1
|
Azab MA, Atallah O, Hazim A, El-Gohary N, Mostafa H. Pineal cyst apoplexy in a pregnant female: case report and review of literature. BMC Neurol 2025; 25:206. [PMID: 40375163 DOI: 10.1186/s12883-024-03922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/16/2024] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Pineal cyst is an uncommon condition in pregnancy. It is often encountered as an incidental finding. Most pineal cysts are benign and asymptomatic. Bleeding inside these cysts is rarely encountered in pregnancy. CLINICAL PRESENTATION A 30-year-old female patient with no significant past medical history, presented to the emergency department at 36 weeks gestation with a transient episode of unilateral headache. Headache was associated with dizziness and left arm ascending numbness. She has a history of a known pineal cyst. The neurological examination was normal. INVESTIGATIONS CT head was obtained, reviewed and compared to previous scans 7 years ago. It showed a hemorrhage inside the pineal cyst . MANAGEMENT The patient was admitted to the neurosurgery department for conservative management and a few days later, symptoms gradually improved. FOLLOW-UP Three weeks later, the patient reported spontaneous improvement of the presenting symptoms. The decision was to proceed with continued watchful follow-up and awaiting a caesarian delivery. The patient returned for a follow-up three months later without any symptoms. Following delivery, the patient remained asymptomatic. CONCLUSION Pineal cyst apoplexy is a relatively rare condition and it usually affects young females, however, the exact relation to pregnancy and the effect of apoplexy on the course of pregnancy are not well defined.
Collapse
Affiliation(s)
- Mohammed A Azab
- Department of Neurosurgery, Cairo University Hospital, Cairo, Egypt.
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Ahmed Hazim
- Department of Neurosurgery, Cairo University, Cairo, Egypt
| | | | - Hamed Mostafa
- Faculty of Medicine, Al Azhar University, Damietta, Egypt
| |
Collapse
|
2
|
Wang L, Jin Y, Zhi Y, Li Z, Wang M, Wang B, Wang X. Effects of melatonin in polycystic ovary syndrome: is there Hippo pathway crosstalk? J Ovarian Res 2025; 18:101. [PMID: 40369589 PMCID: PMC12076993 DOI: 10.1186/s13048-025-01642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/06/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder among reproductive women, characterized by hyperandrogenism, oligo-ovulation and polycystic ovarian morphology. Incorporating complementary medicine alongside traditional lifestyle therapies for PCOS may offer additional benefits for affected women. Melatonin (MT), a hormone secreted by the pineal gland, has emerged as a potential treatment for regulating ovarian function in PCOS. However, the specific effects and underlying mechanisms of MT on PCOS need to be elucidated. METHODS This review consolidates evidence from randomized controlled trials, original research articles, systematic reviews, and meta-analyses regarding MT supplementation in PCOS, with a particular focus on its interaction with the Hippo pathway, to provide a comprehensive overview of current knowledge. RESULTS Current evidence suggests that MT plays a role in modulating PCOS through various mechanisms and is associated with the Hippo pathway. However, several uncertainties and key limitations in the existing literature must be addressed before these treatments can be integrated into standard clinical practice. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Yuanyuan Jin
- Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Yuanyuan Zhi
- Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Zhenzhen Li
- Department of Pathology, Shandong Provincial Maternal and Child Health Care Hospital, Qingdao University, Jinan, 250014, China
| | - Meili Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Boda Wang
- Emergency Department, Xinji Town Central Health Center, Guanxian County, Liaocheng, 252500, China
| | - Xinbo Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| |
Collapse
|
3
|
Phuong LDT, Thien LC, Su Pham CD, Minh NU, Huy Bao NT, Thien Truc LN, Huyen TTN, Minh DT, Nguyen NT, Van Thuan N, Bui HT. Melatonin and cyclic adenosine monophosphate enhance the meiotic and developmental competence of porcine oocytes from early antral follicles during in vitro growth and pre-maturation culture. Theriogenology 2025; 237:129-142. [PMID: 40015084 DOI: 10.1016/j.theriogenology.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Melatonin has been studied for its ability to improve oocyte quality and modulate cyclic adenosine monophosphate (cAMP) production. However, the effects of melatonin on the in vitro growth (IVG) of oocyte-cumulus-granulosa complexes (OCGCs) derived from early antral follicles (EAFs) have not been fully investigated. This study aimed to examine the effects of melatonin during IVG on the developmental competence and blastocyst quality of porcine oocytes isolated from EAFs. In addition, the combination of melatonin with dibutyl cAMP (Mela + dbcAMP) or hypoxanthine (Mela + HX) during IVG and pre-in vitro maturation (pre-IVM) was also investigated. The result showed that the modified medium supplemented with 10 μM melatonin after 4-day IVG enhanced antrum formation, survival rate, and oocyte diameter, especially, the melatonin-treated group enhanced expression of histone acetylation (Ac-H3-K9) higher than the untreated group. In addition, the combination of 10 μM melatonin with dbcAMP during IVG and during 7h of pre-IVM had significantly improved meiotic competence and cumulus expansion after IVM compared to Mela + HX groups. Finally, the combination of Mela + dbcAMP improved parthenogenetic blastocyst formation rather than the untreated group, and expression of histone methylation (Me-H3-K4) and Ac-H3-K9 in blastocyst comparable group derived from oocytes of large antral follicles (LAFs). Furthermore, melatonin with concentrations of 10 μM and 100 μM during IVG enhanced expression of pluripotency gene-related (OCT4, NANOG, SOX2) and balance cell viability via apoptosis-related gene (BCL2/BAX). In conclusion, melatonin combined with dbcAMP during IVG and pre-IVM of oocytes derived from EAFs demonstrated superior efficacy in enhancing oocyte growth, maturation, and development of porcine pre-implantation embryos.
Collapse
Affiliation(s)
- Lam Do Truc Phuong
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Lam Chi Thien
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Cao Dang Su Pham
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Nguyen Uyen Minh
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Nguyen Thai Huy Bao
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Le Nguyen Thien Truc
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Truong Thi Ngoc Huyen
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Do Tu Minh
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Nhat-Thinh Nguyen
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam; University of Health Sciences-VNU, Ho Chi Minh City, 70000, Viet Nam
| | - Nguyen Van Thuan
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam.
| | - Hong-Thuy Bui
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam.
| |
Collapse
|
4
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2025; 70:223-242. [PMID: 38692429 PMCID: PMC11976432 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Amiri M, Khazaie H, Mohammadi M. The protective effects of melatonin against electromagnetic waves of cell phones in animal models: A systematic review. Animal Model Exp Med 2025; 8:629-637. [PMID: 39995082 PMCID: PMC12008444 DOI: 10.1002/ame2.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/21/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Due to the widespread use of cell phone devices today, numerous research studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems. In most studies, oxidative stress has been identified as the primary pathophysiological mechanism underlying the harmful effects of electromagnetic waves. This paper aims to provide a holistic review of the protective effects of melatonin against cell phone-induced electromagnetic waves on various organs. METHODS This study is a systematic review of articles chosen by searching Google Scholar, PubMed, Embase, Scopus, Web of Science, and Science Direct using the keywords 'melatonin', 'cell phone radiation', and 'animal model'. The search focused on articles written in English, which were reviewed and evaluated. The PRISMA process was used to review the articles chosen for the study, and the JBI checklist was used to check the quality of the reviewed articles. RESULTS In the final review of 11 valid quality-checked articles, the effects of melatonin in the intervention group, the effects of electromagnetic waves in the case group, and the amount of melatonin in the chosen organ, i.e. brain, skin, eyes, testis and the kidney were thoroughly examined. The review showed that electromagnetic waves increase cellular anti-oxidative activity in different tissues such as the brain, the skin, the eyes, the testis, and the kidneys. Melatonin can considerably augment the anti-oxidative system of cells and protect tissues; these measurements were significantly increased in control groups. Electromagnetic waves can induce tissue atrophy and cell death in various organs including the brain and the skin and this effect was highly decreased by melatonin. CONCLUSION Our review confirms that melatonin effectively protects the organs of animal models against electromagnetic waves. In light of this conclusion and the current world-wide use of melatonin, future studies should advance to the stages of human clinical trials. We also recommend that more research in the field of melatonin physiology is conducted in order to protect exposed cells from dying and that melatonin should be considered as a pharmaceutical option for treating the complications resulting from electromagnetic waves in humans.
Collapse
Affiliation(s)
- Mohammad Amiri
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Habibolah Khazaie
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Masoud Mohammadi
- Research Center for Social Determinants of HealthJahrom University of Medical SciencesJahromIran
| |
Collapse
|
6
|
Islam MN, Ebara F, Konno T, Tatemoto H, Yamanaka K. Melatonin improves the in vitro growth of bovine oocytes collected from early antral follicles by maintaining oocyte-cumulus cell communication. Reprod Med Biol 2025; 24:e12629. [PMID: 39877759 PMCID: PMC11774242 DOI: 10.1002/rmb2.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Purpose In vitro, oocyte development is susceptible to oxidative stress, which leads to endoplasmic reticulum (ER) stress. This study investigated whether the antioxidant melatonin attenuates ER stress and maintains oocyte-cumulus cell communication during the in vitro growth (IVG) of bovine oocytes. Methods Oocyte-granulosa cell complexes (OGCs) were harvested from slaughterhouse-derived ovaries and grown in vitro for 5 d at 38.5°C in 5% CO2 humidified air. Melatonin (10-7, 10-9, or 10-11 M) was added to the culture medium. Results Oocyte diameter increased on day 5 from its initial value in all groups. The antrum formation rate was significantly higher in the 10-9 M melatonin-treated group than in the control. The melatonin-treated group showed reduced oxidative stress and increased gap junction communication compared with the control. ER stress-related genes in OGCs were significantly downregulated in the 10-9 M melatonin-treated group compared with those in the control. No significant changes were found in subsequent maturation among groups; however, 10-9 M melatonin treatment during IVG and IVM increased the maturation rate compared with that in the control. Conclusions Melatonin reduces oxidative stress, which attenuates ER stress in OGCs during IVG of bovine oocytes and may improve IVG efficiency in assisted reproductive technology.
Collapse
Affiliation(s)
- Md Nuronnabi Islam
- Faculty of AgricultureSaga UniversitySagaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Fumio Ebara
- Faculty of AgricultureSaga UniversitySagaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Toshihiro Konno
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Faculty of AgricultureUniversity of the RyukyusOkinawaJapan
| | - Hideki Tatemoto
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Faculty of AgricultureUniversity of the RyukyusOkinawaJapan
| | - Ken‐ichi Yamanaka
- Faculty of AgricultureSaga UniversitySagaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
7
|
Li J, Huang Y, Xu S, Wang Y. Sleep disturbances and female infertility: a systematic review. BMC Womens Health 2024; 24:643. [PMID: 39707272 DOI: 10.1186/s12905-024-03508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Sleep disturbances are more prevalent among women with infertility. Current research increasingly highlights the significant relationship between sleep disturbances and female infertility, suggesting that sleep may be a key factor in reproductive health. In this review, we aim to delve into the complex interplay between sleep disturbances and female infertility, as well as to assess the underlying mechanisms involved, and seek to illuminate the causes of sleep-related fertility issues. The understanding of these contents may help clinicians enhance clinical strategies for managing sleep disturbances in women facing infertility challenges and provide timely support to those seeking fertility treatments. METHODS A comprehensive literature search was conducted in the PubMed and EMBASE databases. Studies that described sleep patterns or any type of sleep disturbance, sleep breathing disorders and their associations with female infertility or female fecundity, published between January 1, 2010, and November 1, 2023, were identified and extracted. The screening, data extraction, and quality assessment processes were independently performed by paired reviewers. The quality of the included studies was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal tools for observational and cohort studies. RESULTS A total of 1,179 articles were initially identified from the search strategy (PubMed, n = 377; EMBASE, n = 802). After removing duplicates (n = 83) and screening for eligibility (n = 75), 19 studies were reviewed and determined to be eligible for inclusion. Infertile women generally report poorer sleep quality and exhibit more evening sleep chronotypes. Sleep disorders are significantly associated with infertility. Poor sleep quality, extreme sleep durations, and certain sleep chronotypes are associated with poorer fertility treatment outcomes, such as a reduced number of retrieved oocytes, decreased embryo quality, and lower fertilization rates. Obstructive sleep apnea (OSA) is also more prevalent in women with fertility issues, especially those with polycystic ovary syndrome (PCOS), and may negatively impact reproductive outcomes. The circadian rhythms of the Clock gene system, melatonin and hormone dysregulation, oxidative stress and immune response are considered to be potential mechanisms explaining how sleep disturbance impairs reproductive function, remain to be fully elucidated, and therefore, require further investigation. CONCLUSIONS Sleep disturbances are negatively associated with female infertility and poor fertility treatment outcomes. Longitudinal studies are expected to substantiate these findings and inform more nuanced approaches to prior sleep management and lifestyle advisement for infertile women, especially those undergoing fertility treatments. TRIAL REGISTRATION This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO, #CRD42024498443).
Collapse
Affiliation(s)
- Jing Li
- Reproductive Medical Center, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yali Huang
- Reproductive Medical Center, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Shirong Xu
- Reproductive Medical Center, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ying Wang
- Reproductive Medical Center, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
8
|
Wang R, Geng J. The melatonin-FTO-ATF4 signaling pathway protects granulosa cells from cisplatin-induced chemotherapeutic toxicity by suppressing ferroptosis. J Assist Reprod Genet 2024; 41:3503-3516. [PMID: 39388020 PMCID: PMC11707222 DOI: 10.1007/s10815-024-03276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
PURPOSE In cisplatin-induced premature ovarian failure (POF) mice, granulosa cells showed a high level of ferroptosis. Previous research has indicated that the fat mass and obesity-associated protein/activating transcription factor 4 (FTO/ATF4) axis was involved in the regulation of ferroptosis. The purpose of this study was to explore the role of the FTO/ATF4 axis in cisplatin-induced ferroptosis in granulosa cell. METHODS The extent of ferroptosis was assessed by transmission electron microscopy (TEM) and ROS, GPX, GSH, and MDA assays. Western blotting was used to evaluate the protein expression levels of ferroptosis-related molecules. Ferroptosis activator and inhibitor were also used. RESULTS We found that ferroptosis increased in a concentration-dependent manner in cisplatin-induced injured granulosa cells, accompanied by the downregulation of FTO. In addition, gain- and loss-of-function studies showed that FTO affects ferroptosis in injured cells by regulating ATF4 expression. Ferrostatin-1 inhibited the effect of FTO downregulation on injured granulosa cells ferroptosis, and erastin reversed the protective effect of FTO on ferroptosis in injured granulosa cells. Finally, melatonin was used, and we found that melatonin reduced ferroptosis in cisplatin-induced injured granulosa cells by upregulating FTO expression. CONCLUSION Our study demonstrated that cisplatin induced granulosa cell ferroptosis by downregulating the expression of FTO. ATF4 was identified as a downstream target of FTO, and overexpression of ATF4 reversed the effects of decreased FTO on ferroptosis. Additionally, melatonin mitigates the cytotoxic effects of cisplatin by upregulating FTO expression. The melatonin-FTO-ATF4 signaling pathway plays a vital role in the treatment of cisplatin-induced POF.
Collapse
Affiliation(s)
- Rongli Wang
- 1Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
| | - Jing Geng
- 1Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
9
|
Shi L, Cui L, Yang L, He L, Jia L, Bai W, Wang L, Xu W. Hotspots and frontiers in luteal phase defect research: An in-depth global trend bibliometric and visualization analysis over a 52-year period. Heliyon 2024; 10:e35088. [PMID: 39170162 PMCID: PMC11336435 DOI: 10.1016/j.heliyon.2024.e35088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Luteal phase defect (LPD) is a common female reproductive endocrine defect,which is associated not only with certain diseases but also with the menstrual cycle and fertility in women. With the development of assisted reproductive technology (ART) in recent years, the incidence of luteal phase defect is high among patients using assisted reproductive technology. The aim of this study was to evaluate worldwide research on luteal phase defects using bibliometric analysis. A total of 631 documents related to the study of luteal phase defect were identified over the last 52 years. The current status and trend of globalization can be comprehended by analyzing the annual number of publications, institutions, authors, countries and regions of corresponding authors, journals, influential luteal phase defect publications (which were highly cited), highly cited references in luteal phase defect publications (cocitation analysis) and keywords. The study results provide a comprehensive overview of the development of scientific literature and are of great significance for the future development of the field,especially infertility and early pregnancy loss.
Collapse
Affiliation(s)
- Lingli Shi
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Department of Reproduction, No. 4 Kangle Road, Zhangjiagang City, Jiangsu Province, 215600, China
| | - Lijuan Cui
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Department of Pathology, No. 4 Kangle Road, Zhangjiagang City, Jiangsu Province, 215600, China
| | - Li Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Department of Obstetrics and Gynaecology, No. 4 Kangle Road, Zhangjiagang City, Jiangsu Province, 215600, China
| | - Lijia He
- Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Lehan Jia
- Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Wenxin Bai
- Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Lihong Wang
- Zhangjiagang TCM Hospital Affiliated to Jiangsu Medical College, Department of Reproduction, No. 4 Kangle Road, Zhangjiagang City, Jiangsu Province, 215600, China
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Department of Reproduction, No. 4 Kangle Road, Zhangjiagang City, Jiangsu Province, 215600, China
| | - Wenting Xu
- Zhangjiagang TCM Hospital Affiliated to Jiangsu Medical College, Department of Reproduction, No. 4 Kangle Road, Zhangjiagang City, Jiangsu Province, 215600, China
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Department of Reproduction, No. 4 Kangle Road, Zhangjiagang City, Jiangsu Province, 215600, China
| |
Collapse
|
10
|
Kacar E, Tan F, Sahinturk S, Zorlu G, Serhatlioglu I, Bulmus O, Ercan Z, Kelestimur H. Modulation of Melatonin Receptors Regulates Reproductive Physiology: The Impact of Agomelatine on the Estrus Cycle, Gestation, Offspring, and Uterine Contractions in Rats. Physiol Res 2023; 72:793-807. [PMID: 38215065 PMCID: PMC10805256 DOI: 10.33549/physiolres.935064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/22/2023] [Indexed: 05/14/2025] Open
Abstract
Agomelatine is a pharmaceutical compound that functions as an agonist for melatonin receptors, with a particular affinity for the MT1 and MT2 receptor subtypes. Its mode of action is integral to the regulation of diverse physiological processes, encompassing the orchestration of circadian rhythms, sleep-wake cycles, and mood modulation. In the present study, we delve into the intricate interplay between agomelatine and the modulation of estrus cycles, gestation periods, offspring numbers, and uterine contractions, shedding light on their collective impact on reproductive physiology. Both in vivo and in vitro experiments were performed. Wistar Albino rats, divided into four groups: two non-pregnant groups (D1 and D2) and two pregnant groups (G1 and G2). The D1 and G1 groups served as control groups, while the D2 and G2 groups received chronic agomelatine administration (10 mg/kg). Uterine contractions were assessed in vitro using myometrial strips. Luzindole, a melatonin receptor antagonist, was employed to investigate the pathway mediating agomelatine's effects on uterine contractions. In in vivo studies, chronic agomelatine administration extended the diestrus phase (p<0.05) in non-pregnant rats, prolonged the gestational period (p<0.01), and increased the fetal count (p<0.01) in pregnant rats. Additionally, agomelatine reduced plasma oxytocin and prostoglandin-E levels (p<0.01) during pregnancy. In vitro experiments showed that agomelatine dose-dependently inhibited spontaneous and oxytocin-induced myometrial contractions. Luzindole (2 µM) reverse the agomelatine-induced inhibition of myometrial contractions. These findings suggest that agomelatine holds the potential to modulate diverse reproductive parameters during the gestational period, influencing estrus cycling, gestational progression, offspring development, and the orchestration of uterine contractions.
Collapse
Affiliation(s)
- E Kacar
- Firat University, Faculty of Medicine, Physiology Department, Elazig, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Qu J, Hu H, Niu H, Sun X, Li Y. Melatonin restores the declining maturation quality and early embryonic development of oocytes in aged mice. Theriogenology 2023; 210:110-118. [PMID: 37490796 DOI: 10.1016/j.theriogenology.2023.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
With increase in women's age, the reproductive capability of female mammals decreases dramatically caused by age-related oxidative stress, coinciding with the decline in the ovarian reserve, and the quality and quantity of oocytes, which is the main determinant of female fertility. Melatonin, as an effective antioxidant and antiaging substance, is secreted by the pineal gland and been found in the follicular fluid as well, which has been turned out to enable to protect oocytes from oxidative stress during ovulation. However, the beneficial effects of melatonin on meiotic maturation in vitro and early embryo development of aged oocytes are still not fully understood. Thus, the aim of this study is to explore the potential mechanism of melatonin to improve the oocytes maturation and early embryonic development. The results suggested that oocyte quality decreased with age, whereas 10-6 M melatonin supplementation can significantly prompt the maturation quality of oocytes, the rate of fertilization and the formation rate of blastocyst. Mechanistic investigation indicated that melatonin supplementation not only restored the function of mitochondria by reducing reactive oxygen species (ROS) generation and early apoptosis, but also increased the level of ATP and total GSH through enhancing the mRNA expression levels of SIRT1, SIRT3, GPX4, SOD1 and SOD2. In conclusion, melatonin could alleviate the impairment of age-related oxidative stress to meiotic maturation and early embryonic development of oocytes. This study may provide a potential remediation strategy to improve the quality of oocytes from aged women and the efficiency of assisted reproductive technologies.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; The Department of Animal and Veterinary Science, University of Vermont, Burlington, VT, 05405, USA.
| | - Huiru Hu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Haoyuan Niu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Li A, Li F, Song W, Lei Z, Sha Q, Liu S, Zhou C, Zhang X, Li X, Schatten H, Zhang T, Sun Q, Ou X. Gut microbiota-bile acid-vitamin D axis plays an important role in determining oocyte quality and embryonic development. Clin Transl Med 2023; 13:e1236. [PMID: 37846137 PMCID: PMC10580005 DOI: 10.1002/ctm2.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE To reveal whether gut microbiota and their metabolites are correlated with oocyte quality decline caused by circadian rhythm disruption, and to search possible approaches for improving oocyte quality. DESIGN A mouse model exposed to continuous light was established. The oocyte quality, embryonic development, microbial metabolites and gut microbiota were analyzed. Intragastric administration of microbial metabolites was conducted to confirm the relationship between gut microbiota and oocyte quality and embryonic development. RESULTS Firstly, we found that oocyte quality and embryonic development decreased in mice exposed to continuous light. Through metabolomics profiling and 16S rDNA-seq, we found that the intestinal absorption capacity of vitamin D was decreased due to significant decrease of bile acids such as lithocholic acid (LCA), which was significantly associated with increased abundance of Turicibacter. Subsequently, the concentrations of anti-Mullerian hormone (AMH) hormone in blood and melatonin in follicular fluid were reduced, which is the main reason for the decline of oocyte quality and early embryonic development, and this was rescued by injection of vitamin D3 (VD3). Secondly, melatonin rescued oocyte quality and embryonic development by increasing the concentration of lithocholic acid and reducing the concentration of oxidative stress metabolites in the intestine. Thirdly, we found six metabolites that could rescue oocyte quality and early embryonic development, among which LCA of 30 mg/kg and NorDCA of 15 mg/kg had the best rescue effect. CONCLUSION These findings confirm the link between ovarian function and gut microbiota regulation by microbial metabolites and have potential value for improving ovary function.
Collapse
Affiliation(s)
- Ang Li
- Fertility Preservation LabGuangdong‐Hong Kong Metabolism and Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockCollege of Life SciencesInner Mongolia UniversityHohhotChina
| | - Fei Li
- Fertility Preservation LabGuangdong‐Hong Kong Metabolism and Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Wei Song
- Fertility Preservation LabGuangdong‐Hong Kong Metabolism and Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Zi‐Li Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineKey Laboratory of Glucolipid Metabolic DisorderMinistry of Education of ChinaInstitute of Chinese MedicineGuangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Qian‐Qian Sha
- Fertility Preservation LabGuangdong‐Hong Kong Metabolism and Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Shao‐Yuan Liu
- Fertility Preservation LabGuangdong‐Hong Kong Metabolism and Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Chang‐Yin Zhou
- Fertility Preservation LabGuangdong‐Hong Kong Metabolism and Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Xue Zhang
- Fertility Preservation LabGuangdong‐Hong Kong Metabolism and Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Xiao‐Zhen Li
- Fertility Preservation LabGuangdong‐Hong Kong Metabolism and Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Heide Schatten
- Department of Veterinary PathobiologyUniversity of Missouri‐ColumbiaColumbiaMissouriUSA
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockCollege of Life SciencesInner Mongolia UniversityHohhotChina
| | - Qing‐Yuan Sun
- Fertility Preservation LabGuangdong‐Hong Kong Metabolism and Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Xiang‐Hong Ou
- Fertility Preservation LabGuangdong‐Hong Kong Metabolism and Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| |
Collapse
|
13
|
Lopez J, Hohensee G, Liang J, Sela M, Johnson J, Kallen AN. The Aging Ovary and the Tales Learned Since Fetal Development. Sex Dev 2023; 17:156-168. [PMID: 37598664 PMCID: PMC10841896 DOI: 10.1159/000532072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND While the term "aging" implies a process typically associated with later life, the consequences of ovarian aging are evident by the time a woman reaches her forties, and sometimes earlier. This is due to a gradual decline in the quantity and quality of oocytes which occurs over a woman's reproductive lifespan. Indeed, the reproductive potential of the ovary is established even before birth, as the proper formation and assembly of the ovarian germ cell population during fetal life determines the lifetime endowment of oocytes and follicles. In the ovary, sophisticated molecular processes have been identified that regulate the timing of ovarian aging and these are critical to ensuring follicular maintenance. SUMMARY The mechanisms thought to contribute to overall aging have been summarized under the term the "hallmarks of aging" and include such processes as DNA damage, mitochondrial dysfunction, telomere attrition, genomic instability, and stem cell exhaustion, among others. Similarly, in the ovary, molecular processes have been identified that regulate the timing of ovarian aging and these are critical to ensuring follicular maintenance. In this review, we outline critical processes involved in ovarian aging, highlight major achievements for treatment of ovarian aging, and discuss ongoing questions and areas of debate. KEY MESSAGES Ovarian aging is recognized as what may be a complex process in which age, genetics, environment, and many other factors contribute to the size and depletion of the follicle pool. The putative hallmarks of reproductive aging outlined herein include a diversity of plausible processes contributing to the depletion of the ovarian reserve. More research is needed to clarify if and to what extent these putative regulators do in fact govern follicle and oocyte behavior, and how these signals might be integrated in order to control the overall pattern of ovarian aging.
Collapse
Affiliation(s)
- Jesus Lopez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Gabe Hohensee
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Liang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Meirav Sela
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Amanda N. Kallen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Shelling AN, Ahmed Nasef N. The Role of Lifestyle and Dietary Factors in the Development of Premature Ovarian Insufficiency. Antioxidants (Basel) 2023; 12:1601. [PMID: 37627595 PMCID: PMC10451748 DOI: 10.3390/antiox12081601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a condition that arises from dysfunction or early depletion of the ovarian follicle pool accompanied by an earlier-than-normal loss of fertility in young women. Oxidative stress has been suggested as an important factor in the decline of fertility in women and POI. In this review, we discuss the mechanisms of oxidative stress implicated in ovarian ageing and dysfunction in relation to POI, in particular mitochondrial dysfunction, apoptosis and inflammation. Genetic defects, autoimmunity and chemotherapy, are some of the reviewed hallmarks of POI that can lead to increased oxidative stress. Additionally, we highlight lifestyle factors, including diet, low energy availability and BMI, that can increase the risk of POI. The final section of this review discusses dietary factors associated with POI, including consumption of oily fish, mitochondria nutrient therapy, melatonin, dairy and vitamins that can be targeted as potential interventions, especially for at-risk women and in combination with personalised nutrition. Understanding the impact of lifestyle and its implications for POI and oxidative stress holds great promise in reducing the burden of this condition.
Collapse
Affiliation(s)
- Andrew N. Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Centre for Cancer Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Noha Ahmed Nasef
- Riddet Research Institute, Massey University, Palmerston North 4474, New Zealand
- School of Food and Advanced Technology, College of Science, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
15
|
Zhang T, Zhang L, Huang G, Hao X, Liu Z, Huo S. MEL regulates miR-21 and let-7b through the STAT3 cascade in the follicular granulosa cells of Tibetan sheep. Theriogenology 2023; 205:114-129. [PMID: 37120893 DOI: 10.1016/j.theriogenology.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023]
Abstract
Under physiological and pathological conditions, melatonin (MEL) can regulate microRNA (miRNA) expression. However, the mechanisms underlying the regulatory effects of MEL on miRNAs in ovaries are not understood. Firstly, by using fluorescence in situ hybridisation, we found that in ovaries and follicular granulosa cells (FGCs), MT1 co-located with miR-21 and let-7b. Additionally, immunofluorescence revealed that MT1, STAT3, c-MYC and LIN28 proteins co-located. The mRNA and protein levels of STAT3, c-MYC and LIN28 increased under treatment with 10-7 M MEL. MEL induced an increase in miR-21 and a decrease in let-7b. The LIN28/let-7b and STAT3/miR-21 axes are related to cell differentiation, apoptosis and proliferation. We explored whether the STAT3/c-MYC/LIN28 pathway was involved in miRNA regulation by MEL to explore the putative mechanism of the above relationship. AG490, an inhibitor of the STAT3 pathway, was added before MEL treatment. AG490 inhibited the MEL-induced increases in STAT3, c-MYC, LIN28 and MT1 and changes in miRNA. Through live-cell detection, we discovered that MEL enhanced the proliferation of FGCs. However, the ki67 protein levels decreased when AG490 was added in advance. Furthermore, the dual-luciferase reporter assay verified that STAT3, LIN28 and MT1 were target genes of let-7b. Furthermore, STAT3 and SMAD7 were target genes of miR-21. In addition, the protein levels of the STAT3, c-MYC, LIN28 and MEL receptors decreased when let-7b was overexpressed in FGCs. Overall, MEL might regulate miRNA expression through the STAT3 pathway. In addition, a negative feedback loop between the STAT3 and miR-21 formed; MEL and let-7b antagonized each other in FGCs. These findings may provide a theoretical basis for improving the reproductive performance of Tibetan sheep through MEL and miRNAs.
Collapse
Affiliation(s)
- Taojie Zhang
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China.
| | - Lijuan Zhang
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Guoliang Huang
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Xiaomeng Hao
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Zezheng Liu
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Shengdong Huo
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China.
| |
Collapse
|
16
|
Reiter RJ, Sharma R, Romero A, Manucha W, Tan DX, Zuccari DAPDC, Chuffa LGDA. Aging-Related Ovarian Failure and Infertility: Melatonin to the Rescue. Antioxidants (Basel) 2023; 12:antiox12030695. [PMID: 36978942 PMCID: PMC10045124 DOI: 10.3390/antiox12030695] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Aging has a major detrimental effect on the optimal function of the ovary with changes in this organ preceding the age-related deterioration in other tissues, with the middle-aged shutdown leading to infertility. Reduced fertility and consequent inability to conceive by women in present-day societies who choose to have children later in life leads to increased frustration. Melatonin is known to have anti-aging properties related to its antioxidant and anti-inflammatory actions. Its higher follicular fluid levels relative to blood concentrations and its likely synthesis in the oocyte, granulosa, and luteal cells suggest that it is optimally positioned to interfere with age-associated deterioration of the ovary. Additionally, the end of the female reproductive span coincides with a significant reduction in endogenous melatonin levels. Thus, the aims are to review the literature indicating melatonin production in mitochondria of oocytes, granulosa cells, and luteal cells, identify the multiple processes underlying changes in the ovary, especially late in the cessation of the reproductive life span, summarize the physiological and molecular actions of melatonin in the maintenance of normal ovaries and in the aging ovaries, and integrate the acquired information into an explanation for considering melatonin in the treatment of age-related infertility. Use of supplemental melatonin may help preserve fertility later in life and alleviate frustration in women delaying childbearing age, reduce the necessity of in vitro fertilization–embryo transfer (IVF-ET) procedures, and help solve the progressively increasing problem of non-aging-related infertility in women throughout their reproductive life span. While additional research is needed to fully understand the effects of melatonin supplementation on potentially enhancing fertility, studies published to date suggest it may be a promising option for those struggling with infertility.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
17
|
Silva BR, Silva JRV. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 2023; 249:107186. [PMID: 36638648 DOI: 10.1016/j.anireprosci.2022.107186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil.
| |
Collapse
|
18
|
Cao B, Qin J, Pan B, Qazi IH, Ye J, Fang Y, Zhou G. Oxidative Stress and Oocyte Cryopreservation: Recent Advances in Mitigation Strategies Involving Antioxidants. Cells 2022; 11:cells11223573. [PMID: 36429002 PMCID: PMC9688603 DOI: 10.3390/cells11223573] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Oocyte cryopreservation is widely used in assisted-reproductive technology and animal production. However, cryopreservation not only induces a massive accumulation of reactive oxygen species (ROS) in oocytes, but also leads to oxidative-stress-inflicted damage to mitochondria and the endoplasmic reticulum. These stresses lead to damage to the spindle, DNA, proteins, and lipids, ultimately reducing the developmental potential of oocytes both in vitro and in vivo. Although oocytes can mitigate oxidative stress via intrinsic antioxidant systems, the formation of ribonucleoprotein granules, mitophagy, and the cryopreservation-inflicted oxidative damage cannot be completely eliminated. Therefore, exogenous antioxidants such as melatonin and resveratrol are widely used in oocyte cryopreservation to reduce oxidative damage through direct or indirect scavenging of ROS. In this review, we discuss analysis of various oxidative stresses induced by oocyte cryopreservation, the impact of antioxidants against oxidative damage, and their underlying mechanisms. We hope that this literature review can provide a reference for improving the efficiency of oocyte cryopreservation.
Collapse
Affiliation(s)
- Beijia Cao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Jianpeng Qin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Pan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Izhar Hyder Qazi
- Department of Veterinary Anatomy, Histology, and Embryology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Jiangfeng Ye
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Correspondence: (Y.F.); (G.Z.); Tel.: +86-431-8554-2291 (Y.F.); +86-28-8629-1010 (G.Z.)
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Y.F.); (G.Z.); Tel.: +86-431-8554-2291 (Y.F.); +86-28-8629-1010 (G.Z.)
| |
Collapse
|
19
|
Reproductive Resumption in Winter and Spring Related to MTNR1A Gene Polymorphisms in Sarda Sheep. Animals (Basel) 2022; 12:ani12212947. [PMID: 36359071 PMCID: PMC9654450 DOI: 10.3390/ani12212947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the present research was to evaluate the association between the SNPs rs430181568 and rs407388227 located in the MTNR1A gene with the reproductive recovery of Sarda sheep in different months of ram introduction in the flock (February, March, April and May). In order to address this research gap, we selected two farms, each of which consisted of approximately 1000 animals; a total of 800 ewes (400 for each farm) were genotyped for the two single nucleotide polymorphisms rs430181568 and rs407388227 located in the exon 2 of the MTNR1A. These SNPs are completely linked; thus, each genotype of rs430181568 corresponded to the same genotype for rs407388227. Among the genotyped animals, 240 individuals were selected and divided into four homogeneous groups (A, B, C and D) of 60 subjects, each group based on age (range 3−6 years old), body condition score (BCS) (range 2.0−4.0) and genotype (20 ewes carrying CC/CC, 20 CT/CT and 20 TT/TT genotype). The dates of the ram introduction in each group were 15 February, 15 March, 15 April and 15 May, respectively. In all groups, the lambing date and the number of lambs born from 150 to 220 days after the ram introduction were recorded. In all the groups, the genotypes CC/CC and CT/CT of the polymorphism (rs430181568 and rs407388227) showed the greatest fertility (the ratio between the number of lambed ewes and the ewes exposed to the rams) (p < 0.01) and the shortest distance between ram introduction to lambing (p < 0.01), compared with the TT/TT genotype. In conclusion, we determined that the polymorphisms rs430181568 and rs407388227 were associated with reproductive recovery, after ram introduction, even in February and March, months subsequent to the photorefractoriness period.
Collapse
|
20
|
Paulino LRFM, Barroso PAA, Silva BR, Barroso LG, Barbalho EC, Bezerra FTG, Souza ALP, Monte APO, Silva AWB, Matos MHT, Silva JRV. Immunolocalization of melatonin receptors in bovine ovarian follicles and in vitro effects of melatonin on growth, viability and gene expression in secondary follicles. Domest Anim Endocrinol 2022; 81:106750. [PMID: 35870423 DOI: 10.1016/j.domaniend.2022.106750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
This study aims to investigate the (1) expression of melatonin receptors types 1A/B (MTNR1A/B) in bovine ovaries and (2) the in vitro effects of melatonin on secondary follicle development, antrum formation, viability, and expression of messenger ribonucleic acid (mRNA) for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase-1 (GPX1) and peroxiredoxin 6 (PRDX6). The expression of MTNR1A/B in bovine ovarian follicles was demonstrated by immunohistochemistry. To choose the most effective concentration of melatonin on follicular growth and viability, isolated secondary follicles were cultured individually at 38.5°C, with 5% CO2 in air, for 18 d in TCM-199+ alone or supplemented with 10-11, 10-9, 10-7 or 10-5 M melatonin. Then, melatonin receptor antagonist, luzindole, was tested to further evaluate the mechanisms of actions of melatonin, that is, the follicles were cultured in control medium alone or supplemented with 10-7 M melatonin, 10 µM luzindole and both 10-7 M melatonin and 10 µM luzindole. Follicular growth, morphology and antrum formation were evaluated at days 6, 12 and 18. At the end of culture, viability of secondary follicles was analyzed by calcein-AM and ethidium homodimer-1, and the relative levels of mRNA for SOD, CAT, GPX1 and PRDX6 were evaluated by real time polymerase chain reaction. Immunohistochemistry results showed expression of MTNR1A/B in oocyte and granulosa cells of primordial, primary, secondary and antral follicles. Secondary follicles cultured in medium supplemented with melatonin at different concentrations had well preserved follicles after 18 d of culture. Furthermore, follicles cultured in presence of 10-7 M melatonin presented significantly higher diameters than those cultured in other treatments. The presence of melatonin receptor antagonist, luzindole, blocked the effects of melatonin on follicular growth and viability. In addition, follicles cultured in medium containing only melatonin had significantly higher rates of antrum formation. Follicles cultured in medium containing only melatonin had higher relative levels of mRNA for CAT, SOD and PRDX-6 than those cultured with both melatonin and luzindole. Follicles cultured with luzindole only or both melatonin and luzindole had lower relative levels of mRNA for PRDX6 and GPX1 than those cultured control medium. In conclusion, melatonin promotes growth of bovine secondary follicles through its membrane-coupled receptors, while luzindole blocks the effects of melatonin on follicle growth and reduces the expression of antioxidant enzymes in cultured follicles.
Collapse
Affiliation(s)
- L R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - P A A Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - B R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - L G Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - E C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - F T G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A L P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A P O Monte
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - A W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - M H T Matos
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil.
| |
Collapse
|
21
|
Zhan C, Cao X, Zhang T, Guo J, Xu G, Wang H, Yang W, Yang L, Che D, Lu W, Ma X. Melatonin protects porcine oocyte from copper exposure potentially by reducing oxidative stress potentially through the Nrf2 pathway. Theriogenology 2022; 193:1-10. [PMID: 36115287 DOI: 10.1016/j.theriogenology.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Abstract
Copper is widely used as a feeding additive to promote livestock growth. However, excessive copper can be excreted with feces, causing heavy metal pollution and aggravating environmental problems. At the same time, studies have found that excess copper can cause damage to reproductive function and reduce gamete quality. Here, we explored the effects of adding different concentrations of copper to the culture medium on porcine oocytes. First polar body extrusion rate, embryo development, and intracellular levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) ΔΨm, adenosine triphosphate(ATP) content, and acetylation of lysine 9 on histone H3 protein subunit (H3K9ac) were assessed. Results demonstrated that Cu exposure causes abnormalities in mitochondrial function and epigenetic modification, resulting in increased oxidative stress and levels of ROS, ultimately leading to a decreased porcine oocyte quality. In addition, we found melatonin can protect porcine oocytes from those damages. Notably, Nrf2 protein expression was significantly increased by copper exposure, meanwhile, Nrf2 signaling pathway inhibitor ML385 significantly attenuated the protective role of melatonin on oxidative stress induced by copper exposure. In summary, our study demonstrates that copper activates the Nrf2 pathway and impairs oocyte maturation by inducing oxidative stress, leading to poor quality of porcine oocytes, and the changes can be reversed by melatonin.
Collapse
Affiliation(s)
- Chenglin Zhan
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xu Cao
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tianrui Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gaoqing Xu
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyan Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin Jilin, 132109, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wenfa Lu
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Xin Ma
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
22
|
Yan F, Zhao Q, Li Y, Zheng Z, Kong X, Shu C, Liu Y, Shi Y. The role of oxidative stress in ovarian aging: a review. J Ovarian Res 2022; 15:100. [PMID: 36050696 PMCID: PMC9434839 DOI: 10.1186/s13048-022-01032-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Ovarian aging refers to the process by which ovarian function declines until eventual failure. The pathogenesis of ovarian aging is complex and diverse; oxidative stress (OS) is considered to be a key factor. This review focuses on the fact that OS status accelerates the ovarian aging process by promoting apoptosis, inflammation, mitochondrial damage, telomere shortening and biomacromolecular damage. Current evidence suggests that aging, smoking, high-sugar diets, pressure, superovulation, chemotherapeutic agents and industrial pollutants can be factors that accelerate ovarian aging by exacerbating OS status. In addition, we review the role of nuclear factor E2-related factor 2 (Nrf2), Sirtuin (Sirt), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), Forkhead box O (FoxO) and Klotho signaling pathways during the process of ovarian aging. We also explore the role of antioxidant therapies such as melatonin, vitamins, stem cell therapies, antioxidant monomers and Traditional Chinese Medicine (TCM), and investigate the roles of these supplements with respect to the reduction of OS and the improvement of ovarian function. This review provides a rationale for antioxidant therapy to improve ovarian aging.
Collapse
Affiliation(s)
- Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qi Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhibo Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xinliang Kong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Chang Shu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| |
Collapse
|
23
|
Ratchamak R, Thananurak P, Boonkum W, Semaming Y, Chankitisakul V. The Melatonin Treatment Improves the Ovarian Responses After Superstimulation in Thai-Holstein Crossbreeds Under Heat Stress Conditions. Front Vet Sci 2022; 9:888039. [PMID: 35573411 PMCID: PMC9096612 DOI: 10.3389/fvets.2022.888039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The effect of heat stress with melatonin treatment on the superovulatory responses and embryo characteristics in Thai-Holstein crossbreeds under heat stress conditions was examined. Six non-lactating cows (replication = 4; n = 24) were assigned to one of 2 treatments in double cross-over design. All cows were superstimulated with traditional treatment. Melatonin group (n = 12): cows received intramuscularly injection 18 mg/50 kg. simultaneously with GnRH injection, while those in the control group (n = 12) received none. Bloods samples were taken to determine lipid peroxidation (MDA) and the activity of the antioxidant enzymes (superoxide dismutase; SOD). The experiment was conducted from April to September, which determined severe heat stress (the mean temperature-humidity index above 77). The results revealed that numbers of large follicles and corpora lutea were higher in the melatonin group than in the control group (p < 0.01). Numbers of recovered ova/embryos, fertilized ova, and transferable embryos were higher in the melatonin group (p < 0.01); meanwhile, more degenerated embryos were found in the control group (p < 0.01). Increased activity of the antioxidant enzymes SOD after melatonin administration decreased MDA levels (p < 0.05). In summary, melatonin administration benefited the ovarian response and embryo quality in superstimulated Thai-Holstein crossbreed affected by heat stress.
Collapse
Affiliation(s)
- Ruthaiporn Ratchamak
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Pachara Thananurak
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Network Center for Animal Breeding and Omics Research, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Yoswaris Semaming
- Program in Veterinary Technology, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani, Thailand
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Network Center for Animal Breeding and Omics Research, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Vibuntita Chankitisakul
| |
Collapse
|
24
|
Towards Improving the Outcomes of Multiple Ovulation and Embryo Transfer in Sheep, with Particular Focus on Donor Superovulation. Vet Sci 2022; 9:vetsci9030117. [PMID: 35324845 PMCID: PMC8953989 DOI: 10.3390/vetsci9030117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Considerable improvements in sheep multiple ovulation and embryo transfer (MOET)protocols have been made; however, unlike for cattle, MOET is poorly developed in sheep, and thus has not been broadly applicable as a routine procedure. The tightly folded nature of the ewe cervix, the inconsistent ovarian response to various superovulatory treatments, and the requirement of labor to handle animals, particularly during large-scale production, has limited the implementation of successful MOET in sheep. Moreover, several extrinsic factors (e.g., sources, the purity of gonadotrophins and their administration) and intrinsic factors (e.g., breed, age, nutrition, reproductive status) severely limit the practicability of MOET in sheep and other domestic animals. In this review, we summarize the effects of different superovulatory protocols, and their respective ovarian responses, in terms of ovulation rate, and embryo recovery and transfer. Furthermore, various strategies, such as inhibin immunization, conventional superovulation protocols, and melatonin implants for improving the ovarian response, are discussed in detail. Other reproductive techniques and their relative advantages and disadvantages, such as artificial insemination (AI), and donor embryo recovery and transfer to the recipient through different procedures, which must be taken into consideration for achieving satisfactory results during any MOET program in sheep, are also summarized in this article.
Collapse
|
25
|
Андреева ЕН, Григорян ОР, Абсатарова ЮС, Шереметьева ЕВ, Михеев РК. [Melatonin status in obese patients with ovarian dysfunction at reproductive age]. PROBLEMY ENDOKRINOLOGII 2022; 68:94-100. [PMID: 35262300 PMCID: PMC9112952 DOI: 10.14341/probl12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Melatonin is the main hormone of the pineal gland. By regulating circadian rhythms and being an immune regulator and antioxidant, this hormone takes part in the work of the ovaries: its high concentrations block apoptosis and neutralize reactive oxygen species involved in folliculogenesis, ovulation, egg maturation and corpus luteum formation. AIM To study melatonin status and its relationship with menstrual dysfunction and sleep disorders in obese women of reproductive age. MATERIALS AND METHODS In a one-stage comparative study, women 18-35 years old took part: 30 patients with obesity and menstrual disorders of an inorganic nature and 30 healthy women in the comparison group with normal weight and regular menstrual cycle. All participants underwent a questionnaire to identify somnological disorders, and the level of melatonin in saliva and 6-sulfatoxymelatonin in urine was also investigated. RESULTS In the group of patients with obesity (n=30), various sleep disorders were encountered in 47% of cases (p=0.003), including more often obstructive sleep apnea syndrome was recorded (30% of cases), and a correlation was found between the indicators of the questionnaire survey of subjective sleep characteristics and body mass index of patients (r=0.450, p=0.030) compared with a group of healthy women with normal weight (n=30). In the main group, the level of melatonin in saliva was statistically significantly lower than in the control: median 12.6 pg / ml and 25.5 pg / ml, respectively (p=0.008), the same pattern was recorded for 6-sulfatoxymelatonin: 14, 72 pg / ml and 31.12 pg / ml, respectively. CONCLUSION Patients with obesity and menstrual dysfunction are more likely to suffer from various sleep disorders and have lower levels of melatonin in saliva and 6-sulfatoxymelatonin in urine.
Collapse
Affiliation(s)
- Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии;
Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - О. Р. Григорян
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - Р. К. Михеев
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
26
|
Wang W, Lv J, Duan H, Ding Z, Zeng J, Lv C, Hu J, Zhang Y, Zhao X. Regulatory role of melatonin on epidermal growth factor receptor, Type I collagen α1 chain, and caveolin 1 in granulosa cells of sheep antral follicles. Anim Sci J 2022; 93:e13760. [PMID: 35932205 DOI: 10.1111/asj.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/17/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
We investigated the expression of epidermal growth factor receptor (EGFR), Type I collagen α1 chain (COL1A1), and caveolin 1 (CAV1) during follicular development and examined the regulatory role of melatonin (MLT) on EGFR, COL1A1, and CAV1 in sheep antral ovaries. The expression was detected in granulosa and theca cells by immunohistochemistry. Quantitative real-time polymerase chain reaction and Western blotting were used to examine the expression levels of EGFR, COL1A1, and CAV1 in small (≤2 mm), medium (2-5 mm), and large (≥5 mm) follicles. The mRNA and protein levels of EGFR, COL1A1, and CAV1 were found to be the highest in large follicles. Furthermore, cultured granulosa cells were treated with MLT (10-7 -10-11 M), luzindole (nonselective MT1 and MT2 receptor antagonist, 10-7 M), and 4-phenyl-2-propanamide tetraldehyde (4P-PDOT, MT2 selective antagonist, 10-7 M) to detect the regulatory role of MLT on EGFR, COL1A1, and CAV1. Results indicated COL1A1 and CAV1 were at least partially regulated by MLT through MT1 and MT2 pathways, whereas EGFR was not. This study provided a reference for further studies on MLT regulatory role on EGFR, COL1A1, and CAV1 during sheep follicular development and elucidated the physiological mechanism of MLT regulator production.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Chen Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
27
|
Yong W, Ma H, Na M, Gao T, Zhang Y, Hao L, Yu H, Yang H, Deng X. Roles of melatonin in the field of reproductive medicine. Biomed Pharmacother 2021; 144:112001. [PMID: 34624677 DOI: 10.1016/j.biopha.2021.112001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/30/2022] Open
Abstract
Melatonin, mostly released by the pineal gland, is a circadian rhythm-regulated and multifunctional hormone. Great advances in melatonin research have been made, including its role in rhythms of the sleep-wake cycle, retardation of ageing processes, as well as antioxidant or anti-inflammatory functions. Melatonin can scavenge free radicals such as reactive oxygen species (ROS), a key factor in reproductive functions. Melatonin plays an important role in oocyte maturation, fertilization and embryonic development as well. The concurrent use of melatonin increases the number of mature oocytes, the fertilization rate, and number of high-quality embryos, which improves the clinical outcome of assisted reproductive technology (ART). This review discusses the relationship between melatonin and human reproductive function, and potential clinical applications of melatonin in the field of reproductive medicine.
Collapse
Affiliation(s)
- Wei Yong
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, China; Department of Pharmacology, the Fourth Affiliated Hospital, CMU, Shenyang, 110032, China
| | - Haiying Ma
- Department of Pharmacology, the Fourth Affiliated Hospital, CMU, Shenyang, 110032, China
| | - Man Na
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, China; Department of Pharmacology, the Fourth Affiliated Hospital, CMU, Shenyang, 110032, China
| | - Teng Gao
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, China; Department of Pharmacology, the Fourth Affiliated Hospital, CMU, Shenyang, 110032, China
| | - Ye Zhang
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, China; Department of Pharmacology, the Fourth Affiliated Hospital, CMU, Shenyang, 110032, China
| | - Liying Hao
- Institute of Medical Toxicology, College of Pharmacology, China Medical University, Shenyang, China
| | - Hang Yu
- Department of Biophysics, CMU, Shenyang, 110122, China
| | - Huazhe Yang
- Department of Biophysics, CMU, Shenyang, 110122, China
| | - Xin Deng
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, China.
| |
Collapse
|
28
|
Deng X, Si J, Qu Y, Jie L, He Y, Wang C, Zhang Y. Vegetarian diet duration's influence on women's gut environment. GENES & NUTRITION 2021; 16:16. [PMID: 34600491 PMCID: PMC8487541 DOI: 10.1186/s12263-021-00697-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nutrient composition of vegetarian diets is greatly different from that of omnivore diets, which may fundamentally influence the gut microbiota and fecal metabolites. The interactions between diet pattern and gut environment need further illustration. This study aims to compare the difference in the gut microbiota and fecal metabolites between vegetarian and omnivore female adults and explore associations between dietary choices/duration and gut environment changes. METHODS In this study, investigations on the fecal metabolome together with the gut microbiome were performed to describe potential interactions with quantitative functional annotation. In order to eliminate the differences brought by factors of gender and living environment, 80 female adults aged 20 to 48 were recruited in the universities in Beijing, China. Quantitative Insights Into Microbial Ecology (QIIME) analysis and Ingenuity Pathway Analysis (IPA) were applied to screen differential data between groups from gut microbiota and fecal metabolites. Furthermore, weighted gene correlation network analysis (WGCNA) was employed as the bioinformatics analysis tool for describing the correlations between gut microbiota and fecal metabolites. Moreover, participants were further subdivided by the vegetarian diet duration for analysis. RESULTS GPCR-mediated integration of enteroendocrine signaling was predicted to be one of the regulatory mechanisms of the vegetarian diet. Intriguingly, changes in the gut environment which occurred along with the vegetarian diet showed attenuated trend as the duration increased. A similar trend of returning to "baseline" after a 10-year vegetarian diet was detected in both gut microbiota and fecal metabolome. CONCLUSIONS The vegetarian diet is beneficial more than harmful to women. Gut microbiota play roles in the ability of the human body to adapt to external changes.
Collapse
Affiliation(s)
- Xinqi Deng
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Jiangtao Si
- Special Treatment Center, Wang Jing Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yonglong Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Li Jie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuansong He
- Sichuan Vocational College of Nursing, Chengdu, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuping Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
29
|
Nouri N, Aghebati-Maleki L, Yousefi M. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of pre mature ovarian failure. J Reprod Immunol 2021; 147:103363. [PMID: 34450435 DOI: 10.1016/j.jri.2021.103363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Despite being rare, primary ovarian insufficiency (POI) is a significant cause of infertility and deficiency of ovarian hormone in women. Several health risks are also associated with POI, which include dry eye syndrome, reduced density of bones and enhanced fracture risks, troublesome menopausal symptoms, early development of cardiovascular disease, and psychological effects such as declined cognition, reduced perceived psychological support, anxiety, and depression. Replacing premenopausal levels of ovarian sex steroids through proper hormone replacement therapy could improve the quality of life for POI women and ameliorate related health risks. Herein, POI and its complications, in addition to hormone replacement therapies, which are safe and effective, are discussed. It is proposed that the use of HRT) Hormone replacement therapy (formulations which mimic normal production of ovarian hormones could reduce POI-associated morbidity rates if they are continued by the age 50, which is approximately the natural age of menopause. Particular populations of POI women are also addressed, which include those with enhanced risk of ovarian or breast cancer, those with Turner syndrome, those approaching natural menopause, and those who are breastfeeding. It is generally predicted that stem cell-based therapies would be both safe and effective. In fact, several types of cells have been described as safe, though their effectiveness and therapeutic application are yet to be defined. Several factors exist which could affect the results of treatment, such as cell handling, ex-vivo preparation strategies, variations in tissue of origin, potency, and immunocompatibility. Accordingly, cell types potentially effective in regenerative medicine could be recognized. Notably, products of MSCs from various sources of tissues show different levels of regenerative capabilities. The ultimate focus of the review is on adipose tissue-derive MCSs (ADMSCs), which possess exceptional features such as general availability, great ability to proliferate and differentiate, immunomodulatory capabilities, and low immunogenicity.
Collapse
Affiliation(s)
- Narges Nouri
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
30
|
Melatonin and Myo-Inositol: Supporting Reproduction from the Oocyte to Birth. Int J Mol Sci 2021; 22:ijms22168433. [PMID: 34445135 PMCID: PMC8395120 DOI: 10.3390/ijms22168433] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
Human pregnancy is a sequence of events finely tuned by several molecular interactions that come with a new birth. The precise interlocking of these events affecting the reproductive system guarantees safe embryo formation and fetal development. In this scenario, melatonin and myo-inositol seem to be pivotal not only in the physiology of the reproduction process, but also in the promotion of positive gestational outcomes. Evidence demonstrates that melatonin, beyond the role of circadian rhythm management, is a key controller of human reproductive functions. Similarly, as the most representative member of the inositol’s family, myo-inositol is essential in ensuring correct advancing of reproductive cellular events. The molecular crosstalk mediated by these two species is directly regulated by their availability in the human body. To date, biological implications of unbalanced amounts of melatonin and myo-inositol in each pregnancy step are growing the idea that these molecules actively contribute to reduce negative outcomes and improve the fertilization rate. Clinical data suggest that melatonin and myo-inositol may constitute an optimal dietary supplementation to sustain safe human gestation and a new potential way to prevent pregnancy-associated pathologies.
Collapse
|
31
|
Guo YM, Sun TC, Wang HP, Chen X. Research progress of melatonin (MT) in improving ovarian function: a review of the current status. Aging (Albany NY) 2021; 13:17930-17947. [PMID: 34228638 PMCID: PMC8312436 DOI: 10.18632/aging.203231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Melatonin (MT) is an endogenous hormone mainly synthesized by pineal cells, which has strong endogenous effects of eliminating free radicals and resisting oxidative damages. Melatonin (MT) can not only regulate the body’s seasonal and circadian rhythms; but also delay ovarian senescence, regulate ovarian biological rhythm, promote follicles formation, and improve oocyte quality and fertilization rate. This review aimd to provide evidence concerning the synthesis and distribution, ovarian function, and role of MT in development of follicles and oocytes. Moreover, the role of MT as antioxidative, participating in biological rhythm regulation, was also reviewed. Furthermore, the effects of MT on various ovarian related diseases were analyzed, particularly for the ovarian aging and polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Yi Ming Guo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,National Engineering Research Center of Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Tie Cheng Sun
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, China
| | - Hui Ping Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,National Engineering Research Center of Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Xi Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
32
|
Ezzati M, Velaei K, Kheirjou R. Melatonin and its mechanism of action in the female reproductive system and related malignancies. Mol Cell Biochem 2021; 476:3177-3190. [PMID: 33864572 DOI: 10.1007/s11010-021-04151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), the main product of pineal gland in vertebrates, is well known for its multifunctional role which has great influences on the reproductive system. Recent studies documented that melatonin is a powerful free radical scavenger that affects the reproductive system function and female infertility by MT1 and MT2 receptors. Furthermore, cancer researches indicate the influence of melatonin on the modulation of tumor cell signaling pathways resulting in growth inhibitor of the both in vivo/in vitro models. Cancer adjuvant therapy can also benefit from melatonin through therapeutic impact and decreasing the side effects of radiation and chemotherapy. This article reviews the scientific evidence about the influence of melatonin and its mechanism of action on the fertility potential, physiological alteration, and anticancer efficacy, during experimental and clinical studies.
Collapse
Affiliation(s)
- Maryam Ezzati
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Immunology Research Center, Tabriz University of Medical Sciences, PO. Box: 51376563833, Tabriz, Iran.
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Reiter RJ, Ma Q, Sharma R. Melatonin in Mitochondria: Mitigating Clear and Present Dangers. Physiology (Bethesda) 2021; 35:86-95. [PMID: 32024428 DOI: 10.1152/physiol.00034.2019] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In cancer cells, glucose is primarily metabolized to pyruvate and then to lactate in the cytosol. By allowing the conversion of pyruvate to acetyl-CoA in mitochondria, melatonin reprograms glucose metabolism in cancer cells to a normal cell phenotype. Acetyl-CoA in the mitochondria also serves as a necessary co-factor for the rate-limiting enzyme in melatonin synthesis, thus ensuring melatonin production in mitochondria of normal cells.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Qiang Ma
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
34
|
Khan HL, Bhatti S, Abbas S, Kaloglu C, Qurat-Ul-Ain Zahra S, Khan YL, Hassan Z, Turhan NÖ, Aydin HH. Melatonin levels and microRNA (miRNA) relative expression profile in the follicular ambient microenvironment in patients undergoing in vitro fertilization process. J Assist Reprod Genet 2021; 38:443-459. [PMID: 33226531 PMCID: PMC7884535 DOI: 10.1007/s10815-020-02010-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Intrafollicular fluid (IFF) melatonin plays a decisive role in maintaining granulosa cells' DNA integrity and protects them against apoptosis. It reduces oxidative stress and improves the oocyte quality with a higher fertilization rate. METHOD This prospective study investigated the antioxidant property of IFF melatonin and its impact on IVF outcome parameters. We also explored the relative expression of five microRNAs (miR-663b, miR-320a, miR-766-3p, miR-132-3p, miR-16-5p) and levels of cell-free DNA (cfDNA) by real-time PCR in unexplained infertile patients. We collected 425 follicular fluid (FF) samples containing mature oocytes from 295 patients undergoing IVF. RESULTS Patients were subgrouped based on IFF melatonin concentration (group A ≤ 30 pg/mL, group B > 70 to ≤ 110 pg/mL, group C > 111 to ≤ 385 pg/mL). Our results showed that patients with ≤ 30 pg/mL IFF melatonin levels have significantly higher oxidative stress markers, cfDNA levels, and lower relative expression of miR-663b, miR-320a, miR-766-3p, miR-132-3p, and miR-16-5p compared to other subgroups (p < 0.001). Similarly, they have a low fertilization rate and a reduced number of high-quality day 3 embryos. CONCLUSION Findings suggest that the therapeutic use of melatonin produces a considerable rise in the number of mature oocytes retrieved, fertilization rate, and good-quality embryo selection. Furthermore, miRNA signature enhances the quality of embryo selection, thus, may allow us to classify them as non-invasive biomarkers to identify good-quality embryos.
Collapse
Affiliation(s)
- Haroon Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
| | - Shahzad Bhatti
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan.
- Department of Human Genetics and Molecular biology, University of Health Sciences, Lahore, 54600, Pakistan.
- Department of Medical Education, Rashid Latif Medical College, Lahore, Pakistan.
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, 54800, Pakistan.
| | - Sana Abbas
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
| | - Celal Kaloglu
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, 58140, Sivas, Turkey
| | | | - Yousaf Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
- Department of Gynecology and Obstetrics, Hameed Latif Hospital, 14 - Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
| | - Zahira Hassan
- Department of Cellular Pathology, Royal Free Hospital, London, NW3 2QG, UK
| | - Nilgün Öztürk Turhan
- Bayındır Hastanesi, Department of Obstetrics and Gynecology, Nispetiye Mah. Aydın sokak No:8, 34340, Beşiktaş, Istanbul, Turkey
| | - Hikmet Hakan Aydin
- Department of Medical Biochemistry, Ege University School of Medicine, Bornova, Izmir, Turkey
| |
Collapse
|
35
|
Kechiche S, Venditti M, Knani L, Jabłońska K, Dzięgiel P, Messaoudi I, Reiter RJ, Minucci S. First evidence of the protective role of melatonin in counteracting cadmium toxicity in the rat ovary via the mTOR pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116056. [PMID: 33199064 DOI: 10.1016/j.envpol.2020.116056] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/11/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Herein, the first evidence of the ability of melatonin (MLT) to counteract cadmium (Cd) toxic effects on the rat ovary is reported. Cd treatment, enhancing oxidative stress, provoked clear morphological, histological and biomolecular alterations, i.e. in the estrous cycle duration, in the ovarian and serum E2 concentration other than in the steroidogenic and folliculogenic genes expression. Results demonstrated that the use of MLT, in combination with Cd, avoided the changes, strongly suggesting that it is an efficient antioxidant for preventing oxidative stress in the rat ovary. Moreover, to explore the underlying mechanism involved, at molecular level, in the effects of Cd-MLT interaction, the study focused on the mTOR and ERK1/2 pathways. Interestingly, data showed that Cd influenced the phosphorylation status of mTOR, of its downstream effectors and of ERK1/2, inducing autophagy and apoptosis, while cotreatment with MLT nullified these changes. This work highlights the beneficial role exerted by MLT in preventing Cd-induced toxicity in the rat ovary, encouraging further studies to confirm its action on human ovarian health with the aim to use this indolamine to ameliorate oocyte quality in women with fertility disorders.
Collapse
Affiliation(s)
- Safa Kechiche
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Latifa Knani
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Karolina Jabłońska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università Della Campania "Luigi Vanvitelli", Napoli, Italy.
| |
Collapse
|
36
|
Gomes PRL, Motta-Teixeira LC, Gallo CC, Carmo Buonfiglio DD, Camargo LSD, Quintela T, Reiter RJ, Amaral FGD, Cipolla-Neto J. Maternal pineal melatonin in gestation and lactation physiology, and in fetal development and programming. Gen Comp Endocrinol 2021; 300:113633. [PMID: 33031801 DOI: 10.1016/j.ygcen.2020.113633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
Abstract
Pregnancy and lactation are reproductive processes that rely on physiological adaptations that should be timely and adequately triggered to guarantee both maternal and fetal health. Pineal melatonin is a hormone that presents daily and seasonal variations that synchronizes the organism's physiology to the different demands across time through its specific mechanisms and ways of action. The reproductive system is a notable target for melatonin as it actively participates on reproductive physiology and regulates the hypothalamus-pituitary-gonads axis, influencing gonadotropins and sexual hormones synthesis and release. For its antioxidant properties, melatonin is also vital for the oocytes and spermatozoa quality and viability, and for blastocyst development. Maternal pineal melatonin blood levels increase during pregnancy and triggers the maternal physiological alterations in energy metabolism both during pregnancy and lactation to cope with the energy demands of both periods and to promote adequate mammary gland development. Moreover, maternal melatonin freely crosses the placenta and is the only source of this hormone to the fetus. It importantly times the conceptus physiology and influences its development and programing of several functions that depend on neural and brain development, ultimately priming adult behavior and energy and glucose metabolism. The present review aims to explain the above listed melatonin functions, including the potential alterations observed in the progeny gestated under maternal chronodisruption and/or hypomelatoninemia.
Collapse
Affiliation(s)
- Patrícia Rodrigues Lourenço Gomes
- Neurobiology Lab, Department of Physiology and Biophysics, 1524 Prof. Lineu Prestes Ave., Institute of Biomedical Sciences, Bldg 1, Lab 118, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lívia Clemente Motta-Teixeira
- Neurobiology Lab, Department of Physiology and Biophysics, 1524 Prof. Lineu Prestes Ave., Institute of Biomedical Sciences, Bldg 1, Lab 118, University of São Paulo, São Paulo 05508-000, Brazil
| | - Camila Congentino Gallo
- Pineal Neurobiology Lab, Department of Physiology, 862 Botucatu St., 5th floor, Federal University of São Paulo, São Paulo 04023-901, Brazil.
| | - Daniella do Carmo Buonfiglio
- Neurobiology Lab, Department of Physiology and Biophysics, 1524 Prof. Lineu Prestes Ave., Institute of Biomedical Sciences, Bldg 1, Lab 118, University of São Paulo, São Paulo 05508-000, Brazil
| | - Ludmilla Scodeler de Camargo
- Pineal Neurobiology Lab, Department of Physiology, 862 Botucatu St., 5th floor, Federal University of São Paulo, São Paulo 04023-901, Brazil.
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Center, Infante D. Henrique Ave, University of Beira Interior, Covilhã 6200-506, Portugal.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, 7703 Floyd Curl Drive, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Fernanda Gaspar do Amaral
- Pineal Neurobiology Lab, Department of Physiology, 862 Botucatu St., 5th floor, Federal University of São Paulo, São Paulo 04023-901, Brazil.
| | - José Cipolla-Neto
- Neurobiology Lab, Department of Physiology and Biophysics, 1524 Prof. Lineu Prestes Ave., Institute of Biomedical Sciences, Bldg 1, Lab 118, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
37
|
Li Y, Fang L, Zhang R, Wang S, Li Y, Yan Y, Yu Y, Cheng JC, Sun YP. Melatonin stimulates VEGF expression in human granulosa-lutein cells: A potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome. Mol Cell Endocrinol 2020; 518:110981. [PMID: 32791190 DOI: 10.1016/j.mce.2020.110981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/18/2020] [Accepted: 08/07/2020] [Indexed: 12/29/2022]
Abstract
Melatonin can be synthesized and secreted not only by the pineal gland but also by many extra-pineal tissues. It has been shown that many ovarian functions are regulated by melatonin locally. Ovarian hyperstimulation syndrome (OHSS) is a serious complication during ovulation induction of the in vitro fertilization treatment. To date, the etiology of OHSS is not fully understood. However, vascular endothelial growth factor (VEGF) is recognized as a critical mediator for the pathogenesis of OHSS. High expression of melatonin has been detected in the follicular fluid of OHSS patients. However, whether VEGF expression can be regulated by melatonin in human granulosa cells and further contributes to the pathogenesis of OHSS remain unknown. In this study, we show that melatonin stimulates VEGF expression in human granulosa-lutein (hGL) cells. Our results reveal that the MT2 receptor and activation of AKT are involved in melatonin-induced VEGF expression. Using a rat OHSS model, we report that the VEGF levels are up-regulated in the ovaries of OHSS rats. Blocking the melatonin system by administrating MT2 receptor antagonist, 4-P-PDOT, alleviates OHSS symptoms by decreasing the expression of VEGF. In addition, the expression levels of melatonin and VEGF in the follicular fluid of OHSS patients are up-regulated and positively correlated. This study demonstrates an important role for melatonin in regulating the pathogenesis of OHSS.
Collapse
Affiliation(s)
- Yiran Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruizhe Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Sijia Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuxi Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiping Yu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
38
|
To What Extent Does Photoperiod Affect Cattle Reproduction? Clinical Perspectives of Melatonin Administration – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The seasonality of reproduction in most mammals is dictated by photoperiod, temperature and nutrition. Melatonin, mainly synthesized in the pineal gland, is generally accepted as the active mediator of photoperiod responses including reproduction. While non-pregnant heifers and cows show continuous sexual activity and are therefore not seasonal breeders, it has been suggested that photo-periodicity may influence the appearance of puberty in heifers and the onset of parturition. Further, the light/dark ratio may influence endocrine patterns of gestation and a shorter light period correlates with the incidence of twin pregnancies. This review considers specific aspects of the effects of photoperiod and melatonin on reproduction in dairy cattle and discusses the clinical applications of melatonin.
Collapse
|
39
|
Soni N, Pandey AK, Kumar A, Verma A, Kumar S, Gunwant P, Phogat JB, Kumar V, Singh V. Expression of MTNR1A, steroid (ERα, ERβ, and PR) receptor gene transcripts, and the concentration of melatonin and steroid hormones in the ovarian follicles of buffalo. Domest Anim Endocrinol 2020; 72:106371. [PMID: 31421986 DOI: 10.1016/j.domaniend.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/19/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022]
Abstract
High ambient temperature exhibits a retrograde effect on buffalo reproduction because of heat stress. Moreover, melatonin is known to regulate reproductive changes in seasonally reproductive animals by binding to high affinity, G protein-coupled receptors. The MTNR1A gene is a prime receptor, mediating the effect of melatonin at the neuroendocrine level to control seasonal reproduction. In sheep, the role of melatonin is well known; however, studies have not been conducted in buffalo to determine its effect during favorable and unfavorable breeding seasons. Therefore, the present study aimed to (1) determine the expression of MTNR1A, ERα, ERβ, and PR gene transcripts in the ovarian follicles of buffalo during the summer and winter seasons and (2) analyze melatonin, 17β-estradiol, and progesterone concentrations in the follicular fluid of buffalo during both seasons. Murrah buffalo ovaries were collected during both the summer (May-June) and winter (December-January) seasons. All visible ovarian follicles were allocated into one of three groups: (1) small (8-9.9 mm); (2) medium (10-11.9 mm); and (3) large (12-14 mm). Follicular fluid was aspirated from each group of follicles for hormone analyses. The granulosa cells were processed for RNA extraction. Furthermore, they were subjected to real-time quantitative PCR to analyze the expression (relative quantification) of MTNR1A, ERα, ERβ, and PR in each follicular group. The expression of MTNR1A gene transcript decreased with the increasing size of the follicle and intrafollicular melatonin concentration. Expression of ERα and PR remained unaffected by the season and was similar (P > 0.05) in all groups. Expression of ERβ was higher (P < 0.05) in summer than winter; nevertheless, small-sized follicles from the summer exhibited higher (P < 0.05) expressions than medium- and large-sized follicles. The overall intrafollicular melatonin concentration was positively correlated (P < 0.05) with 17β-estradiol and progesterone concentrations. In conclusion, the decreased expression of MTNR1A and increased concentration of intrafollicular melatonin with the increasing size of the follicle indicates a probable role in folliculogenesis and ovulation in buffalo.
Collapse
Affiliation(s)
- N Soni
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - A K Pandey
- Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India.
| | - A Kumar
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - A Verma
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - S Kumar
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - P Gunwant
- Government of Veterinary Hospital, Jauljivi, Pithoragarh 262544, India
| | - J B Phogat
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - V Kumar
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - V Singh
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| |
Collapse
|
40
|
Guo Y, Sun J, Bu S, Li B, Zhang Q, Wang Q, Lai D. Melatonin protects against chronic stress-induced oxidative meiotic defects in mice MII oocytes by regulating SIRT1. Cell Cycle 2020; 19:1677-1695. [PMID: 32453975 DOI: 10.1080/15384101.2020.1767403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic stress which is common in the current society can be harmful to female reproduction and is associated with oocyte defects. However, the underlying mechanisms remain largely unknown. Herein, by using a mouse model of chronic restraint stress, we demonstrated that chronic stress could induce meiotic spindle abnormalities, chromatin misalignment, mitochondrial dysfunction and elevated ROS levels in oocytes in vivo, all of which were normalized by the administration of melatonin. Consistently, melatonin treatment during in vitro maturation also attenuated the meiotic defects induced by H2O2 by regulating autophagy and SIRT1, which could be abolished by SIRT1 inhibitor, Ex527 and autophagy inhibitor Bafilomycin A1 (Baf A1). These data indicate that melatonin can mitigate chronic stress-induced oxidative meiotic defects in mice MII oocytes by regulating SIRT1 and autophagy, providing new understanding for stress-related meiotic errors in MII oocytes and suggesting melatonin and SIRT1 could be new targets for optimizing culture system of oocytes as well as fertility management.
Collapse
Affiliation(s)
- Ying Guo
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Junyan Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Shixia Bu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Boning Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Qiuwan Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Qian Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Dongmei Lai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| |
Collapse
|
41
|
Bıldırcın FD, Özdemir A, ÇELİK H, Karlı P, AVCI B, Batıoğlu S. Effects of tryptophan, a precursor for melatonin, on ıvf outcomes and Doppler parameters. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2020. [DOI: 10.32322/jhsm.667822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
42
|
Importance of Melatonin in Assisted Reproductive Technology and Ovarian Aging. Int J Mol Sci 2020; 21:ijms21031135. [PMID: 32046301 PMCID: PMC7036809 DOI: 10.3390/ijms21031135] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Melatonin is probably produced in all cells but is only secreted by the pineal gland. The pineal secretion of melatonin is determined by the light–dark cycle, and it is only released at night. Melatonin regulates biological rhythms via its receptors located in the suprachiasmatic nuclei of the hypothalamus. Melatonin also has strong antioxidant activities to scavenge free radicals such as reactive oxygen species (ROS). The direct free radical scavenging actions are receptor independent. ROS play an important role in reproductive function including in the ovulatory process. However, excessive ROS can also have an adverse effect on oocytes because of oxidative stress, thereby causing infertility. It is becoming clear that melatonin is located in the ovarian follicular fluid and in the oocytes themselves, which protects these cells from oxidative damage as well as having other beneficial actions in oocyte maturation, fertilization, and embryo development. Trials on humans have investigated the improvement of outcomes of assisted reproductive technology (ART), such as in vitro fertilization and embryo transfer (IVF-ET), by way of administering melatonin to patients suffering from infertility. In addition, clinical research has examined melatonin as an anti-aging molecule via its antioxidative actions, and its relationship with the aging diseases, e.g., Alzheimer’s and Parkinson’s disease, is also underway. Melatonin may also reduce ovarian aging, which is a major issue in assisted reproductive technology. This review explains the relationship between melatonin and human reproductive function, as well as the clinical applications expected to improve the outcomes of assisted reproductive technology such as IVF, while also discussing possibilities for melatonin in preventing ovarian aging.
Collapse
|
43
|
Abstract
For more than a half century the hormone melatonin has been associated with vertebrate reproduction, particularly in the context of seasonal breeding. This association is due in large measure to the fact that melatonin secretion from the pineal gland into the peripheral circulation is a nocturnal event whose duration is reflective of night length, which of course becomes progressively longer during winter months and correspondingly shorter during the summer months. The nocturnal plasma melatonin signal is conserved in essentially all vertebrates and is accessed not just for reproductive rhythms, but for seasonal cycles of metabolic activities, immune functions, and behavioral expression. A vast literature on melatonin and vertebrate biology has accrued over the past 60 years since melatonin's discovery, including the broad topic of animal reproduction, which is far beyond the scope of this human-focused review. Although modern humans in the industrialized world appear in general to have little remaining reproductive seasonality, the relationships between melatonin and human reproduction continue to attract widespread scientific attention. The purpose of this chapter is to draw attention to some newer developments in the field, especially those with relevance to human fertility and reproductive medicine. As the vast majority of studies have focused on the female reproductive system, a discussion of the potential impact of melatonin on human male fertility will be left for others.
Collapse
|
44
|
Fang L, Li Y, Wang S, Yu Y, Li Y, Guo Y, Yan Y, Sun YP. Melatonin induces progesterone production in human granulosa-lutein cells through upregulation of StAR expression. Aging (Albany NY) 2019; 11:9013-9024. [PMID: 31619582 PMCID: PMC6834401 DOI: 10.18632/aging.102367] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in ovarian steroidogenesis and progesterone (P4) synthesis. Melatonin and its receptors are expressed in human granulosa cells, and have been shown to influence basal P4 production. However, previous studies addressing the regulation of StAR expression by melatonin and its impact on P4 secretion yielded contradictory results. Here, we demonstrate that melatonin upregulates StAR expression in primary cultures of human granulosa-lutein (hGL) cells obtained from women undergoing in vitro fertilization (IVF). Using pharmacological inhibitors, we show that the stimulatory effect of melatonin on StAR expression is mediated via both MT1 and MT2 melatonin receptors. Melatonin exposure activates the PI3K/AKT signaling pathway and its inhibition attenuates the stimulatory effect of melatonin on StAR expression. Moreover, siRNA-mediated knockdown of StAR abolishes melatonin-induced P4 production. Importantly, clinical analyses demonstrate that melatonin levels in human follicular fluid are positively correlated with P4 levels in serum. By illustrating the potential physiological role of melatonin in the regulation of StAR expression and P4 production in hGL cells, our results may serve to improve current strategies used to treat clinical infertility.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiran Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sijia Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiping Yu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuxi Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanjie Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
45
|
Minguini IP, Luquetti CM, Baracat MCP, Maganhin CC, Nunes CDO, Simões RS, Veiga ECDA, Cipolla Neto J, Baracat EC, Soares Junior JM. Melatonin effects on ovarian follicular cells: a systematic review. ACTA ACUST UNITED AC 2019; 65:1122-1127. [PMID: 31531613 DOI: 10.1590/1806-9282.65.8.1122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 11/21/2022]
Abstract
Melatonin is known for its effects on both the sleep and reproductive system of mammals. The latter has melatonin receptors type 1 and 2, which act to regulate, among other things, cyclic AMP. Notwithstanding all the literature data, there is still no sound knowledge or a clear understanding of the hormone's action on the physiology of ovarian follicular cells. OBJECTIVE To review and evaluate studies about melatonin action on the ovarian granulosa/theca interna cells from the literature. METHODS The systematic review was carried out according to the PRISMA recommendations. The MEDLINE and Cochrane primary databases were consulted with the use of specific terms. There was no limitation on language or publication year. RESULTS Seven papers about melatonin action on granulosa cells were selected. The following can be attributed to the hormone's effects: a) progesterone increase in culture medium; b) increased estrogen production; c) antagonistic action on estrogen; d) improvement in cell quality resulting in improved embryo and higher pregnancy rates; e) improved cell proliferation via MAPK; f) reduction of free radicals. Nevertheless, there are contrarian papers reporting a reduction in progesterone production. Melatonin interferes in sex steroid production, boosting progesterone output. Such action may help improve oocyte quality.
Collapse
Affiliation(s)
- Isabela Pasqualini Minguini
- Disciplina de Ginecologia do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Camila Maganhin Luquetti
- Disciplina de Ginecologia do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Maria Cândida Pinheiro Baracat
- Disciplina de Ginecologia do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Carla Cristina Maganhin
- Disciplina de Ginecologia do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Camila de Oliveira Nunes
- Disciplina de Ginecologia do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ricardo Santos Simões
- Disciplina de Ginecologia do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Eduardo Carvalho de Arruda Veiga
- Disciplina de Ginecologia do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - José Cipolla Neto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Edmund Chada Baracat
- Disciplina de Ginecologia do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jose Maria Soares Junior
- Disciplina de Ginecologia do Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
46
|
Impact of Melatonin Supplementation in Women with Unexplained Infertility Undergoing Fertility Treatment. Antioxidants (Basel) 2019; 8:antiox8090338. [PMID: 31450726 PMCID: PMC6769719 DOI: 10.3390/antiox8090338] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 01/25/2023] Open
Abstract
Unexplained infertility occurs when common causes for a couple’s inability to conceive have been excluded. Although origins of idiopathic infertility are still unclear, factors, such as an altered oxidative balance, are believed to be involved. Melatonin is an outstanding antioxidant reportedly present in the follicular fluid (FF), which has been suggested as a useful tool in the management of human fertility. Herein, we observed that intrafollicular concentrations of melatonin were blunted in women with unexplained infertility (UI), which was associated with a marked oxidative imbalance in UI patients’ FF. Based on these findings, this randomized pilot study was aimed at assessing whether exogenous melatonin ameliorated oxidative stress and improved in vitro fertilization (IVF) success rates in UI. Thus, 3 mg/day or 6 mg/day of melatonin were given to UI patients for a period spanning from the first appointment to control ovarian stimulation until the day of follicular puncture. Our results indicate that melatonin supplementation, irrespective of the two doses tested, ameliorated intrafollicular oxidative balance and oocyte quality in UI patients, and that this translated into a slight increase in the rate of pregnancies/live births. Therefore, although the indoleamine has shown therapeutic potential in this clinical setting, larger clinical trials in populations with different backgrounds are encouraged to corroborate the usefulness of melatonin.
Collapse
|
47
|
Lombardi LA, Mattos LSD, Simões RS, Florencio-Silva R, Sasso GRDS, Carbonel AAF, Simões MJ, Baracat EC, Soares JM. Melatonin may prevent or reverse polycystic ovary syndrome in rats. ACTA ACUST UNITED AC 2019; 65:1008-1014. [PMID: 31389515 DOI: 10.1590/1806-9282.65.7.1008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/20/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the ovarian effects of melatonin (Mel) in a rat model of polycystic-ovary-syndrome (PCOS) before and after permanent estrus induction. METHODS Thirty-two adult-female rats with regular estrous cycle were equally divided into four groups: 1) GCtrl - at estrous phase. 2) GPCOS - at permanent-estrous phase. 3) GMel1 - treated for 60 days with Mel (0.4 mg/Kg) during permanent estrus induction and 4) GMel2 - rats with PCOS and treated for 60 days with Mel. After that, the animals were euthanized, and the ovaries were removed and processed for paraffin embedding. Sections were stained with H.E. for histomorphometry or subjected to immunohistochemistry for Ki-67 and cleaved caspase-3 (Casp-3) detections. RESULTS The GPCOS showed lack of corpus luteum and several ovarian cysts, as well as interstitial-like cells. The presence of corpus luteum and a significant increase in primary and antral follicles were observed in Mel-treated groups, which also showed a decrease in the number of ovarian cysts and in the area occupied by interstitial-like cells. These results were more evident in GMel1. The percentage of Ki-67-positive cells was significantly higher in the Mel-treated groups, mainly in the GMel2, as compared to GPCOS. On the other hand, the percentage of Casp-3-positive cells was significantly lower in granulosa cells of GMel1, whereas it was significantly higher in the interstitial-like cells of GMel2, in comparison to GPCOS. CONCLUSION Melatonin administration prevents the permanent estrus state in the PCOS rat model. This effect is more efficient when melatonin is administered before permanent estrus induction.
Collapse
Affiliation(s)
- Leonardo Augusto Lombardi
- Departamento de Morfologia e Genética, Escola Paulista de Medicina da Universidade Federal de São Paulo, EPM/Unifesp, São Paulo, SP, Brasil
| | - Leandro Sabará de Mattos
- Departamento de Morfologia e Genética, Escola Paulista de Medicina da Universidade Federal de São Paulo, EPM/Unifesp, São Paulo, SP, Brasil
| | - Ricardo Santos Simões
- Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina da Universidade de São Paulo, FMUSP, São Paulo, SP, Brasil
| | - Rinaldo Florencio-Silva
- Departamento de Morfologia e Genética, Escola Paulista de Medicina da Universidade Federal de São Paulo, EPM/Unifesp, São Paulo, SP, Brasil
| | - Gisela Rodrigues da Silva Sasso
- Departamento de Morfologia e Genética, Escola Paulista de Medicina da Universidade Federal de São Paulo, EPM/Unifesp, São Paulo, SP, Brasil
| | - Adriana Aparecida Ferraz Carbonel
- Departamento de Morfologia e Genética, Escola Paulista de Medicina da Universidade Federal de São Paulo, EPM/Unifesp, São Paulo, SP, Brasil
| | - Manuel Jesus Simões
- Departamento de Morfologia e Genética, Escola Paulista de Medicina da Universidade Federal de São Paulo, EPM/Unifesp, São Paulo, SP, Brasil
| | - Edmund Chada Baracat
- Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina da Universidade de São Paulo, FMUSP, São Paulo, SP, Brasil
| | - José Maria Soares
- Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina da Universidade de São Paulo, FMUSP, São Paulo, SP, Brasil
| |
Collapse
|
48
|
Genario R, Morello E, Bueno AA, Santos HO. The usefulness of melatonin in the field of obstetrics and gynecology. Pharmacol Res 2019; 147:104337. [PMID: 31276773 DOI: 10.1016/j.phrs.2019.104337] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/28/2019] [Accepted: 06/28/2019] [Indexed: 01/24/2023]
Abstract
Disorders of the female reproductive system, including those associated with hormone regulation, fertility rate and fetal health, are issues of great concern worldwide. More recently, melatonin supplementation has been suggested as a therapeutic approach in gynecological practice. In both animal models and in women, melatonin supplementation suggests a therapeutic and preventative potential, effects attributed mainly to its antioxidant properties and action as hormone modulator. The aim of this literature review is to further investigate the evidence available on the effects of melatonin supplementation in animal and human studies, focusing on its potential application to gynecology. Melatonin-containing supplements are easily found in online and high street retailers, and despite its supplementation deemed to be relatively safe, no consensus has been reached on effective dosage and supplementation period. Short term supplementation studies, of up to six months, suggest that a daily posology of 2-18 mg of melatonin may have the potential to improve fertility rate, oocyte quality, maturation and number of embryos. However, the evidence available so far on the effects of melatonin supplementation covering gestational age and gestational outcomes is very scarce. Clinical trials and longer-term supplementation studies are required to assess any clinical outcome associated with melatonin supplementation in the field of gynecology.
Collapse
Affiliation(s)
- Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | | | - Allain Amador Bueno
- Department of Biological Sciences, University of Worcester, Henwick Grove, Worcester, WR2 6AJ, United Kingdom.
| | - Heitor Oliveira Santos
- School of Medicine, Federal University of Uberlandia (UFU), Av. Para, nº1720 Bloco 2U Campus Umuarama, Uberlandia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
49
|
Chen Z, Lei L, Wen D, Yang L. Melatonin attenuates palmitic acid-induced mouse granulosa cells apoptosis via endoplasmic reticulum stress. J Ovarian Res 2019; 12:43. [PMID: 31077207 PMCID: PMC6511168 DOI: 10.1186/s13048-019-0519-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Palmitic acid (PA), the main component of dietary saturated fat, causes apoptosis in many cell types, including mouse granulosa cell. Melatonin, an important endogenous hormone, has beneficial effects on female reproductive processes. Since elevated PA levels are present in follicular fluid (FF) of patients with infertility and are shown to be toxic for granulosa cells, we investigated the molecular mechanisms of PA toxicity in mouse granulosa cells and explored the effects of melatonin on PA-induced apoptosis. METHODS Granulosa cells from immature female mice were cultured for 24 h in medium containing PA and/or melatonin. Then, the effects of PA alone or combined with melatonin on viability, apoptosis and endoplasmic reticulum (ER) stress in granulosa cells were detected by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry assay and western blot. After 48 h of PA and/or melatonin treatment, the concentrations of estradiol (E2) and progesterone (P4) in the culture supernatants were measured with ELISA kits. RESULTS In this study, we explored the effects of melatonin on cell viability and apoptosis in PA-treated mouse granulosa cells and uncovered the signaling pathways involved in these processes. Our results showed that 200-800 μM PA treatment reduces cell viability, induces cell apoptosis, enhances the expression of apoptosis-related genes (Caspase 3 and B-cell lymphoma-2 (BCL-2) associated X protein (BAX)), and activates the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Melatonin treatment (1-10 μM) suppresses 400 μM PA-induced cell viability decrease, cell apoptosis, Caspase 3 activation, and BAX, CHOP, and GRP78 expression. In addition, we found that 10 μM melatonin successfully attenuated the 400 μM PA-induced estrogen (E2) and progesterone (P4) decreases. CONCLUSIONS This study suggests that PA triggers cell apoptosis via ER stress and that melatonin protects cells against apoptosis by inhibiting ER stress in mouse granulosa cells.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Guizhou, 558000, Duyun, China
| | - Lanjie Lei
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Guizhou, 558000, Duyun, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- College of Basic Medical Science, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
50
|
Cao Z, Gao D, Tong X, Xu T, Zhang D, Wang Y, Liu Y, Li Y, Zhang Y, Pu Y. Melatonin improves developmental competence of oocyte-granulosa cell complexes from porcine preantral follicles. Theriogenology 2019; 133:149-158. [PMID: 31100559 DOI: 10.1016/j.theriogenology.2019.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 01/08/2023]
Abstract
Melatonin has been reported to improve the survival rate of mouse and goat preantral follicles cultured in vitro. However, the role of melatonin in the development of oocyte-granulosa cell complexes (OGCs) isolated from preantral follicles remains unclear. Cumulus-oocyte complexes were isolated from OGCs cultured in vitro for 18.5 days and were then maturated in vitro for 42 h. The matured oocytes were parthenogenetically activated and were further cultured up to the blastocyst stage. We found that the developmental capacity of oocytes from in vitro cultured OGCs was significantly inferior to that from in vivo grown counterparts. Additionally, a 10-5 M dose of melatonin added to the medium during in vitro culture of OGCs did not improve oocyte meiotic maturation but enhanced blastocyst rate of parthenogenetically activated embryos. Besides, these beneficial effects could be reversed by luzindole treatment, a melatonin membrane receptor antagonist. mRNA sequencing analysis further revealed that melatonin caused differential expression of 76 genes of which 75 were upregulated and 1 was downregulated in OGCs. Twelve of the 76 genes were identified as potential regulators of metabolic pathways by functional analysis. Taken together, these results indicate that melatonin improves developmental competence of porcine oocyte-granulosa cell complexes.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xu Tong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Dandan Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yiqing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ya Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yong Pu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|