation machinery in eukaryotes is more complex and accordingly, eIF1A and eIF5B seem to have acquired a number of new functions while also retaining many of the roles of bacterial IF1 and IF2. IF1 and IF2 have been shown to interact on the ribosome but no binding has been detected for the free factors. In contrast, yeast eIF1A and eIF5B have been reported to interact in the absence of ribosomes. Here, we have identified the binding interface between human eIF1A and the C-terminal domain of eIF5B by using solution NMR. That interaction interface involves the C termini of the two proteins, which are not present in bacterial IF1 and IF2. The interaction is, therefore, unique to eukaryotes. A structural model for the interaction of eIF1A and eIF5B in the context of the ribosome is presented. We propose that eIF1A and eIF5B simultaneously interact at two sites that are >50 A apart: through their C termini as reported here, and through an interface previously identified in bacterial IF1 and IF2. The binding between the C termini of eIF1A and eIF5B has implications for eukaryote-specific mechanisms of recruitment and release of translation IFs from the ribosome.
Collapse
Affiliation(s)
- Assen Marintchev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C1, Room 112, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
37
|
Olsen DS, Savner EM, Mathew A, Zhang F, Krishnamoorthy T, Phan L, Hinnebusch AG. Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J 2003; 22:193-204. [PMID: 12514125 PMCID: PMC140105 DOI: 10.1093/emboj/cdg030] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Translation initiation factor 1A (eIF1A) is predicted to bind in the decoding site of the 40S ribosome and has been implicated in recruitment of the eIF2-GTP-Met-tRNA i Met ternary complex (TC) and ribosomal scanning. We show that the unstructured C-terminus of eIF1A interacts with the C-terminus of eIF5B, a factor that stimulates 40S-60S subunit joining, and removal of this domain of eIF1A diminishes translation initiation in vivo. These findings support the idea that eIF1A-eIF5B association is instrumental in releasing eIF1A from the ribosome after subunit joining. A larger C-terminal truncation that removes a 3(10) helix in eIF1A deregulates GCN4 translation in a manner suppressed by overexpressing TC, implicating eIF1A in TC binding to 40S ribosomes in vivo. The unstructured N-terminus of eIF1A interacts with eIF2 and eIF3 and is required at low temperatures for a step following TC recruitment. We propose a modular organization for eIF1A wherein a core ribosome-binding domain is flanked by flexible segments that mediate interactions with other factors involved in recruitment of TC and release of eIF1A at subunit joining.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
Corresponding author e-mail:
| |
Collapse
|
38
|
Koc EC, Spremulli LL. Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs. J Biol Chem 2002; 277:35541-9. [PMID: 12095986 DOI: 10.1074/jbc.m202498200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human mitochondrial translational initiation factor 3 (IF3(mt)) has been identified from the human expressed sequence tag data base. Using consensus sequences derived from conserved regions of the bacterial IF3, several partially sequenced cDNA clones were identified, and the complete sequence was assembled in silico from overlapping clones. IF3(mt) is 278 amino acid residues in length. MitoProt II predicts a 97% probability that this protein will be localized in mitochondria and further predicts that the mature protein will be 247 residues in length. The cDNA for the predicted mature form of IF3(mt) was cloned, and the protein was expressed in Escherichia coli in a His-tagged form. The mature form of IF3(mt) has short extensions on the N and C termini surrounding a region homologous to bacterial IF3. The region of IF3(mt) homologous to prokaryotic factors ranges between 21-26% identical to the bacterial proteins. Purified IF3(mt) promotes initiation complex formation on mitochondrial 55 S ribosomes in the presence of mitochondrial initiation factor 2 (IF2(mt)), [(35)S]fMet-tRNA, and either poly(A,U,G) or an in vitro transcript of the cytochrome oxidase subunit II gene as mRNA. IF3(mt) shifts the equilibrium between the 55 S mitochondrial ribosome and its subunits toward subunit dissociation. In addition, the ability of E. coli initiation factor 1 to stimulate initiation complex formation on E. coli 70 S and mitochondrial 55 S ribosomes was investigated in the presence of IF2(mt) and IF3(mt).
Collapse
Affiliation(s)
- Emine Cavdar Koc
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
39
|
Weber JA, Gay CV. Expression of translation initiation factor IF2 is regulated during osteoblast differentiation. J Cell Biochem 2001; 81:700-14. [PMID: 11329625 DOI: 10.1002/jcb.1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We isolated and characterized a cDNA for the N-terminal half of the eukaryotic initiation of translation factor 2 (cIF2) during a screen of chicken osteoblast cDNAs. The apparent size of the message for this protein, approximately 5.6 kb, is slightly larger in size than that for human IF2 (hIF2). There is a high degree of sequence similarity between the human and chicken N-terminal portions of the protein that extends to the encoding nucleotide sequence. The tissue specific expression pattern for cIF2 and hIF2 are similar, being moderately abundant in brain, liver, and skeletal muscle, and detectable in kidney, chondrocytes, and freshly isolated osteoblasts. The ratio of message for cIF2 to that of beta-actin was 0.10 and 0.18 for liver and brain. Message levels peak in osteoblasts between 8 and 12 days of culture, coinciding with high levels of matrix protein synthesis. At peak expression, the ratio of cIF2:beta-actin for 8 day osteoblasts was 0.76. Treatment of osteoblast cultures with cycloheximide markedly reduces the level of cIF2 message indicating that novel protein synthesis is required for its expression. Hybridization of RNA samples from either chicken osteoblasts or a human osteoblast cell line with a probe for a subunit of human eukaryotic initiation of translation factor 2 (eIF2alpha), the housekeeping initiation factor, indicates that levels of eIF2 remain low. With hIF2, cIF2 represents the only other vertebrate homolog of IF2 for which a major portion of the coding sequence has been identified. This is the first report of regulated expression for a eukaryotic IF2 and is the first demonstration of its abundance in osteoblasts.
Collapse
Affiliation(s)
- J A Weber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802,USA
| | | |
Collapse
|
40
|
Abstract
We present a summary of recent progress in understanding Escherichia coli K-12 gene and protein functions. New information has come both from classical biological experimentation and from using the analytical tools of functional genomics. The content of the E. coli genome can clearly be seen to contain elements acquired by horizontal transfer. Nevertheless, there is probably a large, stable core of >3500 genes that are shared among all E. coli strains. The gene-enzyme relationship is examined, and, in many cases, it exhibits complexity beyond a simple one-to-one relationship. Also, the E. coli genome can now be seen to contain many multiple enzymes that carry out the same or closely similar reactions. Some are similar in sequence and may share common ancestry; some are not. We discuss the concept of a minimal genome as being variable among organisms and obligatorily linked to their life styles and defined environmental conditions. We also address classification of functions of gene products and avenues of insight into the history of protein evolution.
Collapse
Affiliation(s)
- M Riley
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA. ,
| | | |
Collapse
|
41
|
Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Hartsch T, Wimberly BT, Ramakrishnan V. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 2001; 291:498-501. [PMID: 11228145 DOI: 10.1126/science.1057766] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Initiation of translation at the correct position on messenger RNA is essential for accurate protein synthesis. In prokaryotes, this process requires three initiation factors: IF1, IF2, and IF3. Here we report the crystal structure of a complex of IF1 and the 30S ribosomal subunit. Binding of IF1 occludes the ribosomal A site and flips out the functionally important bases A1492 and A1493 from helix 44 of 16S RNA, burying them in pockets in IF1. The binding of IF1 causes long-range changes in the conformation of H44 and leads to movement of the domains of 30S with respect to each other. The structure explains how localized changes at the ribosomal A site lead to global alterations in the conformation of the 30S subunit.
Collapse
Affiliation(s)
- A P Carter
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Choi SK, Olsen DS, Roll-Mecak A, Martung A, Remo KL, Burley SK, Hinnebusch AG, Dever TE. Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. Mol Cell Biol 2000; 20:7183-91. [PMID: 10982835 PMCID: PMC86272 DOI: 10.1128/mcb.20.19.7183-7191.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To initiate protein synthesis, a ribosome with bound initiator methionyl-tRNA must be assembled at the start codon of an mRNA. This process requires the coordinated activities of three translation initiation factors (IF) in prokaryotes and at least 12 translation initiation factors in eukaryotes (eIF). The factors eIF1A and eIF5B from eukaryotes show extensive amino acid sequence similarity to the factors IF1 and IF2 from prokaryotes. By a combination of two-hybrid, coimmunoprecipitation, and in vitro binding assays eIF1A and eIF5B were found to interact directly, and the eIF1A binding site was mapped to the C-terminal region of eIF5B. This portion of eIF5B was found to be critical for growth in vivo and for translation in vitro. Overexpression of eIF1A exacerbated the slow-growth phenotype of yeast strains expressing C-terminally truncated eIF5B. These findings indicate that the physical interaction between the evolutionarily conserved factors eIF1A and eIF5B plays an important role in translation initiation, perhaps to direct or stabilize the binding of methionyl-tRNA to the ribosomal P site.
Collapse
Affiliation(s)
- S K Choi
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hedegaard J, Hauge M, Fage-Larsen J, Mortensen KK, Kilian M, Sperling-Petersen HU, Poulsen K. Investigation of the translation-initiation factor IF2 gene, infB, as a tool to study the population structure of Streptococcus agalactiae. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 7):1661-1670. [PMID: 10878130 DOI: 10.1099/00221287-146-7-1661] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sequence of infB, encoding the prokaryotic translation-initiation factor 2 (IF2), was determined in eight strains of Streptococcus agalactiae (group B streptococcus) and an alignment revealed limited intraspecies diversity within S. agalactiae. The amino acid sequence of IF2 from S. agalactiae and from related species were aligned and revealed an interspecies conserved central and C-terminal part, and an N-terminal part that is highly variable in length and amino acid sequence. The diversity and relationships in a collection of 58 genetically distinct strains of S. agalactiae were evaluated by comparing a partial sequence of infB. A total of six alleles were detected for the region of infB analysed. The alleles correlated with the separation of the same strains of S. agalactiae into major evolutionary lineages, as shown in previous work. The partial sequences of infB were furthermore used in phylogenetic analyses of species closely related to S. agalactiae, yielding an evolutionary tree which had a topology similar to a tree constructed using 16S rRNA sequences from the same species.
Collapse
Affiliation(s)
- Jakob Hedegaard
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Gustav Wiedsvej 10C, DK-8000 Aarhus C, Denmark1
| | - Majbritt Hauge
- Department of Medical Microbiology and Immunology, The Bartholin Building, Aarhus University, DK-8000 Aarhus C, Denmark2
| | - Jeppe Fage-Larsen
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Gustav Wiedsvej 10C, DK-8000 Aarhus C, Denmark1
| | - Kim Kusk Mortensen
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Gustav Wiedsvej 10C, DK-8000 Aarhus C, Denmark1
| | - Mogens Kilian
- Department of Medical Microbiology and Immunology, The Bartholin Building, Aarhus University, DK-8000 Aarhus C, Denmark2
| | - Hans Uffe Sperling-Petersen
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Gustav Wiedsvej 10C, DK-8000 Aarhus C, Denmark1
| | - Knud Poulsen
- Department of Medical Microbiology and Immunology, The Bartholin Building, Aarhus University, DK-8000 Aarhus C, Denmark2
| |
Collapse
|
44
|
Meunier S, Spurio R, Czisch M, Wechselberger R, Guenneugues M, Gualerzi CO, Boelens R. Structure of the fMet-tRNA(fMet)-binding domain of B. stearothermophilus initiation factor IF2. EMBO J 2000; 19:1918-26. [PMID: 10775275 PMCID: PMC302012 DOI: 10.1093/emboj/19.8.1918] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The three-dimensional structure of the fMet-tRNA(fMet) -binding domain of translation initiation factor IF2 from Bacillus stearothermophilus has been determined by heteronuclear NMR spectroscopy. Its structure consists of six antiparallel beta-strands, connected via loops, and forms a closed beta-barrel similar to domain II of elongation factors EF-Tu and EF-G, despite low sequence homology. Two structures of the ternary complexes of the EF-Tu small middle dotaminoacyl-tRNA small middle dot GDP analogue have been reported and were used to propose and discuss the possible fMet-tRNA(fMet)-binding site of IF2.
Collapse
Affiliation(s)
- S Meunier
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|