1
|
Dixit S, Parashar J, Dhaked RK, Kumar A, Saxena N. Development and validation of streptavidin-biotin-based double antibody sandwich ELISA for ricin diagnosis. Int Immunopharmacol 2024; 132:111986. [PMID: 38574703 DOI: 10.1016/j.intimp.2024.111986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Ricin is a potential biowarfare agent. It is a phytotoxin isolated from castor seeds. At present there is no antidote available for ricin poisoning, patients only get supportive treatment based on their symptoms. This highlights the importance of early detection to avoid severity of accidents and reduce the risk factor. Considering this, our study aimed to develop a highly sensitive and specific sandwich ELISA for the detection of ricin. METHODS Ricin was purified from castor seeds. Anti-ricin polyclonal and monoclonal antibodies were generated from rabbit antisera and hybridoma cell (1H6F1) supernatant using a protein A/G column. Antibody titer estimation was done using Indirect ELISA. A streptavidin-biotin-based sandwich ELISA was developed and the limit of detection (LOD), linear range, intra and inter-assay coefficient of variation (CV), and cross-reactivity with other similar toxins were determined. Interference of human plasma samples spiked with ricin was also checked. RESULTS The LOD of the ELISA was found to be 0.45 ng/ml, with a linear range of 0.90-62 ng/ml, intra and inter-assay CV ranged from 3.34 % to 5 % and 5.17 % to 10.80 % respectively. The assay was not cross-reactive with other similar ribosome-inactivating protein (RIP) toxins. Ricin was detected in spiked plasma samples. CONCLUSION The developed assay is highly sensitive and specific for detecting ricin and is not cross-reactive with other similar types of toxins. The assay can detect ricin in spiked plasma samples, so it has the potential to be used for the analysis of clinical samples after ricin poisoning.
Collapse
Affiliation(s)
- Shivani Dixit
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior, India
| | - Jagrati Parashar
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior, India
| | - Abdhesh Kumar
- Animal Facility Division, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior, India
| | - Nandita Saxena
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior, India.
| |
Collapse
|
2
|
Worbs S, Kampa B, Skiba M, Hansbauer EM, Stern D, Volland H, Becher F, Simon S, Dorner MB, Dorner BG. Differentiation, Quantification and Identification of Abrin and Abrus precatorius Agglutinin. Toxins (Basel) 2021; 13:toxins13040284. [PMID: 33919561 PMCID: PMC8073929 DOI: 10.3390/toxins13040284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Bettina Kampa
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Eva-Maria Hansbauer
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Daniel Stern
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Hervé Volland
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - François Becher
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Correspondence: ; Tel.: +49-30-18754-2500
| |
Collapse
|
3
|
D'Elia RV, Goodchild SA, Winder CL, Southam AD, Weber RJM, Stahl FM, Docx C, Patel V, Green AC, Viant MR, Lukaszewski RA, Dunn WB. Multiple metabolic pathways are predictive of ricin intoxication in a rat model. Metabolomics 2019; 15:102. [PMID: 31270703 PMCID: PMC6610267 DOI: 10.1007/s11306-019-1547-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/28/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Exposure to ricin can be lethal and treatments that are under development have short windows of opportunity for administration after exposure. It is therefore essential to achieve early detection of ricin exposure to provide the best prognosis for exposed individuals. Ricin toxin can be detected in clinical samples via several antibody-based techniques, but the efficacy of these can be limited due to the rapid processing and cellular uptake of toxin in the body and subsequent low blood ricin concentrations. Other diagnostic tools that perform, in an orthogonal manner, are therefore desirable. OBJECTIVES To determine time-dependent metabolic changes in Sprague-Dawley rats following intravenous exposure to ricin. METHODS Sprague-Dawley rats were intravenously exposed to ricin and multiple blood samples were collected from each animal for up to 48 h following exposure in two independent studies. Plasma samples were analysed applying HILIC and C18 reversed phase UHPLC-MS assays followed by univariate and multivariate analysis. RESULTS In Sprague-Dawley rats we have demonstrated that metabolic changes measured in blood can distinguish between rats exposed intravenously to ricin and controls prior to the onset of behavioral signs of intoxication after 24 h. A total of 37 metabolites were significantly altered following exposure to ricin when compared to controls. The arginine/proline, bile acid and triacylglyceride metabolic pathways were highlighted as being important with two triacylglycerides at 8 h post exposure giving an AUROC score of 0.94. At 16 h and 24 h the AUROC score increased to 0.98 and 1.0 with the number of metabolites in the panel increasing to 5 and 7, respectively. CONCLUSIONS These data demonstrate that metabolites may be a useful tool to diagnose and detect ricin exposure, thus increasing the effectiveness of supportive therapy and future ricin-specific medical treatments.
Collapse
Affiliation(s)
| | | | - Catherine L Winder
- Phenome Centre Birmingham and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew D Southam
- Phenome Centre Birmingham and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ralf J M Weber
- Phenome Centre Birmingham and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Cerys Docx
- Dstl Porton Down, Salisbury, SP4 0JQ, UK
| | | | | | - Mark R Viant
- Phenome Centre Birmingham and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Warwick B Dunn
- Phenome Centre Birmingham and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
A New Method for Extraction and Analysis of Ricin Samples through MALDI-TOF-MS/MS. Toxins (Basel) 2019; 11:toxins11040201. [PMID: 30987210 PMCID: PMC6520692 DOI: 10.3390/toxins11040201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
We report for the first time the efficient use of accelerated solvent extraction (ASE) for extraction of ricin to analytical purposes, followed by the combined use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and MALDI-TOF MS/MS method. That has provided a fast and unambiguous method of ricin identification for in real cases of forensic investigation of suspected samples. Additionally, MALDI-TOF MS was applied to characterize the presence and the toxic activity of ricin in irradiated samples. Samples containing ricin were subjected to ASE, irradiated with different dosages of gamma radiation, and analyzed by MALDI-TOF MS/MS for verification of the intact protein signal. For identification purposes, samples were previously subjected to SDS-PAGE, for purification and separation of the chains, followed by digestion with trypsin, and analysis by MALDI-TOF MS/MS. The results were confirmed by verification of the amino acid sequences of some selected peptides by MALDI-TOF MS/MS. The samples residual toxic activity was evaluated through incubation with a DNA substrate, to simulate the attack by ricin, followed by MALDI-TOF MS/MS analyses.
Collapse
|
5
|
Ye H, Yang K, Tao J, Liu Y, Zhang Q, Habibi S, Nie Z, Xia X. An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers. ACS NANO 2017; 11:2052-2059. [PMID: 28135070 DOI: 10.1021/acsnano.6b08232] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Enzyme-based colorimetric assays have been widely used in research laboratories and clinical diagnosis for decades. Nevertheless, as constrained by the performance of enzymes, their detection sensitivity has not been substantially improved in recent years, which inhibits many critical applications such as early detection of cancers. In this work, we demonstrate an enzyme-free signal amplification technique, based on gold vesicles encapsulated with Pd-Ir nanoparticles as peroxidase mimics, for colorimetric assay of disease biomarkers with significantly enhanced sensitivity. This technique overcomes the intrinsic limitations of enzymes, thanks to the superior catalytic efficiency of peroxidase mimics and the efficient loading and release of these mimics. Using human prostate surface antigen as a model biomarker, we demonstrated that the enzyme-free assay could reach a limit of detection at the femtogram/mL level, which is over 103-fold lower than that of conventional enzyme-based assay when the same antibodies and similar procedure were used.
Collapse
Affiliation(s)
- Haihang Ye
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Kuikun Yang
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Jing Tao
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Yijing Liu
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Qian Zhang
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Sanaz Habibi
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory , Upton, New York 11973, United States
- Department of Chemical Engineering, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Zhihong Nie
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Xiaohu Xia
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| |
Collapse
|
6
|
An International Proficiency Test to Detect, Identify and Quantify Ricin in Complex Matrices. Toxins (Basel) 2015; 7:4987-5010. [PMID: 26703726 PMCID: PMC4690109 DOI: 10.3390/toxins7124859] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
While natural intoxications with seeds of Ricinus communis (R. communis) have long been known, the toxic protein ricin contained in the seeds is of major concern since it attracts attention of those intending criminal, terroristic and military misuse. In order to harmonize detection capabilities in expert laboratories, an international proficiency test was organized that aimed at identifying good analytical practices (qualitative measurements) and determining a consensus concentration on a highly pure ricin reference material (quantitative measurements). Sample materials included highly pure ricin as well as the related R. communis agglutinin (RCA120) spiked into buffer, milk and meat extract; additionally, an organic fertilizer naturally contaminated with R. communis shred was investigated in the proficiency test. The qualitative results showed that either a suitable combination of immunological, mass spectrometry (MS)-based and functional approaches or sophisticated MS-based approaches alone successfully allowed the detection and identification of ricin in all samples. In terms of quantification, it was possible to determine a consensus concentration of the highly pure ricin reference material. The results provide a basis for further steps in quality assurance and improve biopreparedness in expert laboratories worldwide.
Collapse
|
7
|
Simon S, Worbs S, Avondet MA, Tracz DM, Dano J, Schmidt L, Volland H, Dorner BG, Corbett CR. Recommended Immunological Assays to Screen for Ricin-Containing Samples. Toxins (Basel) 2015; 7:4967-86. [PMID: 26703725 PMCID: PMC4690108 DOI: 10.3390/toxins7124858] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/20/2023] Open
Abstract
Ricin, a toxin from the plant Ricinus communis, is one of the most toxic biological agents known. Due to its availability, toxicity, ease of production and absence of curative treatments, ricin has been classified by the Centers for Disease Control and Prevention (CDC) as category B biological weapon and it is scheduled as a List 1 compound in the Chemical Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection and quantification capabilities of 17 expert laboratories. In this exercise one goal was to analyse the laboratories’ capacity to detect and differentiate ricin and the less toxic, but highly homologuous protein R. communis agglutinin (RCA120). Six analytical strategies are presented in this paper based on immunological assays (four immunoenzymatic assays and two immunochromatographic tests). Using these immunological methods “dangerous” samples containing ricin and/or RCA120 were successfully identified. Based on different antibodies used the detection and quantification of ricin and RCA120 was successful. The ricin PT highlighted the performance of different immunological approaches that are exemplarily recommended for highly sensitive and precise quantification of ricin.
Collapse
Affiliation(s)
- Stéphanie Simon
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Marc-André Avondet
- Federal Department of Defence, Civil Protection and Sport-SPIEZ Laboratory, Spiez 3700, Switzerland.
| | - Dobryan M Tracz
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
| | - Julie Dano
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Lisa Schmidt
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
| | - Hervé Volland
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Cindi R Corbett
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
8
|
Worbs S, Skiba M, Söderström M, Rapinoja ML, Zeleny R, Russmann H, Schimmel H, Vanninen P, Fredriksson SÅ, Dorner BG. Characterization of Ricin and R. communis Agglutinin Reference Materials. Toxins (Basel) 2015; 7:4906-34. [PMID: 26703723 PMCID: PMC4690106 DOI: 10.3390/toxins7124856] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Ricinus communis intoxications have been known for centuries and were attributed to the toxic protein ricin. Due to its toxicity, availability, ease of preparation, and the lack of medical countermeasures, ricin attracted interest as a potential biological warfare agent. While different technologies for ricin analysis have been established, hardly any universally agreed-upon "gold standards" are available. Expert laboratories currently use differently purified in-house materials, making any comparison of accuracy and sensitivity of different methods nearly impossible. Technically challenging is the discrimination of ricin from R. communis agglutinin (RCA120), a less toxic but highly homologous protein also contained in R. communis. Here, we established both highly pure ricin and RCA120 reference materials which were extensively characterized by gel electrophoresis, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI MS/MS), and matrix-assisted laser desorption ionization-time of flight approaches as well as immunological and functional techniques. Purity reached >97% for ricin and >99% for RCA120. Different isoforms of ricin and RCA120 were identified unambiguously and distinguished by LC-ESI MS/MS. In terms of function, a real-time cytotoxicity assay showed that ricin is approximately 300-fold more toxic than RCA120. The highly pure ricin and RCA120 reference materials were used to conduct an international proficiency test.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Martin Söderström
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Marja-Leena Rapinoja
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Reinhard Zeleny
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Heiko Russmann
- Bundeswehr Research Institute for Protective Technologies and NBC Protection, Humboldtstr. 100, 29633 Munster, Germany.
| | - Heinz Schimmel
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Paula Vanninen
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Sten-Åke Fredriksson
- FOI, Swedish Defence Research Agency, CBRN Defence and Security, Cementvagen 20, 901 82 Umeå, Sweden.
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| |
Collapse
|
9
|
Dong N, Li Z, Li Q, Wu J, Jia P, Wang Y, Gao Z, Han G, Wu Y, Zhou J, Shan J, Li H, Wei W. Absorption, distribution and pathological injury in mice due to ricin poisoning via the alimentary pathway. J Toxicol Pathol 2014; 27:73-80. [PMID: 24791070 PMCID: PMC4000076 DOI: 10.1293/tox.2013-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/19/2013] [Indexed: 01/31/2023] Open
Abstract
The aim of this work was to investigate the potential interactions between intestinal absorbance and ricin poisoning. The Caco-2 cell monolayer and everted intestinal sac (VEIS) models were used. The distribution of ricin in CD-1 mice intoxicated with 0.1 mg/kg of ricin intragastrically was determined by immunohistochemistry. The results showed that ricin could not transfer across the healthy Caco-2 cell monolayer within three hours after poisoning. However, it could pass through the everted rat intestinal wall after 0.5 h of incubation. The toxin in the liver, spleen, lungs and kidneys of mice could be detected as early as 1 h after intoxication. The pathological results were in accordance with the cytotoxicities of ricin in Caco-2, HepG 2, H1299 and MDCK cells, indicating that though no significant symptom in mice could be observed within 3 h after ricin intoxication, important tissues, especially the kidneys, were being injured by the toxin and that the injuries were progressing.
Collapse
Affiliation(s)
- Na Dong
- General Hospital of Beijing Military Command, Beijing 100700, China ; Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zheng Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qian Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junhua Wu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Peiyuan Jia
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuxia Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhongcai Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Gang Han
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yifan Wu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China ; School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Jianping Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junjie Shan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hua Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wenqing Wei
- General Hospital of Beijing Military Command, Beijing 100700, China
| |
Collapse
|
10
|
Nagatsuka T, Uzawa H, Sato K, Kondo S, Izumi M, Yokoyama K, Ohsawa I, Seto Y, Neri P, Mori H, Nishida Y, Saito M, Tamiya E. Localized surface plasmon resonance detection of biological toxins using cell surface oligosaccharides on glyco chips. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4173-80. [PMID: 23668627 DOI: 10.1021/am4002937] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have detected biological toxins using localized surface plasmon resonance (LSPR) and synthetic glycosyl ceramides (β-lactoside, globosyl trisaccharide (Gb3), or GM1 pentasaccharide) attached to gold (Au) nanoparticles. The particle diameters ranged from 5-100 nm. The detection sensitivity for three toxins (ricin, Shiga toxin, and cholera toxin) was found to depend not only on the attached glycoside but also on the diameter of the Au nanoparticles. For the detection of ricin, the 20-nm β-lactoside-coated Au nanoparticle exhibited the highest LSPR response, whereas 40-nm Gb3- and GM1-coated Au nanoparticles gave the best results for Shiga toxin and cholera toxin, respectively. In addition, a blocking process on the nanoparticle surface greatly improved the detection sensitivity for cholera toxin. The LSPR system enabled us to detect ricin at 30 ng/mL, Shiga toxin at 10 ng/mL, and the cholera toxin at 20 ng/mL.
Collapse
Affiliation(s)
- Takehiro Nagatsuka
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nagatsuka T, Uzawa H, Sato K, Ohsawa I, Seto Y, Nishida Y. Glycotechnology for decontamination of biological agents: a model study using ricin and biotin-tagged synthetic glycopolymers. ACS APPLIED MATERIALS & INTERFACES 2012; 4:832-837. [PMID: 22214533 DOI: 10.1021/am201493q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two types of biotin-tagged glycopolymers carrying lactose or glucose in clusters along the polyacrylamide backbone were prepared and subjected to decontamination analyses with the plant toxin ricin. A buffer solution containing the toxin was treated with one glycopolymer followed by streptavidin-magnetic particles. Supernatant solutions were analyzed with surface plasmon resonance and capillary electrophoresis, and revealed that the lactose glycopolymer "captured" this toxin more effectively than the glucose polymer. Free toxin was not detectable in the supernatant after treatment with the glycopolymer and magnetic particles; >99% decontamination was achieved for this potentially fatal biological toxin.
Collapse
Affiliation(s)
- Takehiro Nagatsuka
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Suresh S, Gupta M, Kumar GA, Rao VK, Kumar O, Ghosal P. Synergic effect of multi-walled carbon nanotubes and gold nanoparticles towards immunosensing of ricin with carbon nanotube–gold nanoparticles–chitosan modified screen printed electrode. Analyst 2012; 137:4086-92. [DOI: 10.1039/c2an35279f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Understanding ricin from a defensive viewpoint. Toxins (Basel) 2011; 3:1373-92. [PMID: 22174975 PMCID: PMC3237001 DOI: 10.3390/toxins3111373] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/17/2022] Open
Abstract
The toxin ricin has long been understood to have potential for criminal activity and there has been concern that it might be used as a mass-scale weapon on a military basis for at least two decades. Currently, the focus has extended to encompass terrorist activities using ricin to disrupt every day activities on a smaller scale. Whichever scenario is considered, there are features in common which need to be understood; these include the knowledge of the toxicity from ricin poisoning by the likely routes, methods for the detection of ricin in relevant materials and approaches to making an early diagnosis of ricin poisoning, in order to take therapeutic steps to mitigate the toxicity. This article will review the current situation regarding each of these stages in our collective understanding of ricin and how to defend against its use by an aggressor.
Collapse
|
14
|
Worbs S, Köhler K, Pauly D, Avondet MA, Schaer M, Dorner MB, Dorner BG. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins (Basel) 2011; 3:1332-72. [PMID: 22069699 PMCID: PMC3210461 DOI: 10.3390/toxins3101332] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/11/2022] Open
Abstract
Accidental and intended Ricinus communis intoxications in humans and animals have been known for centuries but the causative agent remained elusive until 1888 when Stillmark attributed the toxicity to the lectin ricin. Ricinus communis is grown worldwide on an industrial scale for the production of castor oil. As by-product in castor oil production ricin is mass produced above 1 million tons per year. On the basis of its availability, toxicity, ease of preparation and the current lack of medical countermeasures, ricin has gained attention as potential biological warfare agent. The seeds also contain the less toxic, but highly homologous Ricinus communis agglutinin and the alkaloid ricinine, and especially the latter can be used to track intoxications. After oil extraction and detoxification, the defatted press cake is used as organic fertilizer and as low-value feed. In this context there have been sporadic reports from different countries describing animal intoxications after uptake of obviously insufficiently detoxified fertilizer. Observations in Germany over several years, however, have led us to speculate that the detoxification process is not always performed thoroughly and controlled, calling for international regulations which clearly state a ricin threshold in fertilizer. In this review we summarize knowledge on intended and unintended poisoning with ricin or castor seeds both in humans and animals, with a particular emphasis on intoxications due to improperly detoxified castor bean meal and forensic analysis.
Collapse
Affiliation(s)
- Sylvia Worbs
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Frankfurter Street 96, Giessen 35392, Germany;
| | - Diana Pauly
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Marc-André Avondet
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin Schaer
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin B. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Brigitte G. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| |
Collapse
|
15
|
Kato H, Uzawa H, Nagatsuka T, Kondo S, Sato K, Ohsawa I, Kanamori-Kataoka M, Takei Y, Ota S, Furuno M, Dohi H, Nishida Y, Seto Y. Preparation and evaluation of lactose-modified monoliths for the adsorption and decontamination of plant toxins and lectins. Carbohydr Res 2011; 346:1820-6. [DOI: 10.1016/j.carres.2011.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 11/26/2022]
|
16
|
Kanamori-Kataoka M, Kato H, Uzawa H, Ohta S, Takei Y, Furuno M, Seto Y. Determination of ricin by nano liquid chromatography/mass spectrometry after extraction using lactose-immobilized monolithic silica spin column. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:821-829. [PMID: 21834021 DOI: 10.1002/jms.1953] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ricin is a glycosylated proteinous toxin that is registered as toxic substance by Chemical Weapons convention. Current detection methods can result in false negatives and/or positives, and their criteria are not based on the identification of the protein amino acid sequences. In this study, lactose-immobilized monolithic silica extraction followed by tryptic digestion and liquid chromatography/mass spectrometry (LC/MS) was developed as a method for rapid and accurate determination of ricin. Lactose, which was immobilized on monolithic silica, was used as a capture ligand for ricin extraction from the sample solution, and the silica was supported in a disk-packed spin column. Recovery of ricin was more than 40%. After extraction, the extract was digested with trypsin and analyzed by LC/MS. The accurate masses of molecular ions and MS/MS spectra of the separated peptide peaks were measured by Fourier transform-MS and linear iontrap-MS, respectively. Six peptides, which were derived from the ricin A-(m/z 537.8, 448.8 and 586.8) and B-chains (m/z 701.3, 647.8 and 616.8), were chosen as marker peptides for the identification of ricin. Among these marker peptides, two peptides were ricin-specific. This method was applied to the determination of ricin from crude samples. The monolithic silica extraction removed most contaminant peaks from the total ion chromatogram of the sample, and the six marker peptides were clearly detected by LC/MS. It takes about 5 h for detection and identification of more than 8 ng/ml of ricin through the whole handling, and this procedure will be able to deal with the terrorism using chemical weapon.
Collapse
Affiliation(s)
- Mieko Kanamori-Kataoka
- Fourth Chemistry Section, National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang J, Gao S, Kang L, Jia Y, Wang JL. Development of colloidal gold-based immunochromatographic assay for the rapid detection of ricin toxin in food samples. FOOD AGR IMMUNOL 2011. [DOI: 10.1080/09540105.2010.549213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Lumor SE, Hutt A, Ronningen I, Diez-Gonzalez F, Labuza TP. Validation of Immunodetection (ELISA) of Ricin Using a Biological Activity Assay. J Food Sci 2011; 76:C112-6. [DOI: 10.1111/j.1750-3841.2010.01943.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Detection of residual toxin in tissues of ricin-poisoned mice by sandwich enzyme-linked immunosorbent assay and immunoprecipitation. Anal Biochem 2010; 401:211-6. [DOI: 10.1016/j.ab.2010.02.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 02/08/2010] [Accepted: 02/25/2010] [Indexed: 11/17/2022]
|
20
|
Nagatsuka T, Uzawa H, Ohsawa I, Seto Y, Nishida Y. Use of lactose against the deadly biological toxin ricin. ACS APPLIED MATERIALS & INTERFACES 2010; 2:1081-5. [PMID: 20369893 DOI: 10.1021/am900846r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Developing a technology for detecting and decontaminating biological toxins is needed. Ricin from Ricinus communis is a highly poisonous toxin; it was formerly used for an assassination in London and in postal attacks in the United States. Ricin is readily available from castor beans and could be used as a biological agent. We propose using glycotechnology against the illegal use of ricin. Lactose (a natural ligand of this toxin) was incorporated into polyacrylamide-based glycopolymers at variable sugar densities (18-100%) and evaluated with surface plasmon resonance (SPR) spectroscopy and the real agent, ricin. Glycopolymers (18-65% lactose densities) effectively interfered with the toxin-lactoside adhesion event (>99% efficiency within 20 min). This supported the notion of using the mammary sugar lactose against a deadly biological toxin.
Collapse
Affiliation(s)
- Takehiro Nagatsuka
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Uzawa H, Ohga K, Shinozaki Y, Ohsawa I, Nagatsuka T, Seto Y, Nishida Y. A novel sugar-probe biosensor for the deadly plant proteinous toxin, ricin. Biosens Bioelectron 2008; 24:929-33. [DOI: 10.1016/j.bios.2008.07.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/04/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
23
|
Wellner RB, Hewetson JF, Poli MA. Ricin: Mechanism of Action, Detection, and Intoxication. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549509016439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Griffiths GD, Rice P, Allenby AC, Bailey SC, Upshall DG. Inhalation Toxicology and Histopathology of Ricin and Abrin Toxins. Inhal Toxicol 2008. [DOI: 10.3109/08958379509029098] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Ricin (from Ricinus communis) as undesirable substances in animal feed - Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.726] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
26
|
Abstract
A biological terrorism event could have a large impact on the general population and health care system. The impact of an infectious disaster will most likely be great to emergency departments, and the collaboration between emergency and infectious disease specialists will be critical in developing an effective response. A bioterrorism event is a disaster that requires specific preparations beyond the usual medical disaster planning. An effective response would include attention to infection control issues and plans for large-scale vaccination or antimicrobial prophylaxis. This article addresses some general issues related to preparing an effective response to a biological terrorism event. It will also review organisms and toxins that could be used in biological terrorism, including clinical features, management, diagnostic testing, and infection control.
Collapse
Affiliation(s)
- Gregory J Moran
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| | | | | |
Collapse
|
27
|
SETO Y, KANAMORI-KATAOKA M, TSUGE K. Mass Spectrometric Technologies for Countering Chemical and Biological Terrorism Incidents. ACTA ACUST UNITED AC 2008. [DOI: 10.5702/massspec.56.91] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Haes AJ, Giordano BC, Collins GE. Aptamer-based detection and quantitative analysis of ricin using affinity probe capillary electrophoresis. Anal Chem 2007; 78:3758-64. [PMID: 16737234 DOI: 10.1021/ac060021x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to detect sub-nanomolar concentrations of ricin using fluorescently tagged RNA aptamers is demonstrated. Aptamers rival the specificity of antibodies and have the power to simplify immunoassays using capillary electrophoresis. Under nonequilibrium conditions, a dissociation constant, Kd, of 134 nM has been monitored between the RNA aptamer and ricin A-chain. With use of this free-solution assay, the detection of 500 pM (approximately 14 ng/mL) or 7.1 amol of ricin is demonstrated. The presence of interfering proteins such as bovine serum albumin and casein do not inhibit this interaction at sub-nanomolar concentrations. When spiked with RNAse A, ricin can still be detected down to 1 nM concentrations despite severe aptamer degradation. This approach offers a promising method for the rapid, selective, and sensitive detection of biowarfare agents.
Collapse
Affiliation(s)
- Amanda J Haes
- Naval Research Laboratory, 4555 Overlook Avenue, SW, Chemistry Division, Code 6112, Washington, DC 20375-5342, USA
| | | | | |
Collapse
|
29
|
Mei Q, Fredrickson CK, Lian W, Jin S, Fan ZH. Ricin detection by biological signal amplification in a well-in-a-well device. Anal Chem 2007; 78:7659-64. [PMID: 17105156 DOI: 10.1021/ac0610006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper presents a ricin detection method based on ricin's inhibitory effects on protein synthesis. Biological synthesis (expression) of a protein includes the steps of gene transcription (DNA --> RNA) and protein translation (RNA --> proteins); these reactions can be coupled into a one-step operation and carried out in a cell-free medium. Ricin is known to inhibit protein synthesis by interacting with 28S ribosome RNA; the inhibitory effect is exploited as the sensing mechanism in this work. For each copy of DNA, thousands of copies of proteins can be produced. As a result, the inhibitory effects of ricin are amplified, leading to a significantly enhanced detection signal (the difference between the positive control and samples). An array of protein expression units is developed to accommodate positive/negative controls and multiple samples. The array device contains a solution without any reagent captured on a solid surface, offering flexibility without comprising the activities of biomolecules. The miniaturized well-in-a-well design possesses a mechanism to supply nutrients continuously and remove byproducts, leading to higher protein expression yields and thus larger detection signals (lower detection limit) when ricin is present. We demonstrate the production of green fluorescent protein and luciferase in the device. A calibration curve has been obtained between the luciferase expression yield and the ricin concentration, showing a detection limit of 0.01 nM (0.3 ng/mL) ricin. The nested-well device is also used for measuring the toxicity level of ricin after physical or chemical treatment.
Collapse
Affiliation(s)
- Qian Mei
- Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
30
|
Marsden CJ, Smith DC, Roberts LM, Lord JM. Ricin: current understanding and prospects for an antiricin vaccine. Expert Rev Vaccines 2006; 4:229-37. [PMID: 15889996 DOI: 10.1586/14760584.4.2.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ricin is a potent cytotoxin that can be rapidly internalized into mammalian cells leading to cell death. The ease in obtaining the toxin and its deadly nature combine to implicate ricin as a convenient agent for bioterrorism. Research into the mechanism of toxicity, as well as strategies for treatment and protection from the toxin has been widely undertaken for a number of years. This article reviews the current understanding of the mechanism of action of the toxin, the clinical effects of ricin intoxication and how these relate to current and continuing prospects for vaccine development.
Collapse
Affiliation(s)
- Catherine J Marsden
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | |
Collapse
|
31
|
Cook DL, David J, Griffiths GD. Retrospective identification of ricin in animal tissues following administration by pulmonary and oral routes. Toxicology 2006; 223:61-70. [PMID: 16650517 DOI: 10.1016/j.tox.2006.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/02/2006] [Accepted: 03/08/2006] [Indexed: 11/19/2022]
Abstract
A previously characterised amplified ELISA for ricin (sensitivity limit approximately 200 pgmL(-1)) has been employed to quantify ricin following a novel recovery method from selected tissues. Tissue samples from rats dosed by pulmonary instillation or orally with ricin were homogenised and treated with an elution buffer to extract ricin. This is the first time that ex vivo recovery of ricin post exposure following pulmonary or oral challenge has been achieved using clinically acceptable sampling methods, with promise in terms of diagnosis for the timely implementation of therapy. The toxin was detected and quantified using the ELISA in conjunction with pure ricin standards. Extracts from tissues sampled, including lung, blood, liver and spleen tested positive for ricin with maximum yield in lung associated fractions for pulmonary dosing and liver tissue for oral administration. This indicates the potential of lavage and blood sampling for timely diagnosis of ricin poisoning by pulmonary and oral routes, respectively. Time course analysis at 24 and 48 h also indicated the progression of ricin from surfaces of the lung into the lung tissue. Inter-subject variation was observed in the case of oral dosing, with data for ricin-treated and vehicle control tissues not statistically different in all samples. In addition the oral toxicity of the crude ricin administered was found to be higher than expected in the rat, based upon published information and an unpublished in house murine study.
Collapse
Affiliation(s)
- David Leslie Cook
- Immunotoxicology Group, Biology, Biomedical Sciences, Dstl, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | | | | |
Collapse
|
32
|
Seto Y, Kanamori-Kataoka M. Mass Spectrometric Strategy for the Determination of Natural and Synthetic Organic Toxins. ACTA ACUST UNITED AC 2005. [DOI: 10.1248/jhs.51.519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuo Seto
- National Research Institute of Police Science
| | | |
Collapse
|
33
|
Marsden CJ, Knight S, Smith DC, Day PJ, Roberts LM, Phillips GJ, Lord JM. Insertional mutagenesis of ricin A chain: a novel route to an anti-ricin vaccine. Vaccine 2004; 22:2800-5. [PMID: 15246614 DOI: 10.1016/j.vaccine.2004.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 01/07/2004] [Indexed: 11/29/2022]
Abstract
The insertion of a specific 25-residue internal peptide into ricin toxin A chain (RTA) reduced the catalytic activity of this protein approximately 300-fold. Directed proteolytic cleavage of the peptide insert essentially restored catalytic activity of the resulting two peptide A chain to normal levels. Ricin holotoxin containing unprocessed mutant A chain was not toxic to cultured mammalian cells, due to enhanced proteasomal degradation, nor was it toxic when injected into rats at a concentration that is lethal in the case of native ricin. Rats treated in this way were completely resistant to native ricin when subsequently challenged with a potentially lethal dose of the toxin. These ricin-resistant animals had a significant anti-ricin antibody titer, indicating that this approach has potential for developing an effective vaccine against this toxin.
Collapse
Affiliation(s)
- Catherine J Marsden
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Ricin is a naturally occurring toxin derived from the beans of the castor oil plant Ricinus communis. It is considered a potential chemical weapon. Ricin binds to cell surface carbohydrates, is internalised then causes cell death by inhibiting protein synthesis. Oral absorption is poor and absorption through intact skin most unlikely; the most hazardous routes of exposure being inhalation and injection. Features of toxicity mainly reflect damage to cells of the reticuloendothelial system, with fluid and protein loss, bleeding, oedema and impaired cellular defence against endogenous toxins. It has been estimated that in man, the lethal dose by inhalation (breathing in solid or liquid particles) and injection (into muscle or vein) is approximately 5-10 micrograms/kg, that is 350-700 micrograms for a 70 kg adult. Death has ensued within hours of deliberate subcutaneous injection. Management is supportive. Prophylactic immunisation against ricin toxicity is a developing research initiative, although presently not a realistic option in a civilian context.
Collapse
Affiliation(s)
- Sally M Bradberry
- National Poisons Information Service (Birmingham Centre), West Midlands Poisons Unit, City Hospital, Birmingham, UK.
| | | | | | | | | |
Collapse
|
35
|
Abstract
A variety of agents have potential for use as weapons of biological terrorism. Knowledge of the likely organisms may be useful in preparations to mitigate the effects of a BT event. Recognition of the clinical presentation of these organisms could help physicians identify them quickly, allowing more appropriate management and possible prophylaxis of others who may have been exposed. Although many of these agents do not have specific treatments, it is important to recognize those that do. It is also important to know which infections require isolation because of potential for person-to-person spread. Table 3 summarizes important features of the CDC category B and C agents. The list of agents discussed in this article is by no means exhaustive. It is always possible that some "mad scientist" could modify an existing organism or engineer some new agent for use in biological terrorism. The possibilities are limited only by the ingenuity and depravity of those individuals who would take part in such an attack.
Collapse
Affiliation(s)
- Gregory J Moran
- University of California Los Angeles, School of Medicine, Department of Emergency Medicine, Division of Infectious Diseases, North Annex, Olive View-UCLA Medical Center, 14445 Olive View Drive, Sylmar, CA 91342, USA.
| |
Collapse
|
36
|
Abstract
A rapid immunochromatographic assay was developed to detect ricin. The assay was based on the sandwich format using monoclonal antibodies (Mabs) of two distinct specificities. One anti-ricin B chain Mab (1G7) was immobilized to a defined detection zone on a porous nitrocellulose membrane, while the other anti-ricin A chain Mab (5E11) was conjugated to colloidal gold particles which served as a detection reagent. The ricin-containing sample was added to the membrane and allowed to react with Mab (5E11)-coated particles. The mixture was then passed along the porous membrane by capillary action past the Mab (1G7) in the detection zone, which will bind the particles that had ricin bound to their surface, giving a red color within this detection zone with an intensity proportional to ricin concentration. In the absence of ricin, no immunogold was bound to the solid-phase antibody. With this method, 50 ng/ml of ricin was detected in less than 10 min. The assay sensitivity can be increased by silver enhancement to 100 pg/ml.
Collapse
Affiliation(s)
- Rong-Hwa Shyu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
37
|
Shyu HF, Chiao DJ, Liu HW, Tang SS. Monoclonal antibody-based enzyme immunoassay for detection of ricin. HYBRIDOMA AND HYBRIDOMICS 2002; 21:69-73. [PMID: 11991819 DOI: 10.1089/15368590252917665] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A sensitive and specific enzyme-linked immunoadsorbent assay (ELISA) was developed to detect ricin in biological fluids. The assay is based on the sandwich format using monoclonal antibodies (MAbs) of two distinct specificities. An affinity-purified anti-ricin B chain MAb (1G7) is utilized to adsorb ricin from solution and the second anti-ricin A chain MAb (5E11) conjugated with peroxidase is then used to form a sandwich, and peroxidase allows color development and measurement of optical density at 450 nm. Standard curves were linear over the range of 2.5-100 ng/mL ricin. The limit of detection was below 5 ng/mL in assay buffer as well as in a 1:10 dilution of urine or 1:50 dilution of human serum spiked with ricin.
Collapse
Affiliation(s)
- Huey-Fen Shyu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
38
|
Abstract
We report on an evanescent wave fiber-optic biosensor for detecting a potently toxic protein, ricin, in the picograms per milliliter range. A sandwich immunoassay scheme was used to detect ricin. First, an anti-ricin IgG was immobilized onto the surface of an optical fiber in two different ways. In the first method, the antibody was directly coated to the silanized fiber using a crosslinker. Second, avidin-coated fibers were incubated with biotinylated anti-ricin IgG to immobilize the antibody using an avidin-biotin bridge. The assay using the avidin-biotin linked antibody demonstrated higher sensitivity and wider linear dynamic range than the assay using antibody directly conjugated to the surface. The linear dynamic range of detection for ricin in buffer using the avidin-biotin chemistry is 100 pg/ml-250 ng/ml. The limits of detection for ricin in buffer solution and river water are 100 pg/ml and 1 ng/ml, respectively. At higher concentrations of ricin (> 50 ng/ml), we observe a strong interaction of ricin with the avidin coated on the surface of the fibers. We have demonstrated that this interaction is primarily due to the lectin activity of ricin and is significantly reduced using fibers coated with neutravidin or by adding galactose to the ricin samples.
Collapse
Affiliation(s)
- U Narang
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC 20375-5348, USA
| | | | | | | |
Collapse
|
39
|
Poli MA, Rivera VR, Hewetson JF, Merrill GA. Detection of ricin by colorimetric and chemiluminescence ELISA. Toxicon 1994; 32:1371-7. [PMID: 7886695 DOI: 10.1016/0041-0101(94)90409-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A highly sensitive and specific ELISA was developed to detect ricin in biological fluids. The assay utilizes an affinity-purified goat polyclonal antibody to adsorb ricin from solution. The same antibody (biotinylated) is then used to form a sandwich, and avidin-linked alkaline phosphatase allows color development and measurement of optical density at 405 nm. Our routine assay uses a standard curve over the range of 0-10 ng/ml ricin, with accurate quantitation below 1 ng/ml (100 pg/well) in assay buffer as well as in a 1:10 dilution of human urine or 1:50 dilution of human serum spiked with ricin. Ricin measured in spiked samples demonstrated accuracy typically within 5% of the expected value in all matrices. The coefficient of variation ranged from 3-10% at 10 ng/ml to 8-25% at 2.5 ng/ml. Two variations on the routine assay were also investigated. First, lengthened incubation times and additional time for color development allowed accurate quantitation in serum dilutions as low as 1:2. Second, increased concentrations of biotinylated antibody and avidin-linked enzyme from 1:250 to 1:70 enhanced the sensitivity of the assay 10-fold, achieving a detection limit of at least 100 pg/ml (10 pg/well). The assay was also configured to a format based upon chemiluminescence, which allowed quantitation in the 0.1-1 ng/ml range, but was subject to slightly greater variability than the colorimetric assay.
Collapse
Affiliation(s)
- M A Poli
- Toxinology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011
| | | | | | | |
Collapse
|
40
|
Griffiths GD, Leith AG, Leek MD, Green MA. Demonstration of ricin within the mammalian para-aortic lymph node. I. Comparison of the localization, after intramuscular injection, with three immunocytochemical methods. THE HISTOCHEMICAL JOURNAL 1989; 21:380-6. [PMID: 2676921 DOI: 10.1007/bf01789735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Following a supralethal injection of ricin into thigh muscle of the adult rat, the toxin was demonstrated post-mortem in the para-aortic lymph node, ipsilateral to the side of injection. The relative merits of two immunoenzyme methods, peroxidase anti-peroxidase (PAP) and avidin-biotin-peroxidase complex (ABC) and a silver-enhanced immunogold method (IGSS) were assessed in the detection of ricin in the lymph node tissue. The toxin was clearly seen to be located in association with histiocytes found both within and lining the sinuses of the nodes and also, in some cases, in the subcapsular sinus of the node; the toxin was not demonstrable within lymphoid follicles by light microscopy. However, using electron microscopy and the IGSS technique, cells carrying discrete particles of gold could be visualized within follicular areas. The IGSS and ABC-peroxidase methods were both found to give excellent results without background staining at the light microscopy level. However, when these techniques were used prior to embedding and viewing by electron microscopy, the IGSS technique proved to be far superior.
Collapse
Affiliation(s)
- G D Griffiths
- Department of Forensic Medicine, St James's University Hospital, Leeds, UK
| | | | | | | |
Collapse
|
41
|
Griffiths GD, Leith AG, Leek MD, Green MA. Distribution of ricin within the mammalian para-aortic lymph node. II. Comparison of the localization, after intramuscular dosage of colloidal gold-labelled ricin in vivo, with in vitro binding characteristics of the native toxin. THE HISTOCHEMICAL JOURNAL 1989; 21:387-92. [PMID: 2793525 DOI: 10.1007/bf01789736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous work has shown that, following an intramuscular injection of ricin, the toxin becomes localized within histiocytes in the sinuses of lymph nodes draining the 'wound' site. When ricin labelled with colloidal gold was similarly injected, it was found within the same lymphoid cells as seen with native ricin. Biologically inert Indian ink apparently follows a similar fate, as demonstrated by the appearance of carbon particles within sinus histiocytes, as soon as 1 h after intramuscular injection. When the binding in vitro of Indian ink or ricin toxin to sections of lymph node was examined, ricin was seen to bind to the surfaces of the same sinusoidal cells and also, with a much lower frequency, to follicular lymphocytes, whereas Indian ink failed to bind. This indicated an interaction between ricin and cell membrane components. Moreover, this binding was inhibited markedly by the galactose-containing disaccharide, lactose, a target sugar specified by the lectin binding site of ricin and to a much lesser extent by the monosaccharide mannose.
Collapse
Affiliation(s)
- G D Griffiths
- Department of Forensic Medicine, St James's University Hospital, Leeds, UK
| | | | | | | |
Collapse
|