1
|
Qi Q, Li Y, Chen Z, Luo Z, Zhou T, Zhou J, Zhang Y, Chen S, Wang L. Update on the pathogenesis of endometriosis-related infertility based on contemporary evidence. Front Endocrinol (Lausanne) 2025; 16:1558271. [PMID: 40130159 PMCID: PMC11930837 DOI: 10.3389/fendo.2025.1558271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Endometriosis, the most prevalent cause of infertility, is associated with anatomical distortion leading to adhesions and fibrosis, as well as endocrine abnormalities and immune disorders. This review discusses the mechanisms underlying endometriosis-related infertility. Firstly, alterations in the hypothalamic-pituitary-ovarian axis lead to the secretion of gonadotropins and steroid hormones, with adverse effects on ovulation and implantation, leading to fertility decline. Secondly, dysregulation of the hypothalamic-pituitary-adrenal axis induces elevated serum cortisol and prolactin levels in patients with endometriosis, accounting for its regulation of stress, depression, and anxiety. Abnormal interactions between endometrial cells and the immune system change the local microenvironment, resulting in epithelial-mesenchymal transition and inflammation. Activated epithelial cells, stromal cells, and immunocytes produce various chemokines, cytokines, or autoantibodies, creating an unfavorable environment for embryo implantation. These findings suggest that alterations in the immune spectrum play a crucial role in endometriosis-related infertility. Thirdly, oxidative stress has adverse effects on the ovarian reserve and subsequent embryonic development, predicting another promising strategy for endometriosis-related infertility. An unbalanced redox state, including impaired mitochondrial function, dysregulated lipid metabolism, and iron-induced oxidative stress, generates a pro-oxidative microenvironment, which negatively impacts oocyte quality and sperm and embryo viability. Thus, an updated understanding of the mechanisms involved in this disease will help to develop effective strategies to manage endometriosis-related infertility.
Collapse
Affiliation(s)
- Qing Qi
- School of Physical Education and National Equestrian Academy, Wuhan Business University, Wuhan, Hubei, China
| | - Yaonan Li
- School of Physical Education and National Equestrian Academy, Wuhan Business University, Wuhan, Hubei, China
| | - Ziqin Chen
- College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhihui Luo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhou
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yanlin Zhang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Song Chen
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ling Wang
- Department of Obstetrics and Reproductive Immunology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Center of Eugenics Research, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
2
|
Hon JX, Wahab NA, Karim AKA, Mokhtar NM, Mokhtar MH. Exploring the Role of MicroRNAs in Progesterone and Estrogen Receptor Expression in Endometriosis. Biomedicines 2024; 12:2218. [PMID: 39457531 PMCID: PMC11504708 DOI: 10.3390/biomedicines12102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Patients with endometriosis still respond poorly to progestins due to progesterone resistance associated with microRNAs (miRNAs). The aim of this study was to investigate the expression of selected miRNAs, estrogen receptor (ER)α, ERβ, progesterone receptor (PR)-A and PR-B and to determine the target genes of upregulated miRNAs in endometriosis. Methods: In this study, 18 controls, 18 eutopic and 18 ectopic samples were analysed. Profiling and validation of miRNAs associated with functions of endometriosis were performed using next-generation sequencing (NGS) and qRT-PCR. At the same time, the expression of ERα, ERβ, PR-A and PR-B was also determined using qRT-PCR. Target prediction was also performed for miR-199a-3p, miR-1-3p and miR-125b-5p using StarBase. Results: In this study, NGS identified seven significantly differentially expressed miRNAs, of which six miRNAs related to the role of endometriosis were selected for validation by qRT-PCR. The expression of miR-199a-3p, miR-1-3p, miR-146a-5p and miR-125b-5p was upregulated in the ectopic group compared to the eutopic group. Meanwhile, ERα and ERβ were significantly differentially expressed in endometriosis compared to the control group. However, the expressions of PR-A and PR-B showed no significant differences between the groups. The predicted target genes for miR-199a-3p, miR-1-3p and miR-125b-5p are SCD, TAOK1, DDIT4, LASP1, CDK6, TAGLN2, G6PD and ELOVL6. Conclusions: Our findings demonstrated that the expressions of ERα and ERβ might be regulated by miRNAs contributing to progesterone resistance, whereas the binding of miRNAs to target genes could also contribute to the pathogenesis of endometriosis. Therefore, miRNAs could be used as potential biomarkers and for targeted therapy in patients with endometriosis.
Collapse
Affiliation(s)
- Jing-Xian Hon
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
| | - Norhazlina Abdul Wahab
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Abdul Kadir Abdul Karim
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
| |
Collapse
|
3
|
Colgrave EM, Keast JR, Healey M, Rogers PA, Girling JE, Holdsworth-Carson SJ. Extensive heterogeneity in the expression of steroid receptors in superficial peritoneal endometriotic lesions. Reprod Biomed Online 2024; 48:103409. [PMID: 38134474 DOI: 10.1016/j.rbmo.2023.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 12/24/2023]
Abstract
RESEARCH QUESTION Is the expression of steroid hormone receptors (oestrogen receptor-α and progesterone receptor A/B) and proliferative markers (Bcl-2 and Ki67) uniform among superficial peritoneal endometriotic lesions? DESIGN A retrospective cohort study of 24 patients with surgically and histologically confirmed endometriosis. Immunofluorescence was used to determine the proportion of oestrogen receptor-α (ERα), progesterone receptor A/B, Bcl-2 and Ki67 positive cells in 271 endometriotic lesions (defined as endometriotic gland profile/s within an individual region of CD10 stromal immunostaining from a single biopsy) from 67 endometriotic biopsies from 24 patients. Data were analysed to examine associations related to menstrual cycle stage, lesion location and gland morphology. RESULTS Oestrogen receptor-α and progesterone receptor A/B expression in superficial peritoneal endometriotic lesions was extremely heterogeneous. Bcl-2 immunostaining in endometriotic lesions was also variable, whereas Ki67 immunostaining was minimal. Menstrual cycle stage associations were limited in steroid hormone receptor and Bcl-2 expression in lesions. Patterns in progesterone receptor A/B and Bcl-2 immunostaining were associated with lesion location. Bcl-2 was differentially expressed, based on lesion gland morphology. CONCLUSIONS These data demonstrate considerable diversity in the expression of steroid hormone receptors and Bcl-2 between lesions, even within an individual patient.
Collapse
Affiliation(s)
- Eliza M Colgrave
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Janet R Keast
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Healey
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Peter Aw Rogers
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Jane E Girling
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Anatomy, School of Biomedical Sciences, The University of Otago, Dunedin, Aotearoa New Zealand
| | - Sarah J Holdsworth-Carson
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia; Julia Argyrou Endometriosis Centre, Epworth HealthCare, Richmond, Victoria, Australia.
| |
Collapse
|
4
|
Marla S, Mortlock S, Heinosalo T, Poutanen M, Montgomery GW, McKinnon BD. Gene expression profiles separate endometriosis lesion subtypes and indicate a sensitivity of endometrioma to estrogen suppressive treatments through elevated ESR2 expression. BMC Med 2023; 21:460. [PMID: 37996888 PMCID: PMC10666321 DOI: 10.1186/s12916-023-03166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Endometriosis is a common, gynaecological disease characterised by the presence of endometrial-like cells growing outside the uterus. Lesions appear at multiple locations, present with variation in appearance, size and depth of invasion. Despite hormones being the recommended first-line treatment, their efficacy, success and side effects vary widely amongst study populations. Current, hormonal medication for endometriosis is designed to suppress systemic oestrogen. Whether these hormones can influence the lesions themselves is not yet clear. Evidence of hormone receptor expression in endometriotic lesions and their ability to respond is conflicting. A variation in their expression, activation of transcriptional co-regulators and the potential to respond may contribute to their variation in patient outcomes. Identifying patients who would benefit from hormonal treatments remain an important goal in endometriosis research. METHODS Using gene expression data from endometriosis lesions including endometrioma (OMA, n = 28), superficial peritoneal lesions (SUP, n = 72) and deeply infiltrating lesions (DIE, n = 78), we performed principal component analysis, differential gene expression and gene correlation analyses to assess the impact of menstrual stage, lesion subtype and hormonal treatment on the gene expression. RESULTS The gene expression profiles did not vary based on menstrual stage, but could distinguish lesion subtypes with OMA significantly differentiating from both SUP and DIE. Additionally, the effect of oestrogen suppression medication altered the gene expression profile in OMA, while such effect was not observed in SUP or DIE. Analysis of the target receptors for hormonal medication indicated ESR2 was differentially expressed in OMA and that genes that correlated with ESR2 varied significantly between medicated and non-medicated OMA samples. CONCLUSIONS Our results demonstrate of the different lesion types OMA present with strongest response to hormonal treatment directly through ESR2. The data suggests that there may be the potential to target treatment options to individual patients based on pre-surgical diagnoses.
Collapse
Affiliation(s)
- Sushma Marla
- Institute for Molecular Bioscience, The University of Queensland, Carmody Rd, Brisbane, QLD, 4067, Australia
| | - Sally Mortlock
- Institute for Molecular Bioscience, The University of Queensland, Carmody Rd, Brisbane, QLD, 4067, Australia
| | - Taija Heinosalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20014, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20014, Finland
- Turku Center for Disease Modelling, University of Turku, 20014, Turku, Finland
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Carmody Rd, Brisbane, QLD, 4067, Australia
| | - Brett David McKinnon
- Institute for Molecular Bioscience, The University of Queensland, Carmody Rd, Brisbane, QLD, 4067, Australia.
| |
Collapse
|
5
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Lih Yuan T, Sulaiman N, Nur Azurah AG, Maarof M, Rabiatul Adawiyah Razali, Yazid MD. Oestrogen-induced epithelial-mesenchymal transition (EMT) in endometriosis: Aetiology of vaginal agenesis in Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Front Physiol 2022; 13:937988. [PMID: 36582359 PMCID: PMC9793092 DOI: 10.3389/fphys.2022.937988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Endometriosis occurs when endometrial-like tissue forms and grows outside the uterus due to oestrogen-induced epithelial-mesenchymal transition in the female reproductive tract. Factors that suppress this event could become potential therapeutic agents against disease occurrence and progression. However, an overview of these studies is still lacking. This review assessed the impact of a number factors on oestrogen-mediated epithelial-mesenchymal transition in the emergence of several diseases in the female reproductive tract, primarily endometriosis. The association between epithelial-mesenchymal transition and Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome was also investigated. Oestrogen, Wnt4 and epithelial-mesenchymal transition were chosen as keywords in Scopus, PubMed, and Web of Science searches performed on 28th June 2021. Study selection was refined to cancer-irrelevant, English, original articles published between years 2011-2021. The full-text assessment was carried out for topic-related articles after title and abstract screening. Included studies were summarised and assessed for their risk of bias using the Office of Health Assessment and Translation tool. In this review, 10 articles investigating oestrogen and epithelial-mesenchymal transition in the female reproductive tract were summarised and classified into two groups: seven studies under 'factor'-modulated epithelial-mesenchymal transition and three studies under 'factor'-manipulated oestrogen-induced epithelial-mesenchymal transition. The current evidence proposes that epithelial-mesenchymal transition is one of the prime causes of reproductive-related disease. This event could be mediated by distinct stimuli, specifically oestrogen and Wnt4 aberration. The results of this review suggest that oestrogen and Wnt4 participate in epithelial-mesenchymal transition in vaginal epithelial cells in MRKH syndrome, adopting from the theories of endometriosis development, which could therefore serve as a foundation for novel target treatment, specifically related to vaginal epithelialisation, to ensure better surgical outcomes.
Collapse
Affiliation(s)
- Too Lih Yuan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Abdul Ghani Nur Azurah
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Rabiatul Adawiyah Razali
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia,*Correspondence: Muhammad Dain Yazid,
| |
Collapse
|
7
|
Sun H, Hirata T, Koga K, Arakawa T, Nagashima N, Neriishi K, Elsherbini M, Maki E, Izumi G, Harada M, Hirota Y, Wada-Hiraike O, Osuga Y. Elevated phosphorylation of estrogen receptor α at serine-118 in ovarian endometrioma. F&S SCIENCE 2022; 3:401-409. [PMID: 35654737 DOI: 10.1016/j.xfss.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the phosphorylation of estrogen receptor α at serine-118 (phospho-ERα S118) in the endometrium, ovarian endometrioma, and deep infiltrating endometriosis (DIE). DESIGN Experimental study. SETTING University-affiliated hospital and academic research laboratory. PATIENT(S) Twenty-five patients underwent a hysterectomy, 18 patients underwent surgical removal of ovarian endometrioma, and 6 patients underwent DIE. INTERVENTION(S) Tissue samples were obtained from patients who underwent surgical procedures. MAIN OUTCOME MEASURE(S) Immunostaining for phospho-ERα S118, ERα, or phosphorylated p44/42 mitogen-activated protein kinase (phospho-p44/42 MAPK) was performed to evaluate the endometrium with or without endometriosis, ovarian endometrioma, and DIE. For in vitro analysis, endometrial epithelial cells (Ishikawa cells) were stimulated with estradiol (E2) or tumor necrosis factor alpha (TNFα), and the expression levels of phospho-ERα S118 and phospho-p44/42 MAPK were evaluated via Western blotting. RESULT(S) First, phospho-ERα S118 level was significantly higher in the glands and stroma of ovarian endometriosis samples than in those of endometrial and DIE samples. Second, colocalization of phospho-p44/42 MAPK and phospho-ERα S118 was observed in the glands of ovarian endometrioma. The proportions of cells strongly expressing phospho-p44/42 and phospho-ERα were 87% in phosphor-p44/42 MAPK-positive cells and 79% in phosphor-ERα-positive cells. Third, E2 stimulation significantly enhanced phospho-ERα S118 after 15 and 30 minutes in in vitro analysis using endometrial epithelial cells. Fourth, TNFα stimulation modestly but significantly enhanced phospho-ERα S118 after 15 and 30 minutes. Fifth, in Ishikawa cells, treatment with a p44/42 inhibitor (PD98059) significantly reduced phospho-ERα S118 by TNFα but not by E2. CONCLUSION(S) ERα-S118 phosphorylation was increased in ovarian endometriosis. Our findings may provide a new perspective for understanding the mechanism of increased ERα action in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Hui Sun
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan; Department of Obstetrics and Gynecology, Doai Kinen Hospital, Tokyo, Japan.
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomoko Arakawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Natsuki Nagashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuaki Neriishi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Mohammed Elsherbini
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Eiko Maki
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Gentaro Izumi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Functional Implications of Estrogen and Progesterone Receptors Expression in Adenomyosis, Potential Targets for Endocrinological Therapy. J Clin Med 2022; 11:jcm11154407. [PMID: 35956024 PMCID: PMC9369051 DOI: 10.3390/jcm11154407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Adenomyosis is a common gynaecological disease associated with the presence of endometrial lesions in the uterine myometrium. Estrogens have been proven to be the crucial hormones driving the growth of adenomyosis. Little is known about the distinct mechanisms of progesterone action in adenomyosis. Hence, in this study, we decided to characterize the expression of all nuclear and membrane estrogen and progesterone receptors. Additionally, as a functional investigation, we monitored prolactin production and cell proliferation after estradiol and progesterone treatments. We confirmed the presence of all nuclear and membrane estrogen and progesterone receptors in adenomyotic lesions at gene and protein levels. The expression of membrane progesterone receptors α and β (mPRα, mPRβ) as well as estrogen receptor β (ERβ) was upregulated in adenomyosis compared to normal myometrium. Estradiol significantly increased adenomyotic cell proliferation. Progesterone and cAMP upregulated prolactin secretion in adenomyosis in the same pattern as in the normal endometrium. In the present study, we showed the functional link between estradiol action and adenomyotic cell proliferation, as well as progesterone and prolactin production. Our findings provide novel insights into the sex steroid receptor expression pattern and potential regulated pathways in adenomyosis, suggesting that all receptors play an important role in adenomyosis pathophysiology.
Collapse
|
9
|
Chiappini F, Ceballos L, Olivares C, Bastón JI, Miret N, Pontillo C, Zárate L, Singla JJ, Farina M, Meresman G, Randi A. Endocrine disruptor hexachlorobenzene induces cell migration and invasion, and enhances aromatase expression levels in human endometrial stromal cells. Food Chem Toxicol 2022; 162:112867. [PMID: 35181438 DOI: 10.1016/j.fct.2022.112867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Endometriosis is the presence and growth of endometrial tissue outside of the uterus. Previous studies have suggested that endocrine disrupting chemicals such as organochlorine pesticides could be a risk factor for endometriosis. Hexachlorobenzene (HCB) is a weak ligand of the aryl hydrocarbon receptor (AhR) and promotes metalloproteinase and cyclooxygenase-2 (COX-2) expression, as well as, c-Src activation in human endometrial stromal cells (T-HESC) and in rat endometriosis model. Our aim was to evaluate the effect of HCB exposure on oestrogen receptor (ER) ɑ and β, progesterone receptor (PR) and aromatase expression, as well as, on cell migration and invasion in T-HESC and primary cultures of endometrial stromal cells from eutopic endometria of control subjects (ESC). Results show that HCB increases ERɑ and aromatase protein levels and reduces PR content in both T-HESC and ESC. However, the pesticide only increases ERβ expression in ESC, without changes in T-HESC. Moreover, cell migration and invasion are promoted by pesticide exposure involving the AhR, c-Src, COX-2 and ER pathways in T-HESC. HCB also triggers ERɑ activation via phosphorylation in Y537 through AhR/c-Src pathway. Our results provide experimental evidence that HCB induces alterations associated with endometriosis, suggesting that these mechanisms could contribute to pesticide exposure-induced endometriosis development.
Collapse
Affiliation(s)
- Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Leandro Ceballos
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Carla Olivares
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Laboratorio de Fisiopatología Endometrial, Buenos Aires, Argentina.
| | - Juan Ignacio Bastón
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Laboratorio de Fisiopatología Endometrial, Buenos Aires, Argentina.
| | - Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Lorena Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - José Javier Singla
- Universidad de Buenos Aires, Hospital de Clínicas "José de San Martín", Servicio de Ginecología, Buenos Aires, Argentina.
| | - Mariana Farina
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET, Laboratorio de Fisiopatología Placentaria, Buenos Aires, Argentina.
| | - Gabriela Meresman
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Laboratorio de Fisiopatología Endometrial, Buenos Aires, Argentina.
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Yu K, Huang ZY, Xu XL, Li J, Fu XW, Deng SL. Estrogen Receptor Function: Impact on the Human Endometrium. Front Endocrinol (Lausanne) 2022; 13:827724. [PMID: 35295981 PMCID: PMC8920307 DOI: 10.3389/fendo.2022.827724] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
The physiological role of estrogen in the female endometrium is well established. On the basis of responses to steroid hormones (progesterone, androgen, and estrogen), the endometrium is considered to have proliferative and secretory phases. Estrogen can act in the endometrium by interacting with estrogen receptors (ERs) to induce mucosal proliferation during the proliferative phase and progesterone receptor (PR) synthesis, which prepare the endometrium for the secretory phase. Mouse knockout studies have shown that ER expression, including ERα, ERβ, and G-protein-coupled estrogen receptor (GPER) in the endometrium is critical for normal menstrual cycles and subsequent pregnancy. Incorrect expression of ERs can produce many diseases that can cause endometriosis, endometrial hyperplasia (EH), and endometrial cancer (EC), which affect numerous women of reproductive age. ERα promotes uterine cell proliferation and is strongly associated with an increased risk of EC, while ERβ has the opposite effects on ERα function. GPER is highly expressed in abnormal EH, but its expression in EC patients is paradoxical. Effective treatments for endometrium-related diseases depend on understanding the physiological function of ERs; however, much less is known about the signaling pathways through which ERs functions in the normal endometrium or in endometrial diseases. Given the important roles of ERs in the endometrium, we reviewed the published literature to elaborate the regulatory role of estrogen and its nuclear and membrane-associated receptors in maintaining the function of endometrium and to provide references for protecting female reproduction. Additionally, the role of drugs such as tamoxifen, raloxifene, fulvestrant and G-15 in the endometrium are also described. Future studies should focus on evaluating new therapeutic strategies that precisely target specific ERs and their related growth factor signaling pathways.
Collapse
Affiliation(s)
- Kun Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Yuan Huang
- Chelsea and Westminster Hospital, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Xue-Ling Xu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jun Li
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang-Wei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|
12
|
Nenicu A, Yordanova K, Gu Y, Menger MD, Laschke MW. Differences in growth and vascularization of ectopic menstrual and non-menstrual endometrial tissue in mouse models of endometriosis. Hum Reprod 2021; 36:2202-2214. [PMID: 34109385 DOI: 10.1093/humrep/deab139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/29/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is there a difference in the growth and vascularization between murine endometriotic lesions originating from menstrual or non-menstrual endometrial fragments? SUMMARY ANSWER Endometriotic lesions developing from menstrual and non-menstrual tissue fragments share many similarities, but also exhibit distinct differences in growth and vascularization, particularly under exogenous estrogen stimulation. WHAT IS KNOWN ALREADY Mouse models are increasingly used in endometriosis research. For this purpose, menstrual or non-menstrual endometrial fragments serve for the induction of endometriotic lesions. So far, these two fragment types have never been directly compared under identical experimental conditions. STUDY DESIGN, SIZE, DURATION This was a prospective experimental study in a murine peritoneal and dorsal skinfold chamber model of endometriosis. Endometrial tissue fragments from menstruated (n = 15) and non-menstruated (n = 21) C57BL/6 mice were simultaneously transplanted into the peritoneal cavity or dorsal skinfold chamber of non-ovariectomized (non-ovx, n = 17), ovariectomized (ovx, n = 17) and ovariectomized, estrogen-substituted (ovx+E2, n = 17) recipient animals and analyzed throughout an observation period of 28 and 14 days, respectively. PARTICIPANTS/MATERIALS, SETTING, METHODS The engraftment, growth and vascularization of the newly developing endometriotic lesions were analyzed by means of high-resolution ultrasound imaging, intravital fluorescence microscopy, histology and immunohistochemistry. MAIN RESULTS AND THE ROLE OF CHANCE Menstrual and non-menstrual tissue fragments developed into peritoneal endometriotic lesions without differences in growth, microvessel density and cell proliferation in non-ovx mice. Lesion formation out of both fragment types was markedly suppressed in ovx mice. In case of non-menstrual tissue fragments, this effect could be reversed by estrogen supplementation. In contrast, endometriotic lesions originating from menstrual tissue fragments exhibited a significantly smaller volume in ovx+E2 mice, which may be due to a reduced hormone sensitivity. Moreover, menstrual tissue fragments showed a delayed vascularization and a reduced blood perfusion after transplantation into dorsal skinfold chambers when compared to non-menstrual tissue fragments, indicating different vascularization modes of the two fragment types. To limit the role of chance, the experiments were conducted under standardized laboratory conditions. Statistical significance was accepted for a value of P < 0.05. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Endometriotic lesions were induced by syngeneic tissue transplantation into recipient mice without the use of pathological endometriotic tissue of human nature. Therefore, the results obtained in this study may not fully relate to human patients with endometriosis. WIDER IMPLICATIONS OF THE FINDINGS The present study significantly contributes to the characterization of common murine endometriosis models. These models represent important tools for studies focusing on the basic mechanisms of endometriosis and the development of novel therapeutic strategies for the treatment of this frequent gynecological disease. The presented findings indicate that the combination of different experimental models and approaches may be the most appropriate strategy to study the pathophysiology and drug sensitivity of a complex disease such as endometriosis under preclinical conditions. STUDY FUNDING/COMPETING INTEREST(S) There was no specific funding of this study. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- A Nenicu
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - K Yordanova
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Y Gu
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - M D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - M W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
13
|
Hung SW, Zhang R, Tan Z, Chung JPW, Zhang T, Wang CC. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review. Med Res Rev 2021; 41:2489-2564. [PMID: 33948974 PMCID: PMC8252000 DOI: 10.1002/med.21802] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Endometriosis (EM) is defined as endometrial tissues found outside the uterus. Growth and development of endometriotic cells in ectopic sites can be promoted via multiple pathways, including MAPK/MEK/ERK, PI3K/Akt/mTOR, NF-κB, Rho/ROCK, reactive oxidative stress, tumor necrosis factor, transforming growth factor-β, Wnt/β-catenin, vascular endothelial growth factor, estrogen, and cytokines. The underlying pathophysiological mechanisms include proliferation, apoptosis, autophagy, migration, invasion, fibrosis, angiogenesis, oxidative stress, inflammation, and immune escape. Current medical treatments for EM are mainly hormonal and symptomatic, and thus the development of new, effective, and safe pharmaceuticals targeting specific molecular and signaling pathways is needed. Here, we systematically reviewed the literature focused on pharmaceuticals that specifically target the molecular and signaling pathways involved in the pathophysiology of EM. Potential drug targets, their upstream and downstream molecules with key aberrant signaling, and the regulatory mechanisms promoting the growth and development of endometriotic cells and tissues were discussed. Hormonal pharmaceuticals, including melatonin, exerts proapoptotic via regulating matrix metallopeptidase activity while nonhormonal pharmaceutical sorafenib exerts antiproliferative effect via MAPK/ERK pathway and antiangiogenesis activity via VEGF/VEGFR pathway. N-acetyl cysteine, curcumin, and ginsenoside exert antioxidant and anti-inflammatory effects via radical scavenging activity. Natural products have high efficacy with minimal side effects; for example, resveratrol and epigallocatechin gallate have multiple targets and provide synergistic efficacy to resolve the complexity of the pathophysiology of EM, showing promising efficacy in treating EM. Although new medical treatments are currently being developed, more detailed pharmacological studies and large sample size clinical trials are needed to confirm the efficacy and safety of these treatments in the near future.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Ruizhe Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou
| | - Zhouyurong Tan
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | | | - Tao Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Reproduction and Development, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong
- Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive MedicineThe Chinese University of Hong KongHong Kong
| |
Collapse
|
14
|
Marla S, Mortlock S, Houshdaran S, Fung J, McKinnon B, Holdsworth-Carson SJ, Girling JE, Rogers PAW, Giudice LC, Montgomery GW. Genetic risk factors for endometriosis near estrogen receptor 1 and coexpression of genes in this region in endometrium. Mol Hum Reprod 2021; 27:gaaa082. [PMID: 33394050 PMCID: PMC8453628 DOI: 10.1093/molehr/gaaa082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/29/2020] [Indexed: 01/14/2023] Open
Abstract
The etiology and pathogenesis of endometriosis are complex with both genetic and environmental factors contributing to disease risk. Genome-wide association studies (GWAS) have identified multiple signals in the estrogen receptor 1 (ESR1) region associated with endometriosis and other reproductive traits and diseases. In addition, candidate gene association studies identified signals in the ESR1 region associated with endometriosis risk suggesting genetic regulation of genes in this region may be important for reproductive health. This study aimed to investigate hormonal and genetic regulation of genes in the ESR1 region in human endometrium. Changes in serum oestradiol and progesterone concentrations and expression of hormone receptors ESR1 and progesterone receptor (PGR) were assessed in endometrial samples from 135 women collected at various stages of the menstrual cycle. Correlation between hormone concentrations, receptor expression and expression of genes in the ESR1 locus was investigated. The effect of endometriosis risk variants on expression of genes in the region was analyzed to identify gene targets. Hormone concentrations and receptor expression varied significantly across the menstrual cycle. Expression of genes in the ESR1 region correlated with progesterone concentration; however, they were more strongly correlated with expression of ESR1 and PGR suggesting coregulation of genes. There was no evidence that endometriosis risk variants directly regulated expression of genes in the region. Limited sample size and cellular heterogeneity in endometrial tissue may impact the ability to detect significant genetic effects on gene expression. Effects of these variants should be validated in a larger dataset and in relevant individual cell types.
Collapse
Affiliation(s)
- S Marla
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - S Mortlock
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - S Houshdaran
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - J Fung
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - B McKinnon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Department of Gynaecology, Inselspital, Bern, Switzerland
| | - S J Holdsworth-Carson
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, Royal Women’s Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - J E Girling
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, Royal Women’s Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - P A W Rogers
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, Royal Women’s Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - L C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - G W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
The Genetic Background of Endometriosis: Can ESR2 and CYP19A1 Genes Be a Potential Risk Factor for Its Development? Int J Mol Sci 2020; 21:ijms21218235. [PMID: 33153202 PMCID: PMC7663510 DOI: 10.3390/ijms21218235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial foci, localized beyond their primary site, i.e., the uterine cavity. The etiology of this disease is rather complex. Its development is supported by hormonal, immunological, and environmental factors. During recent years, particular attention has been focused on the genetic mechanisms that may be of particular significance for the increased incidence rates of endometriosis. According to most recent studies, ESR2 and CYP19A1 genes may account for the potential risk factors of infertility associated with endometriosis. The paper presents a thorough review of the latest reports and data concerning the genetic background of the risk for endometriosis development.
Collapse
|
16
|
Chen H, Malentacchi F, Fambrini M, Harrath AH, Huang H, Petraglia F. Epigenetics of Estrogen and Progesterone Receptors in Endometriosis. Reprod Sci 2020; 27:1967-1974. [PMID: 32700282 DOI: 10.1007/s43032-020-00226-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Endometriosis is an estrogen-dependent inflammatory gynecological disease. Increased estrogen activity and progesterone resistance are the main hormonal substrate of this disease and are associated with inflammatory response and debilitating symptoms, including pain and infertility. Estrogens and progesterone act via their specific nuclear receptors. The regulation of receptor expression by epigenetics maybe a critical factor for endometriosis. The present review aims to discuss the epigenetic mechanisms related to the expression of estrogen receptors (ERs) and progesterone receptors (PRs) in patients with endometriosis, including two classic epigenetic mechanisms: DNA methylation and histone modification, and, other non-classic mechanisms: miRNAs and lncRNA. Several in vitro and in vivo studies support the key role of epigenetics in the regulation of the expression of ERs and PRs, which may provide new molecules and targets for the diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Huixi Chen
- Obstetrics and Gynecology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Francesca Malentacchi
- Obstetrics and Gynecology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Massimiliano Fambrini
- Obstetrics and Gynecology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Said University, Riyadh, Saudi Arabia
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Felice Petraglia
- Obstetrics and Gynecology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
17
|
Yilmaz BD, Bulun SE. Endometriosis and nuclear receptors. Hum Reprod Update 2020; 25:473-485. [PMID: 30809650 DOI: 10.1093/humupd/dmz005] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/03/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is recognized as a steroid-dependent disorder; however, the precise roles of nuclear receptors (NRs) in steroid responsiveness and other signaling pathways are not well understood. OBJECTIVE AND RATIONALE Over the past several years, a number of paradigm-shifting breakthroughs have occurred in the area of NRs in endometriosis. We review and clarify new information regarding the mechanisms responsible for: (i) excessive estrogen biosynthesis, (ii) estrogen-dependent inflammation, (iii) defective differentiation due to progesterone resistance and (iv) enhanced survival due to deficient retinoid production and action in endometriosis. We emphasize the roles of the relevant NRs critical for these pathological processes in endometriosis. SEARCH METHODS We conducted a comprehensive search using PubMed for human, animal and cellular studies published until 2018 in the following areas: endometriosis; the steroid and orphan NRs, estrogen receptors alpha (ESR1) and beta (ESR2), progesterone receptor (PGR), steroidogenic factor-1 (NR5A1) and chicken ovalbumin upstream promoter-transcription factor II (NR2F2); and retinoids. OUTCOMES Four distinct abnormalities in the intracavitary endometrium and extra-uterine endometriotic tissue underlie endometriosis progression: dysregulated differentiation of endometrial mesenchymal cells, abnormal epigenetic marks, inflammation activated by excess estrogen and the development of progesterone resistance. Endometriotic stromal cells compose the bulk of the lesions and demonstrate widespread epigenetic abnormalities. Endometriotic stromal cells also display a wide range of abnormal NR expression. The orphan NRs NR5A1 and NR2F2 compete to regulate steroid-synthesizing genes in endometriotic stromal cells; NR5A1 dominance gives rise to excessive estrogen formation. Endometriotic stromal cells show an abnormally low ESR1:ESR2 ratio due to excessive levels of ESR2, which mediates an estrogen-driven inflammatory process and prostaglandin formation. These cells are also deficient in PGR, leading to progesterone resistance and defective retinoid synthesis. The pattern of NR expression, involving low ESR1 and PGR and high ESR2, is reminiscent of uterine leiomyoma stem cells. This led us to speculate that endometriotic stromal cells may display stem cell characteristics found in other uterine tissues. The biologic consequences of these abnormalities in endometriotic tissue include intense inflammation, defective differentiation and enhanced survival. WIDER IMPLICATIONS Steroid- and other NR-related abnormalities exert genome-wide biologic effects via interaction with defective epigenetic programming and enhance inflammation in endometriotic stromal cells. New synthetic ligands, targeting PGR, retinoic acid receptors and ESR2, may offer novel treatment options.
Collapse
Affiliation(s)
- Bahar D Yilmaz
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| |
Collapse
|
18
|
Human Endometriosis Tissue Microarray Reveals Site-specific Expression of Estrogen Receptors, Progesterone Receptor, and Ki67. Appl Immunohistochem Mol Morphol 2020; 27:491-500. [PMID: 29629944 DOI: 10.1097/pai.0000000000000663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most available therapies for endometriosis are hormone-based and generally broadly used without taking into consideration the ovarian hormone receptor expression status. This contrasts strikingly with the standard of care for other hormone-based conditions such as breast cancer. We therefore aimed to characterize the expression of ovarian steroid hormone receptors for estrogen alpha (ESR1), estrogen beta (ESR2), and progesterone (PGR) in different types of endometriotic lesions and eutopic endometrium from women with endometriosis and controls using a tissue microarray (TMA). Nuclear expression levels of the receptors were analyzed by tissue (ie, ectopic vs. eutopic endometrium) and cell type (ie, glands vs. stroma). Ovarian lesions showed the lowest expression of ESR1 and PGR, and the highest expression of ESR2, whereas the fallopian tube lesions showed high expression of the 3 receptors. Differences among endometria included lower expression of ESR1 and higher expression of ESR2 in stroma of proliferative endometrium from patients versus patients, and a trend towards loss of PGR nuclear positivity in proliferative endometrium from patients. The largest ESR2:ESR1 ratios were observed in ovarian lesions and secretory endometrium. The highest proportion of samples with >10% Ki67 positive nuclei was in glands of fallopian tube (54%) and extrapelvic lesions (75%); 60% of glands of secretory endometrium from patients had >10% Ki67 positivity compared with only 15% in controls. Our results provide a better understanding of endometriosis heterogeneity by revealing lesion type-specific differences and case-by-case variability in the expression of ovarian hormone receptors. This knowledge could potentially predict individual responses to hormone therapies, and set the basis for the application of personalized medicine approaches for women with endometriosis.
Collapse
|
19
|
Chantalat E, Valera MC, Vaysse C, Noirrit E, Rusidze M, Weyl A, Vergriete K, Buscail E, Lluel P, Fontaine C, Arnal JF, Lenfant F. Estrogen Receptors and Endometriosis. Int J Mol Sci 2020; 21:ijms21082815. [PMID: 32316608 PMCID: PMC7215544 DOI: 10.3390/ijms21082815] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is a frequent and chronic inflammatory disease with impacts on reproduction, health and quality of life. This disorder is highly estrogen-dependent and the purpose of hormonal treatments is to decrease the endogenous ovarian production of estrogens. High estrogen production is a consistently observed endocrine feature of endometriosis. mRNA and protein levels of estrogen receptors (ER) are different between a normal healthy endometrium and ectopic/eutopic endometrial lesions: endometriotic stromal cells express extraordinarily higher ERβ and significantly lower ERα levels compared with endometrial stromal cells. Aberrant epigenetic regulation such as DNA methylation in endometriotic cells is associated with the pathogenesis and development of endometriosis. Although there is a large body of data regarding ERs in endometriosis, our understanding of the roles of ERα and ERβ in the pathogenesis of endometriosis remains incomplete. The goal of this review is to provide an overview of the links between endometriosis, ERs and the recent advances of treatment strategies based on ERs modulation. We will also attempt to summarize the current understanding of the molecular and cellular mechanisms of action of ERs and how this could pave the way to new therapeutic strategies.
Collapse
Affiliation(s)
- Elodie Chantalat
- IUCT Oncopole, 31100 Toulouse, France
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Marie-Cécile Valera
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
- Correspondence:
| | | | - Emmanuelle Noirrit
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Mariam Rusidze
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| | | | | | - Etienne Buscail
- Department of Visceral Surgery, CHU Rangueil, 31400 Toulouse, France
| | | | - Coralie Fontaine
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Jean-François Arnal
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Françoise Lenfant
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| |
Collapse
|
20
|
Mishra A, Galvankar M, Singh N, Modi D. Spatial and temporal changes in the expression of steroid hormone receptors in mouse model of endometriosis. J Assist Reprod Genet 2020; 37:1069-1081. [PMID: 32152908 DOI: 10.1007/s10815-020-01725-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Endometriosis is recognized as a steroid hormone-dependent disorder. However, controversies exist regarding the status of the steroid hormone receptor expression in endometriotic tissues. The purpose of this study was to determine the ontogeny of cellular changes in the expression of estrogen receptors (ERα, ERβ), G protein-coupled estrogen receptor 1 (GPER1), and progesterone receptors (PRs) in endometriosis using a mouse model. METHODS We used the autologous uterine tissue transfer mouse model and studied the mRNA and protein expression of ERα, ERβ, GPER1, and PR in ectopic lesions at 2, 4, and 8 weeks of induction of endometriosis. RESULT As compared to endometrium of controls, in the ectopic endometrium, ERα is reduced while ERβ was elevated in stromal cells; however, Gper1 and PR levels are reduced in both stromal and epithelial cells in a time-specific manner. There is a high inter-animal variation in the levels of these receptors in ectopic endometrium as compared to controls; the levels also varied by almost 100-fold within the same lesion resulting in "micro-heterogeneity." The expression of all these receptors also deferred between two lesions from the same animal. CONCLUSION In the endometriotic tissue, there is extensive inter-animal and intra-lesion heterogeneity in the expression of ERα, ERβ, GPER1, and PR. These changes are not due to the influence of the peritoneal environment but appear to be tissue intrinsic. We propose that the variable outcomes in hormonal therapy for endometriosis could be possibly due to heterogeneity in the expression of steroid hormone receptors in the ectopic endometrium.
Collapse
Affiliation(s)
- Anuradha Mishra
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India
| | - Mosami Galvankar
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India
| | - Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
21
|
Mori T, Ito F, Koshiba A, Kataoka H, Takaoka O, Okimura H, Khan KN, Kitawaki J. Local estrogen formation and its regulation in endometriosis. Reprod Med Biol 2019; 18:305-311. [PMID: 31607790 PMCID: PMC6780031 DOI: 10.1002/rmb2.12285] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It has been well established that endometriosis is an estrogen-dependent disease. Although the exact pathogenesis of the disease is still unclear, it is known to be characterized by estrogen-dependent growth and maintenance of the ectopic endometrium and increased local estrogen production. METHODS The authors reviewed studies on local estrogen production and estrogen activities mediated by estrogen receptors in endometriotic tissues. MAIN FINDINGS Aberrant expression of several enzymes in local endometriotic lesions contributed to the production and metabolism of estrogens. Aromatase was one of the key therapeutic targets for the regulation of local estrogen formation. Our findings suggest that PGC-1a, a transcriptional coactivator-modulating steroid hormone, regulates aromatase expression and activity. Estrogen activities mediated by different types of estrogen receptors abnormally elevated in local tissues could also be involved in the development of endometriosis. The authors demonstrated that the isoflavone aglycone, a partial agonist of the estrogen receptor, suppressed the formation of endometriotic lesions. CONCLUSIONS Local estrogen production and estrogen activity mediated by estrogen receptors are important potential therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Fumitake Ito
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Akemi Koshiba
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Hisashi Kataoka
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Osamu Takaoka
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroyuki Okimura
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Khaleque N. Khan
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
22
|
Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci 2019; 20:E3822. [PMID: 31387263 PMCID: PMC6695957 DOI: 10.3390/ijms20153822] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Guro Hospital, Korea University Medical Center, Seoul 08318, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
23
|
Maharajaa SPK, Asally R, Markham R, Manconi F. Endometriotic lesions. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2019. [DOI: 10.1177/2284026519838748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endometriosis is a complex gynaecological condition affecting women of reproductive age. It is characterised by the presence of lesions containing endometrial glands and stroma outside the uterus. The disease is typically associated with pelvic pain (including dysmenorrhoea and dyspareunia), infertility and bowel-related symptoms. Endometriotic lesions have a highly variable presentation and most commonly occur in the abdominal cavity. These lesions are broadly classified into peritoneal, ovarian and deep infiltrating endometriosis. There have been observations of increased density of nerve fibres and neurological molecules in the endometriotic lesions compared to the uninvolved peritoneum of women without endometriosis and the presence of unmyelinated nerve fibres were higher near the glands. The lesion sites are characterised by a range of immunological alterations, and specific immune cell populations have also been known to synthesise and secrete neurogenic factors. Endometriotic lesions are capable of producing prostaglandins which are direct generators of pain and are capable of inducing inflammation. Diagnosing the disease involves direct visualisation of the lesions through a laparoscopic or laparotomy, which is followed by histopathological examination of biopsied or excised lesions. The staging of endometriosis due to its complexity is highly variable as presentation and gaps in knowledge pose a great challenge in the classification of the disease. The medical management of endometriosis aims at providing adequate analgesia and suppression of the activity of the lesion. A better understanding of endometriotic lesion relationships between innervations and specific clinical characteristics may elucidate aspects of pain mechanisms and infertility in endometriosis and facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Sri PK Maharajaa
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Camperdown, NSW, Australia
| | - Razan Asally
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Camperdown, NSW, Australia
| | - Robert Markham
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Camperdown, NSW, Australia
| | - Frank Manconi
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
24
|
Seven Hormonal Biomarkers for Diagnosing Endometriosis: Meta-Analysis and Adjusted Indirect Comparison of Diagnostic Test Accuracy. J Minim Invasive Gynecol 2019; 26:1026-1035.e4. [PMID: 30965114 DOI: 10.1016/j.jmig.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To compare the diagnostic accuracy of different hormonal biomarkers and to find the most effective hormonal biomarker for the diagnosis of endometriosis. DATA SOURCES We conducted a systematic search using PubMed, EMBASE, Cochrane Library, and China Biomedical Literature to identify relevant studies from the first day of databases to August 2018. METHODS OF STUDY SELECTION Two independent reviewers screened for study eligibility and extracted data. Random controlled trials, cross-sectional studies, case-control studies, and cohort studies evaluating the diagnostic accuracy of hormonal markers for endometriosis were included. TABULATION, INTEGRATION, AND RESULTS We included 17 studies that involved 1279 participants and evaluated 7 hormonal biomarkers. The pooled sensitivity and specificity in endometriosis were .79 (.71, .86) and .89 (.82, .94) for aromatase, .30 (.18, .46) and .80 (.65, .90) for human chorionic gonadotropin/luteinizing hormone receptor, .75 (.66, .83) and .47 (.34, .60) for estrogen receptor (ER)-α, .65 (.56, .74) and .68 (.55, .80) for ER-β, .45 (.38-.52) and .92 (.85-.97) for serum prolactin, .69 (.51, .83) and .30 (.16, .49) for estrogen sulfotransferase, and .73 (.60-.84) and .48 (.33-.63) for 17β-hydroxysteroid dehydrogenase type 2 (17βHSD2). Compared with human chorionic gonadotropin/luteinizing hormone receptor, ER-α, ER-β, estrogen sulfotransferase, and 17βHSD2, aromatase had a higher sensitivity, specificity, positive likelihood ratio, and diagnostic odds ratio. The specificities of aromatase and serum prolactin were comparable, but the sensitivity, positive likelihood ratio, and positive likelihood ratio of serum prolactin were much lower than that of aromatase. CONCLUSION Aromatase may be an excellent diagnostic test for endometriosis. However, because of the moderate quality of the included studies and the limited sample size, this result requires more research to validate. (PROSPERO registration number: PROSPERO 2018 CRD42018105126.).
Collapse
|
25
|
Differentially-Expressed miRNAs in Ectopic Stromal Cells Contribute to Endometriosis Development: The Plausible Role of miR-139-5p and miR-375. Int J Mol Sci 2018; 19:ijms19123789. [PMID: 30487429 PMCID: PMC6321240 DOI: 10.3390/ijms19123789] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023] Open
Abstract
microRNA (miRNA) expression level alterations between endometrial tissue and endometriotic lesions indicate their involvement in endometriosis pathogenesis. However, as both endometrium and endometriotic lesions consist of different cell types in various proportions, it is not clear which cells contribute to variability in miRNA levels and the overall knowledge about cell-type specific miRNA expression in ectopic cells is scarce. Therefore, we utilized fluorescence-activated cell sorting to isolate endometrial stromal cells from paired endometrial and endometrioma biopsies and combined it with high-throughput sequencing to determine miRNA alterations in endometriotic stroma. The analysis revealed 149 abnormally expressed miRNAs in endometriotic lesions, including extensive upregulation of miR-139-5p and downregulation of miR-375 compared to eutopic cells. miRNA transfection experiments in the endometrial stromal cell line ST-T1b showed that the overexpression of miR-139-5p resulted in the downregulation of homeobox A9 (HOXA9) and HOXA10 expression, whereas the endothelin 1 (EDN1) gene was regulated by miR-375. The results of this study provide further insights into the complex molecular mechanisms involved in endometriosis pathogenesis and demonstrate the necessity for cell-type-specific analysis of ectopic tissues to understand the interactions between different cell populations in disease onset and progression.
Collapse
|
26
|
Bakhtiarizadeh MR, Hosseinpour B, Shahhoseini M, Korte A, Gifani P. Weighted Gene Co-expression Network Analysis of Endometriosis and Identification of Functional Modules Associated With Its Main Hallmarks. Front Genet 2018; 9:453. [PMID: 30369943 PMCID: PMC6194152 DOI: 10.3389/fgene.2018.00453] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Although many genes have been identified using high throughput technologies in endometriosis (ES), only a small number of individual genes have been analyzed functionally. This is due to the complexity of the disease that has different stages and is affected by various genetic and environmental factors. Many genes are upregulated or downregulated at each stage of the disease, thus making it difficult to identify key genes. In addition, little is known about the differences between the different stages of the disease. We assumed that the study of the identified genes in ES at a system-level can help to better understand the molecular mechanism of the disease at different stages of the development. We used publicly available microarray data containing archived endometrial samples from women with minimal/mild endometriosis (MMES), mild/severe endometriosis (MSES) and without endometriosis. Using weighted gene co-expression analysis (WGCNA), functional modules were derived from normal endometrium (NEM) as the reference sample. Subsequently, we tested whether the topology or connectivity pattern of the modules was preserved in MMES and/or MSES. Common and specific hub genes were identified in non-preserved modules. Accordingly, hub genes were detected in the non-preserved modules at each stage. We identified sixteen co-expression modules. Of the 16 modules, nine were non-preserved in both MMES and MSES whereas five were preserved in NEM, MMES, and MSES. Importantly, two non-preserved modules were found in either MMES or MSES, highlighting differences between the two stages of the disease. Analyzing the hub genes in the non-preserved modules showed that they mostly lost or gained their centrality in NEM after developing the disease into MMES and MSES. The same scenario was observed, when the severeness of the disease switched from MMES to MSES. Interestingly, the expression analysis of the new selected gene candidates including CC2D2A, AEBP1, HOXB6, IER3, and STX18 as well as IGF-1, CYP11A1 and MMP-2 could validate such shifts between different stages. The overrepresented gene ontology (GO) terms were enriched in specific modules, such as genetic disposition, estrogen dependence, progesterone resistance and inflammation, which are known as endometriosis hallmarks. Some modules uncovered novel co-expressed gene clusters that were not previously discovered.
Collapse
Affiliation(s)
| | - Batool Hosseinpour
- Department of Agriculture, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Peyman Gifani
- Cambridge Systems Biology Centre, Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,AI VIVO Ltd., St. John's Innovation Centre, Cambridge, United Kingdom
| |
Collapse
|
27
|
Asghari S, Valizadeh A, Aghebati-Maleki L, Nouri M, Yousefi M. Endometriosis: Perspective, lights, and shadows of etiology. Biomed Pharmacother 2018; 106:163-174. [DOI: 10.1016/j.biopha.2018.06.109] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/24/2022] Open
|
28
|
Sroyraya M, Songkoomkrong S, Changklungmoa N, Poljaroen J, Weerakiet S, Sophonsritsuk A, Wongkularb A, Lertvikool S, Tingthanatikul Y, Sobhon P. Differential expressions of estrogen and progesterone receptors in endometria and cyst walls of ovarian endometrioma from women with endometriosis and their responses to depo-medroxyprogesterone acetate treatment. Mol Cell Probes 2018; 40:27-36. [PMID: 30078406 DOI: 10.1016/j.mcp.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Depo-medroxyprogesterone acetate (DMPA) is an injectable progestin contraceptive that provides a highly effective reduction of pelvic pain in women with endometriosis. Despite its wide use to treat pain associated with endometriosis, its precise mechanisms of action remain unclear. The aims of this study were to investigate the differential expressions of estrogen receptors (ERs), and progesterone receptors (PRs) in endometria and ovarian endometrioma cyst walls of women with endometriosis with and without DMPA treatment. METHODS Endometria and cyst walls of endometrioma were obtained from 25 to 45 year-old women who suffered from endometriosis and had ovarian endometrioma with the size ≥3 cm. The expression levels of ERs and PRs and the numbers of ER- and PR-positive cells before and after treatment with DMPA were evaluated by Western blot, real-time PCR, and immunohistochemistry. RESULTS The levels of ERα and ERβ expression, their corresponding mRNAs, and numbers of ERα- and ERβ-immunoreactive cells in stroma and glands of endometria of the DMPA group were significantly decreased when compared with those of the untreated groups (p < 0.05). In contrast, the levels of PRA/B expression and numbers of PRA/B positive cells in stroma and number of PRB positive cells in stroma and endometrial glands were significantly increased in endometria of the DMPA group when compared with those of the untreated groups. However, in cyst wall the expression levels of these proteins, their corresponding mRNAs, and immonoractive cells were low compared to those in endometria, and DMPA-treatment did not cause any significant changes in these parameters. CONCLUSION These data indicated that DMPA could upregulate the expressions of PRA/B and down-regulate ERα and ERβ in endometria but not in cyst walls from women with endometriosis.
Collapse
Affiliation(s)
- Morakot Sroyraya
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand
| | | | - Narin Changklungmoa
- Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Jaruwan Poljaroen
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand
| | - Sawaek Weerakiet
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Areepan Sophonsritsuk
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Anna Wongkularb
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Srithean Lertvikool
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yada Tingthanatikul
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand.
| |
Collapse
|
29
|
Silveira CGT, Rogatto SR, Podgaec S, Abrão MS. Recent Advances in Molecular Genetics of Endometriosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/228402650900100103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endometriosis (MIM 131200) is a prevalent and complex gynecological disease polygenically inherited with multifactorial pathogenesis. It is increasingly recognized as a major women's health issue. Endometriosis is characterized by the presence of endometrial-like tissue in sites outside the uterus, mainly the pelvic peritoneum, ovaries and rectovaginal septum causing severe dysmenorrhoea, dyspareunia, chronic pelvic pain and subfertility. Recent advances in molecular technologies have provided many evidences about the underlying biological events that are likely to be involved in the development of endometriosis. Different chromosomal regions, genes and other molecules, such as microRNAs, have been identified as potentially involved in endometriosis pathogenesis. Moreover, genome-wide analyses of endometriosis have showed novel molecular signatures or individual genes that had not been previously associated with the disease. The goal of these studies is to provide information that might, in turn, lead to new therapies. In this review, some previous studies were updated supporting the polygenic/multifactorial inheritance and the association with malignant neoplasias. We have also emphasized the importance of identifying the causative genes and determining novel diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
| | - Silvia Regina Rogatto
- Department of Research, Antonio Prudente Foundation, AC Camargo Hospital, São Paulo and Department of Urology, School of Medicine, UNESP, Botucatu, São Paulo
| | - Sérgio Podgaec
- Department of Obstetrics and Gynecology, University of São Paulo Medical School, São Paulo - Brazil
| | - Mauricio Simões Abrão
- Department of Obstetrics and Gynecology, University of São Paulo Medical School, São Paulo - Brazil
| |
Collapse
|
30
|
Adurthi S, Kumar MM, Vinodkumar HS, Mukherjee G, Krishnamurthy H, Acharya KK, Bafna UD, Uma DK, Abhishekh B, Krishna S, Parchure A, Alka M, Jayshree RS. Oestrogen Receptor-α binds the FOXP3 promoter and modulates regulatory T-cell function in human cervical cancer. Sci Rep 2017; 7:17289. [PMID: 29229929 PMCID: PMC5725534 DOI: 10.1038/s41598-017-17102-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Oestrogen controls Foxp3 expression in regulatory T cells (Treg cells) via a mechanism thought to involve oestrogen receptor alpha (ERα), but the molecular basis and functional impact of ERα signalling in Treg cells remain unclear. We report that ERα ligand oestradiol (E2) is significantly increased in human cervical cancer (CxCa) tissues and tumour-infiltrating Treg cells (CD4+CD25hiCD127low), whereas blocking ERα with the antagonist ICI 182,780 abolishes FOXP3 expression and impairs the function of CxCa infiltrating Treg cells. Using a novel approach of co-immunoprecipitation with antibodies to E2 for capture, we identified binding of E2:ERα complexes to FOXP3 protein in CxCa-derived Treg cells. Chromatin immunoprecipitation analyses of male blood Treg cells revealed ERα occupancy at the FOXP3 promoter and conserved non-coding DNA elements 2 and 3. Accordingly, computational analyses of the enriched regions uncovered eight putative oestrogen response elements predicted to form a loop that can activate the FOXP3 promoter. Together, these data suggest that E2-mediated ERα signalling is critical for the sustenance of FOXP3 expression and Treg cell function in human CxCa via direct interaction of ERα with FOXP3 promoter. Overall, our work gives a molecular insight into ERα signalling and highlights a fundamental role of E2 in controlling human Treg cell physiology.
Collapse
Affiliation(s)
- Sreenivas Adurthi
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Mahesh M Kumar
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - H S Vinodkumar
- Shodhaka Life Sciences Private Limited, Bangalore, India
- Structural Biology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Geetashree Mukherjee
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - H Krishnamurthy
- National Center for Biological Sciences, TIFR, Bangalore, India
| | - K Kshitish Acharya
- Shodhaka Life Sciences Private Limited, Bangalore, India
- Institute of Bioinformatics And Applied Biotechnology, Bangalore, India
| | - U D Bafna
- Department of Gynecology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Devi K Uma
- Department of Gynecology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - B Abhishekh
- Department of Immunohematology, Kidwai Memorial Institute of Oncology, Bangalore, India
- Department of Transfusion Medicine, JIPMER, Puducherry, India
| | - Sudhir Krishna
- National Center for Biological Sciences, TIFR, Bangalore, India
| | - A Parchure
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Murali Alka
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - R S Jayshree
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India.
| |
Collapse
|
31
|
Amant F, Huys E, Geurts-Moespot A, Lindeque BG, Vergote I, Sweep F, Schoenmakers EFPM. Ethnic Variations in Uterine Leiomyoma Biology Are Not Caused By Differences in Myometrial Estrogen Receptor Alpha Levels. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760200253-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Frédéric Amant
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology,University Hospitals Leuven, Leuven, Belgium; Department of Human Genetics, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Department of Chemical Endocrinology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Department of Obstetrics and Gynecology, Pretoria Academic Hospital, Pretoria, South Africa
| | | | | | | | | | | | - Eric F. P. M. Schoenmakers
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology,University Hospitals Leuven, Leuven, Belgium; Department of Human Genetics, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Department of Chemical Endocrinology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Department of Obstetrics and Gynecology, Pretoria Academic Hospital, Pretoria, South Africa
| |
Collapse
|
32
|
Zhang L, Xiong W, Xiong Y, Liu H, Liu Y. 17 β-Estradiol promotes vascular endothelial growth factor expression via the Wnt/β-catenin pathway during the pathogenesis of endometriosis. Mol Hum Reprod 2016; 22:526-35. [DOI: 10.1093/molehr/gaw025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/14/2016] [Indexed: 01/11/2023] Open
|
33
|
Vinci G, Arkwright S, Audebourg A, Radenen B, Chapron C, Borghese B, Dousset B, Mehats C, Vaiman D, Vacher-Lavenu MC, Gogusev J. Correlation Between the Clinical Parameters and Tissue Phenotype in Patients Affected by Deep-Infiltrating Endometriosis. Reprod Sci 2016; 23:1258-68. [PMID: 26994067 DOI: 10.1177/1933719116638188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The current study aimed to identify and validate an applicable immunohistochemistry panel including Ki-67, c-MYC, estrogen receptor-α (ER-α), and progesterone receptor isoforms A/B (PR-A/B) in correlation with clinicopathological parameters in patients affected by deep infiltrating endometriosis. Tissue microarrays were prepared from a cohort of 113 patients. Phenotypic profile of the panel molecules was evaluated in glands and stroma in parallel with microvessels and stroma density measurements. Principal component analysis was performed on 8 immunohistochemical variables, 2 histological variables, and 8 subgroups of clinical parameters. The immunohistochemical profiling showed consistent Ki-67 immunostaining in 17.9% of the samples and c-MYC in 83.1%, while intense ER-α immunoreactivity was detected in 84% of the samples and PR-A/B isoforms in 24.1% of them. The combination of clinical parameters and tissue phenotype allowed a stratification of endometriosis-affected patients. Such novel phenotypical and clinical correlation could be helpful in the future studies for a better stratification of the disease aiming at a personalized patient care.
Collapse
Affiliation(s)
- Giovanna Vinci
- Cochin Institute, Inserm U1016, CNRS 8104, Université Paris Descartes, Paris, France
| | - Sylviane Arkwright
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Cochin Hospital, Paris, France
| | - Anne Audebourg
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Cochin Hospital, Paris, France
| | - Brigitte Radenen
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Cochin Hospital, Paris, France
| | - Charles Chapron
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest, Centre Hospitalier Universitaire Paris Centre, Paris, France
| | - Bruno Borghese
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest, Centre Hospitalier Universitaire Paris Centre, Paris, France
| | - Bertrand Dousset
- Service de Chirurgie Digestive Hépatobiliaire et Endocrinienne Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest, Centre Hospitalier Universitaire Paris Centre, Paris, France
| | - Celine Mehats
- Cochin Institute, Inserm U1016, CNRS 8104, Université Paris Descartes, Paris, France
| | - Daniel Vaiman
- Cochin Institute, Inserm U1016, CNRS 8104, Université Paris Descartes, Paris, France
| | - Marie-Cécile Vacher-Lavenu
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Cochin Hospital, Paris, France
| | - Jean Gogusev
- Cochin Institute, Inserm U1016, CNRS 8104, Université Paris Descartes, Paris, France
| |
Collapse
|
34
|
Han L, Zheng A, Wang H. Clear cell carcinoma arising in previous episiotomy scar: a case report and review of the literature. J Ovarian Res 2016; 9:1. [PMID: 26754828 PMCID: PMC4709960 DOI: 10.1186/s13048-016-0211-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023] Open
Abstract
Background Malignant transformation of endometriosis associated with episiotomy scar is a rare event, especially histological type of clear cell adenocarcinoma. There are only three clear cell carcinoma in episiotomy scar reported, no standard treatment established. Case presentation A 36-year-old woman presented with a two-month history of painless but puritic perineal lump which she noticed was gradually enlarging. She had undergone surgical excision of a mass in the episiotomy scar 9 year ago and resequently histological type of endometriosis. Physical examination revealed a 10 × 5 cm soft, purple scar which is closely related to the apex of the episiotomy.We underwent a local excision of the mass for a biopsy . The second surgery performed after one cycle of paclitaxel and cisplatin (TP) to permit clearance of tumor while preserving normal vaginal function.Pathological result was clear cell adenocarcinoma. Two cycles of TP adjuvant chemotherapy were administrated after surgery. Conclusions We report a case of primary clear cell carcinoma developing within a previous episiotomy scar in a patient with a history of endometriosis, along with a review of the literature. Accumulation of management data on these rare tumors and Long-term follow-up of such patients is therefore important.
Collapse
Affiliation(s)
- Ling Han
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, China.
| | - Ai Zheng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, China.
| | - He Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, China.
| |
Collapse
|
35
|
Pluchino N, Freschi L, Wenger JM, Streuli I. Innovations in classical hormonal targets for endometriosis. Expert Rev Clin Pharmacol 2016; 9:317-27. [PMID: 26645363 DOI: 10.1586/17512433.2016.1129895] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endometriosis is a chronic disease of unknown etiology that affects approximately 10% of women in reproductive age. Several evidences show that endometriosis lesions are associated to hormonal imbalance, including estrogen synthesis, metabolism and responsiveness and progesterone resistance. These hormonal alterations influence the ability of endometrial cells to proliferate, migrate and to infiltrate the mesothelium, causing inflammation, pain and infertility. Hormonal imbalance in endometriosis represents also a target for treatment. We provide an overview on therapeutic strategies based on innovations of classical hormonal mechanisms involved in the development of endometriosis lesions. The development phase of new molecules targeting these pathways is also discussed. Endometriosis is a chronic disease involving young women and additional biological targets of estrogen and progesterone pharmacological manipulation (brain, bone and cardiovascular tissue) need to be carefully considered in order to improve and overcome current limits of long-term medical management of endometriosis.
Collapse
Affiliation(s)
- Nicola Pluchino
- a Division of Obstetrics and Gynecology , University Hospital of Geneva , Geneva , Switzerland
| | - Letizia Freschi
- b Division of Obstetrics and Gynecology , University Hospital of Pisa , Pisa , Italy
| | - Jean-Marie Wenger
- a Division of Obstetrics and Gynecology , University Hospital of Geneva , Geneva , Switzerland
| | - Isabelle Streuli
- a Division of Obstetrics and Gynecology , University Hospital of Geneva , Geneva , Switzerland
| |
Collapse
|
36
|
Abstract
Endometriosis may be a precursor lesion for some epithelial ovarian cancers (EOCs), especially those of clear cell and endometrioid histologies. The causality of this relationship remains controversial and in need of further investigation because the high prevalence of endometriosis and high mortality of EOC carry significant public health implications if the association is real. Endometriosis-associated ovarian cancer (EAOC) often presents at an earlier stage and with lower-grade lesions than non-EAOC. After surgical resection, these patients also tend to have less residual disease than do patients with non-EAOC. Survival has been reported to be better for women with EAOC. The tumor suppression gene, ARID1A, is frequently disrupted in EAOC. The ARID1A mutation has been reported in preneoplastic lesions and may be an early marker in the transformation of endometriosis into cancer. The current evidence in respect to critical molecular pathways underscores the need to investigate possible role of targeted therapies in the treatment of EAOC.
Collapse
|
37
|
Sanchez AM, Viganò P, Somigliana E, Cioffi R, Panina-Bordignon P, Candiani M. The endometriotic tissue lining the internal surface of endometrioma: hormonal, genetic, epigenetic status, and gene expression profile. Reprod Sci 2015; 22:391-401. [PMID: 24700055 PMCID: PMC4812685 DOI: 10.1177/1933719114529374] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovarian endometriomas are found in a consistent proportion of patients with endometriosis and are associated with a more severe form of the disease. The endometriotic tissue lining the inside of the endometrioma has been extensively studied over the years mostly for the need to compare the molecular and cellular characteristics of eutopic and ectopic endometria. Several aspects of hormonal regulation, response to local inflammation, carcinogenesis, and modifications of the local environment have been investigated in order to characterize also the processes associated with peritoneal endometriosis. In this review, we have summarized the current knowledge of pathophysiology of endometrioma, with a particular focus on the cellular components lining the internal surface of the cyst in order to provide a comprehensive overview of the hormonal, genetic, epigenetic, and gene expression profiles of this essential part of the cyst.
Collapse
Affiliation(s)
- Ana Maria Sanchez
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, San Raffaele Scientific Institute, Milano, Italy
| | - Paola Viganò
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Edgardo Somigliana
- Department of Obstetrics, Gynecology and Neonatology, Fondazione Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Raffaella Cioffi
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Paola Panina-Bordignon
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Candiani
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Vita-Salute University, Milano, Italy
| |
Collapse
|
38
|
Wang CT, Wang DB, Liu KR, Li Y, Sun CX, Guo CS, Ren F. Inducing malignant transformation of endometriosis in rats by long-term sustaining hyperestrogenemia and type II diabetes. Cancer Sci 2015; 106:43-50. [PMID: 25421527 PMCID: PMC4317770 DOI: 10.1111/cas.12573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 10/27/2022] Open
Abstract
This study aimed to induce malignant transformation of endometriosis in Sprague-Dawley rats by hyperestrogenemia and type II diabetes and evaluate its similarity with human disease in biological features. Rats with surgically induced endometriosis were randomized into two groups: those treated with estradiol (5 mg/kg three times/week after surgery), streptozotocin (25 mg/kg, 1 month after surgery), and high carbohydrate-and-fat feed (Es group); and those treated with placebo saline and standard feed (control group). All rats were randomly killed 2, 4, or 8 months after surgery. The endometriosis lesions and the corresponding eutopic endometria were subjected to morphological evaluation, TUNEL, and immunohistochemical analysis for the expressions of proliferating cell nuclear antigen, phosphatase and tensin homolog, phosphorylated protein kinase B, and phosphorylated mammalian target of rapamycin proteins. In the Es group, three cases (6.0%) of endometriosis showed atypical hyperplasia accompanied by simple hyperplastic eutopic endometria, and two cases (4.0%) of endometriosis showed endometrioid carcinoma accompanied by atypical hyperplastic eutopic endometria. In the Es group, the activity of organelles and the expressions of proliferating cell nuclear antigen, phosphorylated protein kinase B, and phosphorylated mammalian target of rapamycin increased, and the level of phosphatase and tensin homolog and TUNEL positivity decreased progressively in the order of endometriosis, atypical endometriosis, and malignant endometriosis. The same tendency was found in the corresponding eutopic endometria. The induced malignant endometriosis showed similarities with human disease in the pathological process and histomorphological and molecular biological features. The method is feasible. The malignant transformations of endometriosis and eutopic endometria may have correlations and similarities, but the former may suffer a higher risk of canceration.
Collapse
Affiliation(s)
- Chang-Ting Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical UniversityShenyang, China
| | - Dan-Bo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical UniversityShenyang, China
| | - Kui-Ran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical UniversityShenyang, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical UniversityShenyang, China
| | - Chun-Xiao Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical UniversityShenyang, China
| | - Cui-Shan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical UniversityShenyang, China
| | - Fang Ren
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical UniversityShenyang, China
| |
Collapse
|
39
|
Hapangama D, Kamal A, Bulmer J. Estrogen receptor β: the guardian of the endometrium. Hum Reprod Update 2014; 21:174-93. [DOI: 10.1093/humupd/dmu053] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
40
|
Ferrero S, Remorgida V, Maganza C, Venturini PL, Salvatore S, Papaleo E, Candiani M, Leone Roberti Maggiore U. Aromatase and endometriosis: estrogens play a role. Ann N Y Acad Sci 2014; 1317:17-23. [DOI: 10.1111/nyas.12411] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Simone Ferrero
- Department of Obstetrics and Gynecology; San Martino Hospital and National Institute for Cancer Research; University of Genoa; Genoa Italy
| | - Valentino Remorgida
- Department of Obstetrics and Gynecology; San Martino Hospital and National Institute for Cancer Research; University of Genoa; Genoa Italy
| | - Carlo Maganza
- Department of Obstetrics and Gynecology; San Martino Hospital and National Institute for Cancer Research; University of Genoa; Genoa Italy
| | - Pier Luigi Venturini
- Department of Obstetrics and Gynecology; San Martino Hospital and National Institute for Cancer Research; University of Genoa; Genoa Italy
| | - Stefano Salvatore
- IRCCS San Raffaele Hospital and Vita-Salute; San Raffaele University Hospital; Department of Obstetrics and Gynecology; Milan Italy
| | - Enrico Papaleo
- IRCCS San Raffaele Hospital and Vita-Salute; San Raffaele University Hospital; Department of Obstetrics and Gynecology; Milan Italy
| | - Massimo Candiani
- IRCCS San Raffaele Hospital and Vita-Salute; San Raffaele University Hospital; Department of Obstetrics and Gynecology; Milan Italy
| | - Umberto Leone Roberti Maggiore
- IRCCS San Raffaele Hospital and Vita-Salute; San Raffaele University Hospital; Department of Obstetrics and Gynecology; Milan Italy
| |
Collapse
|
41
|
Han SJ, O'Malley BW. The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis. Hum Reprod Update 2014; 20:467-84. [PMID: 24634322 DOI: 10.1093/humupd/dmu002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Endometriosis is defined as the colonization and growth of endometrial tissue at anatomic sites outside the uterine cavity. Up to 15% of reproductive-aged women in the USA suffer from painful symptoms of endometriosis, such as infertility, pelvic pain, menstrual cycle abnormalities and increased risk of certain cancers. However, many of the current clinical treatments for endometriosis are not sufficiently effective and yield unacceptable side effects. There is clearly an urgent need to identify new molecular mechanisms that critically underpin the initiation and progression of endometriosis in order to develop more specific and effective therapeutics which lack the side effects of current therapies. The aim of this review is to discuss how nuclear receptors (NRs) and their coregulators promote the progression of endometriosis. Understanding the pathogenic molecular mechanisms for the genesis and maintenance of endometriosis as modulated by NRs and coregulators can reveal new therapeutic targets for alternative endometriosis treatments. METHODS This review was prepared using published gene expression microarray data sets obtained from patients with endometriosis and published literature on NRs and their coregulators that deal with endometriosis progression. Using the above observations, our current understanding of how NRs and NR coregulators are involved in the progression of endometriosis is summarized. RESULTS Aberrant levels of NRs and NR coregulators in ectopic endometriosis lesions are associated with the progression of endometriosis. As an example, endometriotic cell-specific alterations in gene expression are correlated with a differential methylation status of the genome compared with the normal endometrium. These differential epigenetic regulations can generate favorable cell-specific NR and coregulator milieus for endometriosis progression. Genetic alterations, such as single nucleotide polymorphisms and insertion/deletion polymorphisms of NR and coregulator genes, are frequently detected in ectopic lesions compared with the normal endometrium. These genetic variations impart new molecular properties to NRs and coregulators to increase their capacity to stimulate progression of endometriosis. Finally, post-translational modifications of NR coregulators, such as proteolytic processing, generate endometriosis-specific isoforms. Compared with the unmodified coregulators, these coregulator isoforms have unique functions that enhance the pathogenesis of endometriosis. CONCLUSIONS Epigenetic/genetic variations and posttranslational modifications of NRs and coregulators alter their original function so that they become potent 'drivers' of endometriosis progression.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
42
|
Elevated immunoreactivity of RANTES and CCR1 correlate with the severity of stages and dysmenorrhea in women with deep infiltrating endometriosis. Acta Histochem 2013; 115:434-9. [PMID: 23219091 DOI: 10.1016/j.acthis.2012.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/12/2023]
Abstract
Deep infiltrating endometriosis (DIE) is typically characterized by multifocal locations. It has been shown that CCR1, combined highly with RANTES, contributes to the enhanced recruitment of inflammatory cells at endometriotic sites. As an estrogen-dependent disorder, estrogen receptors are also crucial to the growth of endometriotic tissues. In this study we report the immunohistochemical analysis of RANTES, CCR1, ER-α and ER-β in 48 histological lesions prepared from women with DIE undergoing surgery. Immunohistochemical analysis of RANTES, CCR1, ER-α and ER-β was conducted at different sites of DIE lesions. RANTES was immunolocalized in the cytoplasm and CCR1 in cytomembranes of endometriotic cells. ER-α and ER-β extensively immunostained the nuclei of endometrial glandular, and stromal cells. Immunoreactivity in DIE lesions, similar to the widespread ERs, showed higher expression of RANTES and CCR1 in three types of DIE lesions. There was a significant correlation, independent of cyclic changes, between the expression of RANTES/CCR1 and DIE lesions. RANTES/CCR1 increased significantly according to the severity of dysmenorrhea. RANTES and CCR1 together may provide a potential biomarker for DIE-related pain and inflammatory response in endometriotic lesions of patients with DIE.
Collapse
|
43
|
Atypical Expression of COX-2, StAR, CYP19A1 and Apoptotic Regulators in CD90 Positive Endometrial Stromal Cells from Women with Endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2013. [DOI: 10.5301/je.5000149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purpose Endometriosis is an invasive gynecologic disease characterized by diminished apoptosis, sustained ectopic survival of dysfunctional endometrial cells and implantation of endometriotic lesions outside of the uterus. The purpose of this investigation was to determine the expression pattern of apoptotic and steroidogenic genes in the progenitor stem cell population of eutopic tissues from women with endometriosis and compare them to controls. The expression of these genes was determined in a subpopulation of endometrial cells that displayed CD90 positivity (CD+ve90) and colony forming capacity. Methods We obtained endometrial samples from women with or without endometriosis. Endometrial stromal cells (ESCs) were isolated and cultured for 15 days. Purified ESCs were sorted by using a multipotent mesenchymal stromal cell multi-color flow cytometry kit. Single cell cloning was performed by serial dilution in 96-micro well plates. Fifteen days later, colonies were identified (CFUs). The colonies were chosen and cultured. mRNA expression of apoptotic genes, mitogen activated kinase 14 (MAPK14), nuclear factor kappa B (NFkB), steroidogenic acute regulatory protein (StAR), aromatase (CYP19A1) and cyclo-oxygenase-2 (COX-2) were determined by qRT-PCR. Protein levels of StAR, CYP19A1 and COX-2 were determined by western blotting. Results A subset of stromal cells derived from women with endometriosis were isolated and identified as progenitor stem cells based on their CD90 positivity and colony forming ability. The cells displayed increased levels of MAPK14, NFkB, COX-2, StAR and CYP19A1 both at the mRNA and protein level compared to stromal cells derived from controls. Similarly, pro-apoptotic molecules such as Bax were decreased whereas anti-apoptotic molecules such as Bcl2 were decreased at the mRNA level compared to stromal cells derived from controls. Conclusions CD90+ve ESCs derived from women with endometriosis displayed markers suggesting stem cell-like properties and aberrant expression of apoptotic and steroidogenic enzymes which may contribute to sustained survival of these cells.
Collapse
|
44
|
Gori I, Rodriguez Y, Pellegrini C, Achtari C, Hornung D, Chardonnens E, Wunder D, Fiche M, Canny GO. Augmented epithelial multidrug resistance-associated protein 4 expression in peritoneal endometriosis: regulation by lipoxin A(4). Fertil Steril 2013; 99:1965-73.e2. [PMID: 23472950 DOI: 10.1016/j.fertnstert.2013.01.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To compare the expression of the prostaglandin (PG) E(2) transporter multidrug resistance-associated protein 4 (MRP4) in eutopic and ectopic endometrial tissue from endometriosis patients with that of control subjects and to examine whether MRP4 is regulated by the antiinflammatory lipid lipoxin A(4) (LXA(4)) in endometriotic epithelial cells. DESIGN Molecular analysis in human samples and a cell line. SETTING Two university hospitals and a private clinic. PATIENT(S) A total of 59 endometriosis patients and 32 age- and body mass index-matched control subjects undergoing laparoscopy or hysterectomy. INTERVENTION(S) Normal, eutopic, and ectopic endometrial biopsies as well as peritoneal fluid were obtained during surgery performed during the proliferative phase of the menstrual cycle. 12Z endometriotic epithelial cells were used for in vitro mechanistic studies. MAIN OUTCOME MEASURE(S) Tissue MRP4 mRNA levels were quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and localization was analyzed with the use of immunohistochemistry. Cellular MRP4 mRNA and protein were quantified by qRT-PCR and Western blot, respectively. PGE(2) was measured in peritoneal fluid and cell supernatants using an enzyme immunoassay (EIA). RESULT(S) MRP4 was expressed in eutopic and ectopic endometrium, where it was overexpressed in peritoneal lesions and localized in the cytoplasm of glandular epithelial cells. LXA(4) attenuated MRP4 mRNA and protein levels in endometriotic epithelial cells in a dose-dependent manner, while not affecting the expression of enzymes involved in PGE(2) metabolism. Investigations employing receptor antagonists and small interfering RNA revealed that this occurred through estrogen receptor α. Accordingly, LXA(4) treatment inhibited extracellular PGE(2) release. CONCLUSION(S) We report for the first time that MRP4 is expressed in human endometrium, elevated in peritoneal endometriosis, and modulated by LXA(4) in endometriotic epithelial cells.
Collapse
Affiliation(s)
- Ilaria Gori
- Department of Gynecology, Obstetrics, and Medical Genetics, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Unravelling the Ovarian Endometrioma Pathogenesis: “The Long and Winding Road” across the Various Theories. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2013. [DOI: 10.5301/je.5000156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Controversy exists regarding the pathogenesis of endometriotic ovarian cysts. Different and complex theories have been proposed over the years since the description of chocolate cysts by Sampson in 1921. We have herein reviewed findings in support and against the most widely accepted theories. According to the theory of Hughesdson and Brosens, a prerequisite for endometrioma formation seems to be the inversion and progressive invagination of the ovarian cortex after the accumulation of menstrual debris derived from bleeding of superficial endometriotic implants, which are located on the ovarian surface and adherent to the peritoneum. Disproving the metaplasia hypothesis put forward by Donnez and coworkers and supporting the involvement of the ovulation process in the development of ovarian endometriosis, Vercellini and colleagues have recently demonstrated that a cystic corpus luteum may be a transitory step toward endometrioma formation. As these theories are not able to explain the various aspects of endometrioma formation fully, the possibility that the coelomic metaplasia of the ovarian mesothelium with changes into typical endometrial glands and stroma might be responsible for the endometrioma formation cannot be totally ruled out. Further research is needed to clearly elucidate the pathogenetic aspects of endometriotic ovarian cysts.
Collapse
|
46
|
Harel Z. Dysmenorrhea in adolescents and young adults: an update on pharmacological treatments and management strategies. Expert Opin Pharmacother 2013; 13:2157-70. [PMID: 22984937 DOI: 10.1517/14656566.2012.725045] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dysmenorrhea is the most common gynecologic complaint among adolescents/young adults. Dysmenorrhea is usually primary and is associated with normal ovulatory cycles and with no pelvic pathology. Potent prostaglandins and potent leukotrienes play an important role in generating primary dysmenorrhea symptoms. Adolescents/young adults with severe dysmenorrhea symptoms may have pelvic abnormalities, such as endometriosis or uterine anomalies (secondary dysmenorrhea). AREAS COVERED This review provides an update on treatments and management strategies of dysmenorrhea in adolescents/young adults. Medical literature articles were retrieved using a Medline search on primary and secondary dysmenorrhea. Original articles from peer-reviewed journals were selected based on relevance. EXPERT OPINION Treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) is the preferred initial treatment for dysmenorrhea in nonsexually active adolescents/young adults. Adolescents/young adults with symptoms that do not respond to NSAIDs for three menstrual periods should be offered hormonal treatment, such as combined estrogen and progestin oral contraceptive pills (OCPs), for three menstrual cycles. If dysmenorrhea does not improve within 6 months of NSAIDs and OCPs, a laparoscopy is indicated to look for endometriosis, which is the most common reason for secondary dysmenorrhea.
Collapse
Affiliation(s)
- Zeev Harel
- Warren Alpert Medical School of Brown University, Department of Pediatrics, Division of Adolescent Medicine/Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI 02903, USA.
| |
Collapse
|
47
|
Beranič N, Rižner TL. Effects of progestins on local estradiol biosynthesis and action in the Z-12 endometriotic epithelial cell line. J Steroid Biochem Mol Biol 2012; 132:303-10. [PMID: 22878119 DOI: 10.1016/j.jsbmb.2012.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 01/23/2023]
Abstract
Endometriosis is a common estrogen-dependent gynecological disease. In patients with endometriosis estradiol can be synthesized locally in the endometriotic lesions from inactive precursors of adrenal or ovarian origin, via the aromatase pathway. These increased estradiol levels stimulate proliferation of endometriotic tissue. The progestins have been used in the therapy of endometriosis for more than 40 years but their pharmacological action is still not understood in detail. In the present study we therefore aimed to evaluate the effects of three progestins most commonly used in the therapy of endometriosis; medroxyprogesterone acetate, dydrogesterone and dienogest on expression of all genes encoding enzymes of the aromatase pathway and estrogen receptors in the Z-12 model epithelial cell line of peritoneal endometriosis, by qPCR and Western blotting. Our results show that application of medroxyprogestrone acetate, dydrogesterone and dienogest significantly decreases HSD17B1 and CYP19A1 expression and significantly increases HSD17B2 expression. Dydrogesterone and dienogest also significantly suppress ESR1 and ESR2 transcription, whereas medroxyprogestrone acetate and dydrogesterone significantly reduce mRNA levels of GPER. Our results thus suggest that in peritoneal endometriosis the beneficial effects of these progestins can be explained by lower HSD17B1 and higher HSD17B2 mRNA and protein levels, which lead to reduced local E2 biosynthesis. Although progestins significantly decrease CYP19A1 mRNA levels, the protein itself was not detectable by Western blotting. As progestins down-regulate expression of ESR1, ESR2 and GPER, they might also prevent E2-mediated proliferation.
Collapse
Affiliation(s)
- Nataša Beranič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
48
|
Pellegrini C, Gori I, Achtari C, Hornung D, Chardonnens E, Wunder D, Fiche M, Canny GO. The expression of estrogen receptors as well as GREB1, c-MYC, and cyclin D1, estrogen-regulated genes implicated in proliferation, is increased in peritoneal endometriosis. Fertil Steril 2012; 98:1200-8. [DOI: 10.1016/j.fertnstert.2012.06.056] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/08/2012] [Accepted: 06/14/2012] [Indexed: 01/06/2023]
|
49
|
Han SJ, Hawkins SM, Begum K, Jung SY, Kovanci E, Qin J, Lydon JP, DeMayo FJ, O'Malley BW. A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nat Med 2012; 18:1102-11. [PMID: 22660634 DOI: 10.1038/nm.2826] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/03/2012] [Indexed: 01/07/2023]
Abstract
Endometriosis is considered to be an estrogen-dependent inflammatory disease, but its etiology is unclear. Thus far, a mechanistic role for steroid receptor coactivators (SRCs) in the progression of endometriosis has not been elucidated. An SRC-1-null mouse model reveals that the mouse SRC-1 gene has an essential role in endometriosis progression. Notably, a previously unidentified 70-kDa SRC-1 proteolytic isoform is highly elevated both in the endometriotic tissue of mice with surgically induced endometriosis and in endometriotic stromal cells biopsied from patients with endometriosis compared to normal endometrium. Tnf⁻/⁻ and Mmp9⁻/⁻ mice with surgically induced endometriosis showed that activation of tumor necrosis factor a (TNF-α)-induced matrix metallopeptidase 9 (MMP9) activity mediates formation of the 70-kDa SRC-1 C-terminal isoform in endometriotic mouse tissue. In contrast to full-length SRC-1, the endometriotic 70-kDa SRC-1 C-terminal fragment prevents TNF-α-mediated apoptosis in human endometrial epithelial cells and causes the epithelial-mesenchymal transition and the invasion of human endometrial cells that are hallmarks of progressive endometriosis. Collectively, the newly identified TNF-α-MMP9-SRC-1 isoform functional axis promotes pathogenic progression of endometriosis.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Veillat V, Sengers V, Metz CN, Roger T, Leboeuf M, Mailloux J, Akoum A. Macrophage Migration Inhibitory Factor Is Involved in a Positive Feedback Loop Increasing Aromatase Expression in Endometriosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:917-27. [DOI: 10.1016/j.ajpath.2012.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 04/20/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
|